JP2014013538A - Distribution type fire monitoring system - Google Patents

Distribution type fire monitoring system Download PDF

Info

Publication number
JP2014013538A
JP2014013538A JP2012151281A JP2012151281A JP2014013538A JP 2014013538 A JP2014013538 A JP 2014013538A JP 2012151281 A JP2012151281 A JP 2012151281A JP 2012151281 A JP2012151281 A JP 2012151281A JP 2014013538 A JP2014013538 A JP 2014013538A
Authority
JP
Japan
Prior art keywords
fire
monitoring
observation
values
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012151281A
Other languages
Japanese (ja)
Other versions
JP6068024B2 (en
Inventor
Hidenari Matsukuma
秀成 松熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP2012151281A priority Critical patent/JP6068024B2/en
Publication of JP2014013538A publication Critical patent/JP2014013538A/en
Application granted granted Critical
Publication of JP6068024B2 publication Critical patent/JP6068024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fire Alarms (AREA)

Abstract

PROBLEM TO BE SOLVED: To monitor fire in a monitoring area such as a large space by arranging a plurality of observation chips so as to enable monitoring of the entire monitoring area on the basis of observation results by these chips.SOLUTION: A temperature observation chip 10 is disposed in each of a plurality of monitoring zones obtained by virtually dividing a monitoring area A, observes the temperature of the monitoring zone, and transmits the temperature to a monitoring device 12. The monitoring device 12 determines whether there is a fire in the monitoring area A on the basis of the observed temperatures of respective monitoring zones observed by a plurality of temperature observation chips 10, transmits a fire signal to a receiver 14 to cause the receiver 14 to output a fire alarm. The fire determination by the monitoring device 12 performed by converting observation values of the respective monitoring zones into observation label values, which become greater as the observation values increase, on the basis of a plurality of threshold values set in a multi-stage manner, calculating a sum total of the observation label values, and determining that there is a fire if the sum total of the observation label values is equal to or greater than a predetermined fire determination threshold value, for example.

Description

本発明は、監視領域に配置した複数の観測点の温度や煙濃度を観測して火災を監視する分布型火災監視システムに関する。
The present invention relates to a distributed fire monitoring system that monitors fire by observing temperatures and smoke concentrations at a plurality of observation points arranged in a monitoring area.

従来、分布型の火災監視システムとしては、空気管式の差動分布型感知器を使用した火災報知設備が知られ、倉庫や体育館といった大空間の火災監視に使用されている。空気管式の差動分布型火災感知器は、感知器本体から外径2ミリメートル程度の銅管を使用した空気管を監視領域に張り巡らせ、火災が発生した場合には、火災による熱を受けた空気管内の空気の膨張により感知器本体内のダイヤフラムを変位し、これにより接点を閉じることで発報信号を受信機に送信して火災警報を出力する。   Conventionally, as a distributed type fire monitoring system, a fire alarm system using an air pipe type differential distribution type sensor is known and used for fire monitoring in a large space such as a warehouse or a gymnasium. The air pipe type differential distribution type fire detector has an air pipe that uses a copper pipe with an outer diameter of about 2 mm from the main body of the detector to the monitoring area, and in the event of a fire, it receives heat from the fire. The diaphragm in the detector body is displaced by the expansion of the air in the air pipe, and by closing the contact, the alarm signal is transmitted to the receiver and a fire alarm is output.

また、倉庫や体育館といった大空間の火災監視には、火災による煙を検知する光電式分離型の煙感知器を用いた火災報知設備も知られている。このような火災報知設備においては、例えば光電式分離型の煙感知器は、監視空間を挟んで発光部と受光部を、光軸を合せ対向して分離配置し、発光部からの光を受光部で受光し、この光が火災による煙により減衰する原理を利用して、受光部で所定の減光量が得られた場合に火災を検知し、発報信号を受信機に送信して、これを受けた受信機は火災警報を出力する。
For fire monitoring in large spaces such as warehouses and gymnasiums, a fire alarm system using a photoelectric separation type smoke detector that detects smoke due to fire is also known. In such a fire alarm system, for example, a photoelectric separation type smoke detector has a light-emitting part and a light-receiving part that are separated from each other with the optical axis facing each other across the monitoring space, and receives light from the light-emitting part. Using the principle that this light is attenuated by smoke due to fire, a fire is detected when a predetermined amount of light reduction is obtained at the light receiver, and an alarm signal is sent to the receiver. Receiving receiver outputs a fire alarm.

特開2001−281068号公報JP 2001-281068 A 特開2010−218586号公報JP 2010-218586 A

しかしながら、従来の空気管式の差動分布型感知器を使用した火災報知設備にあっては、監視領域に空気管を張り巡らせる設置作業が大変であり、また施工の際には監視領域に張り巡らせた空気管の空気漏れがないことを確認する必要があり、もし空気漏れが起きていた場合には、その場所を探して対処する作業が大変になるといった問題がある。   However, it is difficult to install an air pipe around a monitoring area in a conventional fire alarm system using a differential distribution type detector of an air pipe type. There is a problem that it is necessary to confirm that there is no air leak in the circulated air pipe. If there is an air leak, there is a problem that it is difficult to find and deal with the place.

また光電式分離型の煙感知器を用いた火災報知設備にあっては、発光部と受光部を結ぶ光軸が通過している大空間を監視しており、設置の際の光軸を合せる作業が大変であり、また長期間設置している間に、建物の歪み等により光軸がずれる場合があり、定期点検の際に光軸合せの再調整を必要とし、維持管理の手間も大きい場合がある。更に、光軸から離れた場所で火災が発生した場合には、火災による煙が拡散して受光部で火災を検知する減光量が得られるまでに時間がかかる場合もある。また、例えば光軸周辺に障害物がある場合等には使用できない場合がある。   Also, in the fire alarm system using a photoelectric separation type smoke detector, the large space through which the optical axis connecting the light emitting part and the light receiving part passes is monitored, and the optical axis at the time of installation is aligned. The work is difficult, and the optical axis may shift due to distortion of the building during long-term installation. Re-adjustment of the optical axis alignment is required during regular inspections, which requires a lot of maintenance work. There is a case. Furthermore, when a fire occurs at a location away from the optical axis, it may take time for the smoke from the fire to diffuse and to obtain a reduced amount of light for detecting the fire at the light receiving unit. Also, for example, it may not be used when there are obstacles around the optical axis.

一方、本願出願人にあっては、主に家庭用の火災監視のため、警報器とこれに割り当てた複数の温度観測チップ(温度測定チップ)又は煙観測チップ(煙測定チップ)を所定局所に設置して温度又は煙濃度を観測し、温度観測チップの観測結果から火災を検知して、警報器から火災警報を報知する警報システムを提案している。   On the other hand, in the applicant of the present application, mainly for home fire monitoring, an alarm device and a plurality of temperature observation chips (temperature measurement chips) or smoke observation chips (smoke measurement chips) assigned to the alarm device are locally disposed. We have proposed an alarm system that installs and monitors temperature or smoke concentration, detects a fire from the observation result of the temperature observation chip, and notifies a fire alarm from an alarm device.

このような警報システムは、温度観測チップ又は煙観測チップを例えば各種ストーブ、ガスコンロ等の火気や熱源使用機器、その設置場所、喫煙などで火気を使用する場所、特に寝タバコをするベッドや寝室の所定場所、更にはくず入れ等、その他相対的に火源となる可能性の高い機器や場所或いはそれらの近傍等、所定局所に設置することで、スポット的に観測した観測結果に基づき火災を検知して警報器から火災警報を出力し、所定局所で発生した火災を迅速且つ確実に警報することで、利用者に適切に対処させるができる。   Such an alarm system uses a temperature observation chip or a smoke observation chip, for example, various stoves, gas stove and other equipment that uses fire and heat sources, places where it is installed, places where smoke is used, especially in beds and bedrooms where sleeping cigarettes are used. Detect fires based on the observation results observed in spots by installing them in a predetermined location, such as in a predetermined location, as well as in a waste place, etc. Then, a fire alarm is output from the alarm device, and a user can be appropriately dealt with by promptly and reliably alarming a fire that has occurred in a predetermined local area.

そこで本願出願人にあっては、上記の警報システムで使用している温度観測チップ又は煙観測チップを、例えば従来の空気管式の差動分布型感知器や光電式分離型の煙感知器を用いた火災報知設備を設ける大空間の監視領域に分散配置すれば、分散配置した温度観測チップ又は煙観測チップで観測した複数の観測点の温度や煙濃度を総合的に判断することで、監視領域全体の火災を適切に判断できる可能性がある点に着目し、本発明を成すに至ったものである。   Therefore, the applicant of the present application uses a temperature observation chip or a smoke observation chip used in the above alarm system, for example, a conventional air tube type differential distribution type sensor or a photoelectric separation type smoke sensor. If the fire monitoring equipment used is distributed in a large monitoring area, monitoring is performed by comprehensively judging the temperature and smoke concentration of multiple observation points observed with the temperature observation chip or smoke observation chip that is distributed. Focusing on the possibility that a fire in the entire area can be appropriately determined, the present invention has been achieved.

本発明は、温度や煙濃度等の火災現象を観測する観測チップを用いた警報システムに着目してなされたもので、複数の観測チップを大空間などの監視領域に複数配置し、これらの観測結果に基づき監視領域全体の火災監視を可能とする分布型火災監視システムを提供することを目的とする。
The present invention has been made paying attention to an alarm system using an observation chip for observing a fire phenomenon such as temperature and smoke concentration. A plurality of observation chips are arranged in a monitoring area such as a large space, and these observations are made. An object of the present invention is to provide a distributed fire monitoring system capable of monitoring the entire monitoring area based on the result.

(分布型火災監視システムA)
本発明は、分布型火災監視システムに於いて、受信機から引き出された伝送路に監視手段を接続し、監視手段には所定の火災現象を観測する観測手段を複数割り当て、監視手段は、割り当てられた複数の観測手段と無線通信して観測情報を取得し、当該観測情報に基づいて火災と判断した場合に、伝送路を通じて受信機へ火災信号を出力することを特徴とする。
(Distributed fire monitoring system A)
The present invention relates to a distributed fire monitoring system, wherein monitoring means is connected to a transmission line drawn from a receiver, and a plurality of observation means for observing a predetermined fire phenomenon are assigned to the monitoring means. The present invention is characterized in that observation information is acquired by wireless communication with a plurality of observation means, and a fire signal is output to a receiver through a transmission line when a fire is determined based on the observation information.

(分布型火災監視システムB)
本発明は、分布型火災監視システムに於いて、
所定の監視領域を仮想的に分割した複数の監視区画毎に配置し、監視区画の所定の火災現象を観測して得た観測情報を無線送信する複数の観測手段と、
複数の監視区画にそれぞれ配置した観測手段からの観測情報に基づいて監視領域の火災を判断する監視手段と、
を備え、監視手段は火災と判断した場合に、伝送路を通じて受信機へ火災信号を出力することを特徴とする。
(Distributed fire monitoring system B)
The present invention provides a distributed fire monitoring system,
A plurality of observation means that wirelessly transmit observation information obtained by observing a predetermined fire phenomenon in a monitoring section, arranged in a plurality of monitoring sections virtually dividing a predetermined monitoring area,
Monitoring means for judging a fire in the monitoring area based on observation information from observation means arranged respectively in a plurality of monitoring sections;
The monitoring means outputs a fire signal to the receiver through the transmission line when it is determined that a fire has occurred.

(観測ラベル値の変換とその総和による火災判断)
監視手段は、複数の監視区画毎に、観測情報に含まれる観測値を、多段階に設定した複数の閾値に基づいて、観測値が高くなるほど大きな値をもつ観測ラベル値に変換して、監視区画毎の当該観測ラベル値の総和を算出し、当該観測ラベル値の総和が所定の閾値以上の場合に火災と判断して受信機へ火災信号を出力する。
(Conversion of observation label value and fire judgment by summation)
The monitoring means converts the observation values included in the observation information into observation label values that have a larger value as the observation value becomes higher, based on a plurality of threshold values set in multiple stages, for each of the plurality of monitoring sections. The sum of the observed label values for each section is calculated, and if the sum of the observed label values is equal to or greater than a predetermined threshold, it is determined that a fire has occurred and a fire signal is output to the receiver.

(観測ラベル値の変換とその総和による火災予兆と火災の判断)
監視手段は、複数の監視区画毎に、観測情報に含まれる観測値を、多段階に設定した複数の閾値に基づいて、観測値が高くなるほど大きな値をもつ観測ラベル値に変換して、監視区画毎の当該観測ラベル値の総和を算出し、当該観測ラベル値の総和が所定の第1閾値以上の場合に火災の予兆と判断して受信機へ火災予報信号を出力し、観測ラベル値の総和が第1閾値より高い所定の第2閾値以上の場合に火災と判断して受信機へ火災信号を出力する。
(Conversion of observation label value and summation of fire signs and fire judgment)
The monitoring means converts the observation values included in the observation information into observation label values that have a larger value as the observation value becomes higher, based on a plurality of threshold values set in multiple stages, for each of the plurality of monitoring sections. The sum of the observed label values for each section is calculated, and when the sum of the observed label values is equal to or greater than the predetermined first threshold, it is determined that there is a fire sign and a fire forecast signal is output to the receiver. When the sum is equal to or higher than a predetermined second threshold value higher than the first threshold value, it is determined that a fire has occurred, and a fire signal is output to the receiver.

(最大観測ラベル値による火災判断)
監視手段は、複数の監視区画毎の観測値から変換したラベル値のうち少なくとも1つが所定の最大ラベル値である場合、観測ラベル値の総和に基づくことなく、火災と判断して受信機へ火災信号を出力する。
(Fire judgment based on maximum observation label value)
When at least one of the label values converted from the observed values for each of the plurality of monitoring sections is a predetermined maximum label value, the monitoring means determines that there is a fire without based on the sum of the observed label values and fires the receiver. Output a signal.

(火災判断領域の配置によるラベル値火災判断)
監視手段は、複数の監視区画の何れかのラベル値について所定の増加変化を検知した場合に、当該ラベル値の変化区画を含む位置に、監視領域の区画数より少ない所定区画数の火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画のラベル値の総和を算出する。
(Label value fire judgment by arrangement of fire judgment area)
When the monitoring means detects a predetermined increase in any of the label values of the plurality of monitoring sections, the fire judgment area having a predetermined number of sections smaller than the number of sections of the monitoring area at a position including the section where the label value changes Are virtually arranged, and the sum of the label values of the monitoring sections included in the fire determination area is calculated.

監視手段は、例えば、複数の監視区画に対応する何れかのラベル値について所定の増加変化を検知した場合に、当該ラベル値の変化区画が略中心となるように火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画毎のラベル値の総和を算出する。   For example, when the monitoring unit detects a predetermined increase change for any one of the label values corresponding to the plurality of monitoring sections, the monitoring unit virtually arranges the fire determination area so that the changed section of the label value is substantially at the center. Then, the sum of the label values for each monitoring section included in the fire determination area is calculated.

(観測値の総和による火災判断)
監視手段は、複数の監視区画毎の観測値の総和を算出し、当該観測値の総和が所定の閾値以上の場合に火災と判断して受信機へ火災信号を出力する。
(Fire judgment based on the sum of observation values)
The monitoring means calculates the sum of the observation values for each of the plurality of monitoring sections, and determines that there is a fire when the sum of the observation values is equal to or greater than a predetermined threshold, and outputs a fire signal to the receiver.

(観測値総和による火災予兆と火災の判断)
監視手段は、複数の監視区画毎の観測値の総和を算出し、当該観測値の総和が所定の第1閾値以上である場合に火災の予兆と判断して受信機へ火災予報信号を出力し、観測値の総和が第1閾値より高い所定の第2閾値以上である場合には火災と判断して受信機へ火災信号を出力する。
(Fire prediction and fire judgment based on the sum of observation values)
The monitoring means calculates the sum of the observation values for each of the plurality of monitoring sections, and outputs a fire forecast signal to the receiver by determining that it is a fire sign when the sum of the observation values is equal to or greater than a predetermined first threshold value. If the sum of the observed values is equal to or greater than a predetermined second threshold value that is higher than the first threshold value, it is determined that there is a fire and a fire signal is output to the receiver.

(観測値による火災判断)
監視手段は、複数の観測値の少なくとも1つが所定の火災確定閾値以上である場合、観測値の総和に基づくことなく、火災と判断して受信機へ火災信号を出力する。
(Fire judgment by observation value)
When at least one of the plurality of observed values is equal to or greater than a predetermined fire determination threshold, the monitoring unit determines that there is a fire and outputs a fire signal to the receiver without being based on the sum of the observed values.

(火災判断領域の配置による観測値火災判断)
監視手段は、複数の監視区画の何れかの観測値の所定の増加変化を検知した場合に、当該ラベル値の変化区画を含む位置に、監視領域の区画数より少ない所定区画数の火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画毎の観測値の総和を算出する。
(Observed value fire judgment by arrangement of fire judgment area)
When the monitoring means detects a predetermined increase change in the observed value of any of the plurality of monitoring sections, the fire judgment area having a predetermined number of sections smaller than the number of sections of the monitoring area at a position including the section where the label value changes. Are virtually arranged, and the sum total of the observation values for each monitoring section included in the fire determination area is calculated.

監視手段は、例えば、複数の監視区画に対応する何れかの観測値の所定の増加変化を検知した場合に、当該観測値の変化区画が略中心となるように火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画毎の観測値の総和を算出する。   For example, when the monitoring unit detects a predetermined increase change in any of the observation values corresponding to a plurality of monitoring sections, the monitoring unit virtually arranges the fire determination area so that the change section of the observation values is substantially centered. Then, the sum of the observation values for each monitoring section included in the fire determination area is calculated.

(温度又は煙濃度の観測)
観測手段は、火災現象として監視区画の温度状況又は煙濃度状況を観測し、監視情報の観測値は煙濃度又は温度である。
(Observation of temperature or smoke concentration)
The observation means observes the temperature state or smoke concentration state of the monitoring section as a fire phenomenon, and the observation value of the monitoring information is the smoke concentration or temperature.

(基本的な効果)
本発明によれば、複数の観測手段を、所定の監視領域を仮想的に分割した複数の監視区画毎に配置し、監視区画の所定の火災現象を観測した得た観測情報を無線送信し、監視手段は、複数の監視区画にそれぞれ配置した観測手段からの観測情報に基づいて監視領域の火災を判断し、火災と判断した場合に、伝送路を通じて受信機へ火災信号を出力するようにしたため、倉庫や体育館といった大空間であっても、大空間の天井面または天井面に近い位置に複数の観測手段を所定ピッチ間隔に配置するだけで、監視領域全域に観測点を分布配置して温度又は煙濃度といった観測情報を監視手段で簡単に取得することができ、監視領域に分布した複数の観測点からスポット的に得た観測情報により監視領域全体の火災を早期に且つ確実に判断して火災を警報することが可能となる。
(Basic effect)
According to the present invention, a plurality of observation means are arranged for each of a plurality of monitoring sections obtained by virtually dividing a predetermined monitoring area, and wirelessly transmits observation information obtained by observing a predetermined fire phenomenon in the monitoring section, Because the monitoring means judges the fire in the monitoring area based on the observation information from the observation means arranged in each of the multiple monitoring sections, and when it is judged as a fire, it outputs a fire signal to the receiver through the transmission line Even in large spaces such as warehouses and gymnasiums, the observation points are distributed over the entire monitoring area by simply arranging multiple observation means at predetermined pitch intervals on the ceiling surface of the large space or near the ceiling surface. Or, observation information such as smoke concentration can be easily obtained by monitoring means, and fires in the entire monitoring area can be judged early and reliably based on observation information obtained in spots from a plurality of observation points distributed in the monitoring area. fire It is possible to alert the.

また、観測手段は電池を内蔵し、無線により通信することから、監視手段との通信可能範囲であれば、それ以外の制約を受けることなく、監視領域の適宜の場所に自由に設置することができ、従来の空気管式の差動分布方感知器や光電式分離型の煙感知器を用いた場合に比べ、設置が極めて簡単であり、観測手段は小型軽量で量産に適しており、設備コストも低減できる。更に、定期点検の際に、観測手段を調整する等の作業は不要であり、万一、観測手段に障害が発生したような場合或いは電池寿命が近づいた場合は、コスト的な問題は少ないことから新しい観測手段に交換するといった対応をすることで、簡単且つ容易に対処できる。   In addition, since the observation means has a built-in battery and communicates wirelessly, it can be freely installed in an appropriate place in the monitoring area without any other restrictions as long as it can be communicated with the monitoring means. Compared to the conventional air tube type differential distribution detector or photoelectric separation type smoke detector, the installation is extremely simple, and the observation means is small and light and suitable for mass production. Cost can also be reduced. Furthermore, there is no need to adjust the observation means during regular inspections, and in the unlikely event that a failure occurs in the observation means or the battery life is approaching, there are few cost problems. It is possible to deal with it easily and easily by replacing it with a new observation means.

(観測ラベル値の変換による火災判断の効果)
また監視手段は、複数の監視区画毎に、観測情報に含まれる観測値を、多段階に設定した複数の閾値に基づいて、観測値が高くなるほど大きな値をもつ観測ラベル値に変換して、観測区画毎の当該観測ラベル値の総和を算出し、当該観測ラベル値の総和が所定の閾値以上の場合に火災を判断して受信機へ火災信号を出力するため、観測値をそのまま使用した場合に比べ、観測値をラベル値に変換することで、ラベル値の総和として比較的小さな数値を使用することができ、火災を判断する処理が簡単になる。
(Effect of fire judgment by conversion of observation label value)
The monitoring means converts the observation value included in the observation information into an observation label value having a larger value as the observation value becomes higher, based on a plurality of threshold values set in multiple stages, for each of the plurality of monitoring sections. When the sum of the observation label values for each observation section is calculated, and when the observation label values are used as they are, the fire is judged and the fire signal is output to the receiver when the sum of the observation label values is equal to or greater than the predetermined threshold. Compared to the above, by converting the observed value into the label value, a relatively small numerical value can be used as the sum of the label values, and the process of judging the fire becomes simple.

また観測値から変換した観測ラベル値は、観測値が火災に繋がる度合いを示す評価値或いは重み値を意味し、火災判断に使用する観測ラベル値の総和は、監視領域全体としての火災に繋がる度合いを示す指標となり、監視領域に分布した複数の観測点の観測結果に基づく監視領域全体としての火災判断を適切に行うことを可能とする。   The observed label value converted from the observed value means an evaluation value or weight value indicating the degree to which the observed value leads to fire, and the sum of the observed label values used for fire judgment is the degree to which the entire monitoring area leads to fire. This makes it possible to appropriately make a fire judgment for the entire monitoring area based on the observation results of a plurality of observation points distributed in the monitoring area.

(観測ラベル値の変換による火災予兆と火災の判断の効果)
また監視手段は、複数の監視区画毎に、観測情報に含まれる観測値を、多段階に設定した複数の閾値観測値に基づいて、観測値が高くなるほど大きな値をもつ観測ラベル値に変換して、監視区画毎の当該観測ラベル値の総和を算出し、当該観測ラベル値の総和が所定の第1閾値以上の場合に火災の予兆と判断して受信機へ火災予報信号を出力し、観測ラベル値の総和が第1閾値より高い所定の第2閾値以上の場合に火災と判断して受信機へ火災信号を出力するため、前述した観測ラベル値への変換による効果が得られると共に、利用者は火災警報の前に出される火災予報警報により火災の兆候を早い段階で知って適切な対応とることができる。
(Effects of fire prediction and fire judgment by conversion of observation label values)
The monitoring means converts the observation value included in the observation information into an observation label value having a larger value as the observation value becomes higher, based on a plurality of threshold observation values set in multiple stages, for each of the plurality of monitoring sections. Calculating the sum of the observed label values for each monitoring section, and if the sum of the observed label values is equal to or greater than a predetermined first threshold, it is determined that there is a fire sign and a fire forecast signal is output to the receiver for observation. When the sum of the label values is greater than or equal to a predetermined second threshold value that is higher than the first threshold value, a fire signal is output to the receiver based on the determination that the fire is detected. The person can know the signs of the fire at an early stage by the fire forecast warning issued before the fire alarm, and can take an appropriate action.

(最大観測ラベル値による火災判断の効果)
また監視手段は、複数の観測値から変換したラベル値のうちの少なくとも1つが所定の最大ラベル値の場合、観測ラベル値の総和に基づく火災判断を行うことなく、火災と判断して受信機へ火災信号を出力するため、観測値としての温度又は煙濃度が火災を確定できるレベルに増加したことを検知し、観測ラベル値の総和に火災判断を行うことなく、直ちに火災と判断し、迅速に火災を警報させることができる。
(Effect of fire judgment by maximum observed label value)
In addition, when at least one of the label values converted from a plurality of observation values is a predetermined maximum label value, the monitoring means determines that there is a fire without making a fire determination based on the sum of the observation label values, and sends it to the receiver. In order to output a fire signal, it is detected that the temperature or smoke density as an observed value has increased to a level that can determine the fire, and it is immediately judged as a fire without making a fire judgment on the sum of the observed label values. A fire can be alarmed.

(火災判断領域の配置によるラベル値火災判断の効果)
また警報手段は、複数の監視区画の何れかのラベル値について所定の増加変化を検知した場合に、当該ラベル値の変化区画を含む位置に、監視領域の区画数より少ない所定区画数の火災判断領域、例えば縦横3区画の格子状に区切られた合計9区画の火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画毎のラベル値の総和を算出するようにしたため、火災判断領域以上の区画数をもつ監視領域であっても、火災判断のために観測ラベル値の総和を求める区画数を一定にして火災判断の閾値を一義的に決めることができる。
(Effect of label value fire judgment by arrangement of fire judgment area)
In addition, when the alarm means detects a predetermined increase change for any one of the label values of the plurality of monitoring sections, a fire judgment of a predetermined number of sections smaller than the number of sections of the monitoring area is detected at a position including the section where the label value changes. Since a total of 9 fire judgment areas, for example, a total of 9 fire judgment areas divided into a grid of 3 sections in length and width, are virtually arranged and the sum of the label values for each monitoring section included in the fire judgment area is calculated, Even in the monitoring area having the number of sections equal to or larger than the judgment area, the fire judgment threshold can be uniquely determined by keeping the number of sections for which the sum of the observation label values is calculated for fire judgment constant.

(観測値の総和による火災判断の効果)
一方、監視手段は、前述した観測ラベル値へ変換することなく、複数の監視区画の観測値の総和を算出し、当該観測値の総和が所定の閾値以上の場合に火災と判断して受信機へ火災信号を出力するようにしても良く、総和は比較的大きな数値を扱うことになるが、観測ラベル値への変換が必要ない分、火災判断の処理を簡単にすることができる。
(Effect of fire judgment based on the sum of observation values)
On the other hand, the monitoring means calculates the sum of the observation values of the plurality of monitoring sections without converting to the above-described observation label value, and determines that a fire has occurred when the sum of the observation values is equal to or greater than a predetermined threshold value. A fire signal may be output to the sum, and the sum is handled as a relatively large numerical value, but the fire determination process can be simplified because it is not necessary to convert it to an observation label value.

(観測値総和による火災予兆と火災の判断の効果)
監視手段は、前述した観測ラベル値へ変換することなく、複数の監視区画の観測値の総和を算出し、当該観測値の総和が所定の第1閾値以上の場合に火災の予兆と判断して受信機へ火災予報信号を出力し、観測値の総和が第1閾値より高い所定の第2閾値以上の場合に火災と判断して受信機へ火災信号を出力するようにしても良く、総和は比較的大きな数値を扱うことになるが、同様に、観測ラベル値への変換が必要ない分、火災判断の処理を簡単にすることができる。
(Effects of fire signs and fire judgment based on the sum of observation values)
The monitoring means calculates the sum of the observation values of the plurality of monitoring sections without converting to the above-described observation label value, and determines that it is a sign of fire when the sum of the observation values is equal to or greater than a predetermined first threshold value. A fire forecast signal may be output to the receiver, and a fire signal may be output to the receiver when the sum of the observed values is equal to or greater than a predetermined second threshold value that is higher than the first threshold value. Although relatively large numerical values will be handled, similarly, it is possible to simplify the fire determination process because it is not necessary to convert the values into observation label values.

(観測値による火災判断の効果)
また警報手段は、複数の観測値の少なくとも1つが所定の火災確定閾値以上の場合、観測値の総和に基づく火災判断を行うことなく、火災と判断して受信機へ火災信号を出力するため、観測値としての温度又は煙濃度が火災を確定できるレベルに増加したことを検知し、観測値の総和に火災判断を行うことなく、直ちに火災と判断し、迅速に火災を警報させることができる。
(Effect of fire judgment based on observation values)
In addition, when at least one of a plurality of observation values is equal to or greater than a predetermined fire confirmation threshold, the alarm means determines that a fire is made and outputs a fire signal to the receiver without making a fire determination based on the sum of the observation values. It is possible to detect that the temperature or smoke concentration as an observation value has increased to a level at which a fire can be determined, and to immediately determine that there is a fire without making a fire determination on the sum of the observation values, and to promptly alarm the fire.

(火災判断領域の配置による観測値火災判断の効果)
また警報手段は、複数の監視区画の何れかの観測値について所定の増加変化を検知した場合に、当該観測値の変化区画を含む位置に、監視領域の区画数より少ない所定区画数の火災判断領域、例えば縦横3区画となる合計9区画の火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画毎の観測値の総和を算出するようにしたため、火災判断領域以上の区画数をもつ監視領域であっても、火災判断のために観測値の総和を求める区画数を一定にして火災判断の閾値を一義的に決めることができる。
(Effect of fire judgment based on the observation value by arrangement of fire judgment area)
In addition, when the alarm means detects a predetermined increase change in any of the observation values in the plurality of monitoring sections, the fire judgment of a predetermined number of sections smaller than the number of sections in the monitoring area is included at the position including the change section of the observation values. Areas, for example, a total of 9 fire judgment areas, 3 vertical and horizontal areas, are virtually arranged, and the sum of the observation values for each monitoring area included in the fire judgment area is calculated. Even in a monitoring area having a number, it is possible to uniquely determine the threshold value for fire judgment with a fixed number of sections for obtaining the sum of observation values for fire judgment.

本発明による火災監視システムの概略構成を示した説明図Explanatory drawing which showed schematic structure of the fire monitoring system by this invention 監視領域における温度観測チップの配置を示した平面図Plan view showing the arrangement of temperature observation chips in the monitoring area 温度観測チップの外観及び構造を示した説明図Explanatory drawing showing the appearance and structure of the temperature observation chip 温度観測チップの機能構成の概略を示したブロック図Block diagram showing an outline of the functional configuration of the temperature observation chip 監視装置の機能構成の概略を示したブロック図Block diagram showing an outline of the functional configuration of the monitoring device 火災が発生した場合の監視領域における観測温度のラベル値の変化を示した説明図Explanatory diagram showing changes in the label value of the observed temperature in the monitoring area when a fire occurs 火災判断領域による火災判断の実施形態を示した説明図Explanatory drawing which showed embodiment of fire judgment by fire judgment area 火災判断領域による火災判断の他の例を示した説明図Explanatory drawing showing another example of fire judgment by fire judgment area 監視領域の2区画で変化を検知した場合の火災判断領域による火災判断を示した説明図Explanatory drawing which showed fire judgment by fire judgment area when change was detected in 2 sections of monitoring area 火災判断領域より小さい監視領域部分における火災判断領域による火災判断を示した説明図Explanatory drawing which showed fire judgment by fire judgment area in monitoring area part smaller than fire judgment area 煙観測チップの外観及び構造を示した説明図Explanatory drawing showing the appearance and structure of the smoke observation chip 煙観測チップの機能構成の概略を示したブロック図Block diagram showing an outline of the functional configuration of the smoke observation chip

[分布型火災監視システムの構成]
(システム構成の概略)
図1は本発明による分布型火災監視システムの概略構成を示した説明図である。図1は、n階立ての建物に設置した火災報知設備を例示しており、間仕切りのない領域である最上階のn階フロア全体を監視領域Aとして本発明の分布型火災監視システムを配置し、それ以外の階は、通常の火災監視システムの場合と同様の火災監視端末を配置している。具体的には、1階に設置した受信機14からは各階に伝送路としての感知器回線(例えば一対の電源兼用信号線)16が引き出され、例えば1階及び2階に示すように、感知器回線16には火災監視端末として公知の火災感知器18、例えばスポット型煙感知器を接続している。
[Configuration of distributed fire monitoring system]
(Outline of system configuration)
FIG. 1 is an explanatory diagram showing a schematic configuration of a distributed fire monitoring system according to the present invention. FIG. 1 exemplifies a fire alarm system installed in an n-story building, and the distributed fire monitoring system of the present invention is arranged with the entire n-th floor on the top floor, which is an area without partitions, as the monitoring area A. The other floors are equipped with fire monitoring terminals similar to those used for ordinary fire monitoring systems. Specifically, from the receiver 14 installed on the first floor, a sensor line (for example, a pair of power supply signal lines) 16 as a transmission line is drawn out to each floor, and as shown in the first and second floors, for example, A fire detector 18 known as a fire monitoring terminal, for example, a spot type smoke detector, is connected to the device line 16.

最上階に設置した分布型火災監視システムは、監視領域Aの天井面又は天井面に近い位置に、観測手段である複数の温度観測チップ10を分散配置し、また監視領域の所定位置に監視手段である監視装置12を設置し、監視装置12は受信機14からの感知器回線16に接続している。   In the distributed fire monitoring system installed on the top floor, a plurality of temperature observation chips 10 as observation means are distributedly arranged at the ceiling surface of the monitoring area A or a position close to the ceiling surface, and the monitoring means is provided at a predetermined position in the monitoring area. The monitoring device 12 is installed, and the monitoring device 12 is connected to the sensor line 16 from the receiver 14.

温度観測チップ10は、監視領域を仮想的に分割した複数の監視区画毎に配置し、監視区画の所定の火災現象を観測して得た観測情報、例えば温度観測情報を無線送信する観測手段であり、火災に伴う熱の発生状況を観測する。また監視装置12は、複数の監視区画にそれぞれは位置した観測手段からの観測情報に基づいて監視領域の火災を判断する監視手段であり、監視手段は、火災を判断した場合に、伝送路としての感知器回線16を通じて受信機14へ火災信号を出力する。   The temperature observation chip 10 is an observation means that wirelessly transmits observation information obtained by observing a predetermined fire phenomenon in the monitoring section, for example, temperature observation information, arranged for each of the plurality of monitoring sections obtained by virtually dividing the monitoring area. Yes, observe the state of heat generated by the fire. The monitoring device 12 is a monitoring unit that determines a fire in the monitoring area based on observation information from an observation unit that is located in each of the plurality of monitoring sections. The monitoring unit serves as a transmission line when a fire is determined. A fire signal is output to the receiver 14 through the sensor line 16.

なお、以下、温度観測チップ10−11〜10−33をそれぞれ区別しない場合は総称して温度観測チップ10という。また、監視領域を分割した監視区画は最小2区画となる。   Hereinafter, when the temperature observation chips 10-11 to 10-33 are not distinguished from each other, they are collectively referred to as the temperature observation chip 10. In addition, the monitoring section into which the monitoring area is divided is a minimum of two sections.

(温度観測チップの配置)
図2は監視領域Aにおける温度観測チップの配置を示した平面図である。図2において、監視領域Aは、点線で示すように、仮想的に例えば9区画の監視区画a11〜a33に分割し、監視区画a11〜a33の各々に温度観測チップ10−11〜10−33を配置している。
(Placement of temperature observation chip)
FIG. 2 is a plan view showing the arrangement of temperature observation chips in the monitoring area A. FIG. In FIG. 2, the monitoring area A is virtually divided into, for example, nine monitoring sections a11 to a33 as indicated by dotted lines, and the temperature observation chips 10-11 to 10-33 are provided in the monitoring sections a11 to a33, respectively. It is arranged.

監視区画a11〜a33の大きさは、温度観測チップ10の感知面積の範囲内とする。温度観測チップ10の感知面積は、例えば、法的な設置基準により定めた特殊感度の定温スポット型火災感知器の感知面積の35m2に相当し、この場合感知面積35m2以内となる適宜の大きさに監視区画a11〜a33を決めれば良い。隣接する温度観測チップの感知面積領域同士が一部重複して良いが、本説明では重複を考慮しない。 The size of the monitoring sections a11 to a33 is set within the range of the sensing area of the temperature observation chip 10. The sensing area of the temperature observation chip 10 corresponds to, for example, 35 m 2 of the sensing area of a special temperature constant temperature spot type fire detector defined by legal installation standards, and in this case, the sensing area is within an appropriate sensing area of 35 m 2. What is necessary is just to determine the monitoring divisions a11-a33. Although the sensing area regions of adjacent temperature observation chips may partially overlap, this description does not consider the overlap.

(温度観測チップと監視装置)
温度観測チップ10−11〜10−33は、警戒区画a11〜a33の観測点の温度を観測して観測結果が示す観測情報(温度情報)を含んだ温度観測信号を監視装置12へ送信する。監視装置12は温度観測チップ10−11〜10−33から受信した温度観測信号の温度情報に基づき火災を判断し、火災と判断した場合には火災信号を受信機14へ送信して火災警報を出力させる。
(Temperature observation chip and monitoring device)
The temperature observation chips 10-11 to 10-33 transmit the temperature observation signal including the observation information (temperature information) indicated by the observation result by observing the temperatures of the observation points in the warning sections a11 to a33 to the monitoring device 12. The monitoring device 12 determines a fire based on the temperature information of the temperature observation signals received from the temperature observation chips 10-11 to 10-33, and transmits a fire signal to the receiver 14 when a fire is determined. Output.

監視装置12と温度観測チップ10−11〜10−33の間は所定の通信プロトコルに従った通信経路15(図1)となり、温度観測チップ10−11〜10−13はこの経路を介して監視装置12との間で、分布型火災監視システムに固有な警報グループ符号を含めた信号(例えば温度観測信号)を送受信する。   Between the monitoring device 12 and the temperature observation chips 10-11 to 10-33 is a communication path 15 (FIG. 1) according to a predetermined communication protocol, and the temperature observation chips 10-11 to 10-13 are monitored via this path. A signal (for example, a temperature observation signal) including an alarm group code unique to the distributed fire monitoring system is transmitted to and received from the device 12.

ここで温度観測チップ10−11〜10−33が観測する観測点の温度は、温度検出素子の検出信号に基づいて観測した温度を示す指標となる温度情報であり、これを「温度」或いは「観測温度」という。   Here, the temperature of the observation point observed by the temperature observation chips 10-11 to 10-33 is temperature information serving as an index indicating the temperature observed based on the detection signal of the temperature detection element. It is called “observation temperature”.

本実施形態の分布型火災監視システムにあっては、所定の監視領域(本例では監視領域A)に温度観測チップ10を複数配置し、これを1台の監視装置12に割当てて管理している。このため監視装置12に割当てた複数の温度観測チップ10は、これらを管理する監視装置12の通信範囲に配置する。監視装置12の通信範囲とは、監視装置12に割当てて管理している温度観測チップ10から送信した信号が、監視装置12で有効受信できる通信距離に入る範囲をいう。   In the distributed fire monitoring system of this embodiment, a plurality of temperature observation chips 10 are arranged in a predetermined monitoring area (in this example, monitoring area A), and these are assigned to one monitoring device 12 for management. Yes. Therefore, the plurality of temperature observation chips 10 assigned to the monitoring device 12 are arranged in the communication range of the monitoring device 12 that manages them. The communication range of the monitoring device 12 refers to a range in which a signal transmitted from the temperature observation chip 10 assigned and managed by the monitoring device 12 falls within a communication distance that can be effectively received by the monitoring device 12.

[温度観測チップの構成]
(温度観測チップの外観・構造)
図3は図1に設けた温度観測チップの外観を示した説明図であり、図3(A)に平面を、図3(B)に内部構造の断面を、図3(C)に底面を示している。
[Configuration of temperature observation chip]
(Appearance and structure of temperature observation chip)
FIG. 3 is an explanatory diagram showing the appearance of the temperature observation chip provided in FIG. 1. FIG. 3A is a plan view, FIG. 3B is a cross section of the internal structure, and FIG. 3C is a bottom view. Show.

図3において、温度観測チップ10は例えば合成樹脂で成型した一端(図3(B)の図示下方)に開口した円盤状のカバー19と、カバー19の開口側に装着したベース20で筐体を構成し、筐体の内部に回路基板22を収納している。カバー19の表面には温度観測チップを特定するアドレスなどのID番号等を表示したシール45を必要に応じて貼っても良い。   In FIG. 3, the temperature observation chip 10 includes a disc-shaped cover 19 opened at one end (lower side of FIG. 3B) molded with a synthetic resin, for example, and a base 20 mounted on the opening side of the cover 19. The circuit board 22 is housed inside the housing. A seal 45 displaying an ID number such as an address specifying a temperature observation chip may be attached to the surface of the cover 19 as necessary.

回路基板22とベース20の間には釦電池24を収納し、釦電池24の正極には正極端子金具32を接触し、釦電池24の回路基板22側に位置する端面の負極には、負極端子金具30を接触している。   A button battery 24 is housed between the circuit board 22 and the base 20, a positive terminal fitting 32 is in contact with the positive electrode of the button battery 24, and a negative electrode on the end face located on the circuit board 22 side of the button battery 24 is connected to the negative electrode. The terminal fitting 30 is in contact.

釦電池24はベース20の開口穴に対する電池蓋26の装着で固定している。電池蓋26は外周内側の相対した2箇所にL字状の嵌合突起を形成し、ベース20の開口に形成した嵌合切欠に嵌合突起を嵌め入れて回すことでロックできる。電池蓋26には釦電池24を着脱する際の回動操作のため硬貨等を嵌合する嵌合溝28を形成している。   The button battery 24 is fixed by attaching a battery lid 26 to the opening hole of the base 20. The battery lid 26 can be locked by forming L-shaped fitting protrusions at two opposite positions on the inner periphery of the outer periphery and inserting the fitting protrusions into the fitting notches formed in the opening of the base 20 and turning them. The battery cover 26 is formed with a fitting groove 28 for fitting a coin or the like for a turning operation when the button battery 24 is attached or detached.

回路基板22の図示上側面には制御チップ38と通信チップ40を実装し、更にカバー19に形成したスリット(開口)42の内側には、外気が通流する位置に温度検出素子36を実装している。温度検出素子36としては観測点(感熱部)の温度に応じて例えば抵抗値が変化するサーミスタなどの適宜の温度検出素子を使用する。   A control chip 38 and a communication chip 40 are mounted on the upper side surface of the circuit board 22, and a temperature detection element 36 is mounted inside the slit (opening) 42 formed in the cover 19 at a position where outside air flows. ing. As the temperature detection element 36, an appropriate temperature detection element such as a thermistor whose resistance value changes according to the temperature of the observation point (heat sensitive part) is used.

また回路基板22にはLED46を実装し、これに相対してカバー19側に透明樹脂などを用いた表示窓44を配置している。   In addition, an LED 46 is mounted on the circuit board 22, and a display window 44 using a transparent resin or the like is disposed on the cover 19 side.

ベース20の表面外周には取付シート34を設ける。取付シート34はマグネットシート又は粘着シートなどであり、監視領域の天井面又は天井面に近い位置に簡単に取り付け配置することができる。   A mounting sheet 34 is provided on the outer periphery of the surface of the base 20. The attachment sheet 34 is a magnetic sheet or an adhesive sheet, and can be easily attached and arranged at the ceiling surface of the monitoring area or a position close to the ceiling surface.

なお、取付手段および方法は任意であり、取付シート34以外に、フックやクリップ、ねじ、ピン、紐などの適宜の手段を必要に応じて設けることができる。また温度観測チップ10は監視領域の天井面又は天井面に近い位置に配置する場合、特に固定する必要はなく、例えば、脱落しないように紐で吊るすといった簡単な取り付け方で十分である。このように配置が簡単であることから、例えば温度観測チップ10に障害が起きたような場合や電池寿命が近づいたような場合、簡単に交換ができる。   In addition, an attachment means and method are arbitrary, In addition to the attachment sheet 34, appropriate means such as a hook, clip, screw, pin, and string can be provided as necessary. Further, when the temperature observation chip 10 is arranged on the ceiling surface of the monitoring area or a position close to the ceiling surface, it is not particularly necessary to fix the temperature observation chip 10. Since the arrangement is simple as described above, for example, when a failure occurs in the temperature observation chip 10 or when the battery life is approaching, it can be easily replaced.

(温度観測チップの機能構成)
図4は温度観測チップの機能構成の概略を示したブロック図である。温度観測チップ10は、温度検出素子106、温度観測制御部100、アンテナ104を接続した通信部102を備え、図3に示した釦電池24による電源供給を受けて動作する。温度観測制御部100は、図3の制御チップ38に対応し、例えばプログラムの実行により実現される機能である。ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
(Functional configuration of temperature observation chip)
FIG. 4 is a block diagram showing an outline of a functional configuration of the temperature observation chip. The temperature observation chip 10 includes a temperature detection element 106, a temperature observation control unit 100, and a communication unit 102 connected to an antenna 104, and operates by receiving power supply from the button battery 24 shown in FIG. The temperature observation control unit 100 corresponds to the control chip 38 in FIG. 3 and is a function realized by executing a program, for example. As the hardware, a CPU, a memory, a computer circuit having various input / output ports, and the like are used.

通信部102は図3の通信チップ40に対応し、監視装置12との間で所定の通信プロトコルに従って信号を送受信する。この通信プロトコルは、日本国内の場合には、例えば400MHz帯の特定小電力無線局の標準規格として知られたSTD−30(小電力セキュリティシステム無線局の無線設備標準規格)又はSTD−T67(特定小電力無線局テレメータ用、テレコントロール用及びデータ伝送用無線設備の標準規格)に準拠する。この信号は、送信元を示す送信元符号、グループ符号、観測温度などのデータを適宜含んだ形式とする。   The communication unit 102 corresponds to the communication chip 40 in FIG. 3 and transmits and receives signals to and from the monitoring device 12 according to a predetermined communication protocol. This communication protocol is, for example, STD-30 (radio equipment standard for low power security system radio stations) or STD-T67 (specially specified as a standard for specific low power radio stations in the 400 MHz band in Japan. Conforms to the standard of low power radio station telemeter, telecontrol and data transmission radio equipment). This signal has a format appropriately including data such as a transmission source code indicating a transmission source, a group code, and an observation temperature.

温度検出素子106は前述したように例えばサーミスタを使用し、この場合、温度による抵抗値の変化に対応した電圧検出信号を温度観測制御部100へ出力する。   As described above, for example, the thermistor is used as the temperature detection element 106, and in this case, a voltage detection signal corresponding to a change in resistance value due to temperature is output to the temperature observation control unit 100.

温度観測制御部100は、例えば監視装置12からの指示に基づいて観測点の温度を観測し、この観測温度を含む温度観測信号を送信する。即ち、温度観測制御部100は、通信部102を介して監視装置12から所定周期毎に送信される一括AD変換信号の有効受信を検知した場合に、温度検出素子106からの検出信号に基づき温度を観測し、続いて送信されてくる自分のアドレス(例えば自分の送信元符号)を指定したポーリング信号を有効受信した場合に、観測温度を含んだ温度観測信号を通信部102から監視装置12へ送信させる制御を行う。   For example, the temperature observation control unit 100 observes the temperature of the observation point based on an instruction from the monitoring device 12, and transmits a temperature observation signal including the observation temperature. That is, when the temperature observation control unit 100 detects effective reception of a batch AD conversion signal transmitted from the monitoring device 12 every predetermined cycle via the communication unit 102, the temperature observation control unit 100 detects the temperature based on the detection signal from the temperature detection element 106. When a polling signal that designates its own address (for example, its own transmission source code) that is subsequently transmitted is effectively received, the temperature observation signal including the observation temperature is transmitted from the communication unit 102 to the monitoring device 12. Control to send.

このように監視装置12からの指示で温度を観測して温度観測信号を送信することで、複数の温度観測チップ10から送信する温度観測信号の衝突(伝送障害)を回避できる。また複数の温度観測チップ10における温度観測のタイミングコントロールすることもできる。例えば、一括AD変換信号を送信することで、温度測定のタイミングを略一致させることができる。   Thus, by observing the temperature according to the instruction from the monitoring device 12 and transmitting the temperature observation signal, collision (transmission failure) of the temperature observation signals transmitted from the plurality of temperature observation chips 10 can be avoided. In addition, it is possible to control the temperature observation timing in the plurality of temperature observation chips 10. For example, by transmitting a batch AD conversion signal, the temperature measurement timing can be substantially matched.

なお、温度観測制御部100は、監視装置12からの指示によらず、自発的に所定周期毎に温度を観測して観測温度を含んだ温度観測信号を送信するようにしても良い。この場合には、他の温度観測チップからの温度観測信号の送信と重複しないように、キャリアセンスを行い、キャリアのないタイミングで送信する。   Note that the temperature observation control unit 100 may voluntarily observe the temperature at every predetermined period and transmit a temperature observation signal including the observation temperature, regardless of an instruction from the monitoring device 12. In this case, carrier sensing is performed so as not to overlap with the transmission of temperature observation signals from other temperature observation chips, and transmission is performed at a timing with no carrier.

[監視装置の構成]
(監視装置の機能構成)
図5は監視装置12の機能構成の概略を示したブロック図である。図5において、監視装置12は、監視制御部200、アンテナ204を接続した通信部202及び操作表示部208を備え、例えば受信機14から感知器回線16を介して供給された電源により動作する。
[Configuration of monitoring device]
(Functional configuration of monitoring device)
FIG. 5 is a block diagram showing an outline of a functional configuration of the monitoring device 12. In FIG. 5, the monitoring device 12 includes a monitoring control unit 200, a communication unit 202 connected to an antenna 204, and an operation display unit 208, and operates by a power source supplied from the receiver 14 via the sensor line 16, for example.

監視制御部200は、例えばプログラムの実行により実現される機能である。ハードウェアとしてはCPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。   The monitoring control unit 200 is a function realized by executing a program, for example. As the hardware, a CPU, a memory, a computer circuit having various input / output ports, and the like are used.

通信部202は、監視制御部200の指示を受け、温度観測チップ10−11〜10−33との間で、図4に示した温度観測チップ10の通信部102の場合と同じ通信プロトコルに従って信号を送受信する。この信号は、送信元を示す送信元符号、グループ符号、観測温度などのデータを適宜含んだ形式とする。前述の温度観測信号はこの信号に該当する。グループ符号は分布型火災監視システム(の監視領域毎)に固有な符号であり、このようなグループ符号を使用することで、通信可能範囲にある他の分布型火災監視システム(の監視領域毎)との間で温度観測信号が混信することを避けることができる。   The communication unit 202 receives an instruction from the monitoring control unit 200 and transmits signals to the temperature observation chips 10-11 to 10-33 according to the same communication protocol as that of the communication unit 102 of the temperature observation chip 10 illustrated in FIG. Send and receive. This signal has a format appropriately including data such as a transmission source code indicating a transmission source, a group code, and an observation temperature. The aforementioned temperature observation signal corresponds to this signal. A group code is a code unique to a distributed fire monitoring system (for each monitoring area), and by using such a group code, another distributed fire monitoring system (for each monitoring area) in a communicable range is used. It is possible to avoid the temperature observation signal from interfering with.

伝送部206は受信機14からの一対の感知器回線16を接続し、監視制御部200の指示を受け、スイッチング動作(回線短絡動作)により感知器回線16に発報電流を流すことで、火災信号を受信機14へ送信する。また監視制御部200で障害を検知して、これに基づき監視制御部200の指示を受けた場合、感知器回線16を断線状態に開放する動作により、障害検知信号を受信機14へ送信する。このため監視装置12は受信機14から見ると温度観測チップ10との間の中継器として機能する。   The transmission unit 206 connects the pair of sensor lines 16 from the receiver 14, receives an instruction from the monitoring control unit 200, and sends a notification current to the sensor line 16 by a switching operation (line short-circuit operation). The signal is transmitted to the receiver 14. Further, when a failure is detected by the monitoring control unit 200 and an instruction from the monitoring control unit 200 is received based on the detected failure, a failure detection signal is transmitted to the receiver 14 by an operation of opening the sensor line 16 to a disconnected state. Therefore, the monitoring device 12 functions as a relay between the temperature observation chip 10 when viewed from the receiver 14.

操作表示部208は、監視装置12に割当てた複数の温度観測チップ10を管理するために必要な各種の設定操作、例えばアドレス、通信チャネル、グループ符号等の設定操作を操作者から受け付け、監視制御部200へ入力する。また、監視制御部200の指示に基づき、受け付けた設定操作に伴う表示等を行う。   The operation display unit 208 receives various setting operations necessary for managing the plurality of temperature observation chips 10 assigned to the monitoring device 12, for example, setting operations such as addresses, communication channels, and group codes, from the operator, and performs monitoring control. Input to the unit 200. Further, based on the instruction of the monitoring control unit 200, display according to the accepted setting operation is performed.

監視制御部200は、次の制御を行う。   The monitoring control unit 200 performs the following control.

(温度観測制御)
監視制御部200は、通信部202に指示し、所定周期毎に通信部202から温度観測チップ10−11〜10−33へ一括AD変換信号を送信させる制御を行い、これを受信した温度観測チップ10−11〜10−33に温度観測動作を行わせる。続いて監視制御部200は、通信部202に指示し、温度観測チップ10−11〜10−33の各アドレス、例えばそれぞれに割り当てられた識別子である送信元符号を順次指定したポーリング信号を通信部104から温度観測チップ10−11〜10−33へ送信させる制御を行い、当該ポーリング信号を受信した温度観測チップ10−11〜10−33から観測温度を含んだ温度観測信号を順次送信させる。
(Temperature observation control)
The monitoring control unit 200 instructs the communication unit 202 to perform control to transmit a batch AD conversion signal from the communication unit 202 to the temperature observation chips 10-11 to 10-33 every predetermined period, and the temperature observation chip that has received this control 10-11 to 10-33 are caused to perform a temperature observation operation. Subsequently, the monitoring control unit 200 instructs the communication unit 202 to send a polling signal sequentially specifying each address of the temperature observation chips 10-11 to 10-33, for example, a transmission source code that is an identifier assigned to each address. 104 is transmitted to the temperature observation chips 10-11 to 10-33, and the temperature observation signals including the observation temperature are sequentially transmitted from the temperature observation chips 10-11 to 10-33 that have received the polling signal.

なお、監視装置12からの指示によらず、温度観測チップ10から自発的に、所定周期毎に温度を観測して温度観測結果が示す温度を含んだ温度観測信号を送信してくるようにした場合は、前述した一括AD変換信号とポーリング信号の送信により温度を観測する制御は不要となる。   In addition, regardless of the instruction from the monitoring device 12, the temperature observation chip 10 voluntarily observes the temperature every predetermined period and transmits the temperature observation signal including the temperature indicated by the temperature observation result. In this case, the control for observing the temperature by transmitting the batch AD conversion signal and the polling signal described above becomes unnecessary.

(火災監視制御)
監視制御部200は、温度観測チップ10−11〜10−33で観測した複数の監視区画a11〜a33の観測温度に基づいて監視領域Aの火災を判断する。監視制御部200は、例えば監視区画a11〜a33毎の観測温度を、多段階に設定した複数の温度閾値に対応して、観測温度が高くなるほど大きな値をもつ観測ラベル値(温度ラベル値)に変換して、これら温度ラベル値の総和を算出し、温度ラベル値の総和が所定の火災判断閾値以上の場合に火災をと判断し、伝送部206に指示し、火災信号を受信機14へ送信する制御を行う。
(Fire monitoring control)
The monitoring control unit 200 determines a fire in the monitoring area A based on the observed temperatures of the plurality of monitoring sections a11 to a33 observed with the temperature observation chips 10-11 to 10-33. For example, the monitoring control unit 200 sets the observation temperature for each of the monitoring sections a11 to a33 to an observation label value (temperature label value) having a larger value as the observation temperature becomes higher, corresponding to a plurality of temperature threshold values set in multiple stages. Conversion is performed to calculate the sum of these temperature label values. When the sum of the temperature label values is equal to or greater than a predetermined fire determination threshold, it is determined that a fire has occurred, and the transmission unit 206 is instructed to transmit a fire signal to the receiver 14. Control.

監視制御部200により観測温度を温度ラベル値へ変換する処理は次のように行う。まず監視制御部200は、例えば5段階に複数の温度閾値Tth1〜Tth5を設定している。
閾値Tth1〜Tth5は例えば次のようになる。
Tth1=50℃(低発熱)
Tth2=55℃(中発熱)
Tth3=60℃(高発熱)
Tth4=65℃(過熱)
Tth5=75℃(発火の危険性)
The process of converting the observed temperature into the temperature label value by the monitoring control unit 200 is performed as follows. First, the monitoring control unit 200 sets a plurality of temperature threshold values Tth1 to Tth5, for example, in five stages.
The threshold values Tth1 to Tth5 are as follows, for example.
Tth1 = 50 ° C. (low heat generation)
Tth2 = 55 ° C (medium exotherm)
Tth3 = 60 ° C (high heat generation)
Tth4 = 65 ° C (overheating)
Tth5 = 75 ° C (risk of ignition)

この閾値Tth1〜Th5に基づく温度ラベル値への変換は次の条件により行う。
Tth1未満 温度ラベル値L=0
Tth1以上Trh2未満 温度ラベル値L=1
Tth2以上Trh3未満 温度ラベル値L=2
Tth3以上Trh4未満 温度ラベル値L=3
Tth4以上Trh5未満 温度ラベル値L=4
Tth5以上 温度ラベル値L=5
Conversion to the temperature label value based on the threshold values Tth1 to Th5 is performed under the following conditions.
Less than Tth1 Temperature label value L = 0
Tth1 or more and less than Trh2 Temperature label value L = 1
Tth2 or more and less than Trh3 Temperature label value L = 2
Tth3 or more and less than Trh4 Temperature label value L = 3
Tth4 or more and less than Trh5 Temperature label value L = 4
Tth5 or more Temperature label value L = 5

温度ラベル値は、観測温度の火災に繋がる度合いを評価する評価値ということができる。また温度ラベル値は、観測温度の火災に繋がる度合いを示す重み値ということもできる。このように観測温度を直接使用せず、火災に繋がる度合いを示す評価値または重み値となる温度ラベル値を使用することで、監視領域に分散配置した温度観測チップ10による複数点の観測温度に基づく火災判断の処理を、観測温度をそのまま使用した場合に比べ簡略化すると共に、火災の早期発見と非火災報の抑制を両立した適切な火災判断を可能とする。   It can be said that the temperature label value is an evaluation value for evaluating the degree of the observation temperature leading to a fire. The temperature label value can also be referred to as a weight value indicating the degree to which the observed temperature leads to a fire. As described above, by using the temperature label value that is an evaluation value or a weight value indicating the degree of fire, without using the observation temperature directly, it is possible to obtain the observation temperature at a plurality of points by the temperature observation chips 10 distributed in the monitoring area. The fire judgment process based on this is simplified compared to the case where the observation temperature is used as it is, and appropriate fire judgment that enables both early detection of fire and suppression of non-fire reports is made possible.

図2の監視領域Aの場合、監視区画は9つであることから、温度ラベル値の総和ΣLの最小値と最大値は
最小値ΣLmin=90
最大値ΣLmax=45
となる。このように温度ラベル値の総和ΣLは、0〜45の範囲で変化することから、この範囲に、火災と判断するための火災判断閾値ΣLthを設定する。
In the case of the monitoring area A in FIG. 2, since there are nine monitoring sections, the minimum value and the maximum value of the sum ΣL of the temperature label values are the minimum value ΣLmin = 90.
Maximum value ΣLmax = 45
It becomes. Thus, since the sum ΣL of the temperature label values changes in the range of 0 to 45, the fire determination threshold ΣLth for determining a fire is set in this range.

例えば火災判断閾値ΣLthとして、
ΣLth=20
を設定する。
For example, as the fire judgment threshold ΣLth,
ΣLth = 20
Set.

火災判断閾値ΣLthは監視領域の状況に応じた値に調整することが可能であり、例えばΣLth=20に設定した状態で非火災報が多発するような場合は、それより高い値に設定変更する。   The fire judgment threshold value ΣLth can be adjusted to a value according to the situation of the monitoring area. For example, when non-fire reports frequently occur in a state where ΣLth = 20, the setting is changed to a higher value. .

ここで、監視制御部200は、複数の観測温度から変換した温度ラベル値の内の少なくとも1つが所定の最大ラベル値L、例えばここでは5の場合、観測ラベル値の総和ΣLに基づく火災判断を行うことなく火災と判断し、伝送部206に指示し、火災信号を受信機14へ送信して火災警報を出力させる。これにより急激に上昇して火災と確定できる観測温度を少なくとも1つの監視区画から観測した場合は、直ちに火災と判断し、迅速に火災警報を出力させることができる。一方、監視制御部200は、観測温度から変換した温度ラベル値の全てが最大ラベル値L5未満の場合、前述した温度ラベル値の総和ΣLに基づく火災判断を行うことになる。   Here, when at least one of the temperature label values converted from a plurality of observed temperatures is a predetermined maximum label value L, for example, 5 here, the monitoring control unit 200 makes a fire judgment based on the total sum ΣL of the observed label values. It is determined that there is no fire, and the transmission unit 206 is instructed to transmit a fire signal to the receiver 14 to output a fire alarm. As a result, when an observation temperature at which the temperature rises rapidly and can be determined as a fire is observed from at least one monitoring section, it is immediately determined that a fire has occurred, and a fire alarm can be output promptly. On the other hand, when all of the temperature label values converted from the observed temperature are less than the maximum label value L5, the monitoring control unit 200 makes a fire determination based on the above-described sum ΣL of the temperature label values.

また観測温度から変換した温度ラベル値の総和による火災判断は、複数回に亘る観測温度から変換した温度ラベル値の総和の変化率を求め、この変化率(上昇率)が予め定めた変化率の火災判断閾値以上となった場合に火災と判断するようにしても良い。   Also, fire judgment based on the sum of the temperature label values converted from the observed temperature is obtained by calculating the rate of change of the sum of the temperature label values converted from the observed temperature over a plurality of times, and this rate of change (increase rate) is a predetermined rate of change. You may make it judge that it is a fire when it becomes more than a fire judgment threshold value.

なお、監視区画の観測温度を温度ラベル値に変換する多段階に設定した温度閾値は、前述した5段階の閾値Tth1〜5以外に、例えば3段階又は4段階、更には6段階以上と適宜に設定することもできる。この場合、多段階の閾値により変換した温度ラベル値の総和に対する火災判断閾値の設定も、段階数に対応して所定の火災判断閾値を設定する。また、温度ラベル値の総和に基づく火災判断を待たず火災と判断する温度ラベル値(先に示した例のL5)も、段階数に応じて設定する。   The temperature threshold value set in multiple stages for converting the observation temperature of the monitoring section into the temperature label value is appropriately set to, for example, 3 stages or 4 stages, and more than 6 stages in addition to the above-described 5-stage thresholds Tth1 to Tth5. It can also be set. In this case, the setting of the fire judgment threshold for the sum of the temperature label values converted by the multi-stage threshold also sets a predetermined fire judgment threshold corresponding to the number of stages. In addition, the temperature label value (L5 in the example shown above) that determines a fire without waiting for the fire determination based on the sum of the temperature label values is also set according to the number of stages.

また上記の実施形態にあっては、監視領域Aを9区画に分割して観測した観測温度を温度ラベル値に変換し、その総和から火災を判断しているが、監視領域Aの区画分割数が9区画以外となった場合には、その場合の区画数により温度ラベル値の総和が変化することから、総和をとる区画数に応じて所定の火災判断閾値を設定する。   In the above embodiment, the observation temperature obtained by dividing the monitoring area A into nine sections is converted into a temperature label value, and a fire is determined from the sum of the temperatures. Since the total of the temperature label values changes depending on the number of sections in that case, a predetermined fire judgment threshold is set according to the number of sections for which the sum is taken.

(火災復旧制御)
監視制御部200は、各温度観測チップ10から得た観測温度から変換し算出した温度ラベル値の総和に基づき火災と判断して火災信号を受信機14へ送信した後に温度ラベル値の総和が火災判断閾値ΣLthを下回る状態が例えば所定時間継続した場合或いは例えば所定回数連続した場合、火災の復旧(火災状態が解消したこと)を検知し、伝送部206に指示し、火災信号の送信を停止する制御、例えばスイッチング動作を解除して感知器回線16に流していた発報電流を停止する復旧制御を行う。
(Fire recovery control)
The supervisory control unit 200 determines that a fire has occurred based on the sum of the temperature label values calculated from the observed temperatures obtained from the temperature observation chips 10 and transmits a fire signal to the receiver 14. When the state below the determination threshold ΣLth continues for a predetermined time, for example, or continues for a predetermined number of times, for example, a fire recovery (fire state has been resolved) is detected, the transmission unit 206 is instructed, and transmission of the fire signal is stopped Control, for example, restoration control for canceling the switching operation and stopping the alarm current flowing in the sensor line 16 is performed.

[分布型火災監視システムの動作]
次に本発明の分布型火災監視システムによる火災判断処理を、簡単な例をとって説明する。図6は監視装置12の監視制御部200が温度観測チップ10−11〜10−33から受信した観測温度を変換した1〜5の値をとる温度ラベル値を、図2の監視領域Aの監視区画a11〜a33に配置した各温度観測チップについて示した説明図である。ここで、図2の監視区画a11〜a33に配置した温度観測チップ10−11〜10−33の観測温度に対応したラベル値をL11〜L33とし、これらの数値例を○内に表記する。
[Operation of distributed fire monitoring system]
Next, fire determination processing by the distributed fire monitoring system of the present invention will be described by taking a simple example. 6 shows the temperature label value that takes values 1 to 5 obtained by converting the observation temperatures received from the temperature observation chips 10-11 to 10-33 by the monitoring control unit 200 of the monitoring device 12, and monitors the monitoring area A of FIG. It is explanatory drawing shown about each temperature observation chip | tip arrange | positioned to division a11-a33. Here, L11 to L33 are label values corresponding to the observation temperatures of the temperature observation chips 10-11 to 10-33 arranged in the monitoring sections a11 to a33 in FIG.

監視領域状態A1は、通常状態であり、全ての温度観測チップ10−11〜10−33による観測温度を変換した温度ラベル値L11〜L33は0となっている。この場合、温度ラベル値の総和ΣLはΣL=0であり、火災判断閾値ΣLth=20未満であることから、火災とは判断しない。   The monitoring area state A1 is a normal state, and the temperature label values L11 to L33 obtained by converting the observation temperatures by all the temperature observation chips 10-11 to 10-33 are 0. In this case, the sum ΣL of the temperature label values is ΣL = 0, which is less than the fire determination threshold ΣLth = 20, so it is not determined that there is a fire.

続いて監視領域状態A2は、中央の監視区画で火災源Fが発生した場合であり、火災源発生区画の観測温度を変換した温度ラベル値L22がL22=1に増加している。この場合、温度ラベル値の総和ΣLはΣL=1であり、火災判断閾値ΣLth=20未満であることから、同様に、火災と判断しない。   Subsequently, the monitoring area state A2 is a case where the fire source F is generated in the central monitoring section, and the temperature label value L22 obtained by converting the observed temperature of the fire source generating section is increased to L22 = 1. In this case, the sum ΣL of the temperature label values is ΣL = 1 and is less than the fire determination threshold ΣLth = 20.

続いて監視領域状態A3となり、火災源Fの拡大に伴い、中央の監視区画の温度ラベル値L22がL22=2に増加し、その周囲の温度ラベル値もL12,L21,L23,L32=1と増加している。この場合、温度ラベル値の総和ΣLはΣL=6であり、火災判断閾値ΣLth=20未満であることから、同様に、火災と判断しない。   Subsequently, the monitoring area state A3 is reached, and with the expansion of the fire source F, the temperature label value L22 of the central monitoring section increases to L22 = 2, and the surrounding temperature label values also become L12, L21, L23, L32 = 1. It has increased. In this case, the sum ΣL of the temperature label values is ΣL = 6, and is less than the fire determination threshold ΣLth = 20.

続いて監視領域状態A4となり、火災源Fの更なる拡大に伴い、中央の監視区画の温度ラベル値L22がL22=3に増加し、その周囲の温度ラベル値もL12,L21,L23,L32=2と増加し、L11,L13,L31,L33も1に増加している。この場合、温度ラベル値の総和ΣLはΣL=15であり、火災判断閾値ΣLth=20未満であることから、同様に、火災とは判断しない。   Subsequently, the monitoring area state A4 is reached, and with the further expansion of the fire source F, the temperature label value L22 of the central monitoring section increases to L22 = 3, and the temperature label values around it also L12, L21, L23, L32 = 2 and L11, L13, L31, and L33 are also increased to 1. In this case, the sum ΣL of the temperature label values is ΣL = 15, and is less than the fire determination threshold ΣLth = 20.

続いて監視領域状態A5となり、火災源Fが引き続き拡大し、中央の監視区画の温度ラベル値L22がL22=4に増加し、その周囲の温度ラベル値もL11,L13,L31,L33=2及びL12,L21,L23,L32=3と増加している。この場合、温度ラベル値の総和ΣLはΣL=24に増加し、火災判断閾値ΣLth=20以上であることから火災と判断し、受信機14へ火災信号を送信して火災警報を出力させる。   Subsequently, the monitoring area state A5 is reached, the fire source F continues to expand, the temperature label value L22 of the central monitoring section increases to L22 = 4, and the surrounding temperature label values also L11, L13, L31, L33 = 2 and L12, L21, L23, and L32 = 3. In this case, the sum ΣL of the temperature label values increases to ΣL = 24, and is determined to be a fire because it is greater than or equal to the fire determination threshold ΣLth = 20, and a fire signal is transmitted to the receiver 14 to output a fire alarm.

続いて監視領域状態A6となり、中央の監視区画の温度ラベル値L22がL22=5に増加し、その周囲の温度ラベル値もL11,L13,L31,L33=3及びL12,L21,L23,L32=4に増加している。この場合、温度ラベル値の総和ΣLはΣL=33に増加し、火災判断閾値ΣLth=20以上であるが、この場合は中央の監視区画の温度ラベル値L22=5であるから、温度ラベル値の総和に基づく判断を待たず、火災と判断する。このようにして、監視領域状態A5から引き続いて火災との判断を継続し、受信機14への火災信号の送信を継続する。   Subsequently, the monitoring area state A6 is reached, the temperature label value L22 of the central monitoring section increases to L22 = 5, and the surrounding temperature label values also L11, L13, L31, L33 = 3 and L12, L21, L23, L32 = It has increased to 4. In this case, the sum ΣL of the temperature label values increases to ΣL = 33 and is equal to or greater than the fire judgment threshold ΣLth = 20. In this case, since the temperature label value L22 = 5 of the central monitoring section, Do not wait for a judgment based on the sum, and judge it to be a fire. In this manner, the fire determination is continued from the monitoring area state A5, and the transmission of the fire signal to the receiver 14 is continued.

その後も同様に温度ラベル値に基づく判断を繰り返し、温度ラベル値が5を示す監視区画が無く、且つ、温度ラベル値の総和ΣLが火災判断閾値Lth=20を下回る状態が例えば所定回数連続した場合、火災復旧と判断して受信機への火災信号の送信を解除(火災復旧信号を送信)する。   Thereafter, the determination based on the temperature label value is repeated in the same manner, and there is no monitoring section where the temperature label value is 5, and the state where the sum ΣL of the temperature label values is lower than the fire determination threshold Lth = 20, for example, continues for a predetermined number of times. When it is judged that the fire has been recovered, the transmission of the fire signal to the receiver is canceled (the fire recovery signal is transmitted).

[2段階の火災判断]
監視装置12の監視制御部200は、観測温度を変換した温度ラベル値の総和から火災を判断するための火災判断閾値ΣLthを、火災の予兆と判断するための第1火災判断閾値ΣLth1と、火災と判断するための第2火災判断閾値ΣLth2の2段階に設定しても良い。この場合は、例えば
ΣLth1=15
ΣLth2=20
に設定する。
[Two-stage fire judgment]
The monitoring control unit 200 of the monitoring device 12 uses a fire judgment threshold value ΣLth for judging a fire from the sum of temperature label values obtained by converting the observed temperature, a first fire judgment threshold value ΣLth1 for judging a fire sign, and a fire. May be set in two stages of a second fire determination threshold ΣLth2. In this case, for example, ΣLth1 = 15
ΣLth2 = 20
Set to.

このような2段階の火災判断閾値を設定した場合、監視制御部200は、例えば図6の監視領域状態A4で温度ラベル値の総和ΣLがΣL=15となり、第1火災判断閾値ΣLth1=15に一致する(15以上となる)ことから火災の予兆と判断し、受信機14に対し火災予報信号を送信して火災予報警報を出力させる。続いて図6の監視領域状態A45となり、温度ラベル値の総和ΣLはΣL=24に増加し、第2火災判断閾値ΣLth=20以上であることから火災と判断し、受信機14に対し火災信号を送信して火災警報を出力させる。   When such a two-stage fire determination threshold is set, the monitoring control unit 200 sets, for example, the temperature label value sum ΣL to ΣL = 15 in the monitoring region state A4 in FIG. 6, and sets the first fire determination threshold ΣLth1 = 15. Since it matches (becomes 15 or more), it is judged as a sign of fire, and a fire forecast signal is transmitted to the receiver 14 to output a fire forecast warning. Subsequently, the monitoring area state A45 of FIG. 6 is reached, and the sum ΣL of the temperature label values increases to ΣL = 24, and it is determined that there is a fire because the second fire determination threshold ΣLth = 20 or more. To output a fire alarm.

監視制御部200が2段階の火災判断閾値を設定して火災を判断する場合、火災予報信号と火災信号を区別して受信機14へ送信する必要があり、例えば伝送部206は監視制御部200から指示により火災予報信号を送信する場合の発報電流と、火災信号を送信する場合の発報電流を異ならせる。   When the monitoring control unit 200 determines a fire by setting a two-stage fire determination threshold value, it is necessary to distinguish the fire forecast signal and the fire signal and transmit them to the receiver 14. For example, the transmission unit 206 is connected to the monitoring control unit 200. Depending on the instruction, the alarm current when transmitting the fire forecast signal is different from the alarm current when transmitting the fire signal.

このように監視装置12からの火災予報信号に基づき受信機14から火災予報警報が出力された場合、担当者は火災予報警報を聞いて火災の兆候を知り、監視領域Aへ出向いて状況を確認し、早期に適切な対処をすることが可能になる。   In this way, when a fire forecast alarm is output from the receiver 14 based on the fire forecast signal from the monitoring device 12, the person in charge hears the fire forecast alarm to know the signs of fire and goes to the monitoring area A to check the situation. Therefore, appropriate measures can be taken at an early stage.

[火災判断領域の配置による火災判断]
本発明の他の実施形態として、監視装置12の警報制御部200は、監視領域における監視区画の何れかのラベル値の、初期状態に対する増加変化を検知した場合に、そのラベル値変化区画(変化した区画)を含む部分領域に、固定区画数の火災判断領域(火災判断マトリクス)を仮想配置し、当該火災判断領域に含まれる監視区画のラベル値の総和を算出して火災を判断する。
[Fire judgment by arrangement of fire judgment area]
As another embodiment of the present invention, when the alarm control unit 200 of the monitoring device 12 detects an increase in the label value of any of the monitoring sections in the monitoring area with respect to the initial state, the label value changing section (change) A fire determination area (fire determination matrix) having a fixed number of sections is virtually arranged in the partial area including the determined section, and a fire is determined by calculating the sum of the label values of the monitoring sections included in the fire determination area.

図7(A)は火災判断領域Mを監視領域Aと共に示しており、火災判断領域Mは例えば縦横3区画となる合計9区画の領域であり、監視領域Aは仮想的に縦横9区画の合計81区画に分割した場合を例にとっている。   FIG. 7 (A) shows the fire determination area M together with the monitoring area A. The fire determination area M is, for example, a total of 9 sections, 3 vertical and horizontal sections, and the monitoring area A is a virtual total of 9 vertical and horizontal sections. The case where it is divided into 81 sections is taken as an example.

この火災判断領域Mはじ図2に示したのと同じ縦横3区画で合計9区画の監視領域Aを最小監視区画数とし、これ以上の区画数をもつ監視領域の火災判断に適用できる。   The fire determination area M can be applied to the fire determination of a monitoring area having a minimum number of monitoring areas A having a total of nine monitoring areas A in the same three vertical and horizontal sections as shown in FIG.

図7(B)は火災判断領域を配置した火災判断の一例であり、例えば、監視領域Aの中心区画Fで温度ラベル値が例えば+1と増加変化した場合、この変化区画Fを検出し、変化区画Fに火災判断領域Mの中心区画が位置するように火災判断領域Mを配置し、この状態で火災判断領域M内の9区画に対応する観測ラベル値を取得して総和を求め、図6に示したと同様にして火災を判断する。   FIG. 7B is an example of fire determination in which a fire determination area is arranged. For example, when the temperature label value increases and changes, for example, +1 in the central section F of the monitoring area A, this change section F is detected and changed. The fire determination area M is arranged so that the center section of the fire determination area M is located in the section F, and in this state, the observation label values corresponding to the nine sections in the fire determination area M are acquired to obtain the sum, and FIG. Determine the fire in the same way as shown in.

このような固定区画数の火災判断領域Mを観測ラベル値が増加変化した区画を中心に配置して観測ラベル値の総和を算出して火災を判断することで、監視領域A全体の区画数が変わっても、火災判断に使用する区画数は常に一定となり、図6に示したと同じ火災判断の閾値Tthを一義的に使用することができ、監視領域の区画数に対応して火災判断の閾値を変更する必要がなくなり、火災判断の精度と安定性を向上することが可能となる。   The fire determination area M having such a fixed number of sections is arranged around the section where the observation label value has increased and changed, and the sum of the observation label values is calculated to determine the fire. Even if there is a change, the number of sections used for fire judgment is always constant, and the same fire judgment threshold value Tth as shown in FIG. 6 can be uniquely used, and the fire judgment threshold value corresponds to the number of sections in the monitoring area. It becomes possible to improve the accuracy and stability of fire judgment.

ここで、図5に示した監視制御部200が火災判断領域Mを配置して火災判断する火災判断処理は、監視領域Aの各監視区画に対応したメモリのアドレス領域(記憶領域)に、監視区画毎の観測温度を変換した温度ラベル値の前回値と今回値とを、都度更新記憶しており、前回値と今回値との比較から、ラベル値変化のあった変化区画Fを検知した場合に、変化区画F及びその周囲をとりまく8区画の、合計9区画のメモリのアドレス、換言すると図示のように火災判断領域Mを配置した場合にそこに含まれる合計9区画のそれぞれに対応するアドレス領域を求め、これらアドレス領域から、そのとき記憶しているそれぞれの今回(最新)温度ラベル値(全9区画分の温度ラベル値)を読み出して総和を求める制御を行う。   Here, the fire determination process in which the monitoring control unit 200 shown in FIG. 5 arranges the fire determination area M to determine the fire is monitored in the address area (storage area) of the memory corresponding to each monitoring section in the monitoring area A. When the previous value and current value of the temperature label value converted from the observed temperature for each compartment are updated and stored each time, and the change compartment F that has changed the label value is detected from the comparison between the previous value and the current value In addition, the memory addresses of a total of nine sections of the change section F and the eight sections surrounding the change section F, in other words, the addresses corresponding to each of the nine sections included therein when the fire determination area M is arranged as shown in the figure. From these address areas, the current (latest) temperature label values (temperature label values for all nine sections) stored at that time are read out and control is performed to determine the sum.

図8(A)は監視領域Aの、図示左上コーナの監視区画Fで温度ラベル値が初期状態から例えば+1増加変化した場合であり、この場合にはコーナの、温度ラベル値が増加変化した区画Fに火災判断領域Mの左上コーナの区画を位置合せし、この状態で火災判断領域Mの9区画に対応する観測ラベル値をそれぞれ取得してそれらの総和を求め、図6に示したと同様にして火災を判断する。   FIG. 8A shows a case where the temperature label value is increased by, for example, +1 from the initial state in the monitoring section F of the upper left corner of the monitoring area A. In this case, the section of the corner where the temperature label value is increased and changed. The upper left corner section of the fire determination area M is aligned with F, and in this state, the observed label values corresponding to the nine sections of the fire determination area M are obtained, and the sum of them is obtained, as shown in FIG. Determine the fire.

図8(B)は監視領域Aのコーナを除く外周の区画Fで温度ラベル値が例えば+1と増加変化した場合であり、この場合には変化区画Fに火災判断領域Mの外周中央の区画を位置合せして配置し、この状態で火災判断領域Mの9区画に対応する観測ラベル値を取得して総和を求め、図6に示したと同様にして火災を判断する。   FIG. 8B shows a case where the temperature label value is increased and changed to, for example, +1 in the outer peripheral section F excluding the corner of the monitoring area A. In this state, the observation label values corresponding to the nine sections of the fire determination area M are acquired to obtain the sum, and the fire is determined in the same manner as shown in FIG.

監視区画毎に、その温度ラベル値が変化した場合にはどのような火災判断領域を配置するかを予め登録しておくことで、このような変化区画に応じた火災判断領域の配置パターンを、自動選択して処理することが可能になる。   By registering in advance what kind of fire judgment area to arrange when the temperature label value changes for each monitoring section, the arrangement pattern of the fire judgment area corresponding to such a change section, It becomes possible to select and process automatically.

図9(A)は監視領域Aの2つの区画F1,F2で温度ラベル値が例えば+1と増加変化した場合であり、この場合には変化区画F1,F2の各々に火災判断領域M1,M2の中央区画を位置合せして配置し、この状態で火災判断領域M1,M2の各9区画に対応する温度ラベル値をそれぞれ取得してそれらの総和を求め、図6に示したと同様にして個別に火災を判断する。   FIG. 9A shows a case where the temperature label value is increased and changed, for example, +1 in the two sections F1 and F2 of the monitoring area A. In this case, the fire determination areas M1 and M2 are respectively included in the changed sections F1 and F2. The center section is aligned and arranged, and in this state, the temperature label values corresponding to each of the nine sections of the fire determination areas M1 and M2 are acquired to obtain the sum of them, and individually as shown in FIG. Determine fire.

なお、図9(A)で変化区画F1,F2が隣接していた場合には、変化区画F1,F2を含むように、或いはどちらか一方を中心として(代表として)火災判断領域Mを位置合せして配置し、この状態で火災判断領域Mの9区画に対応する観測ラベル値を取得して総和を求め、図6に示したと同様にして火災を判断すれば良い。   If the change sections F1 and F2 are adjacent to each other in FIG. 9A, the fire determination area M is aligned so that the change sections F1 and F2 are included or one of them is the center (as a representative). In this state, the observation label values corresponding to the nine sections of the fire determination area M are acquired to obtain the sum, and the fire may be determined in the same manner as shown in FIG.

図9(B)は監視領域Aの2つの区画F1,F2で温度ラベル値が例えば+1と増加変化し、区画F1,F2が近い位置にあった場合であり、変化区画F1,F2の各々に火災判断領域M1,M2の中央区画を位置合せして配置する。この場合、配置した火災判断領域M1,M2は一部で区画が重複しているが、変化区画F1,F2が同じ火災判断領域に含まれないことから、個別に火災判断領域M1,M2を配置し、この状態で火災判断領域M1,M2の各9区画に対応する観測ラベル値をそれぞれ取得してそれらの総和を求め、図6に示したと同様にして個別に火災を判断する。そして、いずれかの火災判断領域について火災と判断された場合に、監視領域Aにおける火災と判断し、受信機14に対し火災信号を送信して火災警報を出力させる。   FIG. 9B shows a case where the temperature label value increases and changes, for example, +1 in the two sections F1 and F2 of the monitoring area A, and the sections F1 and F2 are close to each other. The central sections of the fire determination areas M1, M2 are aligned and arranged. In this case, the fire determination areas M1 and M2 are partially overlapped with each other, but since the changed sections F1 and F2 are not included in the same fire determination area, the fire determination areas M1 and M2 are individually arranged. In this state, the observation label values corresponding to each of the nine sections of the fire determination areas M1 and M2 are acquired and their sum is obtained, and fires are individually determined in the same manner as shown in FIG. If any fire determination area is determined to be a fire, it is determined that there is a fire in the monitoring area A, and a fire signal is transmitted to the receiver 14 to output a fire alarm.

また、図9(B)の場合には、変化区画F1,F2を結んだ重心位置となる区画を求め、この重心位置にある区画、或いは重心に最も近い区画のうちから任意に選択したひとつの区画に火災判断領域Mの中央区画を位置合せして配置し、この状態で火災判断領域Mの9区画に対応する観測ラベル値をそれぞれ取得してそれらの総和を求め、図6に示したと同様にして火災を判断するようにしても良い。   In the case of FIG. 9B, a section that is the center of gravity position connecting the change sections F1 and F2 is obtained, and one arbitrarily selected from the section at the center of gravity position or the section closest to the center of gravity. The central section of the fire determination area M is aligned and arranged in the section, and in this state, the observation label values corresponding to the nine sections of the fire determination area M are acquired, and the sum of them is obtained, as shown in FIG. You may make it judge fire.

なお、これらの他にも、例えば複数の区画の温度ラベル値が同時に増加変化した場合で、且つ、これらについて変化量に差がある場合には、変化量の大きな区画を優先して火災判断領域を配置する等、適宜の方法が採用しうる。   In addition to these, for example, when the temperature label values of a plurality of sections increase and change at the same time, and there is a difference in the amount of change in these, the fire determination area is given priority to the section having a large amount of change. An appropriate method can be employed such as arranging

図10(A)は火災判断領域Mの縦横の区画数より少ない区画数に分割した部分をもつ監視領域の例であり、監視領域Aの区画Fで温度ラベル値が例えば初期状態に対して+1と増加変化した場合、変化区画Fに火災判断領域Mを配置すると、一部が監視領域Aからはみ出してしまう。   FIG. 10A shows an example of a monitoring area having a portion divided into the number of sections smaller than the number of vertical and horizontal sections of the fire determination area M, and the temperature label value in the section F of the monitoring area A is, for example, +1 with respect to the initial state. If the fire determination area M is arranged in the change section F, a part of the area will protrude from the monitoring area A.

この場合には、図10(B)に示すように、火災判断領域Mのはみ出した区画が監視領域Aに入るように、火災判断領域Mを変形し、この状態で火災判断領域Mの9区画に対応する観測ラベル値をそれぞれ取得してそれらの総和を求め、図6に示したと同様にして個別に火災を判断する。   In this case, as shown in FIG. 10B, the fire determination area M is deformed so that the section where the fire determination area M protrudes enters the monitoring area A, and in this state, the nine sections of the fire determination area M The observation label values corresponding to are respectively obtained and their sum is obtained, and fires are individually determined in the same manner as shown in FIG.

このような火災判断領域の変形配置についても、予め、監視区画毎に、その温度ラベル値が変化した場合にはどのような火災判断領域を配置するかを予め登録しておくことで、変化区画に応じた火災判断領域の配置パターンを、自動選択することによって可能になる。   For such a modified arrangement of the fire determination area, by registering in advance what kind of fire determination area is to be arranged when the temperature label value changes for each monitoring section, the change section It becomes possible by automatically selecting the arrangement pattern of the fire judgment area according to the situation.

なお、火災判断領域Mは、上記のように合計9区画で形成する以外に、例えば、それより小さい合計4区画で形成しても良いし、それより多い区画数で形成してもよく、火災判断領域Mの区画数に応じて火災判断閾値を予め定めれば良い。   The fire determination area M may be formed by a total of four sections smaller than that, for example, or may be formed by a larger number of sections, in addition to the nine sections as described above. A fire determination threshold value may be determined in advance according to the number of sections of the determination area M.

[煙観測チップを用いた分布型火災監視システム]
本発明の分布型火災監視システムは、図1の監視領域Aに配置した温度観測チップ10の代わりに、所定局所の煙濃度を観測する煙観測チップを配置しても良い。煙観測チップは火災現象として、煙濃度(火災に伴う煙発生状況)を観測する。
[Distributed fire monitoring system using smoke monitoring chip]
In the distributed fire monitoring system of the present invention, a smoke observation chip for observing a predetermined local smoke concentration may be arranged instead of the temperature observation chip 10 arranged in the monitoring area A of FIG. The smoke observation chip observes the smoke concentration (the state of smoke generated by the fire) as a fire phenomenon.

(煙観測チップの外観・構造)
図11は本実施形態の分布型火災監視システムで使用する煙観測チップの外観を示した説明図であり、図11(A)に平面を、図11(B)に内部構造の断面を、図11(C)に底面を示している。
(Appearance and structure of smoke observation chip)
FIG. 11 is an explanatory view showing the appearance of a smoke observation chip used in the distributed fire monitoring system of the present embodiment. FIG. 11 (A) is a plan view, FIG. 11 (B) is a sectional view of the internal structure, and FIG. 11 (C) shows the bottom surface.

図11において、煙観測チップ11は例えば合成樹脂で成型されたカバー118と、カバー118の内部に配置した本体120で構成する。カバー118の表面には温度観測チップを特定するアドレスなどのID番号等を表示したシール145を必要に応じて貼っても良い。カバー118は裏面(図11(B)の図示上方)に開口した形状を有し、先端側(図11(B)の図示下方)の外周に煙流入口138を複数開口し、内部に検煙室140を形成している。   In FIG. 11, the smoke observation chip 11 includes a cover 118 formed of, for example, a synthetic resin and a main body 120 disposed inside the cover 118. A seal 145 displaying an ID number such as an address for specifying the temperature observation chip may be attached to the surface of the cover 118 as necessary. The cover 118 has a shape opened on the back surface (upper side of FIG. 11B), and a plurality of smoke inlets 138 are opened on the outer periphery of the front end side (lower side of FIG. 11B), and smoke is detected inside. A chamber 140 is formed.

本体120の内部には例えば赤外LEDを用いた発光部134と例えばフォトトランジスタを用いた受光部136を、両者の光軸が検煙室140内の検煙空間の検煙点Pで交差するように配置し、また図11(A)に示すように、発光部134と受光部136は水平周りでも光軸が交差するように配置し(光軸の交点P)、これにより公知の散乱光式検煙構造を構成している。なお、このような散乱光式検煙構造以外にも、例えば化学変化を利用するもの等、適宜の検煙構造を適用することができる。   Inside the main body 120, for example, a light emitting unit 134 using an infrared LED and a light receiving unit 136 using, for example, a phototransistor, both optical axes intersect at a smoke detection point P of the smoke detection space in the smoke detection chamber 140. In addition, as shown in FIG. 11A, the light emitting unit 134 and the light receiving unit 136 are arranged so that their optical axes intersect even in the horizontal direction (intersection point P of the optical axes), whereby known scattered light is obtained. It constitutes a type smoke detection structure. In addition to such a scattered light type smoke detection structure, an appropriate smoke detection structure such as one using a chemical change can be applied.

再び図11(B)を参照するに、散乱光式検煙構造は、発光部134を間欠駆動して発生したパルス光を検煙空間140に照射し、煙流入口138を介して外部から検煙室140に流入した煙の粒子に当該パルス光が当たって発生する散乱光を受光部136で受光して電気信号に変換し、受光散乱光量に応じた煙濃度検出信号を、後述する制御チップ141(煙濃度観測制御部110)へ出力する。なお、検煙室140の、煙流入口から検煙室140への流通路には、外部からの光を遮蔽しつつ外部からの煙が流通可能な、所謂ラビリンス構造を設けているが、説明を省略する。   Referring to FIG. 11B again, the scattered light type smoke detection structure irradiates the smoke detection space 140 with pulsed light generated by intermittently driving the light emitting unit 134 and detects the light from the outside via the smoke inlet 138. The scattered light generated when the pulsed light hits the smoke particles flowing into the smoke chamber 140 is received by the light receiving unit 136 and converted into an electric signal, and a smoke density detection signal corresponding to the received scattered light amount is supplied to a control chip described later. 141 (smoke density observation control unit 110). The flow passage from the smoke inlet to the smoke detection chamber 140 of the smoke detection chamber 140 is provided with a so-called labyrinth structure that allows external smoke to flow while shielding light from the outside. Is omitted.

本体120の裏側(図11(B)の図示上方)内部には回路基板122を配置し、カバー118の裏面開口側は蓋部材137を装着して閉鎖している。回路基板122と蓋部材137の間には釦電池124を収納し、釦電池24の正極には正極端子金具132を接触し、釦電池124の回路基板122側に位置する端面の負極には負極端子金具130を接触している。   A circuit board 122 is arranged inside the back side of the main body 120 (the upper side in FIG. 11B), and the back opening side of the cover 118 is closed by a lid member 137. The button battery 124 is housed between the circuit board 122 and the lid member 137, the positive terminal fitting 132 is in contact with the positive electrode of the button battery 24, and the negative electrode on the end face located on the circuit board 122 side of the button battery 124. The terminal fitting 130 is in contact.

釦電池124は蓋部材137の開口穴に対する電池蓋126の装着で固定する。電池蓋126は外周内側の相対した2箇所にL字形の嵌合突起を形成し、蓋部材137の開口に形成した嵌合切欠にL字形の嵌合突起を嵌め入れて回すことでロックできる。電池蓋126には釦電池124を着脱する際の回動操作のため硬貨等を嵌合する嵌合溝128を形成している。   The button battery 124 is fixed by attaching the battery lid 126 to the opening hole of the lid member 137. The battery lid 126 can be locked by forming L-shaped fitting protrusions at two opposite locations on the inner periphery of the outer periphery, and inserting and turning the L-shaped fitting protrusions into the fitting notches formed in the opening of the lid member 137. The battery lid 126 is formed with a fitting groove 128 for fitting a coin or the like for a turning operation when the button battery 124 is attached or detached.

なお、本実施形態の釦電池の装着構造は一例であり、必要に応じて釦電池124を着脱自在(交換可能な)な適宜の構造とすることができる。   It should be noted that the button battery mounting structure of this embodiment is merely an example, and the button battery 124 can be appropriately detachable (replaceable) as necessary.

回路基板122の図示下面側には発光部134、受光部136、制御チップ141及び無線通信チップ142を実装している。また回路基板122には図示しない表示用LEDを実装し、表示用LEDに相対してカバー118側に透明樹脂などを用いた表示窓144を配置している。   A light emitting unit 134, a light receiving unit 136, a control chip 141, and a wireless communication chip 142 are mounted on the lower side of the circuit board 122 in the figure. Further, a display LED (not shown) is mounted on the circuit board 122, and a display window 144 using a transparent resin or the like is disposed on the cover 118 side relative to the display LED.

蓋部材137の図示上面側の、煙観測チップ11裏面外周には取付シート133を設ける。取付シート133はマグネットシート又は粘着シートなどであり、これにより監視領域の監視区画に簡単に取り付け配置することができる。なお、取付手段および方法は任意であり、取付シート133以外に、フックやクリップ、ねじ、ピン、紐などの適宜の手段を必要に応じて設けることができる。   An attachment sheet 133 is provided on the outer periphery of the rear surface of the smoke observation chip 11 on the upper surface side of the lid member 137 in the figure. The attachment sheet 133 is a magnetic sheet or an adhesive sheet, and can be easily attached and arranged in the monitoring section of the monitoring area. In addition, an attachment means and a method are arbitrary, In addition to the attachment sheet 133, appropriate means such as a hook, a clip, a screw, a pin, and a string can be provided as necessary.

(煙観測チップの機能構成)
図12は煙観測チップの機能構成の概略を示したブロック図である。図12において、煙観測チップ11は、検煙部116、煙濃度観測制御部110、アンテナ114を接続した通信部112を備え、図11に示した釦電池124による電源供給を受けて動作する。煙濃度観測制御部110は、例えばプログラムの実行により実現される機能である。ハードウェアとしては図7の制御チップ141を備え、CPU、メモリ、各種の入出力ポート等を備えたコンピュータ回路等を使用する。
(Functional configuration of smoke observation chip)
FIG. 12 is a block diagram showing an outline of the functional configuration of the smoke observation chip. 12, the smoke observation chip 11 includes a smoke detector 116, a smoke density observation controller 110, and a communication unit 112 connected to an antenna 114, and operates by receiving power supply from the button battery 124 shown in FIG. The smoke density observation control unit 110 is a function realized by executing a program, for example. As hardware, a control chip 141 shown in FIG. 7 is used, and a computer circuit or the like having a CPU, a memory, various input / output ports and the like is used.

通信部112は図11の無線通信チップ142に対応し、図4の通信部102の場合と同様、監視装置12との間で信号を送受信する。   The communication unit 112 corresponds to the wireless communication chip 142 in FIG. 11, and transmits and receives signals to and from the monitoring device 12 as in the case of the communication unit 102 in FIG. 4.

検煙部116は図11に示した散乱光式検煙構造をもち、発光部と受光部を備えている。検煙部116には図示しない発光駆動回路を設け、煙濃度観測制御部110の指示により、所定周期で赤外LEDを用いた発光部134を間欠的に発光駆動する。また検煙部116には図示しない増幅回路を設け、フォトダイオードなどの受光部136で受光した散乱光の受光信号を図示しない増幅回路で増幅し、煙濃度検出信号をとして煙濃度観測制御部110へ出力する。   The smoke detector unit 116 has the scattered light type smoke detector structure shown in FIG. 11, and includes a light emitting unit and a light receiving unit. The smoke detector 116 is provided with a light emission drive circuit (not shown), and the light emitter 134 using the infrared LED is driven to emit light intermittently at a predetermined cycle according to an instruction from the smoke density observation controller 110. Further, the smoke detector 116 is provided with an amplifier circuit (not shown), and the received light signal of the scattered light received by the light receiver 136 such as a photodiode is amplified by the amplifier circuit (not shown), and the smoke density observation controller 110 is used as a smoke density detection signal. Output to.

煙濃度観測制御部110は例えばCPUによるプログラムの実行により実現される機能であり、煙濃度観測信号を扱う以外は図4の温度観測制御部48の場合と同様であるから、説明を省略する。   The smoke density observation control unit 110 is a function realized by, for example, execution of a program by the CPU, and is the same as the case of the temperature observation control unit 48 in FIG.

(監視装置の機能構成)
図11及び図12の煙観測チップ11を図2の監視領域に配置した場合の、図5に示した監視装置12の機能は、監視制御部200による火災監視制御が相違し、それ以外は図5の場合と同様である。
(Functional configuration of monitoring device)
When the smoke observation chip 11 of FIG. 11 and FIG. 12 is arranged in the monitoring region of FIG. 2, the monitoring device 12 shown in FIG. This is the same as the case of 5.

(観測煙濃度に基づく火災監視制御)
本実施形態における監視装置12の監視制御部200は、煙観測チップ11で観測した複数の監視区画a11〜a33の観測煙濃度に基づいて監視領域Aの火災を判断する。監視制御部200は、例えば監視区画a11〜a33毎の観測煙濃度を、多段階に設定した複数の煙濃度閾値に対応して、観測煙濃度が高くなるほど大きな値をもつ観測ラベル値(煙濃度ラベル値)に変換してこれら煙濃度ラベル値の総和を算出し、当該観測ラベル値の総和が所定の閾値以上の場合に火災と判断し、伝送部206に指示し、火災信号を受信機14へ送信する制御を行う。
(Fire monitoring control based on observed smoke concentration)
The monitoring control unit 200 of the monitoring device 12 according to the present embodiment determines a fire in the monitoring area A based on the observed smoke concentrations of the plurality of monitoring sections a11 to a33 observed with the smoke observation chip 11. For example, the monitoring control unit 200 corresponds to a plurality of smoke density threshold values set for each of the monitoring sections a11 to a33, and the observed label value (smoke density) increases as the observed smoke density increases. Label value) is calculated to calculate the sum of these smoke density label values. If the sum of the observed label values is equal to or greater than a predetermined threshold value, it is determined that there is a fire, and the transmission unit 206 is instructed. Control to send to.

監視制御部200により観測煙濃度を煙濃度ラベル値への変換する処理は次のように行う。まず監視制御部200は、例えば5段階に複数の煙濃度閾値Sth1〜Sth5を設定している。閾値Sth1〜Sth5は例えば次のようになる。
Sth1= 5.0%/m
Sth2= 7.5%/m
Sth3=10.0%/m
Sth4=12.5%/m
Sth5=15.0%/m
The process of converting the observed smoke density into the smoke density label value by the monitoring controller 200 is performed as follows. First, the monitoring control unit 200 sets a plurality of smoke density thresholds Sth1 to Sth5, for example, in five stages. The threshold values Sth1 to Sth5 are as follows, for example.
Sth1 = 5.0% / m
Sth2 = 7.5% / m
Sth3 = 10.0% / m
Sth4 = 12.5% / m
Sth5 = 15.0% / m

この閾値Sth1〜Sh5に基づく煙濃度ラベル値への変換は次の条件により行う。
Sth1未満 煙濃度ラベル値L=0
Sth1以上Srh2未満 煙濃度ラベル値L=1
Sth2以上Srh3未満 煙濃度ラベル値L=2
Sth3以上Srh4未満 煙濃度ラベル値L=3
Sth4以上Srh5未満 煙濃度ラベル値L=4
Sth5以上 煙濃度ラベル値L=5
Conversion to the smoke density label value based on the threshold values Sth1 to Sh5 is performed under the following conditions.
Less than Sth1 Smoke density label value L = 0
Sth1 or more and less than Srh2 Smoke density label value L = 1
Sth2 or more and less than Srh3 Smoke density label value L = 2
Sth3 or more and less than Srh4 Smoke density label value L = 3
Sth4 or more and less than Srh5 Smoke density label value L = 4
Sth5 or more Smoke density label value L = 5

煙濃度ラベル値の総和に基づく火災判断は、温度ラベル値の場合と同様であり、例えば煙濃度ラベル値の総和ΣLが火災判断閾値ΣLth、例えばΣLth=20以上の場合に火災と判断する。火災判断閾値の設定は、設置状況等に応じて行う。   The fire determination based on the sum of the smoke density label values is the same as the case of the temperature label value. For example, when the sum ΣL of the smoke density label values is equal to or greater than the fire determination threshold ΣLth, for example, ΣLth = 20, it is determined as a fire. The fire judgment threshold is set according to the installation status.

また温度ラベル値の場合と同様に、火災の予兆を判断するための第1火災判断閾値ΣLth1と、火災を判断するための第2火災判断閾値ΣLth2の2段階に設定してもよい。即ち煙濃度ラベル値の総和ΣLが例えば第1火災判断閾値ΣLth1以上の場合に火災の予兆と判断し、受信機14に対し火災予報信号を送信して火災予報警報を出力させる。そして、煙濃度ラベル値の総和ΣLが第2火災判断閾値ΣLth2以上の場合に火災と判断し、受信機14に対し火災信号を送信して火災警報を出力させる。   Further, similarly to the case of the temperature label value, the first fire determination threshold value ΣLth1 for determining a fire sign and the second fire determination threshold value ΣLth2 for determining a fire may be set. That is, when the sum ΣL of smoke density label values is, for example, equal to or greater than the first fire determination threshold ΣLth1, it is determined as a fire sign, and a fire prediction signal is transmitted to the receiver 14 to output a fire prediction alarm. Then, when the sum ΣL of the smoke density label values is equal to or greater than the second fire determination threshold ΣLth2, it is determined that there is a fire, and a fire signal is transmitted to the receiver 14 to output a fire alarm.

また監視制御部200は、複数の観測煙濃度から変換したラベル値の内の少なくとも1つが所定の最大ラベル値、例えばここでは5の場合、観測ラベル値の総和ΣLに基づく火災判断を行うことなく火災と判断し、伝送部206に指示し、火災信号を受信機14へ送信して火災警報を出力させる。このため監視制御部200は、観測煙濃度を変換したラベル値が最大ラベル値5未満の場合、前述した観測ラベル値の総和ΣLに基づく火災判断を行うことになる。その他の火災判断処理についても、先述した温度ラベル値による場合と概ね同様とすることができる。   In addition, the monitoring control unit 200 does not make a fire determination based on the total ΣL of the observed label values when at least one of the label values converted from the plurality of observed smoke concentrations is a predetermined maximum label value, for example, 5 here. It is determined that there is a fire, the transmission unit 206 is instructed, a fire signal is transmitted to the receiver 14, and a fire alarm is output. For this reason, when the label value obtained by converting the observed smoke density is less than the maximum label value 5, the monitoring control unit 200 makes a fire determination based on the total sum ΣL of the observed label values described above. The other fire determination processes can also be substantially the same as the case of the temperature label value described above.

[本発明の変形例]
(システム)
例えば上記実施形態の図1に示すn階に間仕切り等がある場合には、監視装置12が接続されている感知器回線に、監視装置12に加えて火災感知器18を接続することもできる。また、例えばこのように同じ階で間仕切りで仕切られた複数の空間についてそれぞれ分布型火災監視を行う場合には、同じ感知器回線に監視装置を複数台接続しても良い。
[Modification of the present invention]
(system)
For example, when there is a partition or the like on the nth floor shown in FIG. 1 of the above embodiment, a fire detector 18 can be connected to the sensor line to which the monitoring device 12 is connected in addition to the monitoring device 12. For example, when distributed fire monitoring is performed for each of a plurality of spaces partitioned by partitions on the same floor as described above, a plurality of monitoring devices may be connected to the same sensor line.

(観測チップによるラベル変換)
上記の実施形態では、監視装置が温度観測チップによる観測温度又は煙観測チップによる観測温度から観測ラベル値に変換しているが、このラベル値への変換を温度観測チップ及び煙観測チップ側で行い、変換したラベル値を監視装置へ送信するようにしても良い。これにより監視装置の火災監視制御の処理負担を軽減することができる。
(Label conversion by observation chip)
In the above embodiment, the monitoring device converts the observation temperature by the temperature observation chip or the observation temperature by the smoke observation chip into the observation label value, but the conversion to the label value is performed on the temperature observation chip and smoke observation chip side. The converted label value may be transmitted to the monitoring device. Thereby, the processing load of the fire monitoring control of the monitoring device can be reduced.

(観測値の総和による火災判断)
また監視装置は、観測ラベル値を用いず、温度観測チップ又は煙観測チップによる複数の監視区画の観測温度又は観測煙濃度の総和(観測値の総和)を算出し、当該総和が所定の閾値以上の場合に火災を判断して火災信号を出力するようにしても良い。
(Fire judgment based on the sum of observation values)
In addition, the monitoring device does not use the observation label value, but calculates the sum of the observation temperatures or smoke concentrations of the monitoring zones (sum of the observation values) by the temperature observation chip or smoke observation chip, and the sum is equal to or greater than a predetermined threshold value. In this case, a fire may be determined and a fire signal may be output.

この場合、観測温度又は観測煙濃度の総和が所定の第1火災判断閾値以上の場合に火災の予兆と判断して受信機へ火災予報信号を出力し、当該総和が第1火災判断閾値より高い所定の第2火災判断閾値以上の場合に火災と判断して受信機へ火災信号を出力するようにしても良い。   In this case, if the sum of the observed temperature or smoke concentration is equal to or higher than the predetermined first fire judgment threshold, it is judged as a fire sign and a fire forecast signal is output to the receiver, and the sum is higher than the first fire judgment threshold. A fire signal may be output to the receiver based on a determination that a fire has occurred when the predetermined second fire determination threshold is exceeded.

このように観測温度又は観測煙濃度のラベル値への変換を行わずに、観測温度又は観測煙濃度といった観測値の総和を求めて火災を判断することで、総和を求める処理負担は増加するが、ラベル値への変換を不要とし、その分の処理負担を低減できる。   In this way, by calculating the sum of the observed values such as the observed temperature or the observed smoke density without converting the observed temperature or the observed smoke concentration into the label value, the processing load for obtaining the sum is increased by determining the fire. Therefore, conversion to label values is unnecessary, and the processing load corresponding to that can be reduced.

この場合にも、監視装置は、複数の観測温度の内の少なくとも1つが所定の火災確定閾値以上の場合(温度は例えば75℃以上、煙濃度は例えば15%/m以上の場合)、観測値の総和に基づく火災判断を行うことなく火災と判断し、受信機へ火災信号を送信して火災警報を出力させる。これにより急激な温度や煙濃度の上昇により火災と確定できる観測値を少なくとも1つの監視区画から観測した場合は、直ちに火災と判断し、迅速に火災警報を出力させることができる。   In this case as well, the monitoring device uses an observation value when at least one of a plurality of observation temperatures is equal to or higher than a predetermined fire determination threshold (when the temperature is 75 ° C. or higher and the smoke concentration is 15% / m or higher, for example). A fire is judged without making a fire judgment based on the sum of the above, and a fire signal is sent to the receiver to output a fire alarm. As a result, when an observed value that can be determined to be a fire due to a sudden rise in temperature or smoke concentration is observed from at least one monitoring section, it is immediately determined that a fire has occurred, and a fire alarm can be output promptly.

また監視領域における監視区画の何れかの観測値の増加変化を検知した場合に、観測ラベル値の場合と同様、その観測値の変化区画を含む位置に所定区画数の火災判断領域を配置し、当該火災判断領域に含まれる監視区画毎の観測値の総和を算出して火災を判断するようにしても良い。   In addition, when an increase in the observed value of any of the monitoring sections in the monitoring area is detected, as in the case of the observation label value, a predetermined number of fire determination areas are arranged at positions including the changed section of the observation value, A fire may be determined by calculating the sum of the observation values for each monitoring section included in the fire determination area.

(受信機と監視装置)
また監視装置から受信機へ火災、復旧、障害などのイベントを含む電文を伝送して警報動作を行わせるようにしてもよい。このとき、監視装置と受信機との間はこれらの情報が伝送可能な伝送路とする。またこの場合、監視装置から受信機へ複数の観測チップで観測した監視区画毎の火災現象を観測して得た観測値を含んだ観測信号を送信し、受信機側で監視領域の観測値を処理し、火災判断や火災拡大状況の判別表示等を行うようにしても良い。
(Receiver and monitoring device)
Further, an alarm operation may be performed by transmitting a message including an event such as a fire, recovery, or failure from the monitoring device to the receiver. At this time, a transmission path capable of transmitting such information is used between the monitoring apparatus and the receiver. In this case, an observation signal including observation values obtained by observing the fire phenomenon of each monitoring section observed with multiple observation chips is sent from the monitoring device to the receiver, and the observation values in the monitoring area are received on the receiver side. It is also possible to perform processing and display a fire judgment, a fire expansion status discrimination display, and the like.

(通信形態)
また、上記の実施形態に於いては観測チップと監視装置の間の通信を無線とする場合を示したが、任意の一部又は全部を有線通信としても良い。
(Communication form)
Further, in the above embodiment, the case where the communication between the observation chip and the monitoring device is wireless is shown, but any part or all of the communication may be wired communication.

(住宅以外の用途)
上記の実施形態はビルやオフィス用などに限らず、住宅等適宜の火災監視にも適用できる。
(Applications other than housing)
The above-described embodiment is not limited to buildings and offices, and can be applied to appropriate fire monitoring such as houses.

(その他)
また本発明は上記の実施形態に限定されず、その目的と利点を損なうことのない適宜の変形を含み、更に上記の実施形態に示した数値による限定は受けない。
(Other)
The present invention is not limited to the above-described embodiments, includes appropriate modifications that do not impair the objects and advantages thereof, and is not limited by the numerical values shown in the above-described embodiments.

10−11〜10−33:温度観測チップ
11:煙観測チップ
12:監視装置
14:受信機
18:火災感知器
48:温度観測制御部
50,102:通信部
100−1〜100−4:監視装置
200:監視制御部
10-11 to 10-33: temperature observation chip 11: smoke observation chip 12: monitoring device 14: receiver 18: fire detector 48: temperature observation control unit 50, 102: communication units 100-1 to 100-4: monitoring Device 200: Monitoring control unit

Claims (13)

受信機から引き出された伝送路に監視手段を接続し、
前記監視手段には所定の火災現象を観測する観測手段を複数割り当て、
前記監視手段は、割り当てられた複数の観測手段と無線通信して観測情報を取得し、当該観測情報に基づいて火災を判断した場合に、前記伝送路を通じて前記受信機へ火災信号を出力することを特徴とする分布型火災監視システム。
Connect monitoring means to the transmission line drawn from the receiver,
The monitoring means is assigned a plurality of observation means for observing a predetermined fire phenomenon,
The monitoring means wirelessly communicates with a plurality of assigned observation means to obtain observation information, and when a fire is determined based on the observation information, outputs a fire signal to the receiver through the transmission path Distributed fire monitoring system.
所定の監視領域を仮想的に分割した複数の監視区画毎に配置し、監視区画の所定の火災現象を観測して得た観測情報を無線送信する複数の観測手段と、
前記複数の監視区画にそれぞれ配置した前記観測手段からの観測情報に基づいて監視領域の火災を判断する監視手段と、
を備え、前記監視手段は火災を判断した場合に、前記伝送路を通じて前記受信機へ火災信号を出力することを特徴とする分布型火災監視システム。
A plurality of observation means that wirelessly transmit observation information obtained by observing a predetermined fire phenomenon in a monitoring section, arranged in a plurality of monitoring sections virtually dividing a predetermined monitoring area,
Monitoring means for judging a fire in a monitoring area based on observation information from the observation means arranged in each of the plurality of monitoring sections;
A distributed fire monitoring system characterized in that the monitoring means outputs a fire signal to the receiver through the transmission line when a fire is judged.
請求項2記載の分布型火災監視システムに於いて、
前記監視手段は、複数の監視区画毎に、観測情報に含まれる観測値を、多段階に設定した複数の閾値に基づいて、観測値が高くなるほど大きな値をもつ観測ラベル値に変換して、前記監視区画毎の当該観測ラベル値の総和を算出し、当該観測ラベル値の総和が所定の閾値以上の場合に火災と判断して前記受信機へ火災信号を出力することを特徴とする分布型火災監視システム。
In the distributed fire monitoring system according to claim 2,
The monitoring means converts, for each of a plurality of monitoring sections, an observation value included in observation information into an observation label value having a larger value as the observation value becomes higher, based on a plurality of threshold values set in multiple stages, A distribution type that calculates the sum of the observed label values for each of the monitoring sections and outputs a fire signal to the receiver by determining that a fire occurs when the sum of the observed label values is equal to or greater than a predetermined threshold. Fire monitoring system.
請求項2記載の分布型火災監視システムに於いて、
前記監視手段は、複数の監視区画毎に、観測情報に含まれる観測値を、多段階に設定した複数の閾値に基づいて、観測値が高くなるほど大きな値をもつ観測ラベル値に変換して、前記監視区画毎の当該観測ラベル値の総和を算出し、当該観測ラベル値の総和が所定の第1閾値以上の場合に火災の予兆と判断して前記受信機へ火災予報信号を出力し、観測ラベル値の総和が第1閾値より高い所定の第2閾値以上の場合に火災と判断して前記受信機へ火災信号を出力することを特徴とする分布型火災監視システム。
In the distributed fire monitoring system according to claim 2,
The monitoring means converts, for each of a plurality of monitoring sections, an observation value included in observation information into an observation label value having a larger value as the observation value becomes higher, based on a plurality of threshold values set in multiple stages, Calculate the sum of the observed label values for each monitoring section, and if the sum of the observed label values is equal to or greater than a predetermined first threshold, determine a fire sign and output a fire forecast signal to the receiver for observation A distributed fire monitoring system, characterized in that a fire signal is output to the receiver when a sum of label values is equal to or greater than a predetermined second threshold value higher than a first threshold value.
請求項3又は4に記載の分布型火災監視システムに於いて、前記監視手段は、複数の監視区画毎の観測値から変換したラベル値のうち少なくとも1つが所定の最大ラベル値である場合、観測ラベル値の総和に基づくことなく、火災と判断して前記受信機へ火災信号を出力することを特徴とする分布型火災監視システム。
5. The distributed fire monitoring system according to claim 3 or 4, wherein the monitoring means observes when at least one of the label values converted from the observation values for each of the plurality of monitoring sections is a predetermined maximum label value. A distributed fire monitoring system characterized in that a fire signal is output to the receiver based on a judgment of a fire without being based on the sum of label values.
請求項3又は4記載の分布型火災監視システムに於いて、前記監視手段は、複数の監視区画の何れかのラベル値について所定の増加変化を検知した場合に、当該ラベル値変化区画を含む位置に、監視領域の区画数より少ない所定区画数の火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画のラベル値の総和を算出することを特徴とする分布型火災監視システム。
5. The distributed fire monitoring system according to claim 3 or 4, wherein the monitoring means includes a label value change section when a predetermined increase change is detected for any one of the label values of the plurality of monitor sections. A fire detection area having a predetermined number of sections smaller than the number of sections in the monitoring area, and calculating the sum of the label values of the monitoring sections included in the fire determination area. .
請求項3又は4記載の分布型火災監視システムに於いて、前記監視手段は、複数の監視区画に対応する何れかのラベル値について所定の増加変化を検知した場合に、当該ラベル値変化区画が略中心となるように前記火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画毎のラベル値の総和を算出することを特徴とする分布型火災監視システム。
5. The distributed fire monitoring system according to claim 3, wherein the monitoring means detects a predetermined increase change for any label value corresponding to a plurality of monitoring sections, and the label value changing section is A distributed fire monitoring system, wherein the fire determination area is virtually arranged so as to be substantially centered, and a sum of label values for each monitoring section included in the fire determination area is calculated.
請求項2記載の分布型火災監視システムに於いて、
前記監視手段は、複数の監視区画毎の観測値の総和を算出し、当該観測値の総和が所定の閾値以上の場合に火災と判断して前記受信機へ火災信号を出力することを特徴とする分布型火災監視システム。
In the distributed fire monitoring system according to claim 2,
The monitoring means calculates the sum of the observation values for each of the plurality of monitoring sections, and determines that a fire is output when the sum of the observation values is equal to or greater than a predetermined threshold, and outputs a fire signal to the receiver. Distributed fire monitoring system.
請求項2記載の分布型火災監視システムに於いて、
前記監視手段は、複数の監視区画毎の観測値の総和を算出し、当該観測値の総和が所定の第1閾値以上である場合に火災の予兆と判断して前記受信機へ火災予報信号を出力し、観測値の総和が第1閾値より高い所定の第2閾値以上である場合には火災と判断して前記受信機へ火災信号を出力することを特徴とする分布型火災監視システム。
In the distributed fire monitoring system according to claim 2,
The monitoring means calculates the sum of the observation values for each of the plurality of monitoring sections, and determines that it is a fire sign when the sum of the observation values is equal to or greater than a predetermined first threshold value, and sends a fire forecast signal to the receiver. A distributed fire monitoring system that outputs and outputs a fire signal to the receiver based on a judgment that a fire occurs when the total sum of observed values is equal to or greater than a predetermined second threshold value higher than the first threshold value.
請求項8又は9記載の分布型火災監視システムに於いて、
前記監視手段は、複数の観測値の少なくとも1つが所定の火災確定閾値以上である場合、観測値の総和に基づくことなく、火災と判断して前記受信機へ火災信号を出力することを特徴とする分布型火災監視システム。
The distributed fire monitoring system according to claim 8 or 9,
The monitoring means, when at least one of a plurality of observed values is equal to or greater than a predetermined fire determination threshold, determines that there is a fire and outputs a fire signal to the receiver without being based on the sum of the observed values. Distributed fire monitoring system.
請求項8又は9記載の分布型火災監視システムに於いて、前記監視手段は、複数の監視区画の何れかの観測値について所定の増加変化を検知した場合に、当該ラベル値変化区画を含む位置に、監視領域の区画数より少ない所定区画数の火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画のラベル値の総和を算出することを特徴とする分布型火災監視システム。
10. The distributed fire monitoring system according to claim 8 or 9, wherein the monitoring means includes a position including the label value change section when a predetermined increase change is detected in any of the observation values of the plurality of monitoring sections. A fire detection area having a predetermined number of sections smaller than the number of sections in the monitoring area, and calculating the sum of the label values of the monitoring sections included in the fire determination area. .
請求項8又は9記載の分布型火災監視システムに於いて、前記監視手段は、複数の監視区画に対応する何れかの観測値について所定の増加変化を検知した場合に、当該観測値変化区画が略中心となるように前記火災判断領域を仮想的に配置し、当該火災判断領域に含まれる監視区画毎の観測値の総和を算出することを特徴とする分布型火災監視システム。
10. The distributed fire monitoring system according to claim 8 or 9, wherein when the monitoring means detects a predetermined increase change for any of the observation values corresponding to a plurality of monitoring sections, the observation value changing section is displayed. A distributed fire monitoring system, wherein the fire determination area is virtually arranged so as to be substantially centered, and the sum of observation values for each monitoring section included in the fire determination area is calculated.
請求項1乃至12の何れかに記載の分布型火災監視システムに於いて、前記観測手段は、火災現象として監視区画の温度状況又は煙濃度状況を観測し、前記観測情報の観測値は煙濃度又は温度であることを特徴とする分布型火災監視システム。   The distributed fire monitoring system according to any one of claims 1 to 12, wherein the observation means observes a temperature situation or a smoke density situation of a surveillance section as a fire phenomenon, and an observation value of the observation information is a smoke density. Or a distributed fire monitoring system characterized by temperature.
JP2012151281A 2012-07-05 2012-07-05 Distributed fire monitoring system Active JP6068024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151281A JP6068024B2 (en) 2012-07-05 2012-07-05 Distributed fire monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151281A JP6068024B2 (en) 2012-07-05 2012-07-05 Distributed fire monitoring system

Publications (2)

Publication Number Publication Date
JP2014013538A true JP2014013538A (en) 2014-01-23
JP6068024B2 JP6068024B2 (en) 2017-01-25

Family

ID=50109172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151281A Active JP6068024B2 (en) 2012-07-05 2012-07-05 Distributed fire monitoring system

Country Status (1)

Country Link
JP (1) JP6068024B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460176B1 (en) 2014-04-03 2014-11-12 (주)다산기업 Fire detection system
JP2019074837A (en) * 2017-10-13 2019-05-16 ホーチキ株式会社 Abnormality determination system, monitor, abnormality determination method, and program
JP2019148858A (en) * 2018-02-26 2019-09-05 ホーチキ株式会社 Management system
JP2021122141A (en) * 2019-08-23 2021-08-26 ホーチキ株式会社 Disaster prevention system
KR102335154B1 (en) * 2020-12-29 2021-12-06 (주)전원테크 Fire monitoring system that can check disconnection
CN115331378A (en) * 2022-05-12 2022-11-11 浙江大东吴集团建设有限公司 Building fire safety assessment method based on single shielding principle
JP7432325B2 (en) 2019-08-31 2024-02-16 ホーチキ株式会社 Disaster prevention support system and fire detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114570A (en) * 1985-11-14 1987-05-26 ホーチキ株式会社 Fire alarm apparatus
JPH07160981A (en) * 1993-12-06 1995-06-23 Nittan Co Ltd Area sound equipment for disaster preventive installation
JPH09288779A (en) * 1996-04-22 1997-11-04 Matsushita Electric Works Ltd Fire alarming system
JPH1196473A (en) * 1997-09-24 1999-04-09 Matsushita Electric Works Ltd Fire alarm system
JP2007058529A (en) * 2005-08-24 2007-03-08 Nohmi Bosai Ltd Disaster prevention system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62114570A (en) * 1985-11-14 1987-05-26 ホーチキ株式会社 Fire alarm apparatus
JPH07160981A (en) * 1993-12-06 1995-06-23 Nittan Co Ltd Area sound equipment for disaster preventive installation
JPH09288779A (en) * 1996-04-22 1997-11-04 Matsushita Electric Works Ltd Fire alarming system
JPH1196473A (en) * 1997-09-24 1999-04-09 Matsushita Electric Works Ltd Fire alarm system
JP2007058529A (en) * 2005-08-24 2007-03-08 Nohmi Bosai Ltd Disaster prevention system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460176B1 (en) 2014-04-03 2014-11-12 (주)다산기업 Fire detection system
JP2019074837A (en) * 2017-10-13 2019-05-16 ホーチキ株式会社 Abnormality determination system, monitor, abnormality determination method, and program
JP7001419B2 (en) 2017-10-13 2022-01-19 ホーチキ株式会社 Abnormality judgment system, monitoring device, abnormality judgment method, and program
JP2019148858A (en) * 2018-02-26 2019-09-05 ホーチキ株式会社 Management system
JP2021122141A (en) * 2019-08-23 2021-08-26 ホーチキ株式会社 Disaster prevention system
JP7054749B2 (en) 2019-08-23 2022-04-14 ホーチキ株式会社 Disaster prevention system
JP7432325B2 (en) 2019-08-31 2024-02-16 ホーチキ株式会社 Disaster prevention support system and fire detector
KR102335154B1 (en) * 2020-12-29 2021-12-06 (주)전원테크 Fire monitoring system that can check disconnection
CN115331378A (en) * 2022-05-12 2022-11-11 浙江大东吴集团建设有限公司 Building fire safety assessment method based on single shielding principle
CN115331378B (en) * 2022-05-12 2023-09-19 浙江大东吴集团建设有限公司 Building fire safety assessment method based on monomer shielding principle

Also Published As

Publication number Publication date
JP6068024B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
JP6068024B2 (en) Distributed fire monitoring system
JP6114551B2 (en) Distributed fire monitoring system
US20130009775A1 (en) Communication system and alarm device
JP6121762B2 (en) Alarm system
JP2014186574A (en) Alarm system
KR101736048B1 (en) the residential fire detector
JP6022786B2 (en) Alarm linkage system
JP6001870B2 (en) Alarm system
JP5981334B2 (en) Alarm system
JP5975513B2 (en) Alarm system
JP2009237873A (en) Alarm system
KR101818043B1 (en) Led lamp system equipped with a function of fire warning
JP6037430B2 (en) Alarm system
KR20110004450A (en) Alarm
JP2014095982A (en) Fire alarm facility
JP2022178284A (en) Management system or the like
JP6046914B2 (en) Alarm system
JP2010020663A (en) Alarm
JP6231288B2 (en) Alarm system and smoke observation chip
JP2013254292A (en) Alarm system
JP2013196579A (en) Alarm system and system interlocked therewith
JP7519493B2 (en) Management System
JP6247802B2 (en) Alarm system
JP2016212892A (en) Temperature measurement chip
JP2014096022A (en) Alarm system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150