JP2014017910A - Pump device and pump drive motor - Google Patents

Pump device and pump drive motor Download PDF

Info

Publication number
JP2014017910A
JP2014017910A JP2012151999A JP2012151999A JP2014017910A JP 2014017910 A JP2014017910 A JP 2014017910A JP 2012151999 A JP2012151999 A JP 2012151999A JP 2012151999 A JP2012151999 A JP 2012151999A JP 2014017910 A JP2014017910 A JP 2014017910A
Authority
JP
Japan
Prior art keywords
pump
rotor
magnet
drive motor
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012151999A
Other languages
Japanese (ja)
Inventor
Katsutoshi Fujita
克俊 藤田
Haruo Koharagi
春雄 小原木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012151999A priority Critical patent/JP2014017910A/en
Publication of JP2014017910A publication Critical patent/JP2014017910A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pump drive motor for a pump device using a resin molded magnet for the rotor magnet to obtain high performance.SOLUTION: Provided is a pump device comprising a pump drive motor, a pump unit for rotating impeller installed inside a casing by the pump drive motor to perform pumping, and a control unit for changing the revolution speed of the pump drive motor to control the pump unit, said pump device being characterized in that the rotor of the pump drive motor comprises a rotor core composed of a laminate of multiple magnetic steel sheets formed by press punching and a cylindrical rotor magnet provided on the outer periphery of the rotor core and using samarium iron nitrogen (SmFeN) for the magnetic material, and that the rotor magnet is a rein molded magnet having its magnetic field orientation arranged in a Halbach array inside a molding die at the same time it is molded, and the rotor core and the rotor magnet are concentrically fitted having a gap in between.

Description

本発明はポンプ駆動用モータに係わり、更に詳細にはポンプ駆動用モータの信頼性と性能向上に関するものである。   The present invention relates to a pump drive motor, and more particularly to the reliability and performance improvement of a pump drive motor.

従来のポンプ装置に配置されたポンプ駆動用モータは小型かつ高出力を得るために、回転子にはネオジムマグネットを使用している。回転子鉄心は電磁鋼板を積層し単数、または複数の円筒形状のネオジムマグネットにより構成され、円筒形状のネオジムマグネットは回転子の外周側に同心円上に配置され、それらは接着剤により固定されている。   A pump drive motor arranged in a conventional pump device uses a neodymium magnet for the rotor in order to obtain a small size and high output. The rotor iron core is composed of one or more cylindrical neodymium magnets laminated with electromagnetic steel plates, and the cylindrical neodymium magnets are arranged concentrically on the outer periphery of the rotor, and they are fixed by an adhesive. .

近年、ネオジムマグネットなどの希土類の価格高騰が続いておりモータの材料費を圧迫してきた。代替としてはプラスチックマグネットを使用する必要がある。   In recent years, the price of rare earths such as neodymium magnets has continued to rise, putting pressure on material costs for motors. An alternative is to use a plastic magnet.

また、ネオジムマグネットは高性能であるがモータ駆動中にネオジムマグネットに渦電流が流れ、渦電流によりネオジムマグネットが自己発熱し熱減磁する特徴があり、発熱と熱減磁を繰返しモータの温度上昇が安定せず不利な面がある。   Although neodymium magnets have high performance, eddy currents flow through the neodymium magnets while the motor is driving, and the eddy currents cause the neodymium magnets to self-heat and heat demagnetize. However, there is a disadvantage because it is not stable.

解決策としては特開2007−214393(特許文献1)のように極異方性配向のリング状プラスチックマグネットを使用し性能を得る方法がある。   As a solution, there is a method of obtaining performance by using a ring-shaped plastic magnet having polar anisotropy as disclosed in JP-A-2007-214393 (Patent Document 1).

また、特開2010−98891(特許文献2)のように着磁されたマグネットを配置してハルバッハ配列を構成して性能を得る方法があるが、既に着磁されたマグネットを配置しなければならず生産効率は悪い。   Further, there is a method of obtaining performance by arranging magnetized magnets to form a Halbach array as disclosed in JP 2010-98891 (Patent Document 2). However, magnets that are already magnetized must be arranged. The production efficiency is poor.

特開2007−214393JP2007-214393 特開2010−98891JP 2010-98891

近年、ネオジムマグネットなどの希土類の価格高騰が続いておりモータの材料費を圧迫しており代替としてプラスチックマグネットを使用する必要があるが、モータの体積を変えず、磁気特性として劣るプラスチックマグネットを使用してネオジムマグネットと同等の性能を得る為の極異方配列などの方策が必要となる。   In recent years, the price of rare earths such as neodymium magnets has continued to rise, putting pressure on the material costs of motors and the need to use plastic magnets as an alternative, but using plastic magnets with inferior magnetic properties without changing the volume of the motor Therefore, measures such as polar anisotropic arrangement to obtain the same performance as neodymium magnets are required.

また、プラスチックマグネットと回転子鉄心を使った構成においても上記した温度上昇による異常が発生しない構造とする必要がある。   Further, even in a configuration using a plastic magnet and a rotor core, it is necessary to have a structure in which the above-described abnormality due to temperature rise does not occur.

上記課題は、ポンプ駆動用モータと、ケーシング内に設けられた羽根車を前記ポンプ駆動用モータにより回転させてポンプ作用を行うポンプ部と、前記ポンプ駆動用モータの回転速度を変速させて前記ポンプ部を制御する制御部を有するポンプ装置において、前記ポンプ駆動用モータの回転子は、プレス打抜きにより成形された電磁鋼板を複数枚積層した回転子鉄心と、該回転子鉄心の外周に設けられ、磁性体にサマリウム鉄窒素(SmFeN)を使用した円筒状の回転子磁石を備え、前記回転子磁石はその磁場配向を成形と同時に成形金型内でハルバッハ配列にした樹脂成形磁石であって、前記回転子鉄心と前記回転子磁石の間にはギャップを有して同心状に装着したポンプ装置によって改善される。   The above-described problems include a pump driving motor, a pump unit that rotates an impeller provided in a casing by the pump driving motor to perform a pump action, and a rotational speed of the pump driving motor is changed to change the pump. In the pump device having a control unit for controlling the part, the rotor of the pump driving motor is provided on a rotor core obtained by laminating a plurality of electromagnetic steel plates formed by press punching, and on the outer periphery of the rotor core, A cylindrical rotor magnet using samarium iron nitrogen (SmFeN) as a magnetic material is provided, and the rotor magnet is a resin-molded magnet whose magnetic field orientation is simultaneously formed into a Halbach array in a molding die, This is improved by a pump device that is concentrically mounted with a gap between the rotor core and the rotor magnet.

本発明によれば、希土類を含んだネオジムマグネットを用いることなく、同等の性能を持ったポンプ装置を実現することができる。   According to the present invention, a pump device having equivalent performance can be realized without using a neodymium magnet containing rare earth.

一実施例のポンプ装置の縦断面図である。It is a longitudinal cross-sectional view of the pump apparatus of one Example. 一実施例のポンプ駆動用モータのモータ断面図である。It is motor sectional drawing of the motor for a pump drive of one Example. 一実施例のポンプ駆動用モータの樹脂成形磁石の断面図である。It is sectional drawing of the resin molding magnet of the motor for a pump drive of one Example. 一実施例のポンプ駆動用モータの回転子の断面図である。It is sectional drawing of the rotor of the motor for a pump drive of one Example. 一実施例のポンプ駆動用モータの樹脂成形磁石の磁場配向図である。It is a magnetic field orientation figure of the resin molding magnet of the motor for a pump drive of one Example. 一実施例のポンプ駆動用モータの特性略図である。It is a characteristic schematic diagram of the motor for pump drive of one example.

まず、本発明の概要を説明する。本発明は上記課題を解決するために、ポンプ装置のポンプ駆動用モータの回転子にサマリウム鉄窒素(SmFeN)を磁性体とした樹脂成形材を使用し射出成形によりマグネットを構成し、円筒状に成形され回転子外周側へ固定金具により固定する。   First, the outline of the present invention will be described. In order to solve the above problems, the present invention uses a resin molding material made of samarium iron nitrogen (SmFeN) as a magnetic material for the rotor of a pump drive motor of a pump device, and constitutes a magnet by injection molding to form a cylinder. Molded and fixed to the outer periphery of the rotor with a fixing bracket.

サマリウム鉄窒素の磁気特性(残留磁束密度)はネオジムマグネットの約50%であり、モータの体積が同一でネオジムマグネットと同等のモータ性能を得るためには単純にサマリウム鉄窒素を2倍以上使用すれば同等となるが、モータ全体の寸法、及び、射出成形条件の制約があり補えきれず、磁場配向を極異方配列とハルバッハ配列を組合せることで可能となる。   The magnetic properties (residual magnetic flux density) of samarium iron nitrogen are about 50% of neodymium magnets. To obtain the same motor performance as neodymium magnets, simply use samarium iron nitrogen more than twice. However, there are restrictions on the overall motor dimensions and injection molding conditions, which cannot be compensated for. The magnetic field orientation can be achieved by combining the polar anisotropic array and the Halbach array.

従来、ハルバッハ配列は既に着磁された複数のマグネットの向きを替え、並べることでその配列を得るのが一般的であるが生産効率は悪いため、磁性体を有した樹脂成形材を使用し、射出成形時にハルバッハ配列させる。それらにより、ネオジムマグネットと同等のモータ性能を得ることができ、希土類の価格高騰による材料費圧迫の問題点を解消することができる。   Conventionally, the Halbach array is generally obtained by changing the direction of a plurality of magnets that have already been magnetized and arranging the magnets, but since the production efficiency is poor, a resin molding material having a magnetic material is used, Halbach array at the time of injection molding. As a result, motor performance equivalent to that of a neodymium magnet can be obtained, and the problem of material cost pressure due to rising prices of rare earths can be solved.

また、サマリウム鉄窒素は樹脂成形材と混練して構成されていることより絶縁されておりマグネットへ渦電流が流れることなく安定した温度上昇特性が得られる。   In addition, samarium iron nitrogen is insulated by being kneaded with a resin molding material, and stable temperature rise characteristics can be obtained without eddy current flowing to the magnet.

以下、本発明の一実施例を図面に沿って説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

まず、本実施例のポンプ装置の概要について図1を用いて説明する。   First, an outline of the pump device of this embodiment will be described with reference to FIG.

ポンプ装置は、水通路が形成されたポンプベース1と、ポンプベース1の吐出側水通路部上部に載置された圧力タンク2と、ベース1の上に配置されたポンプ駆動用モータ3とポンプ駆動用モータ3の回転数を変速させてポンプ装置を制御する制御基板4と、制御基板4と通信線で接続されポンプ装置の吐出圧力値の表示や運転圧力等の設定を切り替え操作できる表示基板5と、ベース1の上に配置されたポンプ装置を制御する際に発生する高調波を抑制する高調波抑制コイル6と、ベース1の吐出側水通路部上部に載置されたポンプ装置の圧力を検出する圧力センサー7が備わっており、それらをポンプカバー10が覆う構造である。なお、ここでは、代表的ポンプであるウェスコポンプを例示するが、本実施例はウェスコポンプに限定されるものではない。   The pump device includes a pump base 1 in which a water passage is formed, a pressure tank 2 placed on an upper portion of a discharge side water passage portion of the pump base 1, a pump driving motor 3 and a pump arranged on the base 1. A control board 4 that controls the pump device by changing the number of rotations of the drive motor 3 and a display board that is connected to the control board 4 via a communication line and can switch the display of the discharge pressure value of the pump device and the setting of the operating pressure, etc. 5, a harmonic suppression coil 6 that suppresses harmonics generated when the pump device disposed on the base 1 is controlled, and the pressure of the pump device placed on the discharge side water passage portion of the base 1 Is provided with a pressure sensor 7 that is covered by a pump cover 10. In addition, although the Westco pump which is a typical pump is illustrated here, a present Example is not limited to a Westco pump.

ポンプ装置の運転はポンプ駆動用モータ3を運転することにより行われる。まず、自吸運転が行われ、自吸運転が終了してから揚水運転に移行する。かかる揚水運転で、吐出配管につながる流路が閉じられると、吐出配管から下流側の圧力が上がる。この圧力を圧力センサー7が検知してポンプ駆動用モータ3の運転が止まる。   The operation of the pump device is performed by operating the pump driving motor 3. First, the self-priming operation is performed, and after the self-priming operation is finished, the pumping operation is started. In such a pumping operation, when the flow path connected to the discharge pipe is closed, the pressure on the downstream side from the discharge pipe increases. The pressure sensor 7 detects this pressure and the operation of the pump driving motor 3 stops.

次に、サマリウム鉄窒素(以下サマテツマグネットとする)を使用し射出成形によりマグネットを構成した本実施例のポンプ駆動用モータ3の回転子について図2から図4を用いて説明する。   Next, the rotor of the pump driving motor 3 of this embodiment in which a magnet is formed by injection molding using samarium iron nitrogen (hereinafter referred to as a samamatsu magnet) will be described with reference to FIGS.

図2はポンプ駆動用モータ3の断面図を表しており、回転子は回転子鉄心12と複数の円筒形状の樹脂成形磁石であるサマテツマグネット30により構成され、回転子の外周側に同心円上に配置され、それらは接着剤13により固定されている。なお、回転子鉄心12は、プレス打抜きにより成形された電磁鋼板を複数枚積層したものである。また、サマテツマグネット30は、回転子鉄心12の外周に設けられ、磁性体にサマリウム鉄窒素(SmFeN)を使用した円筒状の回転子磁石である。   FIG. 2 is a cross-sectional view of the pump drive motor 3. The rotor is composed of a rotor core 12 and a plurality of cylindrical shaped magnets 30, which are concentric circles on the outer periphery of the rotor. They are fixed by an adhesive 13. The rotor core 12 is a laminate of a plurality of electromagnetic steel plates formed by press punching. Further, the sumatetsu magnet 30 is a cylindrical rotor magnet provided on the outer periphery of the rotor core 12 and using samarium iron nitrogen (SmFeN) as a magnetic material.

図3は本実施例によるサマテツマグネット30の断面図であり磁性体を含有した樹脂を成形金型へ流し込み形状を構成したものである。図4はサマテツマグネット30を使用した回転子の断面図であり、サマテツマグネット30の両端面には回転子鉄心31と固定する固定金具32aと固定金具32bを具備し、固定金具32aは複数の穴を設けており、固定金具32bにはそれに対面した場所にネジ穴を設けている。回転子鉄心31を構成する複数枚重ね合わせた電磁鋼板には複数のネジ36を通すための貫通穴35がある。   FIG. 3 is a cross-sectional view of a sumatetsu magnet 30 according to this embodiment, in which a resin containing a magnetic material is poured into a molding die to form a shape. FIG. 4 is a cross-sectional view of a rotor using a summate magnet 30, and both ends of the summit magnet 30 are provided with a fixing metal 32a and a fixing metal 32b for fixing to the rotor core 31, and a plurality of the fixing metal 32a are provided. The fixing metal fitting 32b is provided with a screw hole at a location facing it. A plurality of stacked magnetic steel sheets constituting the rotor core 31 have through holes 35 for passing a plurality of screws 36.

その貫通穴35に合わせてネジ36を通しサマテツマグネット30と回転子鉄心31を固定している。   The summit magnet 30 and the rotor core 31 are fixed by passing screws 36 in accordance with the through holes 35.

サマテツマグネット30と回転子鉄心31間には線膨張係数の違いからなる熱膨張と収縮により干渉しサマテツマグネット30が破損することも考えられるためギャップδを有している。   A gap δ is provided between the summate magnet 30 and the rotor core 31 because the sumate magnet 30 may be damaged due to interference due to thermal expansion and contraction due to a difference in linear expansion coefficient.

また、前記の通りサマテツマグネット30と回転子鉄心31は固定金具32aと固定金具32bによりネジ36を介し固定されているが、寸法公差によるガタツキがあるため補助材として接着剤37を使用し固定する。接着剤37はネジ36へ使用し緩み防止剤を兼ねる。   In addition, as described above, the summit magnet 30 and the rotor core 31 are fixed by the fixing metal 32a and the fixing metal 32b via the screw 36. However, since there is a backlash due to dimensional tolerance, the adhesive 37 is used as an auxiliary material. To do. The adhesive 37 is used for the screw 36 and also serves as a loosening prevention agent.

本実施例では固定金具32aと固定金具32b及び、サマテツマグネット30は5箇所の凹凸の嵌めあいで回転方向の固定を行っているが、回転子鉄心31も含めて多角形としても良い。   In this embodiment, the fixing bracket 32a, the fixing bracket 32b, and the samamatsu magnet 30 are fixed in the rotational direction by fitting five concaves and convexes, but may be polygonal including the rotor core 31.

次に、本実施例の磁場配向について図5を用いて説明する。図5はサマテツマグネット30の断面図とQ部を拡大した断面図である。径内周側漏洩磁束を矢印Zで表す。   Next, the magnetic field orientation of the present embodiment will be described with reference to FIG. FIG. 5 is a sectional view of the sumatetsu magnet 30 and an enlarged sectional view of the Q portion. The inner peripheral leakage flux is indicated by an arrow Z.

前記図5の磁束は矢印Zのようにサマテツマグネット30の径外周側では極異方配列Rとなっており径内周側に近くなるに従い直線的な向きYになりハルバッハ配列となる。極異方配列Rのままであれば径内周側へ漏洩磁束Z’があるがハルバッハ配列を構成すると直線的な向きにYになり、径内周側の漏洩磁束Z’は無くなり効率が良くなる。(内周側の磁力は無くクリップなどの軽金属も付着しない)
ハルバッハ配列は成形と同時に成形金型内に組込まれたマグネットの配列により磁性体が、そのマグネットの配列に従い磁場配列を完成させる。
The magnetic flux in FIG. 5 has a polar anisotropic arrangement R on the outer circumference side of the sumate magnet 30 as indicated by an arrow Z, and becomes a linear direction Y and becomes a Halbach arrangement as it approaches the inner circumference side. If the polar anisotropic arrangement R is maintained, there is a leakage magnetic flux Z 'on the radially inner side. However, if the Halbach arrangement is configured, the linear flux becomes Y in the linear direction, and the leakage magnetic flux Z' on the radially inner circumference side is eliminated and the efficiency is improved. Become. (There is no magnetic force on the inner circumference, and light metals such as clips do not adhere.)
The Halbach array completes a magnetic field array in accordance with the magnet arrangement by the magnet array incorporated in the molding die simultaneously with the molding.

次に、図6を用いて温度上昇の特性を説明する。まず、比較対象として、図2のサマテツマグネット30に代え、ネオジムマグネット11を用いた従来のポンプ駆動用モータについて説明する。従来のポンプ駆動用モータで用いられるネオジムマグネット11は導体であり、ロータ外周部に配置される固定子巻線に発生する磁束によりネオジムマグネット11自体にも渦電流が流れる。ネオジムマグネット11の磁気特性は高温域で減磁していく性能を有しており渦電流が流れることにより発熱し減磁する。それを繰返し温度上昇特性が安定しない。ネオジムマグネット11の温度上昇チャートを40とする。   Next, the temperature rise characteristic will be described with reference to FIG. First, as a comparison object, a conventional pump driving motor using the neodymium magnet 11 instead of the summit magnet 30 in FIG. 2 will be described. The neodymium magnet 11 used in the conventional motor for driving the pump is a conductor, and an eddy current flows also in the neodymium magnet 11 itself due to the magnetic flux generated in the stator winding disposed on the outer periphery of the rotor. The magnetic characteristics of the neodymium magnet 11 have the ability to demagnetize in a high temperature range, and heat is generated and demagnetized when an eddy current flows. Repeatedly, the temperature rise characteristic is not stable. The temperature rise chart of the neodymium magnet 11 is 40.

これに対し、本実施例のサマテツマグネット30はネオジムマグネット11に対し温度係数が約50%であり温度への影響が少なく、かつ、前述の如く樹脂成形材と混練して構成されていることより絶縁されておりマグネットへ渦電流が流れることなく温度上昇特性は安定し良くなる。サマテツマグネット30の温度上昇チャートを50とする。   On the other hand, the sumatetsu magnet 30 of the present embodiment has a temperature coefficient of about 50% with respect to the neodymium magnet 11, has little influence on temperature, and is kneaded with the resin molding material as described above. The temperature rise characteristic is stabilized and improved without any eddy current flowing to the magnet. The temperature rise chart of the sumatetsu magnet 30 is 50.

以上で説明したように、本実施例によると、ポンプ駆動用モータ3の回転子にサマリウム鉄窒素(SmFeN)を磁性体とした樹脂成形材を使用しマグネットを射出成形により構成し、かつ、磁場配向に極異方配列とハルバッハ配列を組合せることで、モータの体積を変えることなくネオジムマグネット11と同等のモータ性能を得ることができ、希土類の価格高騰による材料費圧迫を避けることができる。   As described above, according to this embodiment, the rotor of the pump driving motor 3 is made of a resin molding material made of samarium iron nitrogen (SmFeN) as a magnetic material, the magnet is formed by injection molding, and the magnetic field By combining the polar anisotropic arrangement and the Halbach arrangement for the orientation, the motor performance equivalent to that of the neodymium magnet 11 can be obtained without changing the volume of the motor, and the material cost pressure due to the rising price of rare earth can be avoided.

また、サマリウム鉄窒素は樹脂成形材を混練していることより磁性体が絶縁されているため、渦電流が流れることなく安定した温度上昇特性が得られ、信頼性を高めたポンプ装置を提供することが可能となる。   In addition, since samarium iron nitrogen is insulated from the magnetic material by kneading the resin molding material, a stable temperature rise characteristic is obtained without flowing eddy current, and a pump device with improved reliability is provided. It becomes possible.

これらによりネオジムマグネット11を使用せず、信頼性の向上した製品を提供することが可能となる。   Accordingly, it is possible to provide a product with improved reliability without using the neodymium magnet 11.

3 ポンプ駆動用モータ、11 ネオジムマグネット、30 サマテツマグネット、32a、32b 固定金具、 δ ギャップ R 極異方配列、 Y ハルバッハ配列、 Z 径内周側漏洩磁束、 3 Motor for driving the pump, 11 Neodymium magnet, 30 Sumate magnet, 32a, 32b Fixing bracket, δ Gap R Polar anisotropic arrangement, Y Halbach arrangement, Z-diameter inner peripheral leakage magnetic flux,

Claims (4)

ポンプ駆動用モータと、
ケーシング内に設けられた羽根車を前記ポンプ駆動用モータにより回転させてポンプ作用を行うポンプ部と、
前記ポンプ駆動用モータの回転速度を変速させて前記ポンプ部を制御する制御部を有するポンプ装置において、
前記ポンプ駆動用モータの回転子は、
プレス打抜きにより成形された電磁鋼板を複数枚積層した回転子鉄心と、
該回転子鉄心の外周に設けられ、磁性体にサマリウム鉄窒素(SmFeN)を使用した円筒状の回転子磁石を備え、
前記回転子磁石はその磁場配向を成形と同時に成形金型内でハルバッハ配列にした樹脂成形磁石であって、
前記回転子鉄心と前記回転子磁石の間にはギャップを有して同心状に装着したことを特徴とするポンプ装置。
A pump drive motor;
A pump unit that performs a pump action by rotating an impeller provided in a casing by the pump driving motor;
In the pump apparatus having a control unit for controlling the pump unit by changing the rotation speed of the pump driving motor,
The rotor of the pump driving motor is
A rotor core in which a plurality of electromagnetic steel sheets formed by press punching are laminated;
Provided on the outer periphery of the rotor core, comprising a cylindrical rotor magnet using samarium iron nitrogen (SmFeN) as a magnetic material,
The rotor magnet is a resin-molded magnet whose magnetic field orientation is formed into a Halbach array in a molding die at the same time as molding,
A pump device comprising a concentric mounting with a gap between the rotor core and the rotor magnet.
請求項1に記載のポンプ装置において、
前記回転子磁石両端側には固定金具を具備し、
前記回転子鉄心と前記固定金具にはネジ通しのための複数の貫通穴を設け、
前記ネジと前記固定金具により前記回転子鉄心と前記回転子磁石とが固定されていることを特徴とするポンプ装置。
The pump device according to claim 1,
The rotor magnet is provided with fixing brackets at both ends,
The rotor core and the fixing bracket are provided with a plurality of through holes for threading,
The pump device, wherein the rotor iron core and the rotor magnet are fixed by the screw and the fixing bracket.
ポンプ駆動用モータであって、
前記ポンプ駆動用モータの回転子は、
プレス打抜きにより成形された電磁鋼板を複数枚積層した回転子鉄心と、
該回転子鉄心の外周に設けられ、磁性体にサマリウム鉄窒素(SmFeN)を使用した
円筒状の回転子磁石を備え、
前記回転子磁石はその磁場配向を成形と同時に成形金型内でハルバッハ配列にした樹脂成形磁石であって、
前記回転子鉄心と前記回転子磁石の間にはギャップを有して同心状に装着したことを特徴とするポンプ駆動用モータ。
A pump drive motor,
The rotor of the pump driving motor is
A rotor core in which a plurality of electromagnetic steel sheets formed by press punching are laminated;
A cylindrical rotor magnet provided on the outer periphery of the rotor core and using samarium iron nitrogen (SmFeN) as a magnetic material;
The rotor magnet is a resin-molded magnet whose magnetic field orientation is formed into a Halbach array in a molding die at the same time as molding,
A pump driving motor, wherein the rotor core and the rotor magnet are mounted concentrically with a gap.
請求項3に記載のポンプ駆動用モータであって、
前記回転子磁石両端側には固定金具を具備し、
前記回転子鉄心と前記固定金具にはネジ通しのための複数の貫通穴を設け、
前記ネジと前記固定金具により前記回転子鉄心と前記回転子磁石とが固定されていることを特徴とするポンプ駆動用モータ。
The pump driving motor according to claim 3,
The rotor magnet is provided with fixing brackets at both ends,
The rotor core and the fixing bracket are provided with a plurality of through holes for threading,
The pump driving motor, wherein the rotor iron core and the rotor magnet are fixed by the screw and the fixing bracket.
JP2012151999A 2012-07-06 2012-07-06 Pump device and pump drive motor Pending JP2014017910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151999A JP2014017910A (en) 2012-07-06 2012-07-06 Pump device and pump drive motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151999A JP2014017910A (en) 2012-07-06 2012-07-06 Pump device and pump drive motor

Publications (1)

Publication Number Publication Date
JP2014017910A true JP2014017910A (en) 2014-01-30

Family

ID=50112132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151999A Pending JP2014017910A (en) 2012-07-06 2012-07-06 Pump device and pump drive motor

Country Status (1)

Country Link
JP (1) JP2014017910A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223837A (en) * 1995-02-07 1996-08-30 Fuji Electric Co Ltd Rotor of rotating machine provided with cylindrical permanent magnet
JP2005287292A (en) * 2004-03-26 2005-10-13 Minebea Co Ltd Rotor structure part of electric motor and manufacturing method thereof
JP2008236862A (en) * 2007-03-19 2008-10-02 Yaskawa Electric Corp Rotor core, rotor, and rotating machine using the rotor
JP2011147288A (en) * 2010-01-15 2011-07-28 Mitsubishi Electric Corp Rotor of synchronous motor
JP2011205781A (en) * 2010-03-25 2011-10-13 Hitachi Ltd Permanent magnet rotary electric machine
JP2012095375A (en) * 2010-10-24 2012-05-17 Mitsubishi Electric Corp Rotor for electric motor for pump, pump, air conditioner, floor heating apparatus, water heater and method of manufacturing rotor for electric motor for pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08223837A (en) * 1995-02-07 1996-08-30 Fuji Electric Co Ltd Rotor of rotating machine provided with cylindrical permanent magnet
JP2005287292A (en) * 2004-03-26 2005-10-13 Minebea Co Ltd Rotor structure part of electric motor and manufacturing method thereof
JP2008236862A (en) * 2007-03-19 2008-10-02 Yaskawa Electric Corp Rotor core, rotor, and rotating machine using the rotor
JP2011147288A (en) * 2010-01-15 2011-07-28 Mitsubishi Electric Corp Rotor of synchronous motor
JP2011205781A (en) * 2010-03-25 2011-10-13 Hitachi Ltd Permanent magnet rotary electric machine
JP2012095375A (en) * 2010-10-24 2012-05-17 Mitsubishi Electric Corp Rotor for electric motor for pump, pump, air conditioner, floor heating apparatus, water heater and method of manufacturing rotor for electric motor for pump

Similar Documents

Publication Publication Date Title
JP5877777B2 (en) Rotating electric machine, magnetic pole piece manufacturing method
JP6396648B2 (en) Generator
JP6243208B2 (en) Motor and motor manufacturing method
JP6297222B2 (en) Permanent magnet motor
JP2007032370A (en) Electric pump
US11101708B2 (en) Rotor, motor, air conditioning apparatus, and manufacturing method of rotor
US11047603B2 (en) Rotor, motor, and air conditioning apparatus
JP4931980B2 (en) Water circulation pump and heat pump device
JP7109658B2 (en) Stator, motor, blower, air conditioner, and stator manufacturing method
CN103516080A (en) Electric motor and production method for the electric motor
US9698647B2 (en) Electric machine with magnetic sensor
WO2015036779A3 (en) Pole-piece bonding
JP2020103039A (en) Axial air gap type electric motor
CN104377843A (en) Sealing claw pole and axial magnetic circuit permanent magnetic brushless direct-current motor
JP2014017910A (en) Pump device and pump drive motor
JP2013223370A (en) Synchronous rotary machine
JP2011147288A (en) Rotor of synchronous motor
JP6537613B2 (en) Motor rotor, motor, blower and refrigeration air conditioner
JP5705284B2 (en) Water circulation pump manufacturing method and heat pump device
JP2018143049A (en) Method of manufacturing motor and motor
JP2013121274A (en) Rotor structure of rotary electric machine
CN103095079A (en) Permanent magnet motors and methods of assembling the same
JP2007037284A (en) Single-phase brushless dc motor
JP5367804B2 (en) Manufacturing method of water circulation pump
JP2010233349A (en) Dc motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151222