JP2014018100A - Method for manufacturing acetic acid from biomass - Google Patents

Method for manufacturing acetic acid from biomass Download PDF

Info

Publication number
JP2014018100A
JP2014018100A JP2012157085A JP2012157085A JP2014018100A JP 2014018100 A JP2014018100 A JP 2014018100A JP 2012157085 A JP2012157085 A JP 2012157085A JP 2012157085 A JP2012157085 A JP 2012157085A JP 2014018100 A JP2014018100 A JP 2014018100A
Authority
JP
Japan
Prior art keywords
acetic acid
biomass
liquid
primary hydrolysis
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012157085A
Other languages
Japanese (ja)
Inventor
Seiji Nakagame
誠司 仲亀
Yosuke Uchida
洋介 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2012157085A priority Critical patent/JP2014018100A/en
Publication of JP2014018100A publication Critical patent/JP2014018100A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing acetic acid from the liquid obtained by hydrolyzing of a biomass.SOLUTION: While a biomass suspension is continuously supplied from a supply port of a continuous primary hydrolysis device and is moved through the device, the biomass undergoes a primary hydrolysis process under pressurization and heating conditions in which monosaccharides, oligosaccharides, and furfurals are produced. While a resulting suspension of the hydrolysis process is continuously discharged from a discharge port of the primary hydrolysis device, a resulting liquid of the primary hydrolysis process is separated from the resulting suspension of the hydrolysis process in the device and extracted from an intermediate extraction port, which includes a solid-liquid separation device and is provided between the supply port and the discharge port of the primary hydrolysis device, while the resulting liquid of the primary hydrolysis process is maintained at the temperature and pressure at which the hydrolysis process is conducted. The extracted resulting liquid of the primary hydrolysis process is transferred to a culturing tank and acetic acid is manufactured in the culturing tank by using acetic acid-producing bacteria. In this acetic acid manufacturing method, the concentration of furfurals in the resulting liquid of the primary hydrolysis process supplied to the culturing tank is maintained at 0.5 mass% or less.

Description

本発明は、バイオマスの連続的な一次加水分解処理で得られる単糖類、オリゴ糖類及びフルフラール類を含有する加水分解処理液から効率的に酢酸を製造する方法に関する。 The present invention relates to a method for efficiently producing acetic acid from a hydrolysis treatment solution containing monosaccharides, oligosaccharides and furfurals obtained by continuous primary hydrolysis treatment of biomass.

バイオマス資源は、水と炭酸ガスと太陽エネルギーから光合成により生産される有機資源であり、エネルギー源または化学原料として利用可能である。バイオマス資源は、バイオマス資源から生産される生産物の生産量と生産物の利用量を調和させることができれば、炭酸ガスの排出量を増加させないで利用できる再生可能資源である。 Biomass resources are organic resources produced by photosynthesis from water, carbon dioxide and solar energy, and can be used as energy sources or chemical raw materials. Biomass resources are renewable resources that can be used without increasing carbon dioxide emissions, provided that the production of products produced from biomass resources can be harmonized with the usage of the products.

バイオマスとは、生活や産業活動を営む過程で不要物として排出される有機性廃棄物である「廃棄物系バイオマス」、農地にすき込まれたり、山林に放置されたりする農作物の非食用部(例えば、トウモロコシの茎・葉など)や間伐材などの「未利用バイオマス」、食料や木材の生産を目的とせず、物質・エネルギー資源を得ることを目的として、現在の休耕地や未利用地などで栽培される植物である「資源作物」、従来からの手法による品種改良や遺伝子組換技術によって生産性などの機能が改善された資源作物である「新作物」などを指す。 Biomass refers to “waste biomass”, which is organic waste that is discharged as an unnecessary waste in the process of living and industrial activities, and non-edible parts of crops that are scraped into farmland or left in mountain forests ( For example, “unused biomass” such as corn stalks and leaves) and thinned wood, current fallow land and unused land for the purpose of obtaining materials and energy resources without the purpose of producing food and wood. This refers to “resource crops” that are plants cultivated in Japan, and “new crops” that are resource crops whose functions such as productivity have been improved by variety improvement and genetic recombination techniques using conventional techniques.

バイオマスは、セルロース、ヘミセルロース、リグニン、細胞内含有成分等の成分により構成されており、成分比はバイオマスの種類によって異なっている。例えば、木質系バイオマスは、約50%のセルロース、20−25%のヘミセルロース、20−25%のリグニン、約5%の細胞内含有成分から構成されている。これらの成分は工業的な利用が可能である。 Biomass is composed of components such as cellulose, hemicellulose, lignin, and intracellular components, and the component ratio varies depending on the type of biomass. For example, woody biomass is composed of about 50% cellulose, 20-25% hemicellulose, 20-25% lignin, and about 5% intracellular components. These components can be used industrially.

バイオマスに含まれるセルロースや糖類(オリゴ糖、グルコース、キシロース)を酢酸生産菌を用いて酢酸を生産することができる。酢酸は工業用途として重要であり、合成樹脂や接着剤等の原料として用いられている。また、酢酸を原料として化学変換によりエタノールを生産することもできる。 Acetic acid can be produced using cellulose and saccharides (oligosaccharide, glucose, xylose) contained in biomass using acetic acid-producing bacteria. Acetic acid is important for industrial use and is used as a raw material for synthetic resins and adhesives. Ethanol can also be produced by chemical conversion using acetic acid as a raw material.

バイオマスを加圧熱水処理することによりバイオマスを構成する成分を分解、抽出することができる。加圧熱水とは、温度が100−374℃であり、飽和蒸気圧以上に加圧した高温高圧の液体状態の水のことである。加圧熱水に対するバイオマス構成成分の反応性の違いを利用することで、バイオマスの構成成分の分離を行うことが可能である。例えば、加圧熱水の温度が100−140℃においては、細胞内有用成分(タンニン、テルペン、有機酸)や水溶性リグニンを回収できることが報告されている。また、加圧熱水の温度が140−230℃においては、ヘミセルロースに由来するオリゴ糖や、キシロース、アラビノース、マンノース、ガラクトースなどの単糖類を回収できることが報告されている(特許文献1、特許文献2、非特許文献1〜3)。 By treating the biomass with pressurized hot water, the components constituting the biomass can be decomposed and extracted. Pressurized hot water is high-temperature and high-pressure liquid water having a temperature of 100 to 374 ° C. and pressurized to a saturated vapor pressure or higher. By utilizing the difference in the reactivity of biomass constituents with pressurized hot water, it is possible to separate the constituents of biomass. For example, it has been reported that when the temperature of pressurized hot water is 100 to 140 ° C., useful intracellular components (tannin, terpene, organic acid) and water-soluble lignin can be recovered. Moreover, it is reported that oligosaccharides derived from hemicellulose and monosaccharides such as xylose, arabinose, mannose, and galactose can be recovered at a pressurized hot water temperature of 140-230 ° C. (Patent Document 1, Patent Document) 2, non-patent documents 1 to 3).

上記の加圧熱水処理のうち、溶解パルプ製造時にクラフト蒸解法の前工程として用いられる加圧熱水処理は、前加水分解工程と呼ばれる。バイオマスから溶解パルプを製造するには、バイオマス中のヘミセルロースとリグニンを選択的に除去し、セルロース純度を高める必要がある。パルプ製造時の前加水分解は、セルロースの分解を抑制し、ヘミセルロースのみを分解する条件で実施される。前加水分解工程では、バイオマスに水を加えて加熱するだけで、ヘミセルロース中のアセチル基が脱離して酢酸を生成し、酸性となり酸加水分解が進む。ヘミセルロースには、六炭糖であるマンノース、グルコース、ガラクトース、五炭糖であるキシロース、アラビノースが構成糖として含まれている。 Among the above-mentioned pressurized hot water treatments, the pressurized hot water treatment used as a pre-process for kraft cooking at the time of dissolving pulp production is called a pre-hydrolysis step. In order to produce dissolving pulp from biomass, it is necessary to selectively remove hemicellulose and lignin in the biomass to increase the purity of the cellulose. Prehydrolysis at the time of pulp production is carried out under conditions that suppress decomposition of cellulose and decompose only hemicellulose. In the prehydrolysis step, simply adding water to the biomass and heating it results in elimination of the acetyl group in hemicellulose to produce acetic acid, which becomes acidic and acid hydrolysis proceeds. Hemicellulose contains hexose, mannose, glucose, galactose, pentose, xylose, and arabinose as constituent sugars.

前加水分解工程において、ヘミセルロースが加水分解されると上記の糖から構成されるオリゴ糖類が生成される。また、オリゴ糖の加水分解がさらに進むと単糖が生成される。これらの糖の中で、五炭糖であるキシロース、アラビノースは、3分子の水の脱水反応によりフルフラールに変換される(非特許文献4)。バイオマスを前加水分解処理した後の加水分解物(固形分)は、後段のクラフト蒸解工程で加水分解物中に残存するリグニン及びヘミセルロースが除去され、更に次工程で漂白処理を行うことで高純度のセルロース(溶解パルプ)が得られる。 In the prehydrolysis step, when hemicellulose is hydrolyzed, an oligosaccharide composed of the above sugars is produced. Further, when the oligosaccharide is further hydrolyzed, a monosaccharide is produced. Among these sugars, xylose and arabinose, which are pentose sugars, are converted to furfural by the dehydration reaction of three molecules of water (Non-patent Document 4). The hydrolyzate (solid content) after pre-hydrolyzing the biomass is highly purified by removing the lignin and hemicellulose remaining in the hydrolyzate in the subsequent kraft cooking step, and further performing bleaching in the next step. Of cellulose (dissolving pulp) is obtained.

通常、前加水分解工程は連続的に行われ、前加水分解工程で連続的に得られるオリゴ糖類、単糖類等を含む加水分解液(ろ液)を取り出して、取り出した加水分解液に含まれるオリゴ糖類、単糖類を効率的な方法で酢酸に変換するこができれば、製造コストが低減でき工業的規模での酢酸の生産が可能となる。 Usually, the prehydrolysis step is continuously performed, and a hydrolyzed liquid (filtrate) containing oligosaccharides, monosaccharides, etc. continuously obtained in the prehydrolyzing step is taken out and included in the hydrolyzed liquid taken out. If oligosaccharides and monosaccharides can be converted into acetic acid by an efficient method, production costs can be reduced and acetic acid can be produced on an industrial scale.

炭水化物を原料としてClostridium thermoaceticum(酢酸生成菌)により酢酸を生産する方法(特許文献3)、グルコース、メタノール及び炭酸ガス源を主成分として含む培地でClostridium thermoaceticum
を培養し酢酸を製造する方法(特許文献4)、リグノセルロースの加水分解物にCystein・HCl・HOを0.05〜0.1g/L添加した培地でClostridium thermoaceticumを培養し酢酸を製造する方法(特許文献5)が報告されている。しかし、工業的規模での酢酸の生産を目指す場合、連続的な方法で効率的に酢酸を生産する必要があり、さらに効率的な酢酸の製造方法の開発が望まれている。
A method for producing acetic acid by Clostridium thermoaceticum (acetic acid producing bacterium) using carbohydrate as a raw material (Patent Document 3), and a medium containing glucose, methanol and a carbon dioxide source as main components, Clostridium thermoaceticum
To produce acetic acid (patent document 4), to produce acetic acid by culturing Clostridium thermoaceticum in a medium in which 0.05 to 0.1 g / L of Cystein / HCl / H 2 O is added to the hydrolyzate of lignocellulose (Patent Document 5) has been reported. However, when aiming at the production of acetic acid on an industrial scale, it is necessary to efficiently produce acetic acid by a continuous method, and further development of an efficient method for producing acetic acid is desired.

特開平10−327900号公報Japanese Patent Laid-Open No. 10-327900 特開2002―59118号公報JP 2002-59118 A 特開昭62−171689号公報JP-A-62-171689 特開平6−165685号公報Japanese Patent Laid-Open No. 6-165585 特開2012―50345号公報JP 2012-50345 A

柴田 昌男、「バイオマス利用技術の開発を目指して−加圧熱水による処理技術−」、平成13年度産業技術総合研究所九州センター研究講演会要旨集Masao Shibata, “Toward the development of biomass utilization technology -Treatment technology with pressurized hot water”, 2001 AIST Kyushu Center research lecture summary 坂木 剛、「加圧熱水によるバイオマスの成分分離」Vol.7、 ページ245−248、日本エネルギー学会講演要旨集、1998年Takeshi Sakaki, “Separation of Biomass Components by Pressurized Hot Water” Vol. 7, pp. 245-248, Abstracts of the Japan Institute of Energy, 1998 安藤 浩毅、外5名、「加圧熱水を用いた木質バイオマスの分解挙動」、鹿児島県工業技術センター研究報告 No.14,ページ、2000Hiroshi Ando and five others, "Decomposition behavior of woody biomass using pressurized hot water", Kagoshima Prefectural Industrial Technology Center research report No. 14, page, 2000 Furfural:Hemicellulose/xylosederived biochemical, Ajit Singh Mamman, Biofuels Bioproducts and Biorefining, Volume 2,Issue 5,p.p.438−454 (2008)Furrural: Hemicellose / xylosed biochemical, Ajing Singh Maman, Biofuels Bioproducts and Biorefining, Volume 2, Issue 5, p. p. 438-454 (2008)

本発明の課題は、バイオマスを連続的に一次加水分解処理して得られる単糖類、オリゴ糖類及びフルフラール類を含有する加水分解処理液から効率的に酢酸を生産する方法を提供することにある。 An object of the present invention is to provide a method for efficiently producing acetic acid from a hydrolysis treatment liquid containing monosaccharides, oligosaccharides and furfurals obtained by continuously subjecting biomass to primary hydrolysis.

本発明者らは、バイオマスの原料懸濁液を連続一次加水分解装置の供給口より連続的に供給して装置内を移動させつつ単糖類、オリゴ糖類、フルフラール類を生成する加圧・加熱条件でバイオマスを一次加水分解処理し、加水分解処理懸濁液を一次加水分解装置の排出口より連続的に排出するとともに、一次加水分解装置の前記供給口と前記排出口の中間位置における固−液分離装置を備えた中間取出口より、装置内の加水分解処理懸濁液から分離した一次加水分解処理液を加水分解処理の温度及び圧力を保った状態で取り出し、取り出した一次加水分解処理液を培養槽に移送し前記培養槽内で酢酸生成菌を用いて酢酸を製造する方法において、前記培養槽へ供給される一次加水分解処理液に含まれるフルフラール濃度を0.5質量%以下に維持して酢酸を製造することにより効率的に酢酸を生産できることを見出し、下記の発明を完成するに至ったものである。 The present inventors have supplied pressure and heating conditions for producing monosaccharides, oligosaccharides, and furfurals while continuously feeding the raw material suspension of biomass from the supply port of the continuous primary hydrolysis apparatus and moving in the apparatus. The biomass is subjected to primary hydrolysis treatment, and the hydrolyzed suspension is continuously discharged from the discharge port of the primary hydrolysis device, and at the intermediate position between the supply port and the discharge port of the primary hydrolysis device. The primary hydrolysis treatment liquid separated from the hydrolysis treatment suspension in the apparatus is taken out from the intermediate outlet equipped with the separation device while maintaining the temperature and pressure of the hydrolysis treatment, and the removed primary hydrolysis treatment liquid is removed. In the method for producing acetic acid using the acetic acid producing bacteria in the culture tank transferred to the culture tank, the concentration of furfural contained in the primary hydrolysis treatment liquid supplied to the culture tank is 0.5% by mass or less. Found that can be produced efficiently acetate by lifting to the production of acetic acid, it has been led to completion of the invention described below.

(1)バイオマスの原料懸濁液を連続一次加水分解装置の供給口より連続的に供給して装置内を移動させつつ単糖類、オリゴ糖類、フルフラール類を生成する加圧・加熱条件でバイオマスを一次加水分解処理し、加水分解処理懸濁液を一次加水分解装置の排出口より連続的に排出するとともに、一次加水分解装置の前記供給口と前記排出口の中間位置における固−液分離装置を備えた中間取出口より、装置内の加水分解処理懸濁液から分離した一次加水分解処理液を加水分解処理の温度及び圧力を保った状態で取り出し、取り出した一次加水分解処理液を培養槽に移送し前記培養槽内で酢酸生成菌を培養して酢酸を製造する方法において、前記培養槽へ供給される一次加水分解処理液に含まれるフルフラール濃度を0.5質量%以下に維持して酢酸生成菌を培養することを特徴とするバイオマスからの酢酸の製造方法。 (1) Biomass is produced under pressure and heating conditions to produce monosaccharides, oligosaccharides, and furfurals while continuously feeding the raw material suspension of the biomass from the supply port of the continuous primary hydrolysis device and moving the inside of the device. A primary hydrolysis treatment is performed, and the hydrolyzed suspension is continuously discharged from the discharge port of the primary hydrolysis device, and a solid-liquid separation device at an intermediate position between the supply port and the discharge port of the primary hydrolysis device is provided. The primary hydrolyzed liquid separated from the hydrolyzed suspension in the apparatus is taken out from the intermediate outlet provided while maintaining the temperature and pressure of the hydrolyzing process, and the removed primary hydrolyzed liquid is put into the culture tank. In the method of transferring and culturing acetic acid producing bacteria in the culture tank to produce acetic acid, the furfural concentration contained in the primary hydrolysis treatment solution supplied to the culture tank is maintained at 0.5% by mass or less. Process for the production of acetic acid from biomass, characterized by culturing the acetogenic bacteria.

(2)前記一次加水分解装置の前記排出口の近傍から水性洗浄液を一次加水分解処理装置内に供給して前記固−液分離装置を備えた中間取出口と前記排出口との間で加水分解処理懸濁液と向流接触させることを特徴とする(1)項に記載のバイオマスからの酢酸の製造方法。 (2) Hydrolysis is performed between the intermediate outlet provided with the solid-liquid separator and the outlet by supplying an aqueous cleaning liquid into the primary hydrolysis apparatus from the vicinity of the outlet of the primary hydrolyzer. The method for producing acetic acid from biomass as described in the item (1), wherein the suspension is brought into countercurrent contact with the treated suspension.

(3)前記酢酸生成菌がClostridium属細菌であることを特徴とする(1)項又は(2)項に記載のバイオマスからの酢酸の製造方法。 (3) The method for producing acetic acid from biomass according to (1) or (2), wherein the acetic acid producing bacterium is a Clostridium bacterium.

本発明により、バイオマスを連続的に一次加水分解処理して得られる単糖類、オリゴ糖類及びフルフラール類を含有する加水分解処理液から効率的に酢酸を生産することが可能となる。 According to the present invention, acetic acid can be efficiently produced from a hydrolysis treatment liquid containing monosaccharides, oligosaccharides and furfurals obtained by continuously subjecting biomass to primary hydrolysis.

本発明のバイオマスからの酢酸の製造方法を実施するための装置の一例を示す図である。It is a figure which shows an example of the apparatus for enforcing the manufacturing method of the acetic acid from the biomass of this invention.

以下、本発明の酢酸の製造方法をさらに詳しく説明する。   Hereinafter, the method for producing acetic acid of the present invention will be described in more detail.

(バイオマスの種類)
本発明で用いるバイオマスとしては、六炭糖及び(又は)五炭糖を構成糖として含む材料であれば、特に制限なく使用することができる。例えば、木質系原料であれば、樹木、林地残材、間伐材、廃材等のチップ又は樹皮、製材工場等から発生するおが屑、街路樹の剪定枝葉、建築廃材等が挙げられ、広葉樹、針葉樹共に用いることができる。草本系として、ケナフ、稲藁、麦わら、コーンコブ、バガス等の農産廃棄物、油用作物やゴム等の工芸作物の残渣及び廃棄物(例えば、EFB: Empty Fruit Bunch)、草本系エネルギー作物のエリアンサス、ミスカンサスやネピアグラス等のリグノセルロース系バイオマスが挙げられる。また、バイオマスとしては、木材由来の紙、古紙、パルプ、パルプスラッジ、スラッジ、下水汚泥等、食品廃棄物、等を原料として利用することができる。これらのバイオマスは、単独、あるいは複数を組み合わせて使用することができる。また、バイオマスは、乾燥固形物であっても、水分を含んだ固形物であっても、スラリーであっても用いることができる。バイオマスが乾燥固形物または水分を含んだ固形物であれば、水と混合させスラリー状態にした後に、加水分解反応装置に供給することが好ましい。
(Type of biomass)
As the biomass used in the present invention, any material containing hexose sugar and / or pentose sugar as a constituent sugar can be used without particular limitation. For example, wood-based materials include chips, bark of wood, forest residue, thinned wood, waste wood, sawdust generated from sawmills, pruned branches of street trees, construction waste, etc. Can be used. Agricultural waste such as kenaf, rice straw, straw, corn cob, bagasse, etc., residue and waste of industrial crops such as oil crops and rubber (for example, EFB: Empty Fruit Bunch), herbaceous energy crop areas And lignocellulosic biomass such as Nanthus, Miscanthus and Napiergrass. Further, as biomass, food waste such as paper derived from wood, waste paper, pulp, pulp sludge, sludge, sewage sludge, and the like can be used as raw materials. These biomasses can be used alone or in combination. The biomass can be used as a dry solid, a solid containing water, or a slurry. If the biomass is a dry solid or a solid containing water, it is preferably mixed with water to form a slurry and then supplied to the hydrolysis reaction apparatus.

(一次加水分解装置)
本発明の方法で用いる一次加水分解装置は、連続的にバイオマスを加圧・加熱条件下に加水分解処理することができると共に、加水分解処理されたバイオマスと単糖類、オリゴ糖類、フルフラール類及びその他の有機酸等の加水分解生成物を含む水溶液とよりなる加水分解処理懸濁液から、加水分解処理温度と圧力を維持した状態の加水分解生成物を含む水溶液よりなる加水分解処理液を連続的に分離して取り出すことができる加圧、加熱加水分解処理装置である。
(Primary hydrolysis equipment)
The primary hydrolysis apparatus used in the method of the present invention is capable of continuously hydrolyzing biomass under pressure and heating conditions, as well as hydrolyzed biomass and monosaccharides, oligosaccharides, furfurals, and others. From a hydrolysis treatment suspension comprising an aqueous solution containing hydrolysis products such as organic acids, a hydrolysis treatment solution comprising an aqueous solution containing hydrolysis products in a state where the hydrolysis treatment temperature and pressure are maintained is continuously applied. This is a pressure and heat hydrolysis treatment device that can be separated and removed.

上記一次加水分解装置としては、図1に示すように、バイオマスと水よりなる原料懸濁液供給管路1が接続されている供給口Aと加水分解処理されたバイオマスを含有する加水分解処理液の排出管路2が接続されている排出口Bと、該原料懸濁液の供給口と加水分解処理懸濁液の排出口との中間部において、単糖類、オリゴ糖類、フルフラール類を生成する圧力及び温度条件下で懸濁液中のバイオマスが加水分解処理されている加水分解処理懸濁液から、水溶性の加水分解生成物を含有する水溶液からなる加水分解処理液部分を連続的に分離して取り出すことができる固−液分離装置Sを備えた中間取出口を持つ塔式の加水分解装置R1が挙げられる。 As the primary hydrolysis apparatus, as shown in FIG. 1, a hydrolysis treatment solution containing hydrolysis biomass with a supply port A to which a raw material suspension supply pipeline 1 made of biomass and water is connected. Monosaccharides, oligosaccharides, and furfurals are produced at an intermediate portion between the discharge port B to which the discharge pipe 2 is connected and the feed port for the raw material suspension and the discharge port for the hydrolyzed suspension. The hydrolyzed liquid suspension consisting of an aqueous solution containing water-soluble hydrolysis products is continuously separated from the hydrolyzed suspension where the biomass in the suspension is hydrolyzed under pressure and temperature conditions. And a tower-type hydrolysis apparatus R1 having an intermediate outlet provided with a solid-liquid separation apparatus S that can be taken out.

図1の装置においては、原料バイオマスは、原料懸濁液供給管路1が接続されている供給口Aより水性懸濁液の状態で加圧・加熱加水分解装置R1内に連続的に供給され、加水分解処理を受けながら装置内を移動し、他方の加水分解処理懸濁液排出管路2が接続されている排出口Bから加水分解処理されたバイオマスを含有する加水分解処理懸濁液として連続的に排出されるとともに、供給口Aから排出口Bに至る装置の中間部に設置されている固−液分離装置Sにより装置内を移動する加水分解処理懸濁液から水溶性の加水分解生成物を含有する加水分解処理液の部分が分離され、加水分解処理の圧力と温度を維持したまま該装置中間部から連続的に取出管路3に取り出されて、取り出された加水分解処理液は冷却器で酢酸生成菌の培養に適した温度まで冷却された後、培養槽REに送られる。 In the apparatus of FIG. 1, the raw material biomass is continuously supplied into the pressurized / heated hydrolysis apparatus R1 in the state of an aqueous suspension from a supply port A to which the raw material suspension supply pipe line 1 is connected. As a hydrolyzed suspension containing biomass hydrolyzed from the outlet B to which the other hydrolyzed suspension suspension discharge pipe 2 is connected while moving in the apparatus while undergoing the hydrolysis treatment Water-soluble hydrolysis from the hydrolyzed suspension that is continuously discharged and moves through the apparatus by the solid-liquid separation apparatus S installed in the intermediate part of the apparatus from the supply port A to the discharge port B A portion of the hydrolysis treatment liquid containing the product is separated, and is continuously taken out from the intermediate part of the apparatus to the take-out conduit 3 while maintaining the pressure and temperature of the hydrolysis treatment. For culturing acetic acid producing bacteria with a cooler After being cooled to temperature, it is sent to the culture tank RE.

図1の加水分解装置R1において、中間部取出口Gから加水分解処理液の一部が取り出された後の装置内の加水分解処理懸濁液に、原料懸濁液に使用されている水性液と同種の水性液を補給するために、中間部取出口Gの下方位置に水性液を供給するための水性液供給口を設けることもできる。水性液を供給することにより、原料からのオリゴ糖類、単糖類、フルフラール類が溶出され易くなりオリゴ糖類、単糖類、フルフラール類の収率が向上する。 In the hydrolysis apparatus R1 of FIG. 1, the aqueous liquid used for the raw material suspension in the hydrolysis treatment suspension in the apparatus after a part of the hydrolysis treatment liquid is taken out from the intermediate portion outlet G In order to replenish the same type of aqueous liquid, an aqueous liquid supply port for supplying the aqueous liquid to a position below the intermediate portion outlet G may be provided. By supplying the aqueous liquid, oligosaccharides, monosaccharides and furfurals from the raw material are easily eluted, and the yield of oligosaccharides, monosaccharides and furfurals is improved.

図1の加水分解装置R1においては、加水分解装置R1の円筒部の側面に中間部取出口Gが一箇所だけ設けられているが、この中間部取出口Gは1箇所に限定されず、2箇所以上の位置に設けることもできる。例えば、中間部取出口Gの下方の位置に、加水分解処理液部分のみを分離して装置外に取り出すことができる第二の中間部取出口Sが設けられている加水分解装置であってもよい。また、たとえば、第三の中間部取出口を更に設ける場合には、第二の中間部取出口と第三の中間部取出口の間にも水性液供給口を設けて、必要に応じて水性液を加水分解装置R1内に供給できるようにすることができる。
このように2箇所以上の中間取出口を設け、各々の中間取出口から加水分解処理液を取り出すと同時に水性液供給口から水性液を一次加水分解装置内へ供給することにより合計量としてオリゴ糖類、単糖類、フルフラール類の収率が向上する。
In the hydrolysis apparatus R1 of FIG. 1, only one intermediate part outlet G is provided on the side surface of the cylindrical portion of the hydrolysis apparatus R1, but this intermediate part outlet G is not limited to one place. It can also be provided at more than one location. For example, even if it is a hydrolysis apparatus provided with the 2nd intermediate part outlet S which can isolate | separate only a hydrolysis process liquid part and can take out out of an apparatus in the position below the intermediate part outlet G. Good. In addition, for example, when a third intermediate portion outlet is further provided, an aqueous liquid supply port is also provided between the second intermediate portion outlet and the third intermediate portion outlet, and water can be added as necessary. The liquid can be supplied into the hydrolysis apparatus R1.
In this way, two or more intermediate outlets are provided, the hydrolyzed liquid is taken out from each of the intermediate outlets, and at the same time, the aqueous liquid is supplied into the primary hydrolyzer from the aqueous liquid supply port, so that the total amount of oligosaccharides , The yield of monosaccharides and furfurals is improved.

固−液分離装置Sとしては、メッシュ(網目)が10μm〜5cmの範囲のストレーナーやフィルターが採用される。ストレーナーとしては、目詰まりのトラブルの回避と分離される水溶液中への懸濁物質の随伴を極力避けるために40〜500μmの範囲のストレーナーが好適に採用される。 As the solid-liquid separator S, a strainer or a filter having a mesh (mesh) in the range of 10 μm to 5 cm is employed. As the strainer, a strainer in the range of 40 to 500 μm is preferably employed in order to avoid clogging troubles and avoid the entrainment of suspended substances in the separated aqueous solution as much as possible.

図1に示されているように、洗浄液供給装置Wから洗浄液供給管路6により加水分解装置R1の底部に洗浄液を供給して、加水分解装置R1の中間取出口Gから底部排出口に移動する加水分解処理懸濁液と向流接触させることができる。洗浄液供給管路6からの洗浄液は、連続的に供給しても良いし、断続的に供給しても良い。洗浄液供給管路6からの洗浄液としては、水や酸を含む水溶液を用いることが望ましいが、中間取出口Gから取出管路3に取り出される加水分解処理液に悪影響を及ぼさない水溶液であれば特に制限なく用いることができる。底部に供給された洗浄液は、加水分解物の移動方向とは逆に下部から上部へ移動し、装置中間の固−液分離装置Sを備えた中間取出口Gから加水分解処理液と混合状態で取出管路3に取り出される。 As shown in FIG. 1, the cleaning liquid is supplied from the cleaning liquid supply apparatus W to the bottom of the hydrolysis apparatus R1 through the cleaning liquid supply pipe 6, and moves from the intermediate outlet G of the hydrolysis apparatus R1 to the bottom outlet. It can be brought into countercurrent contact with the hydrolyzed suspension. The cleaning liquid from the cleaning liquid supply pipe 6 may be supplied continuously or intermittently. As the cleaning liquid from the cleaning liquid supply pipe 6, it is desirable to use an aqueous solution containing water or an acid, but particularly an aqueous solution that does not adversely affect the hydrolysis treatment liquid taken out from the intermediate outlet G to the extraction pipe 3. Can be used without limitation. The washing liquid supplied to the bottom moves from the lower part to the upper part in the opposite direction of the hydrolyzate, and is mixed with the hydrolysis treatment liquid from the intermediate outlet G equipped with the solid-liquid separation device S in the middle of the apparatus. It is taken out to the take-out conduit 3.

上記のような向流洗浄操作を採用することによって、上部から下部へ移動する加水分解処理されたバイオマスを含有する水性懸濁液であって、前記固−液分離装置Sで加水分解処理液の一部分が除かれている、加水分解処理懸濁液中の加水分解生成物(単糖類、オリゴ糖類、フルフラール類)を洗浄液中に移行させて前記移送管路3に取り出される加水分解処理液として回収できるので、加水分解処理バイオマスに随伴されて加水分解装置R1の底部の加水分解処理懸濁液とともに管路2から排出される加水分解物の損失が抑制されるというメリットがある。 By adopting the counter-current washing operation as described above, an aqueous suspension containing hydrolyzed biomass that moves from the upper part to the lower part, which is hydrolyzed by the solid-liquid separator S The hydrolysis products (monosaccharides, oligosaccharides, furfurals) in the hydrolysis treatment suspension from which a part has been removed are transferred to the washing liquid and recovered as a hydrolysis treatment liquid taken out to the transfer pipe 3 Therefore, there is an advantage that the loss of the hydrolyzate accompanying the hydrolysis-treated biomass and discharged from the pipeline 2 together with the hydrolysis-treated suspension at the bottom of the hydrolysis apparatus R1 is suppressed.

(一次加水分解条件)
本発明の方法において、一次加水分解装置R1内での加水分解処理は、加圧下における熱水処理、酸処理、アルカリ処理等の方法を用いて行うことができるが、生成する単糖類、オリゴ糖類、フルフラール類を効率的に回収するためには、加圧、加熱状態の水又は酸水溶液を用いた処理が望ましい。加圧、加熱状態の水による処理の場合、バイオマスを水と混合し、加圧、加熱して加水分解を行う。酸水溶液処理の方法としては、バイオマスを酸を含む水と混合し、加圧、加熱して加水分解を行う。酸水溶液処理で用いる酸は特に限定されないが、硫酸、塩酸、硝酸、リン酸、酢酸、シュウ酸等を用いることができる。
(Primary hydrolysis conditions)
In the method of the present invention, the hydrolysis treatment in the primary hydrolysis apparatus R1 can be performed using a method such as hydrothermal treatment, acid treatment, alkali treatment under pressure, but the monosaccharides and oligosaccharides produced In order to efficiently recover furfurals, a treatment using pressurized or heated water or an aqueous acid solution is desirable. In the case of treatment with pressurized and heated water, the biomass is mixed with water and hydrolyzed by applying pressure and heating. As a method for the acid aqueous solution treatment, biomass is mixed with water containing an acid, and hydrolyzed by pressurization and heating. The acid used in the acid aqueous solution treatment is not particularly limited, and sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, acetic acid, oxalic acid, and the like can be used.

加水分解処理に供するバイオマスを含有する水性懸濁液のpHは0.5〜5.0の範囲が好ましい。
加水分解処理の温度としては、120〜250℃で行うことができるが、140〜230℃が好ましく、150〜180℃がより好ましい。
加水分解処理の圧力は、0.35MPa〜2.8MPaであることが好ましい。
バイオマスと混合する水性液体とバイオマスの質量比(水性液体/バイオマス)は2〜8の範囲が好ましい。バイオマスと水性液体を混合して水性懸濁液原料を調製し、加水分解装置に供給して加水分解装置内で所定の温度と圧力で加水分解処理する。
The pH of the aqueous suspension containing biomass to be subjected to hydrolysis treatment is preferably in the range of 0.5 to 5.0.
Although it can carry out at 120-250 degreeC as a temperature of a hydrolysis process, 140-230 degreeC is preferable and 150-180 degreeC is more preferable.
The hydrolysis treatment pressure is preferably 0.35 MPa to 2.8 MPa.
The mass ratio (aqueous liquid / biomass) of the aqueous liquid and biomass mixed with the biomass is preferably in the range of 2-8. A biomass and an aqueous liquid are mixed to prepare an aqueous suspension raw material, which is supplied to a hydrolysis apparatus and hydrolyzed at a predetermined temperature and pressure in the hydrolysis apparatus.

バイオマスの加水分解処理時間は、バイオマスの種類や一次加水分解装置R1内の温度等に応じて適宜選択できる。例えば、140〜230℃で加水分解処理する場合、加水分解処理時間は0.5〜180分の範囲で適宜選択される。
以上の条件下での加水分解処理により、セルロースを主体とする加水分解処理バイオマスと、バイオマス由来の加水分解生成物であるフルフラール、オリゴ糖類、単糖類などを含有する加水分解処理液よりなる加水分解処理懸濁液が得られる。
The hydrolysis treatment time of biomass can be appropriately selected according to the type of biomass, the temperature in the primary hydrolysis apparatus R1, and the like. For example, when the hydrolysis treatment is performed at 140 to 230 ° C., the hydrolysis treatment time is appropriately selected within the range of 0.5 to 180 minutes.
By hydrolysis treatment under the above conditions, hydrolysis comprising a hydrolysis treatment liquid containing hydrolysis treatment biomass mainly composed of cellulose and furfural, oligosaccharides, monosaccharides and the like derived from biomass. A treated suspension is obtained.

生成するフルフラール類としては、フルフラール、5−ヒドロキシメチルフルフラール等が挙げられる。生成するオリゴ糖類としては、キシロオリゴ糖、セロオリゴ糖、ガラクトオリゴ糖等が挙げられ、前記オリゴ糖にアラビノース、マンノース、グルコース、キシロース、グルクロン酸、4−O―メチルグルクロン酸等が側鎖として付加したオリゴ糖も含まれる。生成する単糖類としては、キシロース、アラビノース、グルコース、ガラクトース、マンノース等が挙げられる。 Examples of the generated furfural include furfural and 5-hydroxymethylfurfural. Examples of oligosaccharides to be generated include xylooligosaccharides, cellooligosaccharides, galactooligosaccharides, and the like. Sugar is also included. Examples of monosaccharides to be generated include xylose, arabinose, glucose, galactose, mannose and the like.

一次加水分解装置R1内で加水分解処理されたバイオマスを含有する加水分解処理懸濁液は、一次加水分解装置R1の中間位置に設置されている固−液分離装置Sで水溶性の加水分解生成物を含有する水溶液からなる加水分解処理液の一部が分離されて取出管路3に取り出された後の懸濁液として一次加水分解装置R1の排出口に接続されている加水分解処理懸濁液排出管路2から装置外に排出される。一次加水分解装置R1の中間位置の固−液分離装置Sから排出口に移動する加水分解処理されたバイオマスを含有する加水分解処理懸濁液を、洗浄液供給装置Wから洗浄液供給管路6により一次加水分解装置R1内に供給する洗浄液と向流接触させることによって洗浄して排出口から排出することもできる。 The hydrolyzed suspension containing the biomass hydrolyzed in the primary hydrolyzer R1 is water-soluble and hydrolyzed by the solid-liquid separator S installed at the intermediate position of the primary hydrolyzer R1. The hydrolysis treatment suspension connected to the discharge port of the primary hydrolysis apparatus R1 as a suspension after a part of the hydrolysis treatment liquid composed of an aqueous solution containing substances is separated and taken out to the take-out pipe 3 The liquid is discharged from the liquid discharge line 2 to the outside of the apparatus. A hydrolyzed suspension containing hydrolyzed biomass that moves from the solid-liquid separator S at the intermediate position of the primary hydrolyzer R1 to the discharge port is primarily removed from the cleaning liquid supply device W through the cleaning liquid supply line 6. It can also wash | clean and discharge | emit from a discharge port by making it contact countercurrent with the washing | cleaning liquid supplied in hydrolysis apparatus R1.

一次加水分解装置R1から排出管路2に排出された加水分解処理懸濁液中のバイオマスよりなる固形分は、バイオマス由来の有用成分の製造原料として再利用することができる。
また、管路7によって蒸解工程に送られてパルプの製造原料として用いることができるので、本発明の加水分解方法は、溶解パルプ製造工程でクラフト蒸解の前工程である前加水分解工程とすることもできる。
The solid content made of biomass in the hydrolysis-treated suspension discharged from the primary hydrolysis apparatus R1 to the discharge pipe 2 can be reused as a raw material for producing useful components derived from biomass.
Moreover, since it can be sent to a cooking process by the pipe line 7 and can be used as a raw material for pulp production, the hydrolysis method of the present invention is a pre-hydrolysis process that is a pre-process of kraft cooking in a dissolving pulp manufacturing process. You can also.

一次加水分解装置R1から一次加水分解処理液取出管路3により取り出された一次加水分解処理液を、培養槽REに供給する。一次加水分解処理液を培養槽REへ供給する前に冷却器で一次加水分解処理液を冷却してもよい。酢酸生成菌の培養を開始する時点で培養槽RE内の培地(加水分解処理液、栄養源を含む)の温度が酢酸生成菌の培養に適した温度にする必要があるため、冷却器で冷却することが望ましい。 The primary hydrolysis treatment liquid taken out from the primary hydrolysis apparatus R1 by the primary hydrolysis treatment liquid take-out conduit 3 is supplied to the culture tank RE. Before supplying the primary hydrolysis treatment liquid to the culture tank RE, the primary hydrolysis treatment liquid may be cooled with a cooler. Since the temperature of the medium (including the hydrolyzed solution and nutrients) in the culture tank RE needs to be a temperature suitable for the cultivation of the acetic acid producing bacteria at the start of the cultivation of the acetic acid producing bacteria, it is cooled with a cooler. It is desirable to do.

(培養装置)
本発明の方法で用いる培養装置は、連続的あるいは断続的に酢酸生成菌を培養することができる連続式あるいはバッチ式の培養装置であれば制限なく使用することができる。培養装置の形態は特に限定されない。
(Culture equipment)
The culture apparatus used in the method of the present invention can be used without limitation as long as it is a continuous or batch culture apparatus capable of continuously or intermittently culturing acetic acid producing bacteria. The form of the culture apparatus is not particularly limited.

前記培養装置は、複数の装置を並列で設置することもでき、複数の装置で同時に酢酸生成菌を培養することもできる。また、複数の培養槽を直列に連結して設置することもでき、異なる種類の酢酸生産菌を別々に異なる培養槽で培養することもできる。 The culture apparatus can be installed with a plurality of apparatuses in parallel, and acetic acid producing bacteria can be cultured simultaneously with the plurality of apparatuses. Also, a plurality of culture tanks can be connected in series, and different types of acetic acid-producing bacteria can be separately cultured in different culture tanks.

図1の装置においては、一次加水分解処理液は、一次加水分解処理液取出管路3が接続されている一次加水分解装置R1の固液分離装置Sを備えた中間取出口Gより水溶液の状態で培養槽REに供給される。培養槽REへの一次加水分解処理液の供給は、連続的であっても良いし断続的でも良い。培養槽REは、培養中に雑菌の増殖を防止するために予め殺菌しておくことが望ましい。 In the apparatus of FIG. 1, the primary hydrolysis treatment liquid is in the state of an aqueous solution from the intermediate outlet G provided with the solid-liquid separation device S of the primary hydrolysis apparatus R1 to which the primary hydrolysis treatment liquid extraction conduit 3 is connected. To the culture tank RE. The supply of the primary hydrolysis treatment liquid to the culture tank RE may be continuous or intermittent. The culture tank RE is preferably sterilized in advance in order to prevent the growth of various bacteria during the culture.

(培養条件)
本発明の方法において、前記一次加水分解処理液を酢酸生産菌の基質として用いる。前記一次加水分解処理液への栄養源の添加は必須ではないが、必要に応じて酢酸生成菌の生育に必要な栄養源を添加することが望ましい。前記栄養源は、酢酸生成菌が生育し酢酸の生産に適した栄養源であれば特に制限なく用いることができる。
(Culture conditions)
In the method of the present invention, the primary hydrolysis treatment solution is used as a substrate for acetic acid-producing bacteria. Although it is not essential to add a nutrient source to the primary hydrolysis treatment solution, it is desirable to add a nutrient source necessary for the growth of acetic acid-producing bacteria if necessary. The nutrient source is not particularly limited as long as it is a nutrient source in which acetic acid-producing bacteria grow and is suitable for acetic acid production.

酢酸生成菌としてはクロストリジウム(Clostridium)属の微生物を用いることができる。クロストリジウム(Clostridium)属の微生物としては、クロストリジウム サーモセラム(Clostridium thermocellum)、クロストリジウム サーモアセチカム(Clostridium thermoaceticum)、クロストリジウム フォルミコアセチカム(Clostridium formicoaceticum)、クロストリジウム アセチカム(Clostridium aceticum)、等が挙げられるが、クロストリジウム サーモセラム(Clostridium thermocellum)、クロストリジウム サーモアセチカム(Clostridium thermoaceticum)を用いることが酢酸の生産効率が高いため好ましい。前記クロストリジウム属の微生物は1種を用いても良いし、2種以上のクロストリジウム属の微生物を混合して用いても良い。   A microorganism belonging to the genus Clostridium can be used as the acetic acid producing bacterium. Examples of microorganisms belonging to the genus Clostridium include Clostridium thermocellum, Clostridium thermoaceticum, Clostridium form, Clostridium form, and Clostridium form It is preferable to use thermocellum (Clostridium thermocellum) or clostridium thermoaceticum because of high production efficiency of acetic acid. One clostridium microorganism may be used, or two or more clostridium microorganisms may be mixed and used.

酢酸生成菌を培養する培地(培養液)のpHは5.0〜8.0の範囲が好ましく、6.5〜7.5の範囲がさらに好ましい。培養中に酢酸が生成すると培養液のpHが低下するが、アルカリ水溶液を添加し培養液のpHが前記pHの範囲になるように制御することが望ましい。 The pH of the medium (culture solution) for cultivating acetic acid producing bacteria is preferably in the range of 5.0 to 8.0, more preferably in the range of 6.5 to 7.5. When acetic acid is generated during the culture, the pH of the culture solution decreases. However, it is desirable to control the pH of the culture solution to be within the above pH range by adding an alkaline aqueous solution.

酢酸生成菌を培養する培地(培養液)の温度は、50〜70℃で行うことが望ましく、55〜65℃で行うことがさらに好ましい。   The temperature of the medium (culture solution) for culturing acetic acid producing bacteria is preferably 50 to 70 ° C, and more preferably 55 to 65 ° C.

バッチ式で培養を行う場合の培養時間は0.5〜72時間が好ましく、1〜48時間がさらに好ましい。連続式で培養を行う場合の培養槽内での培養液の滞留時間は0.5〜72時間が好ましく、1〜48時間がさらに好ましい。   When culturing in a batch system, the culture time is preferably 0.5 to 72 hours, more preferably 1 to 48 hours. When the culture is performed continuously, the residence time of the culture solution in the culture tank is preferably 0.5 to 72 hours, and more preferably 1 to 48 hours.

酢酸生成菌は嫌気性細菌であるため、培養槽内を嫌気状態にして培養を行う。例えば、二酸化炭素、窒素等のガスを培養槽内に吹き込み培養を行うことができる。   Since an acetic acid producing bacterium is an anaerobic bacterium, culture is performed with the inside of the culture tank being anaerobic. For example, it is possible to perform culture by blowing a gas such as carbon dioxide or nitrogen into the culture tank.

本発明では、図1に示すように、培養槽REの供給口4から培養槽RE内へ供給する一次加水分解処理液(オリゴ糖、単糖、フルフラールを主成分として含有)に含まれるフルフラール濃度を0.5質量%以下になるように制御する。
培養槽REの供給口4から供給する一次加水分解処理液に含まれるフルフラール濃度を0.5質量%以下になるように制御することにより、フルフラールが酢酸生産菌に対して及ぼす阻害作用が抑制されて、酢酸生成菌によるオリゴ糖、単糖等からの酢酸への変換が促進される。また、フルフラールを低濃度に維持することにより、フルフラールと糖類(オリゴ糖、単糖)の副反応が抑制されて、酢酸の収率が向上する。
In the present invention, as shown in FIG. 1, the concentration of furfural contained in the primary hydrolysis treatment liquid (containing oligosaccharides, monosaccharides, and furfural as main components) supplied from the supply port 4 of the culture tank RE into the culture tank RE. Is controlled to 0.5% by mass or less.
By controlling the concentration of furfural contained in the primary hydrolysis treatment liquid supplied from the supply port 4 of the culture tank RE to 0.5% by mass or less, the inhibitory action of furfural on acetic acid-producing bacteria is suppressed. Thus, conversion of acetic acid-producing bacteria into acetic acid from oligosaccharides or monosaccharides is promoted. Further, by maintaining the furfural at a low concentration, side reactions between furfural and saccharides (oligosaccharides and monosaccharides) are suppressed, and the yield of acetic acid is improved.

前記、培養槽REの供給口4から供給する一次加水分解処理液に含まれるフルフラール濃度を0.5質量%以下になるように制御するための方法としては、一次加水分解条件(温度、滞留時間、原料の供給量、一次加水分解処理液の取出口の位置)の最適化、一次加水分解処理液からのフルフラールの除去、等の方法が挙げられる。一次加水分解処理液からのフルフラールを除去するための方法としては、例えば、培養槽REの供給口4へ一次加水分解処理液を供給する前に減圧蒸留装置、フラッシュタンク、フラッシュサイクロン等の装置により予め一次加水分解処理液からフルフラール(気相)を除去(分離)しておくことができる。フルフラールは工業用途として利用されているため、酢酸の生産と同時にフルフラールも同時に分離して生産することもできる。 As a method for controlling the furfural concentration contained in the primary hydrolysis treatment liquid supplied from the supply port 4 of the culture tank RE so as to be 0.5% by mass or less, primary hydrolysis conditions (temperature, residence time) , Optimization of the supply amount of raw materials, the position of the outlet of the primary hydrolysis treatment liquid), removal of furfural from the primary hydrolysis treatment liquid, and the like. As a method for removing the furfural from the primary hydrolysis treatment liquid, for example, before supplying the primary hydrolysis treatment liquid to the supply port 4 of the culture tank RE, an apparatus such as a vacuum distillation apparatus, a flash tank, or a flash cyclone may be used. Furfural (gas phase) can be removed (separated) from the primary hydrolysis solution in advance. Since furfural is used as an industrial application, furfural can be separated and produced simultaneously with the production of acetic acid.

連続式で培養を行う場合、培地の栄養源を必要に応じて適宜添加することができる。添加の方法としては、例えば、滅菌した栄養源の濃縮液を、断続的、あるいは連続的に添加する方法が挙げられる。 When culturing continuously, a nutrient source for the medium can be added as needed. Examples of the addition method include a method of adding a sterilized nutrient source concentrate intermittently or continuously.

前記の方法により、一次加水分解処理液に含まれるオリゴ糖、単糖が主に酢酸生成菌により酢酸に変換されて、リグノセルロース原料より効率的に酢酸を生産することができる。 By the above method, oligosaccharides and monosaccharides contained in the primary hydrolysis treatment liquid are converted into acetic acid mainly by acetic acid producing bacteria, and acetic acid can be produced more efficiently than the lignocellulose raw material.

前記培養槽REの前工程として、一次加水分解処理液に含まれる糖類(単糖類、オリゴ糖)の濃度を高めたり、一次加水分解処理液に含まれる単糖類、オリゴ糖類、フルフラール類の比率をコントロールするために二次加水分解処理を行うこともできる。
また、二次加水分解処理の前工程、あるいは後工程として、例えば、加水分解処理液(オリゴ糖、単糖、フルフラールを主成分として含む)に含まれるフルフラールを減圧蒸留装置、フラッシュタンク、フラッシュサイクロン等の装置により加水分解処理液からフルフラール(気相)を除去(分離)しておくこともできる。
As a pre-process of the culture tank RE, the concentration of saccharides (monosaccharides and oligosaccharides) contained in the primary hydrolysis treatment liquid is increased, or the ratio of monosaccharides, oligosaccharides and furfurals contained in the primary hydrolysis treatment liquid is determined. A secondary hydrolysis treatment can also be performed for control.
In addition, as a pre-process or post-process of secondary hydrolysis treatment, for example, furfural contained in a hydrolyzed liquid (containing oligosaccharides, monosaccharides, and furfural as a main component) is distilled under reduced pressure, a flash tank, a flash cyclone. It is also possible to remove (separate) furfural (gas phase) from the hydrolysis treatment liquid using an apparatus such as the above.

前記の方法により生産された酢酸を含む培養液は、さらに酢酸の純度を高めるために蒸留装置に移送し培養液を蒸留することにより酢酸の濃度を高めることができる。   In order to further increase the purity of acetic acid, the culture solution containing acetic acid produced by the above method can be transferred to a distillation apparatus and the culture solution can be distilled to increase the concentration of acetic acid.

また、得られた酢酸(又は酢酸を含む水溶液)を水素添加、エステル化等の方法により、酢酸からエタノールに変換することもできる。 The obtained acetic acid (or an aqueous solution containing acetic acid) can be converted from acetic acid to ethanol by a method such as hydrogenation or esterification.

以下、本発明の実施例によりさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。 Examples Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

製造例1
ユーカリ・ペリータのチップ(厚さ2mm)とイオン交換水とを、チップ(乾燥)1質量部に対してイオン交換水5質量部の割合で混合して原料バイオマスを含有する原料懸濁液を調製した。
図1に示す一次加水分解装置R1(木村化工機製)の頂部供給口に接続している原料懸濁液供給管路1から上記原料懸濁液を連続的に400質量部/時で供給し、一次加水分解装置R1で140℃、0.36MPaで加水分解処理を行い、加水分解処理された原料懸濁液を加水分解装置の底部排出口より減圧バルブVPを開いて加水分解処理懸濁液排出管路2に連続的に排出した。加水分解装置内の滞留時間は3時間に設定した。
装置底部の洗浄液供給装置Wから洗浄水供給管路6により洗浄水を400質量部/時で供給して、加水分解装置の中央部における目開き80μmのステンレス製金網(固液分離装置S)が設置されている一次加水分解装置R1の中央部の中間取出口Gから下方に移動する加水分解処理懸濁液と向流接触させた。
原料懸濁液の供給開始3時間後から、中間取出口G(加水分解処理時間1.5時間の位置)より、加水分解装置内の温度及び圧力を維持した状態で加水分解処理懸濁液から一次加水分解処理液(260質量部/時)を一次加水分解処理液取出管路3の減圧バルブVPを開いて取り出し、冷却器COへ移送し一次加水分解処理液の温度が60℃になるまで冷却した。
冷却した一次加水分解処理液を培養槽REへ移送し、一次加水分解処理液に培地A(下記)を添加し、培養槽RE内の培地(一次加水分解処理液を含む)の最終液量が50Lになるように調製した。液量を調製した時点で管路3の減圧バルブVPを閉じた。培地A(1L当り):KHPO 1.5g、NaHPO・12HO 4.2g、NHCl 0.5g、MgCl・6HO、酵母エキス2g、レサズリン(0.1%溶液)1ml、NaOH(0.2N)200ml、NaS・9HO 2.5g、Cysteine・HO、ビオチン20mg、p−アミノ安息香酸50mg、葉酸20mg、パントテン酸カルシウム50mg、ニコチン酸50mg、ビタミンB12 1.0mg、塩酸チアミン5mg、塩酸ピリドキシン100mg、チオクト酸50mg、リボフラビン5mg、ニトリロ三酢酸1.5g、MgSO・7HO 3g、MnSO・HO 500mg、NaCl 1g、FeSO・7HO 100mg、Co(NO・6HO 100mg、CaCl 100mg、ZnSO・7HO 100mg、CuSO・5HO 10mg、AlK(SO10mg、ホウ酸10mg、NaMoO・2HO 10mg、NaSeO 1mg。
次に、培養槽RE内を窒素ガスで置換し嫌気状態にした後、予め前培養したClostridium thermocellum(ATCC27405)、及びClostridium thermoaceticum(ATCC35608)を各々密度が1x10/mlになるように前記培地に添加し、60℃で培養を開始した。24時間培養後、一次加水分解処理液(260質量部/時)を培養槽REの供給口4から連続的に添加した。また、培地Aの10倍濃縮液(20質量部/時)を培養槽RE内に連続的に供給した。一方、培養槽RE内の培養液(280質量部/時)を培養槽REの排出口5から連続的に排出した。
培養槽REの供給口4へ供給される一次加水分解処理液、及び培養槽REの排出口5から排出される培養液に含まれるフルフラール類、全糖、酢酸、ギ酸の含有量を下記の方法で測定した。結果を表1に示す。
Production Example 1
A raw material suspension containing raw material biomass is prepared by mixing eucalyptus and perita chips (thickness 2 mm) and ion-exchanged water at a ratio of 5 parts by weight of ion-exchanged water to 1 part by weight of chip (dry). did.
The raw material suspension is continuously supplied at 400 parts by mass / hour from the raw material suspension supply pipe 1 connected to the top supply port of the primary hydrolysis apparatus R1 (manufactured by Kimura Chemical Co., Ltd.) shown in FIG. Hydrolysis is performed at 140 ° C. and 0.36 MPa in the primary hydrolyzer R1, and the hydrolyzed raw material suspension is discharged from the bottom discharge port of the hydrolyzer to open the decompression valve VP. It discharged continuously to the pipeline 2. The residence time in the hydrolysis apparatus was set to 3 hours.
Cleaning water is supplied from the cleaning liquid supply device W at the bottom of the apparatus through the cleaning water supply pipe 6 at 400 parts by mass / hour, and a stainless steel wire mesh (solid-liquid separation device S) having an opening of 80 μm at the center of the hydrolysis apparatus. A countercurrent contact was made with the hydrolyzed suspension that moves downward from the intermediate outlet G at the center of the installed primary hydrolyzer R1.
From 3 hours after the start of the supply of the raw material suspension, from the hydrolysis treatment suspension with the temperature and pressure in the hydrolysis apparatus maintained from the intermediate outlet G (position of the hydrolysis treatment time of 1.5 hours). The primary hydrolysis treatment liquid (260 parts by mass / hour) is taken out by opening the pressure reducing valve VP of the primary hydrolysis treatment liquid take-out conduit 3, and transferred to the cooler CO until the temperature of the primary hydrolysis treatment liquid reaches 60 ° C. Cooled down.
The cooled primary hydrolysis treatment liquid is transferred to the culture tank RE, the medium A (below) is added to the primary hydrolysis treatment liquid, and the final volume of the medium (including the primary hydrolysis treatment liquid) in the culture tank RE is Prepared to 50 L. When the amount of liquid was adjusted, the pressure reducing valve VP of the pipe line 3 was closed. Medium A (per 1 L): KH 2 PO 4 , 1.5 g, Na 2 HPO 4 · 12H 2 O 4.2 g, NH 4 Cl 0.5 g, MgCl 2 · 6H 2 O, yeast extract 2 g, resazurin (0. 1% solution) 1 ml, NaOH (0.2 N) 200 ml, Na 2 S · 9H 2 O 2.5 g, Cysteine · H 2 O, biotin 20 mg, p-aminobenzoic acid 50 mg, folic acid 20 mg, calcium pantothenate 50 mg, nicotine Acid 50 mg, Vitamin B 12 1.0 mg, Thiamine hydrochloride 5 mg, Pyridoxine hydrochloride 100 mg, Thioctic acid 50 mg, Riboflavin 5 mg, Nitrilotriacetic acid 1.5 g, MgSO 4 .7H 2 O 3 g, MnSO 4 .H 2 O 500 mg, NaCl 1 g , FeSO 4 · 7H 2 O 100mg , Co (NO 3) 2 · 6H 2 O 10 mg, CaCl 2 100mg, ZnSO 4 · 7H 2 O 100mg, CuSO 4 · 5H 2 O 10mg, AlK (SO 4) 2 10mg, boric acid 10mg, Na 2 MoO 4 · 2H 2 O 10mg, Na 2 SeO 3 1mg.
Next, after substituting the inside of the culture tank RE with nitrogen gas to an anaerobic state, pre-cultured Clostridium thermocellum (ATCC27405) and Clostridium thermoaceticum (ATCC35608) are each added to the medium so that the density becomes 1 × 10 8 / ml. The culture was started at 60 ° C. After culturing for 24 hours, a primary hydrolysis treatment solution (260 parts by mass / hour) was continuously added from the supply port 4 of the culture tank RE. A 10-fold concentrated solution (20 parts by mass / hour) of medium A was continuously supplied into the culture tank RE. On the other hand, the culture solution (280 parts by mass / hour) in the culture tank RE was continuously discharged from the discharge port 5 of the culture tank RE.
The content of furfurals, total sugars, acetic acid, and formic acid contained in the primary hydrolysis treatment liquid supplied to the supply port 4 of the culture tank RE and the culture liquid discharged from the discharge port 5 of the culture tank RE is as follows. Measured with The results are shown in Table 1.

[全糖量の分析]
試料溶液に最終濃度が4質量%となるように硫酸を添加し、120℃で1時間加水分解を行った後、糖分析を実施し、試料中の各単糖の含有量を求め、その合計値を全糖量とした。
[フルフラール類の定量]
フルフラール類の定量にはAgilent Technоlоgies社製HPLCシステムを用いた。カラムは、Bio−Rad社製Aminex HPX87P(7.8 X 300mm)を用い、5mM硫酸を溶離液とし、1ml/minの流速でフルフラール類を溶出させた。検出にはUV−Vis検出器を用いた。フルフラール類の標品として、フルフラールを用い、検量線を作成し、試料中の含有量を求めた。
[有機酸(酢酸、ギ酸)の定量]
酢酸及びギ酸の定量にはAgilent Technоlоgies社製HPLCシステムを用いた。カラムは、Bio−Rad社製Aminex HPX87P(7.8 X 300mm)を用い、5mM硫酸を溶離液とし、1ml/minの流速で酢酸、ギ酸を溶出させた。検出にはUV−Vis検出器を用いた。酢酸、ギ酸を標品として検量線を作成し、試料中の含有量を求めた。
[Analysis of total sugar content]
Sulfuric acid was added to the sample solution so that the final concentration was 4% by mass, hydrolysis was performed at 120 ° C. for 1 hour, and then sugar analysis was performed to determine the content of each monosaccharide in the sample, and the total The value was defined as the total sugar amount.
[Quantitative determination of furfurals]
For the determination of furfurals, an HPLC system manufactured by Agilent Technologies was used. The column was Aminex HPX87P (7.8 × 300 mm) manufactured by Bio-Rad, and 5 mM sulfuric acid was used as an eluent to elute furfurals at a flow rate of 1 ml / min. A UV-Vis detector was used for detection. Using a furfural as a standard for furfurals, a calibration curve was created to determine the content in the sample.
[Quantification of organic acids (acetic acid, formic acid)]
For the determination of acetic acid and formic acid, an HPLC system manufactured by Agilent Technologies was used. Aminex HPX87P (7.8 × 300 mm) manufactured by Bio-Rad was used as the column, and 5 mM sulfuric acid was used as an eluent to elute acetic acid and formic acid at a flow rate of 1 ml / min. A UV-Vis detector was used for detection. A calibration curve was prepared using acetic acid and formic acid as standards, and the content in the sample was determined.

製造例2
一次加水分解装置R1で150℃、0.48MPaで加水分解処理を行なった以外は全て製造例1と同様の方法で実施した。結果を表1に示す。
Production Example 2
All were carried out in the same manner as in Production Example 1 except that the hydrolysis treatment was performed at 150 ° C. and 0.48 MPa in the primary hydrolysis apparatus R1. The results are shown in Table 1.

製造例3
一次加水分解装置R1で160℃、0.62MPaで加水分解処理を行なった以外は全て製造例1と同様の方法で実施した。結果を表1に示す。
Production Example 3
All were carried out in the same manner as in Production Example 1 except that the hydrolysis was performed at 160 ° C. and 0.62 MPa in the primary hydrolysis apparatus R1. The results are shown in Table 1.

製造例4
一次加水分解装置R1で170℃、0.79MPaで加水分解処理を行なった以外は全て製造例1と同様の方法で実施した。結果を表1に示す。
Production Example 4
All were carried out in the same manner as in Production Example 1 except that the hydrolysis treatment was performed at 170 ° C. and 0.79 MPa in the primary hydrolysis apparatus R1. The results are shown in Table 1.

製造例5
一次加水分解装置R1で180℃、1.00MPaで加水分解処理を行なった以外は全て製造例1と同様の方法で実施した。結果を表1に示す。
Production Example 5
All were carried out in the same manner as in Production Example 1 except that the hydrolysis was performed at 180 ° C. and 1.00 MPa in the primary hydrolysis apparatus R1. The results are shown in Table 1.

製造例6
一次加水分解装置R1で190℃、1.26MPaで加水分解処理を行なった以外は全て製造例1と同様の方法で実施した。結果を表1に示す。
Production Example 6
All were carried out in the same manner as in Production Example 1 except that the hydrolysis treatment was performed at 190 ° C. and 1.26 MPa in the primary hydrolysis apparatus R1. The results are shown in Table 1.

製造例7
一次加水分解装置R1で200℃、1.56MPaで加水分解処理を行なった以外は全て製造例1と同様の方法で実施した。結果を表1に示す。
Production Example 7
All were carried out in the same manner as in Production Example 1 except that the hydrolysis treatment was performed at 200 ° C. and 1.56 MPa in the primary hydrolysis apparatus R1. The results are shown in Table 1.

製造例8
一次加水分解装置R1で230℃、2.80MPaで加水分解処理を行なった以外は全て製造例1と同様の方法で実施した。結果を表1に示す。
Production Example 8
All were carried out in the same manner as in Production Example 1 except that the hydrolysis was performed at 230 ° C. and 2.80 MPa in the primary hydrolysis apparatus R1. The results are shown in Table 1.

製造例9
一次加水分解装置R1で250℃、3.98MPaで加水分解処理を行なった以外は全て製造例1と同様の方法で実施した。結果を表1に示す。
Production Example 9
All were carried out in the same manner as in Production Example 1 except that the hydrolysis was performed at 250 ° C. and 3.98 MPa in the primary hydrolysis apparatus R1. The results are shown in Table 1.

Figure 2014018100
Figure 2014018100

培養槽REの供給口4から供給される一次加水分解処理液に含まれるフルフラール濃度が0.12〜0.48質量%(製造例1〜8)では、一次加水分解処理液に含まれるフルフラール類の濃度が0.57質量%(製造例9)と比較し、培養槽REの排出口5から排出される培養液に含まれる酢酸及びギ酸の濃度が高かった。以上の結果から、培養槽REの供給口4から供給される一次加水分解処理液に含まれるフルフラール濃度を低濃度に維持することによりClostridium thermocellum及びClostridium thermoaceticumで有機酸の生産を行った場合、酢酸及びギ酸の生産が高まることが判明した。 When the furfural concentration contained in the primary hydrolysis treatment liquid supplied from the supply port 4 of the culture tank RE is 0.12 to 0.48% by mass (Production Examples 1 to 8), furfurals contained in the primary hydrolysis treatment liquid The concentration of acetic acid and formic acid contained in the culture medium discharged from the outlet 5 of the culture tank RE was higher than that of 0.57% by mass (Production Example 9). From the above results, when organic acid is produced in Clostridium thermocellum and Clostridium thermoaceticum by maintaining the furfural concentration contained in the primary hydrolysis treatment liquid supplied from the supply port 4 of the culture tank RE at a low concentration, acetic acid is produced. And increased production of formic acid.

製造例10
製造例1において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例1と同様の方法で実施した。結果を表2に示す。
Production Example 10
In Production Example 1, all were carried out in the same manner as in Production Example 1 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

製造例11
製造例2において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例2と同様の方法で実施した。結果を表2に示す。
Production Example 11
In Production Example 2, all were carried out in the same manner as in Production Example 2 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

製造例12
製造例3において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例3と同様の方法で実施した。結果を表2に示す。
Production Example 12
In Production Example 3, all were carried out in the same manner as in Production Example 3 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

製造例13
製造例4において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例4と同様の方法で実施した。結果を表2に示す。
Production Example 13
In Production Example 4, all were carried out in the same manner as in Production Example 4 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

製造例14
製造例5において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例5と同様の方法で実施した。結果を表2に示す。
Production Example 14
In Production Example 5, all were carried out in the same manner as in Production Example 5 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

製造例15
製造例6において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例6と同様の方法で実施した。結果を表2に示す。
Production Example 15
In Production Example 6, all were carried out in the same manner as in Production Example 6 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

製造例16
製造例7において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例7と同様の方法で実施した。結果を表2に示す。
Production Example 16
In Production Example 7, all were carried out in the same manner as in Production Example 7 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

製造例17
製造例8において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例8と同様の方法で実施した。結果を表2に示す。
Production Example 17
In Production Example 8, all were carried out in the same manner as in Production Example 8 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

製造例18
製造例9において、酢酸生成菌としてClostridium thermocellum(ATCC27405)を単独で用いた以外は全て製造例9と同様の方法で実施した。結果を表2に示す。
Production Example 18
In Production Example 9, all were carried out in the same manner as in Production Example 9 except that Clostridium thermocellum (ATCC 27405) was used alone as an acetic acid producing bacterium. The results are shown in Table 2.

Figure 2014018100
Figure 2014018100

培養槽REの供給口4から供給される一次加水分解処理液に含まれるフルフラール類の濃度が0.12〜0.48質量%(製造例10〜17)では、一次加水分解処理液に含まれるフルフラール類の濃度が0.57質量%(製造例18)と比較し、培養槽REの排出口5から排出される培養液に含まれる酢酸及びギ酸の濃度が高かった。以上の結果から、培養槽REの供給口4から供給される一次加水分解処理液に含まれるフルフラール濃度を低濃度に維持することによりClostridium thermocellumを単独で用いて有機酸の生産を行った場合、酢酸及びギ酸の生産が高まることが判明した。 When the concentration of furfural contained in the primary hydrolysis treatment liquid supplied from the supply port 4 of the culture tank RE is 0.12 to 0.48% by mass (Production Examples 10 to 17), it is contained in the primary hydrolysis treatment liquid. Compared with the concentration of furfurals of 0.57% by mass (Production Example 18), the concentrations of acetic acid and formic acid contained in the culture medium discharged from the outlet 5 of the culture tank RE were higher. From the above results, when the organic acid was produced using Clostridium thermocellum alone by maintaining the furfural concentration contained in the primary hydrolysis treatment liquid supplied from the supply port 4 of the culture tank RE at a low concentration, It has been found that production of acetic acid and formic acid is increased.

製造例19
製造例1において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例1と同様の方法で実施した。結果を表3に示す。
Production Example 19
In Production Example 1, all were carried out in the same manner as in Production Example 1 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid-producing bacterium. The results are shown in Table 3.

製造例20
製造例2において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例2と同様の方法で実施した。結果を表3に示す。
Production Example 20
In Production Example 2, all were carried out in the same manner as in Production Example 2 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid producing bacterium. The results are shown in Table 3.

製造例21
製造例3において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例3と同様の方法で実施した。結果を表3に示す。
Production Example 21
In Production Example 3, all were carried out in the same manner as in Production Example 3 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid producing bacterium. The results are shown in Table 3.

製造例22
製造例4において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例4と同様の方法で実施した。結果を表3に示す。
Production Example 22
In Production Example 4, all were carried out in the same manner as in Production Example 4 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid producing bacterium. The results are shown in Table 3.

製造例23
製造例5において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例5と同様の方法で実施した。結果を表3に示す。
Production Example 23
In Production Example 5, all were carried out in the same manner as in Production Example 5 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid producing bacterium. The results are shown in Table 3.

製造例24
製造例6において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例6と同様の方法で実施した。結果を表3に示す。
Production Example 24
In Production Example 6, all were carried out in the same manner as in Production Example 6 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid producing bacterium. The results are shown in Table 3.

製造例25
製造例7において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例7と同様の方法で実施した。結果を表3に示す。
Production Example 25
In Production Example 7, all were carried out in the same manner as in Production Example 7 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid producing bacterium. The results are shown in Table 3.

製造例26
製造例8において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例8と同様の方法で実施した。結果を表3に示す。
Production Example 26
In Production Example 8, all were carried out in the same manner as in Production Example 8 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid producing bacterium. The results are shown in Table 3.

製造例27
製造例9において、酢酸生成菌としてClostridium thermoaceticum(ATCC35608)を単独で用いた以外は全て製造例9と同様の方法で実施した。結果を表3に示す。
Production Example 27
In Production Example 9, all were carried out in the same manner as in Production Example 9 except that Clostridium thermoaceticum (ATCC 35608) was used alone as an acetic acid producing bacterium. The results are shown in Table 3.

Figure 2014018100
Figure 2014018100

培養槽REの供給口4から供給される一次加水分解処理液に含まれるフルフラール類の濃度が0.12〜0.48質量%(製造例19〜26)では、一次加水分解処理液に含まれるフルフラール類の濃度が0.57質量%(製造例27)と比較し、培養槽REの排出口5から排出される培養液に含まれる酢酸及びギ酸の濃度が高かった。以上の結果から、培養槽REの供給口4から供給される一次加水分解処理液に含まれるフルフラール濃度を低濃度に維持することによりClostridium thermoaceticumを単独で用いて有機酸の生産を行った場合、酢酸及びギ酸の生産が高まることが判明した。 When the concentration of furfural contained in the primary hydrolysis treatment liquid supplied from the supply port 4 of the culture tank RE is 0.12 to 0.48% by mass (Production Examples 19 to 26), it is contained in the primary hydrolysis treatment liquid. The concentration of acetic acid and formic acid contained in the culture solution discharged from the discharge port 5 of the culture tank RE was higher than the concentration of furfurals was 0.57% by mass (Production Example 27). From the above results, when the organic acid was produced using Clostridium thermoaceticum alone by maintaining the furfural concentration contained in the primary hydrolysis treatment liquid supplied from the supply port 4 of the culture tank RE at a low concentration, It has been found that production of acetic acid and formic acid is increased.

本発明で得られる有機酸は、工業原料(合成樹脂や接着剤等の原料)として用いられる。 The organic acid obtained in the present invention is used as an industrial raw material (raw material such as a synthetic resin and an adhesive).

1:原料懸濁液供給管路
2:加水分解処理懸濁液排出管路
3:一次加水分解処理液取出管路
4:培養槽の供給口
5:培養槽の排出口
6:洗浄液供給管路
7:固形分移送管路
A:原料懸濁液供給口
B:加水分解処理懸濁液排出口
R1:連続式の一次加水分解装置
G:中間取出口
S:固液分離装置
RE:培養槽
W:洗浄液供給装置
V:バルブ
VP:減圧バルブ
1: Raw material suspension supply line 2: Hydrolysis treatment suspension discharge line 3: Primary hydrolysis treatment liquid discharge line 4: Culture tank supply port 5: Culture tank discharge port 6: Washing liquid supply line 7: Solid content transfer line A: Raw material suspension supply port B: Hydrolysis treatment suspension discharge port R1: Continuous primary hydrolysis device G: Intermediate outlet S: Solid-liquid separation device RE: Culture tank W : Cleaning liquid supply device V: Valve VP: Pressure reducing valve

Claims (3)

バイオマスの原料懸濁液を連続一次加水分解装置の供給口より連続的に供給して装置内を移動させつつ単糖類、オリゴ糖類、フルフラール類を生成する加圧・加熱条件でバイオマスを一次加水分解処理し、加水分解処理懸濁液を一次加水分解装置の排出口より連続的に排出するとともに、一次加水分解装置の前記供給口と前記排出口の中間位置における固−液分離装置を備えた中間取出口より、装置内の加水分解処理懸濁液から分離した一次加水分解処理液を加水分解処理の温度及び圧力を保った状態で取り出し、取り出した一次加水分解処理液を培養槽に移送し前記培養槽内で酢酸生成菌を培養して酢酸を製造する方法において、前記培養槽へ供給される一次加水分解処理液に含まれるフルフラール濃度を0.5質量%以下に維持して前記酢酸生成菌を培養することを特徴とするバイオマスからの酢酸の製造方法。 Biomass is hydrolyzed under pressure and heating conditions to produce monosaccharides, oligosaccharides, and furfurals while continuously feeding the raw material suspension of the biomass from the supply port of the continuous primary hydrolysis device and moving through the device. The intermediate is provided with a solid-liquid separation device at an intermediate position between the supply port and the discharge port of the primary hydrolysis device, while continuously discharging the hydrolyzed suspension from the discharge port of the primary hydrolysis device. The primary hydrolysis treatment liquid separated from the hydrolysis treatment suspension in the apparatus is taken out from the outlet while maintaining the temperature and pressure of the hydrolysis treatment, and the taken out primary hydrolysis treatment liquid is transferred to the culture tank and In the method for producing acetic acid by culturing acetic acid-producing bacteria in a culture tank, the furfural concentration contained in the primary hydrolysis treatment solution supplied to the culture tank is maintained at 0.5% by mass or less. Process for the production of acetic acid from biomass, characterized by culturing the acid producing bacteria. 前記一次加水分解装置の前記排出口の近傍から水性洗浄液を一次加水分解処理装置内に供給して前記固−液分離装置を備えた中間取出口と前記排出口との間で加水分解処理懸濁液と向流接触させることを特徴とする請求項1に記載のバイオマスからの酢酸の製造方法。 Aqueous cleaning liquid is supplied into the primary hydrolysis treatment device from the vicinity of the discharge port of the primary hydrolysis device, and the hydrolysis treatment suspension is provided between the intermediate outlet provided with the solid-liquid separation device and the discharge port. The method for producing acetic acid from biomass according to claim 1, wherein the liquid is brought into countercurrent contact with the liquid. 前記酢酸生成菌がClostridium属細菌であることを特徴とする請求項1又は請求項2に記載のバイオマスからの酢酸の製造方法。 The method for producing acetic acid from biomass according to claim 1 or 2, wherein the acetic acid-producing bacterium is a Clostridium bacterium.
JP2012157085A 2012-07-13 2012-07-13 Method for manufacturing acetic acid from biomass Pending JP2014018100A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157085A JP2014018100A (en) 2012-07-13 2012-07-13 Method for manufacturing acetic acid from biomass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157085A JP2014018100A (en) 2012-07-13 2012-07-13 Method for manufacturing acetic acid from biomass

Publications (1)

Publication Number Publication Date
JP2014018100A true JP2014018100A (en) 2014-02-03

Family

ID=50193706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157085A Pending JP2014018100A (en) 2012-07-13 2012-07-13 Method for manufacturing acetic acid from biomass

Country Status (1)

Country Link
JP (1) JP2014018100A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167487A (en) * 2014-03-05 2015-09-28 王子ホールディングス株式会社 Producing method of ethanol from lignocellulose containing lignocellulose
JP2015167535A (en) * 2014-03-10 2015-09-28 王子ホールディングス株式会社 Method for producing furfurals and ethanol from biomass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052187A (en) * 2007-05-23 2009-03-12 Andritz Inc Two vessel reactor system and method for hydrolysis and digestion of wood chips with chemical substance-enhanced wash method
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material
JP2012050345A (en) * 2010-08-31 2012-03-15 Shiro Saka Method for producing acetic acid using anaerobic microorganism and method for producing bioethanol

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052187A (en) * 2007-05-23 2009-03-12 Andritz Inc Two vessel reactor system and method for hydrolysis and digestion of wood chips with chemical substance-enhanced wash method
JP2009213389A (en) * 2008-03-10 2009-09-24 Nippon Paper Chemicals Co Ltd System for producing bioethanol using lignocellulose as raw material
JP2012050345A (en) * 2010-08-31 2012-03-15 Shiro Saka Method for producing acetic acid using anaerobic microorganism and method for producing bioethanol

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6015035694; 志水一允: 'セルロース系バイオマスのアルコールへの変換技術' 熱帯農業研究 Vol.2、No 2, 2009, p.95-99 *
JPN6015035696; Ind. Eng. Chem., 1947, 39(11), pp.1443-1445 *
JPN6015035698; 松居 伸、今野 雄治ら: '好熱性嫌気性細菌を用いる農林産廃棄物からのエタノール生産プロセス' 日本化学会誌 No.5, 1992, 517-526 *
JPN6015035700; 紙パ技協誌、2011年、65巻、5号、494-505頁 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167487A (en) * 2014-03-05 2015-09-28 王子ホールディングス株式会社 Producing method of ethanol from lignocellulose containing lignocellulose
JP2015167535A (en) * 2014-03-10 2015-09-28 王子ホールディングス株式会社 Method for producing furfurals and ethanol from biomass

Similar Documents

Publication Publication Date Title
Xavier et al. Second-generation bioethanol from eucalypt sulphite spent liquor
CN107750289B (en) Method and system for producing pulp, energy and bio-derivatives from plant based and recycled materials
Kandari et al. Bioconversion of vegetable and fruit peel wastes in viable product
US20110129886A1 (en) Biorefinery Process for Extraction, Separation, and Recovery of Fermentable Saccharides, other Useful Compounds, and Yield of Improved Lignocellulosic Material from Plant Biomass
CA2933691C (en) Integration of first and second generation bioethanol processes
WO2015005589A1 (en) Method for preparing sugar, bioethanol or microbial metabolite from lignocellulosic biomass
US9809867B2 (en) Carbon purification of concentrated sugar streams derived from pretreated biomass
Saadatinavaz et al. Hydrothermal pretreatment: An efficient process for improvement of biobutanol, biohydrogen, and biogas production from orange waste via a biorefinery approach
US20150087040A1 (en) Production of ethanol and recycle water in a cellulosic fermentation process
RU2405826C2 (en) Method of preparing organic solvents, apparatus for realising said method, product obtained using said method
US20230121068A1 (en) Processes for co-producing xylitol with ethanol or other fermentation products
Li et al. Ethanol production from xylan-removed sugarcane bagasse using low loading of commercial cellulase
CN101942485B (en) Method for producing acetone butanol by steam explosion straw xylose fermentation and extracting remainder
CN102051329A (en) Biomass ferment-separation coupling device and method for preparing ethanol
JP5861413B2 (en) Continuous production method of furfural from biomass
JP2014018100A (en) Method for manufacturing acetic acid from biomass
US20150353977A1 (en) Method for preparing fermentable sugar from wood-based biomass
CN103492580A (en) Method for producing ethanol and solvents from lignocellulosic biomass including the recirculation of an ethylic wine made from pentose fermentation
JP6206017B2 (en) Method for producing acetic acid from biomass raw material
KR101484610B1 (en) Producing Method of Bio-Ethanol by using sweet sorghum juice
KR101585747B1 (en) The method for pretreating lignocellulosic biomass and the apparatus for the same
JP5842757B2 (en) Method for producing furfurals from biomass
CN102532068A (en) Process for preparing furfural byintermittent production with wood chip hydrolysate as raw material and acetic acid as catalytic agent
JP5835183B2 (en) Method for producing furfurals, monosaccharides and oligosaccharides from biomass
KR101521195B1 (en) A producing method for cephalosporin C using a xylose

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151104

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160517