JP2014015664A - Boron-added steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt - Google Patents

Boron-added steel for high strength bolt having excellent delayed fracture resistance, and high strength bolt Download PDF

Info

Publication number
JP2014015664A
JP2014015664A JP2012153981A JP2012153981A JP2014015664A JP 2014015664 A JP2014015664 A JP 2014015664A JP 2012153981 A JP2012153981 A JP 2012153981A JP 2012153981 A JP2012153981 A JP 2012153981A JP 2014015664 A JP2014015664 A JP 2014015664A
Authority
JP
Japan
Prior art keywords
steel
content
delayed fracture
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012153981A
Other languages
Japanese (ja)
Other versions
JP6034605B2 (en
Inventor
Yosuke Matsumoto
洋介 松本
Masamichi Chiba
政道 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012153981A priority Critical patent/JP6034605B2/en
Publication of JP2014015664A publication Critical patent/JP2014015664A/en
Application granted granted Critical
Publication of JP6034605B2 publication Critical patent/JP6034605B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a boron-added steel for a high strength bolt having excellent delayed fracture resistance even in a high strength exceeding 1100 MPa even without largely adding expensive alloy elements such as Cr and Mo, and a high strength bolt made of the boron-added steel for a high strength bolt.SOLUTION: The steel for a high strength bolt has a composition comprising 0.23 to below 0.40% C, 0.23 to 1.50% Si, 0.30 to 1.45% Mn, 0.03% or lower (not including 0%) of P, 0.030% or lower (not including 0%) of S, 0.05 to 1.5% Cr, 0.02 to 0.30% Nb, 0.02 to 0.10% Ti, 0.0003 to 0.0050% B, 0.01 to 0.10% Al and 0.002 to 0.010% N, respectively, and the balance iron with inevitable impurities, and in which the ratio between the Si content [Si] and the C content [C], i.e., ([Si]/[C]) is 1.0% or higher, and further has a ferrite-pearlite structure.

Description

本発明は、自動車や各種産業機械等に用いられるボルト用鋼、およびこのボルト用鋼を用いて得られる高強度ボルトに関し、特に引張強さが1100MPa以上であっても、優れた耐遅れ破壊性を発揮するボロン添加高強度ボルト用鋼および高強度ボルトに関するものである。   The present invention relates to a steel for bolts used in automobiles and various industrial machines, and a high-strength bolt obtained by using this steel for bolts, and particularly excellent delayed fracture resistance even when the tensile strength is 1100 MPa or more. The present invention relates to a boron-added high-strength bolt steel and a high-strength bolt.

現在、引張強さが1100MPaまでのボルトは、ボロン添加鋼への移行による低廉化が進められているが、それよりも高強度となるボルトでは、SCM等の規格鋼が依然として多用されている。SCM規格鋼には、CrやMo等の合金元素が多量に添加されているため、鋼材コスト低減の要請に伴い、CrやMoを低減したSCM代替鋼への要望が高まっている。しかしながら、合金元素を単純に低減するだけでは、強度と耐遅れ破壊性の確保が困難となる。   Currently, bolts with a tensile strength of up to 1100 MPa are being made cheaper by shifting to boron-added steel, but standard steels such as SCM are still frequently used for bolts with higher strength. Since a large amount of alloy elements such as Cr and Mo are added to the SCM standard steel, the demand for SCM alternative steel with reduced Cr and Mo is increasing with the demand for reducing the steel material cost. However, simply reducing the alloy elements makes it difficult to ensure strength and delayed fracture resistance.

そこで、ボロン添加による焼入れ性向上効果を利用したボロン添加鋼を高強度ボルトの素材として用いることが検討されている。しかしながら、強度上昇に伴って耐遅れ破壊性が大幅に悪化するため、使用環境の厳しい部位での適用は困難である。   Therefore, it has been studied to use boron-added steel using the effect of improving hardenability by adding boron as a material for high-strength bolts. However, since the delayed fracture resistance greatly deteriorates as the strength increases, it is difficult to apply in severe parts of the usage environment.

耐遅れ破壊性を改善するための技術が、これまでにも様々提案されている。例えば、特許文献1では、冷間鍛造性と切削性に優れた機械構造用鋼が提案されているが、Nb,Vの添加量が少ないため、焼入れ焼戻し後に優れた耐遅れ破壊性を確保することは困難である。   Various techniques for improving delayed fracture resistance have been proposed so far. For example, Patent Document 1 proposes a steel for machine structural use that is excellent in cold forgeability and machinability. However, since the addition amount of Nb and V is small, excellent delayed fracture resistance is ensured after quenching and tempering. It is difficult.

また特許文献2や特許文献3には、球状化焼鈍の短縮が可能な鋼材とその製造方法が提案されているが、化学成分組成や製造方法を規定するだけでは、強度と耐遅れ破壊性、耐食性を同時に満足することは困難である。   In addition, Patent Document 2 and Patent Document 3 propose a steel material capable of shortening spheroidizing annealing and a manufacturing method thereof, but only by specifying the chemical composition and the manufacturing method, strength and delayed fracture resistance, It is difficult to satisfy the corrosion resistance at the same time.

特許文献4には、熱処理歪の小さい肌焼ボロン鋼が提案されているが、浸炭焼入れを行うと鋼材表層の硬さが上がり、耐遅れ破壊性が大きく劣化するため、ボルトへの適用は困難である。   Patent Document 4 proposes a case-hardened boron steel with a small heat treatment strain. However, when carburizing and quenching is performed, the hardness of the steel material layer increases and the delayed fracture resistance is greatly deteriorated, making it difficult to apply to bolts. It is.

また特許文献5や特許文献6では、結晶粒微細化によって耐遅れ破壊性の向上を図っているが、結晶粒微細化の効果のみでは更なる過酷環境下への適用は困難である。   Further, Patent Document 5 and Patent Document 6 attempt to improve delayed fracture resistance by refining crystal grains, but it is difficult to apply to severe environments only by the effect of refining crystal grains.

耐遅れ破壊性を改善するためにこれまで提案されている技術は、いずれも強度、過酷環境下での耐遅れ破壊性や製造面で問題を有している。   All of the technologies proposed so far for improving delayed fracture resistance have problems in strength, delayed fracture resistance in harsh environments, and manufacturing.

特開2006−291237号公報JP 2006-291237 A 特開2006−336460号公報JP 2006-336460 A 再公表WO01/075186号公報Republished WO01 / 075186 特開昭61−217553号公報JP-A-61-2217553 特許第3535754号公報Japanese Patent No. 3535754 特許第3490293号公報Japanese Patent No. 3490293

本発明はこのような状況の下でなされたものであって、その目的は、CrやMo等の高価な合金元素を多量に添加することなく、1100MPaを超えるような高強度であっても耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼、およびこのようなボロン添加高強度ボルト用鋼からなる高強度ボルトを提供することにある。   The present invention has been made under such circumstances, and the object thereof is to withstand high strength exceeding 1100 MPa without adding a large amount of expensive alloy elements such as Cr and Mo. An object of the present invention is to provide a boron-added high-strength bolt steel excellent in delayed fracture and a high-strength bolt made of such a boron-added high-strength bolt steel.

上記目的を達成することのできた本発明のボロン添加高強度ボルト用鋼とは、C:0.23〜0.40%未満(質量%の意味、以下同じ)、Si:0.23〜1.50%、Mn:0.30〜1.45%、P:0.03%以下(0%を含まない)、S:0.030%以下(0%を含まない)、Cr:0.05〜1.5%、Nb:0.02〜0.30%、Ti:0.02〜0.10%、B:0.0003〜0.0050%、Al:0.01〜0.10%、およびN:0.002〜0.010%を夫々含有し、残部が鉄および不可避不純物からなり、且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、フェライト・パーライト組織である点に要旨を有するものである。   The boron-added high-strength bolt steel of the present invention capable of achieving the above object is C: 0.23 to less than 0.40% (meaning mass%, the same shall apply hereinafter), Si: 0.23 to 1. 50%, Mn: 0.30 to 1.45%, P: 0.03% or less (not including 0%), S: 0.030% or less (not including 0%), Cr: 0.05 to 1.5%, Nb: 0.02-0.30%, Ti: 0.02-0.10%, B: 0.0003-0.0050%, Al: 0.01-0.10%, and N: 0.002 to 0.010% each, the balance being iron and inevitable impurities, and the ratio of Si content [Si] to C content [C] ([Si] / [C] ) Is 1.0 or more and has a gist in that it is a ferrite-pearlite structure.

本発明のボロン添加高強度ボルト用鋼においては、必要によって、更に、(a)V:0.30%以下(0%を含まない)、(b)Mo:0.10%以下(0%を含まない)等を含有させることも有効であり、含有させる成分の種類に応じてボロン添加高強度ボルト用鋼の特性が更に改善される。   In the steel for boron-added high-strength bolts of the present invention, if necessary, (a) V: 0.30% or less (excluding 0%), (b) Mo: 0.10% or less (0%) It is also effective to contain (not contained), etc., and the characteristics of the steel for boron-added high-strength bolts are further improved according to the kind of the component to be contained.

一方、上記目的を達成することのできた本発明の高強度ボルトとは、上記のような鋼材(ボロン添加高強度ボルト用鋼)を使用し、ボルト形状に成形加工した後、850℃以上、920℃以下で加熱して焼入れ処理を行い、その後、焼戻し処理を行ったものである点に要旨を有するものである。この高強度ボルトにおいては、焼入れ後および焼入れ焼戻し後のボルト軸部のオーステナイト結晶粒度番号が8以上であることが好ましい。   On the other hand, the high-strength bolt of the present invention that has achieved the above object is the above steel material (steel for boron-added high-strength bolt), and after forming into a bolt shape, 850 ° C. or higher, 920 It has a gist in that it is subjected to a quenching treatment by heating at a temperature not higher than ° C. and then a tempering treatment. In this high strength bolt, it is preferable that the austenite grain size number of the bolt shaft portion after quenching and quenching and tempering is 8 or more.

本発明においては、化学成分組成を厳密に規定すると共に、SiとCの含有量の比([Si]/[C])の値を適正な範囲に制御することによって、過酷な環境下でも優れた耐遅れ破壊性を発揮するボロン添加高強度ボルト用鋼が実現でき、こうした鋼材を用いれば、耐遅れ破壊性に優れた高強度ボルトが実現できる。   In the present invention, the chemical composition is strictly defined, and the ratio of the Si and C content ([Si] / [C]) is controlled within an appropriate range, so that it is excellent even in harsh environments. Boron-added high-strength bolt steel that exhibits delayed fracture resistance can be realized. By using such a steel material, high-strength bolts with excellent delayed fracture resistance can be realized.

図1は、発明例と比較例における引張強さと遅れ破壊強度比の分布状況を示したグラフである。FIG. 1 is a graph showing the distribution of tensile strength and delayed fracture strength ratio in the inventive example and the comparative example.

本発明者らは、MoやCr等の高価な合金元素を多量に添加することなく、引張強さが1100MPa以上の高強度でも優れた耐遅れ破壊性を示すボロン添加鋼について鋭意研究を重ねた。その結果、引張強さが1100MPa以上のボロン添加鋼では、合金元素を含有させるよりもC含有量を極力低減することが耐遅れ破壊性の確保に非常に有効であることを見出した。Cを低減することは強度が不足することにつながるが、Si含有量をC含有量と同等以上とすることで[即ち、SiとCの含有量の比([Si]/[C])が1.0以上]、C含有量を低減することによる強度低下を十分補うことができることが判明した。   The present inventors have conducted extensive research on boron-added steel that exhibits excellent delayed fracture resistance even at a high strength of 1100 MPa or higher without adding a large amount of expensive alloy elements such as Mo and Cr. . As a result, it has been found that, in a boron-added steel having a tensile strength of 1100 MPa or more, reducing the C content as much as possible is very effective in securing delayed fracture resistance than containing alloy elements. Reducing C leads to insufficient strength, but by making the Si content equal to or higher than the C content [ie, the ratio of Si and C content ([Si] / [C]) 1.0 or more], it has been found that the decrease in strength due to the reduction of the C content can be sufficiently compensated.

またC含有量を低減することによって耐食性も向上するが、過酷環境下で十分な耐遅れ破壊性を確保するためには、Si含有量をC含有量と同等以上とすることに加え、NbやTiの炭・窒化物形成元素(「炭・窒化物」は、「炭化物」、「窒化物」若しくは「炭窒化物」を含む)を含有することにより、オーステナイト結晶粒を微細化することが有効であり、更に他の各化学成分を調整することで,1100MPa以上の引張強さでも優れた耐遅れ破壊性を有するボロン添加鋼が実現できることを見出し、本発明を完成した。また、本発明の鋼材は必要に応じてボルト成形前に球状化焼鈍処理を実施してもよい。   In addition, although the corrosion resistance is improved by reducing the C content, in order to ensure sufficient delayed fracture resistance in harsh environments, in addition to making the Si content equal to or higher than the C content, Nb and It is effective to refine the austenite crystal grains by containing Ti carbon / nitride-forming elements (“carbon / nitride” includes “carbide”, “nitride” or “carbonitride”) Further, by adjusting other chemical components, it was found that a boron-added steel having excellent delayed fracture resistance could be realized even with a tensile strength of 1100 MPa or more, and the present invention was completed. Moreover, you may implement the spheroidization annealing process before the bolt shaping | molding of the steel material of this invention as needed.

Cは、鋼の強度を確保する上で有用な元素であるが、その含有量を増加させると鋼の靭性や耐食性が悪化し、遅れ破壊を引き起こしやすくなる。一方、Siも鋼の強度を確保する上で有用な元素であるが、遅れ破壊との関係は不明確であった。そこで本発明者らは、Siによる遅れ破壊への影響について調査した。その結果、Cの含有量よりもSiの添加量を多くすることで、1100MPa以上の引張強さと靭性、耐食性を両立できたため、引張強さと耐遅れ破壊性を高い水準でバランスさせることができた。   C is an element useful for ensuring the strength of the steel, but increasing its content deteriorates the toughness and corrosion resistance of the steel and tends to cause delayed fracture. On the other hand, Si is also an element useful for ensuring the strength of steel, but the relationship with delayed fracture was unclear. Therefore, the present inventors investigated the influence of Si on delayed fracture. As a result, it was possible to balance tensile strength and delayed fracture resistance at a high level by increasing the addition amount of Si more than the C content, thereby achieving both a tensile strength of 1100 MPa or more, toughness, and corrosion resistance. .

即ち、Cの単独添加のみで1100MPa以上確保しようとすると、鋼の耐食性が悪化し、鋼表面での水素発生量が増加して、結果的に鋼に侵入する水素量も増加し、遅れ破壊が発生しやすくなる。NbやV等の結晶粒微細化の効果を有する元素を添加することによって靭性の改善を図っても、Nb炭化物は焼入れの加熱時に固溶しやすいため、結晶粒微細化の効果が少なく、またC増量による耐食性悪化への影響も大きいため大きな改善効果は現れなかった。   That is, if it is attempted to secure 1100 MPa or more only by adding C alone, the corrosion resistance of the steel deteriorates, the amount of hydrogen generated on the steel surface increases, and as a result, the amount of hydrogen entering the steel also increases, causing delayed fracture. It tends to occur. Even if the toughness is improved by adding an element having the effect of crystal grain refinement, such as Nb or V, Nb carbide is easily dissolved during quenching, so the effect of grain refinement is small. Since the effect of increasing C on the deterioration of corrosion resistance was great, no significant improvement effect appeared.

これに対して、CとSiの複合添加では、Siで強度を上げることができるため、相対的にCの含有量を減少させることができる。即ち、マトリクスのC含有量を低下し、鋼の耐食性にあまり影響を与えないSiで強度を担保することによって、耐食性および耐遅れ破壊性に優れ、1100MPa以上の引張強さを確保することが可能となったのである。また、C含有量を低減することでマトリクスの靭性も上がり、加えてNbやTi等の結晶粒微細化効果を有する元素を添加することにより靭性を更に向上させることができた。   On the other hand, when C and Si are added in combination, the strength can be increased by Si, so that the C content can be relatively reduced. That is, by reducing the C content of the matrix and securing the strength with Si that does not significantly affect the corrosion resistance of steel, it is excellent in corrosion resistance and delayed fracture resistance, and it is possible to ensure a tensile strength of 1100 MPa or more. It became. Moreover, the toughness of the matrix was increased by reducing the C content, and in addition, the toughness could be further improved by adding an element having a crystal grain refining effect such as Nb or Ti.

またSiは、NbやTiなどの炭化物周辺に濃化し、Cの拡散を抑制する効果もある。このことにより、焼入れ時にVやTiの炭化物が溶解しにくくなり、ピンニング効果が増加するため結晶粒の微細化をさらに促進することが可能である。   Si also has an effect of concentrating around carbides such as Nb and Ti and suppressing the diffusion of C. This makes it difficult for V and Ti carbides to dissolve during quenching and increases the pinning effect, thereby further promoting the refinement of crystal grains.

本発明のボロン添加ボルト用鋼においては、上記の趣旨からして、Siの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であることが必要である。これによって、Siで強度を確保できる分、相対的にCの添加量を低減することができ、耐食性の向上が図れるため、優れた耐遅れ破壊性を示すものとなる。上記比([Si]/[C])の値は、好ましくは2.0以上であり、より好ましくは3.0以上である。但し、上記比([Si]/[C])が1.0以上を満たしていても、化学成分組成が適正な範囲から外れる場合は、耐遅れ破壊性その他の特性が劣化するような不都合が生じる。   In the boron-added bolt steel of the present invention, the ratio of the Si content [Si] and the C content [C] ([Si] / [C]) is 1.0 or more for the above purpose. It is necessary to be. As a result, the amount of addition of C can be relatively reduced and the corrosion resistance can be improved as much as the strength can be secured with Si, and therefore, excellent delayed fracture resistance is exhibited. The value of the ratio ([Si] / [C]) is preferably 2.0 or more, and more preferably 3.0 or more. However, even if the ratio ([Si] / [C]) satisfies 1.0 or more, if the chemical component composition is out of the proper range, there is a disadvantage that the delayed fracture resistance and other characteristics deteriorate. Arise.

上記比([Si]/[C])の値は、Cの含有量に応じて、その適正な範囲を制御することも効果的である。具体的には、(a)C:0.23〜0.25%未満のときには、比([Si]/[C])の値を2.0以上とし、(b)C:0.25〜0.29%未満のときには、比([Si]/[C])の値を1.5以上とし、(c)C:0.29%以上のときには(即ち、0.29〜0.40%未満)、比([Si]/[C])の値を1.0以上とする構成が好ましい。   It is also effective to control the appropriate range of the ratio ([Si] / [C]) according to the C content. Specifically, when (a) C: 0.23 to less than 0.25%, the ratio ([Si] / [C]) is set to 2.0 or more, and (b) C: 0.25 to 0.25%. When the ratio is less than 0.29%, the ratio ([Si] / [C]) is set to 1.5 or more. (C) When C is 0.29% or more (that is, 0.29 to 0.40%). Less) and the ratio ([Si] / [C]) is preferably 1.0 or more.

本発明の鋼材では、その鋼材としての基本的特性を満足させるために、C,Si,Mn,P,S,Cr,Nb,Ti,B,Al,N等の成分を適切に調整する必要がある。これらの成分の範囲限定理由は、次の通りである。   In the steel material of the present invention, it is necessary to appropriately adjust components such as C, Si, Mn, P, S, Cr, Nb, Ti, B, Al, and N in order to satisfy the basic characteristics as the steel material. is there. The reasons for limiting the ranges of these components are as follows.

[C:0.23〜0.40%未満]
Cは、炭化物を形成すると共に、高強度鋼として必要な引張強さ確保する上で欠くことができない元素である。こうした効果を発揮させるためには、0.23%以上含有させる必要がある。しかし、Cを過剰に含有させると、靭性低下や耐食性悪化を招いて耐遅れ破壊性が劣化する。このようなCの悪影響を避けるためには、C含有量は0.40%未満とする必要がある。尚、C含有量の好ましい下限は0.25%以上であり、より好ましくは0.27%以上とするのが良い。また、C含有量の好ましい上限は0.38%以下であり、より好ましくは0.36%以下とするのが良い。
[C: 0.23 to less than 0.40%]
C is an element indispensable for forming carbides and securing tensile strength necessary for high-strength steel. In order to exhibit such an effect, it is necessary to contain 0.23% or more. However, when C is contained excessively, the delayed fracture resistance deteriorates due to a decrease in toughness and a deterioration in corrosion resistance. In order to avoid such an adverse effect of C, the C content needs to be less than 0.40%. In addition, the minimum with preferable C content is 0.25% or more, More preferably, it is good to set it as 0.27% or more. Moreover, the upper limit with preferable C content is 0.38% or less, More preferably, it is good to set it as 0.36% or less.

[Si:0.23〜1.50%]
Siは、溶製時の脱酸剤として作用すると共に、マトリクスを強化する固溶元素として必要な元素であり、0.23%以上含有させることによって十分な強度を確保できる。また、Siを添加することにより焼入れ時に炭・窒化物が固溶しにくくなるため、ピンニング効果が増加することにより結晶粒の粗大化が抑制される。しかしながら、1.50%を超えてSiを過剰に含有させると、球状化焼鈍を実施しても鋼材の冷間加工性が低下すると共に、焼入れ時の熱処理での粒界酸化を助長して耐遅れ破壊性を劣化させる。尚、Si含有量の好ましい下限は0.3%以上であり、より好ましくは0.4%以上とするのが良い。また、Si含有量の好ましい上限は1.0%以下であり、より好ましくは0.8%以下とするのが良い。
[Si: 0.23 to 1.50%]
Si acts as a deoxidizer during melting and is an element necessary as a solid solution element for strengthening the matrix. By containing 0.23% or more, sufficient strength can be ensured. In addition, the addition of Si makes it difficult for carbon and nitrides to dissolve during quenching, so that the pinning effect is increased, thereby suppressing the coarsening of crystal grains. However, if Si is contained excessively exceeding 1.50%, the cold workability of the steel material is deteriorated even when spheroidizing annealing is performed, and the grain boundary oxidation in the heat treatment at the time of quenching is promoted. Deteriorating delayed fracture. In addition, the minimum with preferable Si content is 0.3% or more, More preferably, it is good to set it as 0.4% or more. Moreover, the upper limit with preferable Si content is 1.0% or less, More preferably, it is good to set it as 0.8% or less.

[Mn:0.30〜1.45%]
Mnは焼入れ性向上元素であり、高強度化を達成する上で重要な元素である。Mnは0.30%以上含有させることで、その効果を発揮させることができる。しかしながら、Mn含有量が過剰になると、粒界への偏析を助長して粒界強度が低下し、耐遅れ破壊性が却って低下するため、1.45%を上限とした。尚、Mn含有量の好ましい下限は0.4%以上であり、より好ましくは0.6%以上とするのが良い。また、Mn含有量の好ましい上限は1.3%以下であり、より好ましくは1.1%以下とするのが良い。
[Mn: 0.30 to 1.45%]
Mn is an element that improves hardenability, and is an important element for achieving high strength. The effect can be exhibited by containing 0.30% or more of Mn. However, if the Mn content is excessive, segregation to the grain boundary is promoted and the grain boundary strength is lowered, and the delayed fracture resistance is lowered, so 1.45% was made the upper limit. In addition, the minimum with preferable Mn content is 0.4% or more, It is good to set it as 0.6% or more more preferably. Moreover, the upper limit with preferable Mn content is 1.3% or less, More preferably, it is good to set it as 1.1% or less.

[P:0.03%以下(0%を含まない)]
Pは不純物として含有するが、過剰に存在すると粒界偏析を起こして粒界強度を低下させて、遅れ破壊特性を悪化させる。そのため、P含有量の上限は0.03%とした。尚、P含有量の好ましい上限は0.01%以下であり、より好ましくは0.005%以下とするのが良い。
[P: 0.03% or less (excluding 0%)]
P is contained as an impurity, but if it is present in an excessive amount, it causes segregation at the grain boundary, lowers the grain boundary strength, and deteriorates delayed fracture characteristics. Therefore, the upper limit of the P content is 0.03%. In addition, the upper limit with preferable P content is 0.01% or less, More preferably, it is good to set it as 0.005% or less.

[S:0.030%以下(0%を含まない)]
Sが過剰に存在すると、硫化物が結晶粒界に偏析し、粒界強度の低下を招いて耐遅れ破壊性が低下する。そのため、S含有量の上限を0.030%とした。尚、S含有量の好ましい上限は0.01%以下であり、より好ましくは0.006%以下とするのが良い。
[S: 0.030% or less (excluding 0%)]
If S is present in excess, sulfides segregate at the grain boundaries, leading to a decrease in grain boundary strength and delayed fracture resistance. Therefore, the upper limit of the S content is 0.030%. In addition, the upper limit with preferable S content is 0.01% or less, More preferably, it is good to set it as 0.006% or less.

[Cr:0.05〜1.5%]
Crは耐食性向上元素であり、0.05%以上添加することで効果を発揮する。しかしながら、多量に含有させると鋼材コストの増大を招くため、上限は1.5%とする。尚、Cr含有量の好ましい下限は0.10%以上であり、より好ましくは0.13%以上である。また、Cr含有量の好ましい上限は1.0%以下であり,より好ましくは0.70%以下である。
[Cr: 0.05 to 1.5%]
Cr is an element for improving corrosion resistance, and exhibits an effect by adding 0.05% or more. However, if it is contained in a large amount, the steel material cost increases, so the upper limit is made 1.5%. In addition, the minimum with preferable Cr content is 0.10% or more, More preferably, it is 0.13% or more. Moreover, the upper limit with preferable Cr content is 1.0% or less, More preferably, it is 0.70% or less.

[Nb:0.02〜0.30%]
Nbは炭・窒化物形成元素であり、0.02%以上含有し、且つSiを複合添加することにより焼入れ時にNb炭・窒化物が固溶しにくくなるため、結晶粒微細化の効果を発揮する。しかしながら、多量に含有させると粗大な炭・窒化物を形成して冷間鍛造性の低下を招くため、上限は0.30%とする。尚、Nb含有量の好ましい下限は0.03%以上であり、より好ましくは0.04%以上である。また、Nb含有量の好ましい上限は0.15%以下であり、より好ましくは0.11%以下である。
[Nb: 0.02 to 0.30%]
Nb is a carbon / nitride-forming element. It contains 0.02% or more, and by adding Si, Nb charcoal / nitride is difficult to dissolve at the time of quenching. To do. However, if contained in a large amount, coarse charcoal / nitride is formed and cold forgeability is lowered, so the upper limit is made 0.30%. In addition, the minimum with preferable Nb content is 0.03% or more, More preferably, it is 0.04% or more. Moreover, the upper limit with preferable Nb content is 0.15% or less, More preferably, it is 0.11% or less.

[Ti:0.02〜0.10%]
Tiは、炭・窒化物を形成する元素であり、0.02%以上添加することで結晶粒が微細化し、靭性が向上する。また、鋼中のNをTiNとして固着することにより、フリーBが増加するため、焼入れ性を向上することができる。しかしながら、Ti含有量が過剰になって0.10%を超えると、加工性の低下を招くことになる。尚、Ti含有量の好ましい下限は0.03%以上であり、より好ましくは0.045%以上とするのが良い。また、Ti含有量の好ましい上限は0.8%以下であり、より好ましくは0.65%以下とするのが良い。
[Ti: 0.02 to 0.10%]
Ti is an element that forms charcoal / nitride, and by adding 0.02% or more, crystal grains are refined and toughness is improved. Moreover, since free B increases by fixing N in steel as TiN, hardenability can be improved. However, if the Ti content becomes excessive and exceeds 0.10%, workability will be reduced. In addition, the minimum with preferable Ti content is 0.03% or more, More preferably, it is good to set it as 0.045% or more. Moreover, the upper limit with preferable Ti content is 0.8% or less, More preferably, it is good to set it as 0.65% or less.

[B:0.0003〜0.0050%]
Bは、鋼の焼入れ性を向上させる上で有効な元素であり、その効果を発揮させるためには0.0003%以上含有し、且つTiを複合添加する必要がある。しかしながら、B含有量が過剰になって0.0050%を超えると靭性が却って低下する。尚、B含有量の好ましい下限は0.0005%以上であり、より好ましくは0.001%以上とするのが良い。また、B含有量の好ましい上限は0.004%以下であり、より好ましくは0.003%以下とするのが良い。
[B: 0.0003 to 0.0050%]
B is an element effective in improving the hardenability of steel, and in order to exhibit the effect, it is necessary to contain 0.0003% or more and to add Ti in combination. However, if the B content becomes excessive and exceeds 0.0050%, the toughness is lowered instead. In addition, the minimum with preferable B content is 0.0005% or more, More preferably, it is good to set it as 0.001% or more. Moreover, the upper limit with preferable B content is 0.004% or less, More preferably, it is good to set it as 0.003% or less.

[Al:0.01〜0.10%]
Alは、鋼の脱酸に有効な元素であり、且つAlNを形成することによって、オーステナイト粒の粗大化を防止することができる。またNを固着することで、フリーBが増加するため、焼入れ性が向上する。こうした効果を発揮させるためには、Al含有量は0.01%以上とする必要がある。しかしながら、Al含有量が0.10%を超えて過剰になっても、その効果が飽和する。尚、Al含有量の好ましい下限は0.02%以上であり、より好ましくは0.03%以上とするのが良い。また、Al含有量の好ましい上限は0.08%以下であり、より好ましくは0.05%以下とするのが良い。
[Al: 0.01 to 0.10%]
Al is an element effective for deoxidation of steel, and by forming AlN, austenite grains can be prevented from becoming coarse. Further, by fixing N, the free B increases, so that the hardenability is improved. In order to exert such effects, the Al content needs to be 0.01% or more. However, even if the Al content exceeds 0.10% and becomes excessive, the effect is saturated. In addition, the minimum with preferable Al content is 0.02% or more, More preferably, it is good to set it as 0.03% or more. Moreover, the upper limit with preferable Al content is 0.08% or less, More preferably, it is good to set it as 0.05% or less.

[N:0.002〜0.010%]
Nは、溶製後の凝固段階で、TiやNbと結合して窒化物(TiN,NbN)を形成し、結晶粒の微細化を図って耐遅れ破壊性を向上させる。こうした効果は、Nの含有量が0.002%以上で有効に発揮される。しかしながら、TiNやNbNが多量に形成されると、1300℃程度の加熱では溶解せず、Ti炭化物の形成を阻害する。また過剰のNは、遅れ破壊特性に対し却って有害となり、特に含有量が0.010%を超えて過剰になると、遅れ破壊特性を著しく低下させる。尚、N含有量の好ましい下限は0.003%以上であり、より好ましくは0.004%以上とするのが良い。また、N含有量の好ましい上限は0.008%以下であり、より好ましくは0.006%以下とするのが良い。
[N: 0.002 to 0.010%]
N combines with Ti and Nb to form nitrides (TiN, NbN) in the solidification stage after melting, thereby improving the resistance to delayed fracture by refining crystal grains. Such an effect is effectively exhibited when the N content is 0.002% or more. However, when a large amount of TiN or NbN is formed, it is not dissolved by heating at about 1300 ° C. and inhibits the formation of Ti carbide. Further, excessive N becomes harmful to the delayed fracture characteristics, and particularly when the content exceeds 0.010%, the delayed fracture characteristics are remarkably lowered. The preferable lower limit of the N content is 0.003% or more, and more preferably 0.004% or more. Moreover, the upper limit with preferable N content is 0.008% or less, More preferably, it is good to set it as 0.006% or less.

本発明に係る高強度ボルト用鋼における基本成分は上記の通りであり、残部は鉄および不可避不純物(上記P,S以外の不純物)であるが、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。また、本発明のボロン添加高強度ボルト用鋼には、上記成分の他に必要によって、更に、VやMoを含有させることも有効である。これらの元素を含有させるときの適正な範囲および作用は下記の通りである。   The basic components in the steel for high-strength bolts according to the present invention are as described above, and the balance is iron and inevitable impurities (impurities other than the above P and S), but as the inevitable impurities, raw materials, materials, production equipment, etc. Depending on the situation, the introduction of elements introduced may be allowed. In addition to the above components, the boron-added high-strength bolt steel of the present invention is also effective to contain V and Mo as required. Appropriate ranges and actions when these elements are contained are as follows.

[V:0.30%以下(0%を含まない)]
Vは炭・窒化物形成元素であり、好ましくは0.02%以上含有し、且つSiを複合添加することにより焼入れ時にV炭・窒化物が固溶しにくくなるため、結晶粒微細化の効果を発揮する。しかしながら、多量に含有させると粗大な炭・窒化物を形成して冷間鍛造性の低下を招くため、上限は0.30%とすることが好ましい。尚、V含有量のより好ましい下限は0.03%以上であり、更に好ましくは0.04%以上である。また、V含有量のより好ましい上限は0.15%以下であり、更に好ましくは0.11%以下である。
[V: 0.30% or less (excluding 0%)]
V is a carbon / nitride-forming element, preferably 0.02% or more, and by adding Si in a complex, V charcoal / nitride hardly dissolves during quenching. Demonstrate. However, if contained in a large amount, coarse charcoal / nitride is formed and cold forgeability is lowered, so the upper limit is preferably made 0.30%. In addition, the more preferable minimum of V content is 0.03% or more, More preferably, it is 0.04% or more. Moreover, the upper limit with more preferable V content is 0.15% or less, More preferably, it is 0.11% or less.

[Mo:0.10%以下(0%を含まない)]
Moは、焼入れ性を向上する元素であり、焼戻し軟化抵抗も高いため、強度確保に有効な元素である。しかしながら、多量に含有させると製造コストが増大するため、0.10%以下とする。尚、Mo含有量の好ましい下限は0.03%以上であり、より好ましくは0.04%以上である。また、Mo含有量のより好ましい上限は0.07%以下であり、更に好ましくは0.06%以下である。
[Mo: 0.10% or less (excluding 0%)]
Mo is an element that improves hardenability and has high resistance to temper softening, and is therefore an effective element for securing strength. However, if it is contained in a large amount, the production cost increases, so the content is made 0.10% or less. In addition, the minimum with preferable Mo content is 0.03% or more, More preferably, it is 0.04% or more. Moreover, the upper limit with more preferable Mo content is 0.07% or less, More preferably, it is 0.06% or less.

上記化学成分組成を有するボロン添加高強度ボルト用鋼は、圧延前のビレット再加熱時に950℃以上に加熱し、800〜1000℃の温度域で線材または棒鋼形状に仕上げ圧延した後、3℃/秒以下の平均冷却速度で600℃以下の温度まで除冷することにより、圧延後の組織が基本的にフェライトとパーライトの混合組織(「フェライト・パーライト」若しくは「フェライト・パーライト組織」と表示)となる。   The steel for boron-added high-strength bolts having the above chemical composition is heated to 950 ° C. or higher at the time of billet reheating before rolling, and finish-rolled into a wire or bar shape in the temperature range of 800 to 1000 ° C. The structure after rolling is basically a mixed structure of ferrite and pearlite (indicated as “ferrite / pearlite” or “ferrite / pearlite structure”) by removing to a temperature of 600 ° C. or less at an average cooling rate of less than a second. Become.

[ビレット再加熱温度:950℃以上]
ビレット再加熱では、結晶粒微細化に有効なTiやNbの炭・窒化物を、オーステナイトに固溶させる必要があり、そのためにはビレットの再加熱温度を950℃以上にすることが好ましい。この温度が950℃未満では炭・窒化物の固溶量が不十分となり、後の熱間圧延で微細なTiやNbの炭・窒化物が生成しにくくなるため、焼入れ時の結晶粒微細化の効果が減少する。この温度は、より好ましくは1000℃以上である。
[Billette reheating temperature: 950 ° C. or higher]
In billet reheating, Ti and Nb charcoal / nitrides effective for crystal grain refinement need to be dissolved in austenite. For this purpose, the billet reheating temperature is preferably 950 ° C. or higher. If this temperature is less than 950 ° C, the amount of carbon / nitride solid solution becomes insufficient, and it becomes difficult to form fine Ti and Nb charcoal / nitride in the subsequent hot rolling, so grain refinement during quenching The effect of decreases. This temperature is more preferably 1000 ° C. or higher.

[仕上げ圧延温度:800〜1000℃]
圧延では、ビレット再加熱時に固溶させたTiやNbを微細な炭・窒化物として鋼中に析出させる必要があり、そのためには仕上げ圧延温度を1000℃以下にすることが好ましい。仕上げ圧延温度が1000℃よりも高くなるとTiやNbの炭・窒化物が析出しにくくなるため、焼入れ時の結晶粒微細化の効果が減少する。一方、仕上げ圧延温度が低くなりすぎると、圧延荷重の増加や表面疵の発生増大があり、非現実的となるためその下限を800℃以上とした。ここで、仕上げ圧延温度は、最終圧延パス前または圧延ロール群前の放射温度計で測定可能な表面の平均温度とした。
[Finishing rolling temperature: 800-1000 ° C]
In rolling, it is necessary to precipitate Ti or Nb dissolved during billet reheating as fine carbon / nitride in steel, and for this purpose, the finish rolling temperature is preferably 1000 ° C. or lower. When the finish rolling temperature is higher than 1000 ° C., Ti and Nb charcoal / nitrides are difficult to precipitate, and the effect of grain refinement during quenching decreases. On the other hand, if the finish rolling temperature is too low, there is an increase in rolling load and an increase in the occurrence of surface flaws, which is unrealistic. Here, the finish rolling temperature is the average surface temperature that can be measured with a radiation thermometer before the final rolling pass or before the rolling roll group.

[圧延後の平均冷却速度:3℃/秒以下]
圧延後の冷却では、後のボルト加工での成形性を向上させるため、組織をフェライト・パーライト組織にすることが重要であり、そのためには圧延後の平均冷却速度を3℃/秒以下にすることが好ましい。平均冷却速度が3℃/秒より速くなると、ベイナイトやマルテンサイトが生成するため、ボルト成形性が大幅に悪化する。平均冷却速度は、より好ましくは2℃/秒以下とすることが望ましい。
[Average cooling rate after rolling: 3 ° C./second or less]
In cooling after rolling, in order to improve formability in subsequent bolt processing, it is important to make the structure a ferrite pearlite structure. To that end, the average cooling rate after rolling is set to 3 ° C./second or less. It is preferable. When the average cooling rate is higher than 3 ° C./second, bainite and martensite are generated, so that the bolt formability is greatly deteriorated. The average cooling rate is more preferably 2 ° C./second or less.

本発明のボロン添加高強度ボルト用鋼は、必要により球状化処理を実施し或は実施せずに、ボルト形状に成形加工した後、焼入れおよび焼戻し処理を行い、組織を焼戻しマルテンサイトとすることによって、所定の引張強さを確保できると共に、優れた耐遅れ破壊性を有するものとなる。このときの焼入れおよび焼戻し処理の適正な条件は、下記の通りである。   The boron-added high-strength bolt steel according to the present invention is formed into a bolt shape with or without spheroidizing treatment if necessary, and then subjected to quenching and tempering treatment to make the structure tempered martensite. As a result, a predetermined tensile strength can be secured and an excellent delayed fracture resistance can be obtained. Appropriate conditions for quenching and tempering at this time are as follows.

焼入れ時の加熱では、安定的にオーステナイト化処理するために、850℃以上の加熱が必要である。しかしながら、920℃を超えるような高温に加熱すると、Nb炭・窒化物が溶解することによりピンニング効果が減少し、結晶粒が粗大化して、遅れ破壊特性を却って劣化させる原因となる。従って、結晶粒粗大化を防止するため、920℃以下で加熱して焼入れすることが有用である。尚、焼入れ時の加熱温度の好ましい上限は900℃以下であり、より好ましくは890℃以下である。また、焼入れ時の加熱温度の好ましい下限は860℃以上であり、より好ましくは870℃以上である。   In the heating at the time of quenching, heating at 850 ° C. or higher is necessary in order to stably perform the austenitizing treatment. However, when heated to a high temperature exceeding 920 ° C., the pinning effect decreases due to dissolution of Nb charcoal / nitride, and the crystal grains become coarse, which causes deterioration in delayed fracture characteristics. Therefore, in order to prevent coarsening of crystal grains, it is useful to quench by heating at 920 ° C. or lower. In addition, the preferable upper limit of the heating temperature at the time of hardening is 900 degrees C or less, More preferably, it is 890 degrees C or less. Moreover, the minimum with the preferable heating temperature at the time of hardening is 860 degreeC or more, More preferably, it is 870 degreeC or more.

焼入れしたままのボルトは、靭性および延性が低く、そのままの状態ではボルト製品にならないので焼戻し処理を施す必要がある。そのためには、少なくとも350℃以上の温度で焼戻し処理することが有効である。但し、焼戻し温度が550℃を超えると、上記化学成分組成の鋼材では、1100MPa以上の引張強さを確保することができなくなる。   The as-quenched bolt has low toughness and ductility, and does not become a bolt product as it is, so it needs to be tempered. For this purpose, it is effective to perform a tempering treatment at a temperature of at least 350 ° C. or higher. However, when the tempering temperature exceeds 550 ° C., the steel material having the above chemical composition cannot secure a tensile strength of 1100 MPa or more.

上記のようにして焼入れおよび焼戻しされたボルトでは、軸部でのオーステナイト結晶粒(旧オーステナイト結晶粒)は、微細化するほど耐遅れ破壊性が向上するので好ましい。こうした観点から、ボルト軸部でのオーステナイト結晶粒は、結晶粒度番号(JIS G 0551)で8以上とすることが好ましい。この結晶粒度番号は、より好ましくは9以上であり、更に好ましくは10以上である。   In the bolt quenched and tempered as described above, the austenite crystal grains (former austenite crystal grains) in the shaft portion are preferable because the delayed fracture resistance is improved as the size is reduced. From such a viewpoint, it is preferable that the austenite crystal grains in the bolt shaft portion have a crystal grain size number (JIS G 0551) of 8 or more. The grain size number is more preferably 9 or more, and still more preferably 10 or more.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す化学成分組成の鋼材(鋼種A〜X)を溶製した後、圧延を行って(ビレット再加熱温度:1000℃、仕上げ圧延温度:850℃)、直径:14mmφの線材とした。各線材の圧延後の組織を表1に併記する。前記圧延素材を脱スケール・皮膜処理後、伸線、球状化焼鈍を実施し、更に脱スケール・皮膜処理後、仕上げ伸線を実施した。尚、表1において、「−」で表した箇所は無添加であることを意味する。   Steel materials (steel types A to X) having the chemical composition shown in Table 1 below were melted and then rolled (billet reheating temperature: 1000 ° C., finish rolling temperature: 850 ° C.) to obtain a wire rod having a diameter of 14 mmφ. . Table 1 shows the structure of each wire after rolling. The rolled material was subjected to wire drawing and spheroidizing annealing after descaling / coating treatment, and finishing wire drawing after further descaling / coating treatment. In Table 1, the part represented by “-” means that no addition was made.

Figure 2014015664
Figure 2014015664

得られた鋼線からパーツフォーマーを用いて、M12×1.25P、長さ100mmLのフランジボルトを冷間圧造で作製し、フランジ部の割れの有無によりボルト成形性(冷間圧造性)を評価した(後記表3において、フランジ部の割れありの場合をボルト成形性「×」と示し、フランジ部の割れなしの場合をボルト成形性「○」と示している)。その後、下記表2に示す条件で焼入れおよび焼戻しを実施した。その他の焼入れ焼戻し条件については、焼入れの加熱時間:20分、焼入れの炉内雰囲気:大気、焼入れの冷却条件:油冷(70℃)、焼戻しの加熱時間:30分、焼戻しの炉内雰囲気:大気、焼戻しの冷却条件:油冷(25℃)とした。   Using a part former from the obtained steel wire, a flange bolt of M12 x 1.25P, length 100mmL is produced by cold heading, and bolt formability (cold heading) is determined by the presence or absence of cracks in the flange part. Evaluation was made (in Table 3 below, the case where the flange portion was cracked was indicated as “x”, and the case where the flange portion was not cracked was indicated as “bolt formability“ ◯ ”). Thereafter, quenching and tempering were performed under the conditions shown in Table 2 below. For other quenching and tempering conditions, quenching heating time: 20 minutes, quenching furnace atmosphere: air, quenching cooling condition: oil cooling (70 ° C.), tempering heating time: 30 minutes, tempering furnace atmosphere: Air and tempering cooling conditions: Oil cooling (25 ° C.).

焼入れおよび焼戻しを行ったボルトについて、以下の要領で、軸部の結晶粒度、引張強さ、耐食性および耐遅れ破壊性を評価した。   For the bolts that were quenched and tempered, the crystal grain size, tensile strength, corrosion resistance, and delayed fracture resistance of the shaft portion were evaluated in the following manner.

(1)オーステナイト結晶粒度の測定
ボルトの軸部を横断面(ボルトの軸に対して垂直な断面。以下同じ)で切断後、D/4位置(Dは軸部の直径)の任意の0.039mm2の領域を、光学顕微鏡で観察し(倍率:400倍)、JIS G 0551に従って結晶粒度番号を測定した。測定は4視野について行い、これらの平均値をオーステナイト結晶粒度とし、結晶粒度番号が8以上のものを合格(「○」)とした。
(1) Measurement of austenite grain size After cutting the shaft part of the bolt with a cross section (cross section perpendicular to the axis of the bolt; the same applies hereinafter), the D / 4 position (D is the diameter of the shaft part) of any 0. The region of 039 mm 2 was observed with an optical microscope (magnification: 400 times), and the crystal grain size number was measured according to JIS G 0551. The measurement was performed for four fields of view, and the average value of these values was defined as the austenite grain size, and those having a grain size number of 8 or more were regarded as acceptable (“◯”).

(2)引張強さの測定
ボルトの引張強さは、JIS B 1051に従って引張試験を行って求め、引張強さが1100MPa以上のものを合格とした。
(2) Measurement of tensile strength The tensile strength of the bolt was determined by conducting a tensile test in accordance with JIS B 1051, and a tensile strength of 1100 MPa or more was accepted.

(3)耐食性の評価
耐食性は、15%HCl水溶液にボルトを30分浸漬した際の浸漬前後の腐食減量によって評価した。
(3) Evaluation of corrosion resistance Corrosion resistance was evaluated by corrosion weight loss before and after immersion when a bolt was immersed in a 15% HCl aqueous solution for 30 minutes.

(4)耐遅れ破壊性の評価
耐遅れ破壊性は、15%HCl水溶液にボルトを30分浸漬し、水洗および乾燥した後、一定荷重を負荷し、100時間以上破断しない荷重を比較することで実施した。このとき、酸浸漬後に100時間以上破断しない荷重を、酸浸漬なしで引張試験した際の最大荷重で除した値を遅れ破壊強度比として定義し、この値(遅れ破壊強度比)が0.70以上のものを合格と判断した。
(4) Evaluation of delayed fracture resistance Delayed fracture resistance is obtained by immersing a bolt in a 15% HCl aqueous solution for 30 minutes, washing with water and drying, then applying a constant load and comparing the load that does not break for more than 100 hours. Carried out. At this time, a value obtained by dividing the load that does not break for 100 hours or more after acid immersion by the maximum load when the tensile test is performed without acid immersion is defined as a delayed fracture strength ratio, and this value (delayed fracture strength ratio) is 0.70. The above was judged as acceptable.

これらの結果を、焼入れおよび焼戻し条件、焼入れおよび焼戻し後の組織と共に、下記表2に併記する。   These results are shown together in Table 2 below together with the quenching and tempering conditions and the structure after quenching and tempering.

Figure 2014015664
Figure 2014015664

これらの結果から、次の様に考察できる。試験No.1〜11のものは、本発明で規定する要件[化学成分組成および比([Si]/[C])、組織]を満足する例(発明例)であり、高い強度と共に、優れた耐遅れ破壊性を発揮していることが分かる。   From these results, it can be considered as follows. Test No. 1 to 11 are examples (invention examples) that satisfy the requirements [chemical composition and ratio ([Si] / [C]), structure] defined in the present invention, and have high strength and excellent delay resistance. It can be seen that it is destructive.

これに対し、試験No.12〜25のものは、本発明で規定するいずれかの要件を満足しないものであり、いずれかの特性が劣化している。即ち、試験No.12は、C含有量が少ない鋼種(鋼種K)を用いた例であり、通常の熱処理では高強度を達成することはできない。No.13は、C含有量が過剰の鋼種(鋼種L)を用いた例であり、靭性および耐食性低下により耐遅れ破壊性が悪化した。   In contrast, test no. Nos. 12 to 25 do not satisfy any of the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, test no. No. 12 is an example using a steel type (steel type K) with a low C content, and high strength cannot be achieved by ordinary heat treatment. No. No. 13 is an example using a steel type with excessive C content (steel type L), and delayed fracture resistance deteriorated due to a decrease in toughness and corrosion resistance.

試験No.14は、Si含有量が少ない鋼種(鋼種M)を用いた例であり([Si]/[C]の比も1.0未満)、焼戻し温度を下げることで高強度は達成できたが、結晶粒の微細化も不十分であり、耐遅れ破壊性が悪化した。試験No.15は、個々の添加元素の含有量は満足しているものの(鋼種N)、[Si]/[C]の比が1.0未満であるため、耐食性が悪化し、遅れ破壊強度比が低下した。   Test No. 14 is an example using a steel type with low Si content (steel type M) (ratio of [Si] / [C] is also less than 1.0), and high strength could be achieved by lowering the tempering temperature. The refinement of crystal grains was insufficient and delayed fracture resistance deteriorated. Test No. No. 15, although the content of each additive element is satisfied (steel type N), the ratio of [Si] / [C] is less than 1.0, so the corrosion resistance deteriorates and the delayed fracture strength ratio decreases. did.

試験No.16は、Mn含有量が少ない鋼種(鋼種O)を用いた例であり、焼戻し温度を下げても高強度を達成することができなかった。試験No.17は、Mn含有量が過剰な鋼種(鋼種P)を用いた例であり、偏析によって粒界強度が低下し、耐遅れ破壊性が悪くなっている。   Test No. No. 16 is an example using a steel type (steel type O) with a low Mn content, and even if the tempering temperature was lowered, high strength could not be achieved. Test No. No. 17 is an example using a steel type (steel type P) having an excessive Mn content, where the grain boundary strength is lowered due to segregation and the delayed fracture resistance is deteriorated.

試験No.18は、P含有量が過剰な鋼種(鋼種Q)を用いた例であり、Pが結晶粒界に偏析することで耐遅れ破壊性が悪化した。試験No.19は、S含有量が過剰の鋼種(鋼種R)を用いた例であり、硫化物が結晶粒界にも偏析することで耐遅れ破壊性が悪化した。試験No.20は、Crが添加されていない鋼種(鋼種S)を用いた例であり、耐食性が悪化し、耐遅れ破壊性が低くなっている。   Test No. No. 18 is an example using a steel type with excessive P content (steel type Q), and the segregation of P at the grain boundaries deteriorated delayed fracture resistance. Test No. No. 19 is an example using a steel type with excessive S content (steel type R), and the delayed fracture resistance deteriorated due to segregation of sulfides also at the grain boundaries. Test No. No. 20 is an example using a steel type to which Cr is not added (steel type S), the corrosion resistance is deteriorated, and the delayed fracture resistance is low.

試験No.21は、Nbが添加されていない鋼種(鋼種T)を用いた例であり、結晶粒が十分微細化されなかったため、靭性が悪化し、耐遅れ破壊性が低くなっている。試験No.22は、Nb含有量が過剰の鋼種(鋼種U)を用いた例であり、粗大な炭・窒化物が形成されたため冷間圧造性(ボルト成形性)が低下した(その他の評価はしていない)。   Test No. No. 21 is an example using a steel type to which Nb is not added (steel type T). Since the crystal grains were not sufficiently refined, the toughness was deteriorated and the delayed fracture resistance was low. Test No. No. 22 is an example using a steel type with excessive Nb content (steel type U), and because of the formation of coarse charcoal / nitride, the cold heading (bolt formability) was reduced (other evaluations have been made) Absent).

試験No.23は、Ti含有量が少ない鋼種(鋼種V)を用いた例であり、結晶粒が十分微細化されなかったため、靭性が悪化し、耐遅れ破壊性が低くなっている。試験No.24は、Ti含有量が過剰の鋼種(鋼種W)を用いた例であり、粗大な炭・窒化物が形成されたため冷間圧造性(ボルト成形性)が低下した(その他の評価はしていない)。   Test No. No. 23 is an example using a steel type (steel type V) with a small Ti content. Since the crystal grains were not sufficiently refined, the toughness was deteriorated and the delayed fracture resistance was low. Test No. No. 24 is an example using a steel type with excessive Ti content (steel type W), and because of the formation of coarse charcoal / nitride, the cold heading (bolt formability) decreased (other evaluations were made). Absent).

試験No.25は、本発明で規定する化学成分組成を満足する鋼種(鋼種X)を用いているが、圧延後の冷却速度が3℃/秒よりも速くなったことにより、組織にベイナイトが多く含まれる圧延線材となった例であり、球状化焼鈍を行っても硬さが十分に下がらなかったため、冷間鍛造性が悪化した。これらの評価結果を、下記表3に一括して示す(良好な場合を「○」、劣化している場合を「×」、「−」は評価せず)。   Test No. No. 25 uses a steel type (steel type X) that satisfies the chemical composition defined in the present invention, but the structure contains a lot of bainite because the cooling rate after rolling is higher than 3 ° C./second. This is an example of a rolled wire, and the cold forgeability deteriorated because the hardness did not decrease sufficiently even after spheroidizing annealing. The evaluation results are collectively shown in the following Table 3 (“Good” indicates a good case, “X” and “−” do not evaluate a deteriorated case).

Figure 2014015664
Figure 2014015664

図1は、試験No.1〜11(発明例)と試験No.13〜21、23(比較例)について、引張強さと遅れ破壊強度比の分布状況を示したグラフである。この結果から明らかなように、本発明で規定する要件を満足するものは、1100MPaを超えるような高強度であっても耐遅れ破壊性に優れていることが分かる。   FIG. 1 to 11 (Invention Examples) and Test No. It is the graph which showed the distribution condition of tensile strength and delayed fracture strength ratio about 13-21, 23 (comparative example). As is apparent from this result, it is understood that those satisfying the requirements defined in the present invention are excellent in delayed fracture resistance even at high strength exceeding 1100 MPa.

Claims (5)

C :0.23〜0.40%未満(質量%の意味、以下同じ)、
Si:0.23〜1.50%、
Mn:0.30〜1.45%、
P :0.03%以下(0%を含まない)、
S :0.030%以下(0%を含まない)、
Cr:0.05〜1.5%、
Nb:0.02〜0.30%、
Ti:0.02〜0.10%、
B :0.0003〜0.0050%、
Al:0.01〜0.10%、および
N :0.002〜0.010%、
を夫々含有し、残部が鉄および不可避不純物からなり、
且つSiの含有量[Si]とCの含有量[C]の比([Si]/[C])が1.0以上であると共に、フェライト・パーライト組織であることを特徴とする耐遅れ破壊性に優れたボロン添加高強度ボルト用鋼。
C: 0.23 to less than 0.40% (meaning mass%, hereinafter the same),
Si: 0.23 to 1.50%,
Mn: 0.30 to 1.45%,
P: 0.03% or less (excluding 0%),
S: 0.030% or less (excluding 0%),
Cr: 0.05 to 1.5%,
Nb: 0.02 to 0.30%,
Ti: 0.02-0.10%,
B: 0.0003 to 0.0050%,
Al: 0.01-0.10%, and N: 0.002-0.010%,
Each of which contains iron and inevitable impurities,
Further, the ratio of Si content [Si] to C content [C] ([Si] / [C]) is 1.0 or more and delayed fracture resistance characterized by a ferrite pearlite structure Boron-added high-strength bolt steel with excellent properties.
更に、V:0.30%以下(0%を含まない)を含有するものである請求項1に記載のボロン添加高強度ボルト用鋼。   The steel for boron-added high-strength bolts according to claim 1, further comprising V: 0.30% or less (not including 0%). 更に、Mo:0.10%以下(0%を含まない)を含有するものである請求項1または2に記載のボロン添加高強度ボルト用鋼。   The steel for boron-added high-strength bolts according to claim 1 or 2, further comprising Mo: 0.10% or less (excluding 0%). 請求項1〜3のいずれかに記載の高強度ボルト用鋼を使用し、ボルト形状に成形加工した後、850℃以上、920℃以下で加熱して焼入れ処理を行い、その後、焼戻し処理を行ったものである耐遅れ破壊性に優れた高強度ボルト。   The steel for high-strength bolts according to any one of claims 1 to 3 is used, and after forming into a bolt shape, heating is performed at 850 ° C. or more and 920 ° C. or less, followed by tempering treatment. High strength bolt with excellent delayed fracture resistance. 焼入れおよび焼戻し後のボルト軸部のオーステナイト結晶粒度番号が8以上である請求項4に記載の耐遅れ破壊性に優れた高強度ボルト。   The high strength bolt excellent in delayed fracture resistance according to claim 4, wherein the bolt shaft portion after quenching and tempering has an austenite grain size number of 8 or more.
JP2012153981A 2012-07-09 2012-07-09 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance Expired - Fee Related JP6034605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012153981A JP6034605B2 (en) 2012-07-09 2012-07-09 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012153981A JP6034605B2 (en) 2012-07-09 2012-07-09 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2014015664A true JP2014015664A (en) 2014-01-30
JP6034605B2 JP6034605B2 (en) 2016-11-30

Family

ID=50110609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012153981A Expired - Fee Related JP6034605B2 (en) 2012-07-09 2012-07-09 Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP6034605B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103834877A (en) * 2014-03-26 2014-06-04 武汉钢铁(集团)公司 Shoe mold cutting steel produced from thin slabs and preparation method thereof
WO2015146331A1 (en) * 2014-03-25 2015-10-01 株式会社神戸製鋼所 Steel for high strength bolts having excellent delayed fracture resistance and high strength bolt
WO2016052093A1 (en) * 2014-09-30 2016-04-07 株式会社神戸製鋼所 Steel for bolts, and bolt
WO2016158343A1 (en) * 2015-03-27 2016-10-06 株式会社神戸製鋼所 Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
JP2018154903A (en) * 2017-03-21 2018-10-04 新日鐵住金株式会社 Steel for machine structural use and cutting method therefor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253514A (en) * 1990-03-02 1991-11-12 Nippon Steel Corp Production of high-strength alloy steel having excellent cold workability
JPH05339676A (en) * 1992-06-11 1993-12-21 Nippon Steel Corp Steel for machine structure excellent in cold workability and its manufacture
JPH1036940A (en) * 1996-07-19 1998-02-10 Kobe Steel Ltd High strength bolt steel excellent in delayed fracture resistance, and bolt
JPH10280088A (en) * 1997-02-06 1998-10-20 Sumitomo Metal Ind Ltd Steel product for building structural use and its production
JPH11293401A (en) * 1998-02-10 1999-10-26 Kobe Steel Ltd B-containing steel excellent in cold workability and delayed fracture resistance, its production and bolt
JP2006118014A (en) * 2004-10-22 2006-05-11 Kobe Steel Ltd Method for producing case hardening steel having excellent cold workability and crystal grain coarsening resistance
JP2009527638A (en) * 2005-12-27 2009-07-30 ポスコ Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
JP2011202192A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Method for producing steel sheet for heat treatment and steel member

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03253514A (en) * 1990-03-02 1991-11-12 Nippon Steel Corp Production of high-strength alloy steel having excellent cold workability
JPH05339676A (en) * 1992-06-11 1993-12-21 Nippon Steel Corp Steel for machine structure excellent in cold workability and its manufacture
JPH1036940A (en) * 1996-07-19 1998-02-10 Kobe Steel Ltd High strength bolt steel excellent in delayed fracture resistance, and bolt
JPH10280088A (en) * 1997-02-06 1998-10-20 Sumitomo Metal Ind Ltd Steel product for building structural use and its production
JPH11293401A (en) * 1998-02-10 1999-10-26 Kobe Steel Ltd B-containing steel excellent in cold workability and delayed fracture resistance, its production and bolt
JP2006118014A (en) * 2004-10-22 2006-05-11 Kobe Steel Ltd Method for producing case hardening steel having excellent cold workability and crystal grain coarsening resistance
JP2009527638A (en) * 2005-12-27 2009-07-30 ポスコ Steel wire rod excellent in cold workability and hardenability, and manufacturing method thereof
JP2011202192A (en) * 2010-03-24 2011-10-13 Nisshin Steel Co Ltd Method for producing steel sheet for heat treatment and steel member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146331A1 (en) * 2014-03-25 2015-10-01 株式会社神戸製鋼所 Steel for high strength bolts having excellent delayed fracture resistance and high strength bolt
JP2015183266A (en) * 2014-03-25 2015-10-22 株式会社神戸製鋼所 Steel for high strength bolt excellent in delayed fracture resistance and high strength bolt
CN103834877A (en) * 2014-03-26 2014-06-04 武汉钢铁(集团)公司 Shoe mold cutting steel produced from thin slabs and preparation method thereof
WO2016052093A1 (en) * 2014-09-30 2016-04-07 株式会社神戸製鋼所 Steel for bolts, and bolt
JP2016069705A (en) * 2014-09-30 2016-05-09 株式会社神戸製鋼所 Steel for bolt and bolt
KR20170041917A (en) * 2014-09-30 2017-04-17 가부시키가이샤 고베 세이코쇼 Steel for bolts, and bolt
CN107075631A (en) * 2014-09-30 2017-08-18 株式会社神户制钢所 Bolt steel and bolt
EP3202937A4 (en) * 2014-09-30 2018-02-21 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel for bolts, and bolt
WO2016158343A1 (en) * 2015-03-27 2016-10-06 株式会社神戸製鋼所 Steel wire for use in bolts that has excellent cold headability and resistance to delayed fracture after quenching and tempering, and bolt
JP2016186098A (en) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 Steel wire for bolt excellent in cold headability and delayed fracture resistance after quenching and tempering, and bolt
JP2018154903A (en) * 2017-03-21 2018-10-04 新日鐵住金株式会社 Steel for machine structural use and cutting method therefor

Also Published As

Publication number Publication date
JP6034605B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6034632B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
JP5608145B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP6452454B2 (en) Rolled material for high strength spring and wire for high strength spring
JP5257082B2 (en) Steel wire rod excellent in cold forgeability after low-temperature annealing, method for producing the same, and method for producing steel wire rod excellent in cold forgeability
WO2019128286A1 (en) Method for fabricating low-cost, short-production-cycle wear-resistant steel
JP6479527B2 (en) Bolt wire with excellent pickling property and delayed fracture resistance after quenching and tempering, and bolt
JP6212473B2 (en) Rolled material for high-strength spring and high-strength spring wire using the same
JP6034605B2 (en) Boron-added steel for high strength bolts and high strength bolts with excellent delayed fracture resistance
JP6190298B2 (en) High strength bolt steel and high strength bolts with excellent delayed fracture resistance
JP5565102B2 (en) Steel for machine structure and manufacturing method thereof
CN109790602B (en) Steel
WO2015045951A1 (en) Steel for high-strength bolts which has excellent delayed fracture resistance and bolt moldability, and bolt
CN107208207B (en) High-strength steel sheet and method for producing same
JP2009191330A (en) Electric resistance steel tube
JP5867285B2 (en) Bolt steel
JP3857835B2 (en) Steel for high strength bolt and method for producing high strength bolt
JP6390685B2 (en) Non-tempered steel and method for producing the same
JP5601861B2 (en) Manufacturing method of boron steel rolled annealed steel sheet
KR101713677B1 (en) Steel for high nitrogen air hardened bearing with high performance on rolling contact fatigue and method producing the same
WO2013084265A1 (en) Steel for mechanical structures and manufacturing method therefor
JPH11131187A (en) Rapidly graphitizable steel and its production
JP6459704B2 (en) Steel for cold forging parts
CN116783316A (en) Wire and part with improved delayed fracture resistance and method of making same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161028

R150 Certificate of patent or registration of utility model

Ref document number: 6034605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees