JP2014013129A - Surface treatment method for heat exchanger - Google Patents

Surface treatment method for heat exchanger Download PDF

Info

Publication number
JP2014013129A
JP2014013129A JP2012151278A JP2012151278A JP2014013129A JP 2014013129 A JP2014013129 A JP 2014013129A JP 2012151278 A JP2012151278 A JP 2012151278A JP 2012151278 A JP2012151278 A JP 2012151278A JP 2014013129 A JP2014013129 A JP 2014013129A
Authority
JP
Japan
Prior art keywords
heat exchanger
surface treatment
fin
liquid draining
stock solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012151278A
Other languages
Japanese (ja)
Other versions
JP6029876B2 (en
Inventor
Yutaka Hayashi
豊 林
Chikao Ichii
愛雄 一井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012151278A priority Critical patent/JP6029876B2/en
Publication of JP2014013129A publication Critical patent/JP2014013129A/en
Application granted granted Critical
Publication of JP6029876B2 publication Critical patent/JP6029876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment method for a heat exchanger, capable of, at a step of cutting a stock solution of a surface treatment film, securely removing an excess stock solution to form the surface treatment film having a uniform thickness.SOLUTION: A surface treatment method for a heat exchanger 1 includes the steps of: applying hydrophilic paint to a surface of the heat exchanger 1 (applying step); spraying an air flow to a fin 4 to remove the hydrophilic paint to adjust an adhesion amount of the hydrophilic paint to be applied to the fin 4 (first liquid cutting step); thereafter, spraying an air flow to a drain part 5 to remove the hydrophilic paint to adjust an adhesion amount of the hydrophilic paint to be applied to the drain part 5 (second liquid cutting step); and then forming a film of the hydrophilic paint (film forming step).

Description

本発明は、熱交換器の表面処理方法に関する。   The present invention relates to a surface treatment method for a heat exchanger.

従来、例えば空気調和機の蒸発器といった熱交換器において、空気中の水蒸気が凝縮することにより熱交換器のフィンの表面に水滴が付着して所謂結露したり、その水滴が霜になり所謂着霜したりすることが懸念されている。これにより、それら水滴及び霜がフィンの表面における熱交換を阻害するとともに熱交換器のフィンの隙間が狭くなり、その隙間を通る空気の抵抗(通風抵抗)が増大する。その結果、フィンの間を通過する空気の量が減少して熱交換器の熱交換効率が低下することが問題となっていた。熱交換器に生じた霜や氷を除去するために除霜運転を実行するという対策も取られているが、除霜運転のために余計なエネルギーを消費してしまうという課題もあった。   Conventionally, in a heat exchanger such as an evaporator of an air conditioner, water vapor adheres to the surface of the fins of the heat exchanger due to condensation of water vapor in the air, so-called condensation occurs, or the water droplets become frost and so-called landing. There is concern about frosting. As a result, the water droplets and frost hinder heat exchange on the surface of the fin, and the gap between the fins of the heat exchanger becomes narrow, and the resistance of the air passing through the gap (ventilation resistance) increases. As a result, there has been a problem that the amount of air passing between the fins decreases and the heat exchange efficiency of the heat exchanger decreases. A measure of performing a defrosting operation to remove frost and ice generated in the heat exchanger is also taken, but there is also a problem that extra energy is consumed for the defrosting operation.

そこで、熱交換器のフィンの表面に親水性の高い塗装を施すという表面処理が提案された。これにより、フィンの表面において水滴が流れ落ちる作用を高めたり、霜が付着するまでの時間を延長させたりしている。   Therefore, a surface treatment has been proposed in which a highly hydrophilic coating is applied to the fin surface of the heat exchanger. Thereby, the effect | action which a water droplet flows down on the surface of a fin is heightened, or the time until frost adheres is extended.

ここで近年、熱交換効率の向上のためにフィンピッチを狭くするなどした複雑な構造を有する熱交換器の開発が進んでいる。例えば、対向させて配置した一対の分流管を分流管の長手方向に沿って配列した複数の伝熱管で連結し、隣り合う伝熱管の間にフィン(例えばコルゲートフィン)を配置して接合した熱交換器が知られている。また、熱交換効率の向上や省冷媒化、高リサイクル性を目指して、すべての構成部材がアルミニウム製の熱交換器も開発が進められている。このようなすべての構成部材がアルミニウム製の熱交換器の表面処理方法としては、組み立てが完了した熱交換器を表面処理膜の原液に浸漬させるディップコート法が知られている。   Here, in recent years, development of a heat exchanger having a complicated structure, such as a narrow fin pitch, has been advanced in order to improve heat exchange efficiency. For example, heat in which a pair of shunt tubes arranged opposite to each other are connected by a plurality of heat transfer tubes arranged along the longitudinal direction of the flow shunt tube, and fins (for example, corrugated fins) are arranged and joined between adjacent heat transfer tubes An exchanger is known. In addition, heat exchangers in which all components are made of aluminum are being developed with the aim of improving heat exchange efficiency, reducing refrigerant, and high recyclability. As a surface treatment method for a heat exchanger in which all such components are made of aluminum, a dip coating method is known in which a heat exchanger that has been assembled is immersed in a stock solution of a surface treatment film.

なお、一般的な熱交換器の表面処理方法としては、ロールコート法やカーテンコート法といった組み立て前に表面処理を行うプレコート法が用いられている。銅製部材とアルミニウム製部材とで構成される一般的な熱交換器は組み立てが拡管処理(非熱処理或いは局所加熱処理)で行われるので、プレコート法による表面処理が好適である。一方、すべての構成部材がアルミニウム製の熱交換器は組み立てが一括ロウ付け(加熱プロセス)で行われる。組み立て前に表面処理を行って一括ロウ付けによる加熱処理を行うと、表面処理剤が変質あるいは昇華してしまう。したがって、すべての構成部材がアルミニウム製の熱交換器の表面処理方法としては、組み立てが完了した後に表面処理を行うディップコート法などのアフターコート法が好適である。   In addition, as a surface treatment method of a general heat exchanger, a precoat method for performing a surface treatment before assembly such as a roll coat method or a curtain coat method is used. Since a general heat exchanger composed of a copper member and an aluminum member is assembled by tube expansion processing (non-heat treatment or local heat treatment), surface treatment by a precoat method is suitable. On the other hand, all the structural members made of aluminum are assembled by batch brazing (heating process). When surface treatment is performed before assembly and heat treatment is performed by batch brazing, the surface treatment agent is altered or sublimated. Therefore, as a surface treatment method for a heat exchanger in which all the constituent members are made of aluminum, an after coating method such as a dip coating method in which the surface treatment is performed after the assembly is completed is preferable.

ディップコート法による熱交換器の表面処理工程では、水洗後の熱交換器を表面処理膜の原液が入った容器に浸漬させる。そして、熱交換器を容器から引き上げた後、液切り処理及び膜化処理(例えば乾燥処理、焼き付け処理)を実行し、表面処理膜の厚さを規格値内に収める方法が採用されている。このような従来の熱交換器の表面処理方法が特許文献1に開示されている。   In the surface treatment process of the heat exchanger by the dip coating method, the heat exchanger after washing with water is immersed in a container containing the stock solution of the surface treatment film. And after pulling up a heat exchanger from a container, the liquid draining process and film-forming process (for example, drying process, baking process) are performed, and the method of keeping the thickness of a surface treatment film within a standard value is employ | adopted. Such a conventional heat exchanger surface treatment method is disclosed in Patent Document 1.

特許文献1に記載された従来の熱交換器の表面処理方法は液切り処理をエアブローによって実行する方法であって、熱交換器を薬液槽から引き上げて液切り処理を行うまでの間に熱交換器を空中で上下に揺動している。これにより、薬液の上面付着量を確保しつつ下面の残留液を除去し、表面処理膜のばらつきをなくして均一化を図っている。   The surface treatment method of the conventional heat exchanger described in Patent Document 1 is a method in which liquid draining is performed by air blow, and heat exchange is performed until the heat exchanger is lifted from the chemical bath and liquid draining is performed. The vessel is rocked up and down in the air. Thus, the remaining liquid on the lower surface is removed while ensuring the amount of the upper surface adhering to the chemical solution, and the surface treatment film is not varied to achieve uniformity.

特開2005−321166号公報JP 2005-321166 A

ここで、上記分流管、伝熱管及びフィンを備える熱交換器において、伝熱管のフィンが接合された領域に対して通風方向の上流側及び下流側の外側の面に、結露水を排水するための排水部を形成した熱交換器がある。このような熱交換器に対して特許文献1に記載された従来の熱交換器の表面処理方法を適用すると、排水部に表面処理膜の原液が残留する虞がある。したがって、排水部に残留した表面処理膜の原液が固化し、結露水の排水経路を塞いでしまうという問題があった。   Here, in the heat exchanger provided with the above-mentioned diversion tube, heat transfer tube, and fins, in order to drain the dew condensation water to the outer surfaces on the upstream side and the downstream side in the ventilation direction with respect to the region where the fins of the heat transfer tube are joined. There is a heat exchanger that forms a drainage section. When the surface treatment method of the conventional heat exchanger described in Patent Document 1 is applied to such a heat exchanger, there is a possibility that the stock solution of the surface treatment film remains in the drainage part. Therefore, there has been a problem that the stock solution of the surface treatment film remaining in the drainage part solidifies and blocks the drainage path of the condensed water.

本発明は、上記の点に鑑みなされたものであり、熱交換器の表面に結露水の排水を助長する表面処理膜を形成するに際し、表面処理膜の原液の液切り工程において余分な原液を確実に除去することができ、均一な厚さの表面処理膜を形成することが可能な熱交換器の表面処理方法を提供することを目的とする。   The present invention has been made in view of the above points, and when forming a surface treatment film that promotes drainage of condensed water on the surface of the heat exchanger, an extra stock solution is removed in the step of draining the stock solution of the surface treatment film. It is an object of the present invention to provide a surface treatment method for a heat exchanger that can be reliably removed and can form a surface treatment film having a uniform thickness.

上記の課題を解決するため、本発明は、対向する一対の分流管を複数の伝熱管で接続し、隣り合う前記伝熱管の間にフィンを配置して接合し、前記伝熱管の通風方向上流側及び下流側の外面に結露水を排水するための排水部を形成した熱交換器の表面に結露水の排水を助長する表面処理膜を形成する熱交換器の表面処理方法であって、前記熱交換器の表面に前記表面処理膜の原液を塗布する塗布工程と、前記フィンに空気流を吹き付けて前記原液を除去し、前記フィンへの前記原液の付着量を調整する第一液切り工程と、前記第一液切り工程の後、前記排水部に空気流を吹き付けて前記原液を除去し、前記排水部への前記原液の付着量を調整する第二液切り工程と、前記原液を膜化させる膜化工程と、を有することを特徴としている。   In order to solve the above-mentioned problem, the present invention connects a pair of opposing shunt tubes with a plurality of heat transfer tubes, and arranges and joins fins between the adjacent heat transfer tubes, upstream of the heat transfer tubes in the ventilation direction. A surface treatment method for a heat exchanger that forms a surface treatment film that promotes drainage of dew condensation water on the surface of a heat exchanger that has formed a drainage portion for draining dew condensation water on the outer surface of the side and downstream side, An application step of applying the surface treatment film undiluted solution to the surface of the heat exchanger, and a first liquid removing step of adjusting the amount of the undiluted solution adhering to the fins by removing the undiluted solution by blowing an air flow onto the fins. And after the first liquid draining step, a second liquid draining step of removing the stock solution by blowing an air flow to the drainage portion and adjusting the amount of the stock solution adhering to the drainage portion; And a film forming step.

この構成によれば、第一液切り工程でフィンの余分な原液が除去され、その後第二液切り工程で排水部の余分な原液が除去される。したがって、フィンの余分な原液が排水部に移動して排水部で残留することが妨げられる。   According to this structure, the excess stock solution of the fin is removed in the first liquid draining step, and then the excessive stock solution of the drainage part is removed in the second liquid draining step. Therefore, the excess stock solution of fins is prevented from moving to the drainage part and remaining in the drainage part.

また、上記構成の熱交換器の表面処理方法において、前記第一液切り工程は、前記熱交換器の前記フィンに対する通風方向上流側または下流側のいずれかから前記フィンに空気流を吹き付けて前記原液を除去し、前記第二液切り工程は、前記熱交換器の前記フィンに対する通風方向上流側及び下流側の双方から前記排水部に空気流を吹き付けて前記原液を除去することを特徴としている。   Moreover, in the surface treatment method for a heat exchanger having the above-described configuration, the first liquid draining step blows an air flow to the fin from either the upstream side or the downstream side in the ventilation direction with respect to the fin of the heat exchanger. The stock solution is removed, and the second liquid draining step is characterized in that the stock solution is removed by blowing an air flow from both the upstream side and the downstream side in the ventilation direction of the heat exchanger with respect to the fins. .

この構成によれば、フィンに対して短時間で確実に余分な原液の液切りが実行される。また、伝熱管の通風方向上流側及び下流側の外面に形成された排水部に対して短時間で確実に余分な原液の液切りが実行される。   According to this configuration, the excess stock solution is reliably removed from the fins in a short time. Further, the excess stock solution is reliably removed in a short time with respect to the drainage portions formed on the outer surfaces of the heat transfer tubes on the upstream side and the downstream side in the ventilation direction.

また、上記構成の熱交換器の表面処理方法において、前記第二液切り工程は、空気流の吹き付け強さが前記第一液切り工程より弱いことを特徴としている。   In the heat exchanger surface treatment method having the above-described configuration, the second liquid draining step is characterized in that the blowing strength of the air flow is weaker than the first liquid draining step.

この構成によれば、液切り工程におけるフィンに対する空気流の吹き付け強さより、排水部に対する空気流の吹き付け強さのほうが弱い。したがって、排水部から除去された余分な原液がフィン側に移動することが抑制される。   According to this structure, the blowing strength of the airflow with respect to a drainage part is weaker than the blowing strength of the airflow with respect to the fin in a liquid removal process. Therefore, it is suppressed that the excess stock solution removed from the drainage part moves to the fin side.

また、上記構成の熱交換器の表面処理方法において、前記第一液切り工程及び前記第二液切り工程は、前記伝熱管が延びる方向に関して局部的に前記フィン及び前記排水部に空気流を吹き付けるノズルを前記伝熱管が延びる方向に沿って移動させ、前記フィン及び前記排水部の全域にわたって空気流を吹き付けることを特徴としている。   Moreover, in the surface treatment method for a heat exchanger having the above-described configuration, the first liquid draining step and the second liquid draining step blow an air flow locally on the fins and the drainage portion in a direction in which the heat transfer tube extends. The nozzle is moved along the direction in which the heat transfer tube extends, and an air flow is blown over the entire area of the fins and the drainage section.

この構成によれば、フィン及び排水部において容易に且つ確実に余分な原液が除去される。   According to this configuration, excess stock solution is easily and reliably removed from the fins and the drainage section.

また、上記構成の熱交換器の表面処理方法において、前記第一液切り工程及び前記第二液切り工程は、対向する一対の前記分流管の間の中間部から一対の前記分流管各々に向かって前記ノズルを移動させることを特徴としている。   In the heat exchanger surface treatment method having the above-described configuration, the first liquid draining step and the second liquid draining step may be performed from an intermediate portion between the pair of opposing branch pipes toward each of the pair of branch pipes. And moving the nozzle.

この構成によれば、熱交換器の熱交換効率の向上に最も寄与する一対の分流管の間の中間部から一対の分流管各々に向かって空気流の吹き付け領域が移動する。したがって、一対の分流管の間の中間部において確実にフィン及び排水部の余分な原液が除去される。   According to this configuration, the air flow blowing region moves from the intermediate portion between the pair of flow dividing tubes that contributes most to the improvement of the heat exchange efficiency of the heat exchanger toward each of the pair of flow dividing tubes. Accordingly, the excess stock solution of the fins and the drainage part is reliably removed at the intermediate part between the pair of flow dividing pipes.

本発明の構成によれば、熱交換器の表面に結露水の排水を助長する表面処理膜を形成するに際し、表面処理膜の原液の液切り工程において余分な原液を確実に除去することができ、均一な厚さの表面処理膜を形成することが可能な熱交換器の表面処理方法を提供することができる。   According to the configuration of the present invention, when forming a surface treatment film that promotes drainage of condensed water on the surface of the heat exchanger, it is possible to reliably remove excess stock solution in the step of draining the stock solution of the surface treatment film. It is possible to provide a surface treatment method for a heat exchanger that can form a surface treatment film having a uniform thickness.

本発明の第1実施形態の熱交換器の表面処理方法を説明するための熱交換器を示す外観概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is an external appearance schematic diagram which shows the heat exchanger for demonstrating the surface treatment method of the heat exchanger of 1st Embodiment of this invention. 図1に示す熱交換器のII−II線における垂直断面部分拡大図である。It is the vertical cross-section part enlarged view in the II-II line of the heat exchanger shown in FIG. 本発明の第1実施形態の熱交換器の表面処理方法を説明するための熱交換器の外観部分拡大図である。It is the external appearance partial enlarged view of the heat exchanger for demonstrating the surface treatment method of the heat exchanger of 1st Embodiment of this invention. 本発明の第1実施形態の熱交換器の表面処理方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the surface treatment method of the heat exchanger of 1st Embodiment of this invention. 本発明の第1実施形態の熱交換器の表面処理方法における熱交換器の薬液への浸漬を示す概略説明図である。It is a schematic explanatory drawing which shows the immersion to the chemical | medical solution of the heat exchanger in the surface treatment method of the heat exchanger of 1st Embodiment of this invention. 本発明の第1実施形態の熱交換器の表面処理方法の第一液切り工程または第二液切り工程を示す概略説明図である。It is a schematic explanatory drawing which shows the 1st liquid removal process or the 2nd liquid removal process of the surface treatment method of the heat exchanger of 1st Embodiment of this invention. 本発明の第1実施形態の熱交換器の表面処理方法の第一液切り工程を説明するための垂直断面部分拡大図である。It is a vertical cross-section part enlarged view for demonstrating the 1st liquid removal process of the surface treatment method of the heat exchanger of 1st Embodiment of this invention. 本発明の第1実施形態の熱交換器の表面処理方法の第二液切り工程を説明するための垂直断面部分拡大図である。It is a vertical cross-section part enlarged view for demonstrating the 2nd liquid removal process of the surface treatment method of the heat exchanger of 1st Embodiment of this invention. 本発明の第2実施形態の熱交換器の表面処理方法の第一液切り工程または第二液切り工程を示す概略説明図である。It is a schematic explanatory drawing which shows the 1st liquid removal process or the 2nd liquid removal process of the surface treatment method of the heat exchanger of 2nd Embodiment of this invention.

以下、本発明の実施形態を図1〜図9に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

<第1実施形態>
最初に、本発明の第1実施形態の熱交換器の表面処理方法を説明するに先立って、当該表面処理方法が適用される熱交換器について、図1〜図3を用いてその構造の概略を説明する。図1は熱交換器の外観概略図、図2は図1に示す熱交換器のII−II線における垂直断面部分拡大図、図3は熱交換器の外観部分拡大図である。なお、以下の説明では、図1における左右方向をX方向とし、上下方向をY方向とし、紙面奥行き方向をZ方向として説明する。図2及び図3のX方向、Y方向及びZ方向は図1の各方向と同じ方向を示す。
<First Embodiment>
First, prior to describing the surface treatment method for a heat exchanger according to the first embodiment of the present invention, a schematic structure of the heat exchanger to which the surface treatment method is applied will be described with reference to FIGS. Will be explained. FIG. 1 is a schematic external view of a heat exchanger, FIG. 2 is a partially enlarged view of a vertical section taken along line II-II of the heat exchanger shown in FIG. 1, and FIG. In the following description, the left-right direction in FIG. 1 is defined as the X direction, the up-down direction is defined as the Y direction, and the depth direction on the paper is defined as the Z direction. The X direction, Y direction, and Z direction in FIGS. 2 and 3 indicate the same directions as those in FIG.

熱交換器1は、図1〜図3に示すように2本の分流管2と、複数の伝熱管3と、フィン4と、排水部5とを備えている。   As shown in FIGS. 1 to 3, the heat exchanger 1 includes two branch pipes 2, a plurality of heat transfer pipes 3, fins 4, and a drainage unit 5.

分流管2、伝熱管3、フィン4及び排水部5は熱伝導性が比較的高く安価であり、加工性が良好であるなどのメリットを有している例えばアルミニウム、アルミニウム合金で形成されている。なお、これらの構成要素の材料はアルミニウムやアルミニウム合金に限定されるわけではなく、その他、金、銅などといった熱伝導性が比較的高い金属を任意に用いても良いし、要素ごとに材料を替えても良い。   The diverter tube 2, the heat transfer tube 3, the fins 4 and the drainage part 5 are formed of, for example, aluminum or aluminum alloy having advantages such as relatively high thermal conductivity, low cost, and good workability. . Note that the material of these constituent elements is not limited to aluminum or aluminum alloy, and other metals having a relatively high thermal conductivity such as gold and copper may be arbitrarily used. You may change.

2本、すなわち対向する一対の分流管2は互いに図1においてY方向に延び、X方向に所定の間隔を空けて平行に配置されている。2本の分流管2は各々配管部6を介して不図示の異なる配管に連結されている。分流管2は内部に冷媒が流通可能な流路が形成され、配管部6に連通している。   Two, that is, a pair of opposing shunt pipes 2 extend in the Y direction in FIG. 1 and are arranged in parallel at a predetermined interval in the X direction. The two shunt pipes 2 are connected to different pipes (not shown) via pipe sections 6 respectively. The flow dividing pipe 2 is formed with a flow path through which the refrigerant can flow and communicates with the pipe section 6.

複数の伝熱管3は図1においてX方向に延び、Y方向に所定の間隔を空けて平行に配列されている。各伝熱管3は図1におけるX方向両端が2本の分流管2各々に接続されている。伝熱管3は、図2に示すように内部に冷媒が流通可能な流路3aが形成され、分流管2に連通している。   The plurality of heat transfer tubes 3 extend in the X direction in FIG. 1 and are arranged in parallel at a predetermined interval in the Y direction. Each heat transfer tube 3 is connected to two shunt tubes 2 at both ends in the X direction in FIG. As shown in FIG. 2, the heat transfer tube 3 is formed with a flow passage 3 a through which a refrigerant can flow and communicates with the flow dividing tube 2.

各伝熱管3は図1におけるY方向の厚みに対してZ方向の幅が広い偏平な形状をなしている(図2参照)。伝熱管3は図2に示すようにZ方向に沿った断面形状及び断面面積が等しい複数の流路3aを有し、それら複数の流路3aがZ方向に配列されている。   Each heat transfer tube 3 has a flat shape with a width in the Z direction wider than the thickness in the Y direction in FIG. 1 (see FIG. 2). As shown in FIG. 2, the heat transfer tube 3 has a plurality of flow paths 3a having the same cross-sectional shape and cross-sectional area along the Z direction, and the plurality of flow paths 3a are arranged in the Z direction.

フィン4は図1におけるY方向に隣り合う伝熱管3どうしの間に配置され、伝熱管3に接合されている。フィン4は平板を波形状(コルゲート形状)に成形した部材である。波形状をなすフィン4は図1における山の頂部が上側の伝熱管3に接触し、谷の底部が下側の伝熱管3に接触するように設けられている。フィン4は波形状をなすことにより外部空気との接触面積が広くなる。なお、熱交換器1に対する通風方向は図1及び図2におけるZ方向(図2では実線矢印が指す方向)である。また、フィン4は波形状をなすコルゲートフィンのほか、例えばプレートフィンやルーバーフィンなど他の形状で構成されていても良い。   The fins 4 are disposed between the heat transfer tubes 3 adjacent in the Y direction in FIG. 1 and are joined to the heat transfer tubes 3. The fin 4 is a member obtained by forming a flat plate into a wave shape (corrugated shape). The corrugated fin 4 is provided such that the top of the mountain in FIG. 1 is in contact with the upper heat transfer tube 3 and the bottom of the valley is in contact with the lower heat transfer tube 3. The fin 4 has a corrugated shape, thereby increasing the contact area with the external air. In addition, the ventilation direction with respect to the heat exchanger 1 is the Z direction in FIG.1 and FIG.2 (the direction which a solid line arrow points in FIG. 2). In addition to corrugated fins having a wave shape, the fins 4 may be configured in other shapes such as plate fins and louver fins.

排水部5は、図2及び図3に示すように伝熱管3の通風方向の上流側及び下流側の外面に形成されている。排水部5は伝熱管3の外面から通風方向外側に向かって突出するように取り付けられた長方形状をなす複数のプレート5aで構成されている。複数のプレート5aは伝熱管3の冷媒流通方向に沿って配列されている。また、個々のプレート5aは図3に示すように通風方向から見ると、伝熱管3の冷媒流通方向(X方向)に対して所定角度、例えば21°の傾斜を設けて伝熱管3に取り付けられている。フィン4の表面で発生し、フィン4の表面を伝った結露水は排水部5に導かれて熱交換器1の外部に滴下する。   The drainage part 5 is formed in the outer surface of the upstream and downstream of the ventilation direction of the heat exchanger tube 3, as shown in FIG.2 and FIG.3. The drainage part 5 is comprised by the some plate 5a which makes the rectangular shape attached so that it might protrude toward the ventilation direction outer side from the outer surface of the heat exchanger tube 3. As shown in FIG. The plurality of plates 5 a are arranged along the refrigerant flow direction of the heat transfer tube 3. Further, as shown in FIG. 3, each plate 5 a is attached to the heat transfer tube 3 with a predetermined angle, for example, 21 °, with respect to the refrigerant flow direction (X direction) of the heat transfer tube 3 when viewed from the ventilation direction. ing. Condensed water generated on the surface of the fin 4 and transmitted through the surface of the fin 4 is guided to the drainage unit 5 and dripped outside the heat exchanger 1.

分流管2、伝熱管3、フィン4及び排水部5は各々ロウ付け処理により接続されている。これにより、熱交換器1の内部を流通する冷媒の漏洩を防止することができ、伝熱管3とフィン4との間の熱伝導の効率を高めることができ、フィン4から排水部5への排水の効率を高めることができる。なお、各々ロウ付け処理に代えて、溶射処理や熱拡張、溶接などの接続処理方法を用いて各構成要素を連結しても良い。   The flow dividing pipe 2, the heat transfer pipe 3, the fin 4 and the drainage part 5 are connected by brazing. Thereby, the leakage of the refrigerant | coolant which distribute | circulates the inside of the heat exchanger 1 can be prevented, the efficiency of the heat conduction between the heat exchanger tube 3 and the fin 4 can be improved, and the fin 4 to the drainage part 5 can be improved. The efficiency of drainage can be increased. In addition, it may replace with each brazing process and may connect each component using connection processing methods, such as a thermal spraying process, thermal expansion, and welding.

上記構成の熱交換器1に対して一方の配管部6から冷媒を注入すると、その配管部6に連結された分流管2の内部に冷媒が流通する。分流管2内部を流通する冷媒は続いて複数の伝熱管3各々の複数の流路3aに分かれて流入する。伝熱管3の内部の流路3aを流通する冷媒は伝熱管3及びフィン4を介して熱交換器1の外部の空気と熱交換を行う。例えば、熱交換器1を蒸発器として用いる場合、冷媒は外部の空気から熱を奪う。一方、熱交換器1を凝縮器として用いる場合、冷媒は外部の空気に対して熱を放出する。   When the refrigerant is injected into the heat exchanger 1 having the above-described configuration from one of the pipe portions 6, the refrigerant flows through the shunt pipe 2 connected to the pipe portion 6. The refrigerant flowing through the inside of the branch pipe 2 is then divided and flows into the plurality of flow paths 3a of the plurality of heat transfer pipes 3 respectively. The refrigerant flowing through the flow path 3 a inside the heat transfer tube 3 exchanges heat with the air outside the heat exchanger 1 through the heat transfer tube 3 and the fins 4. For example, when the heat exchanger 1 is used as an evaporator, the refrigerant takes heat from outside air. On the other hand, when the heat exchanger 1 is used as a condenser, the refrigerant releases heat to the outside air.

熱交換器1は、例えば空気調和機に用いられる熱サイクルの室外側ユニットの熱交換器(蒸発器)や冷却庫の冷却装置の蒸発器として用いられる。このとき、熱交換器1の表面の温度が外部の空気の露点よりも低くなると、熱交換器1の表面に結露が発生する。熱交換器1の表面の温度がさらに低くなると、結露した水分が凍結し霜が発生(着霜)する。このような着霜が発生すると、フィン4の隙間が霜で埋まって狭くなり、空気の流れが阻害される可能性が高くなる。その結果、熱交換器1の熱交換効率が低下する虞がある。   The heat exchanger 1 is used as, for example, a heat exchanger (evaporator) of an outdoor unit of a heat cycle used for an air conditioner or an evaporator of a cooling device of a refrigerator. At this time, if the temperature of the surface of the heat exchanger 1 becomes lower than the dew point of the external air, condensation occurs on the surface of the heat exchanger 1. When the temperature of the surface of the heat exchanger 1 is further lowered, the condensed moisture is frozen and frost is generated (frosting). When such frost formation occurs, the gaps between the fins 4 are filled with frost and become narrower, and the possibility that the air flow is hindered increases. As a result, the heat exchange efficiency of the heat exchanger 1 may be reduced.

このような問題を解決するため、熱交換器1、すなわち分流管2、伝熱管3、フィン4及び排水部5にはその表面で発生した結露水の排水を助長する表面処理膜が形成されている。表面処理膜としては、例えば親水性塗膜が採用される。   In order to solve such problems, the heat exchanger 1, that is, the diverter tube 2, the heat transfer tube 3, the fin 4 and the drainage portion 5 are formed with a surface treatment film for promoting drainage of condensed water generated on the surface thereof. Yes. As the surface treatment film, for example, a hydrophilic coating film is employed.

室外側ユニットに設けられた熱交換器1で熱交換を行うと、熱交換器1の表面、すなわち分流管2、伝熱管3、フィン4及び排水部5の表面に結露水が付着する。分流管2、伝熱管3、フィン4及び排水部5の表面には親水性塗膜が形成されており、付着した結露水が水膜となって流れる。親水性塗膜の上の水は接触角が小さく、膜厚が薄い。これにより、フィン4の隙間のように間隙が狭い場合でも隣り合うフィン4の表面に付着した水が接触し難く、隣り合うフィン4の間でブリッジが形成され難い。このように、熱交換器1に親水性塗膜が形成されていることで熱交換器1の表面に結露水が残留し難くなる。   When heat exchange is performed by the heat exchanger 1 provided in the outdoor unit, condensed water adheres to the surface of the heat exchanger 1, that is, the surfaces of the branch pipe 2, the heat transfer pipe 3, the fins 4, and the drainage section 5. A hydrophilic coating film is formed on the surfaces of the branch pipe 2, the heat transfer pipe 3, the fins 4 and the drainage part 5, and the attached condensed water flows as a water film. Water on the hydrophilic coating film has a small contact angle and a thin film thickness. As a result, even when the gap is narrow like the gap between the fins 4, the water adhering to the surface of the adjacent fin 4 is difficult to contact, and a bridge is not easily formed between the adjacent fins 4. Thus, the formation of the hydrophilic coating film on the heat exchanger 1 makes it difficult for dew condensation water to remain on the surface of the heat exchanger 1.

親水性塗膜の上では付着した結露水がゆっくりであるが動き続けるので、結露水が凍結し難い。そして、フィン4の表面で発生し、フィン4の表面を伝った結露水は排水部5に導かれて熱交換器1の外部に滴下する。このように、表面に親水性塗膜が形成された熱交換器1では結露が発生するが、結露水の排水が助長されて着霜が発生し難くなっている。   Since the condensed water adhering to the hydrophilic coating film is slow but keeps moving, the condensed water is difficult to freeze. And the dew condensation water which generate | occur | produced on the surface of the fin 4 and transmitted along the surface of the fin 4 is guide | induced to the waste_water | drain part 5, and is dripped outside the heat exchanger 1. As described above, in the heat exchanger 1 having a hydrophilic coating film formed on the surface, condensation occurs, but the drainage of condensed water is promoted and frost formation is difficult to occur.

一方、親水性塗膜に替えて撥水性塗膜を熱交換器1の表面に形成する場合もある。撥水性塗膜を形成した場合、結露水と熱交換器1の表面との接触面積が小さくなるので、結露水がわずかであっても熱交換器1の外部に放出される。これにより、フィン4の隙間のように間隙が狭い場合でもブリッジが形成され難く、結露水が残留し難い。このように、熱交換器1の表面に撥水性塗膜を形成した場合も、親水性塗膜を形成した場合と同様、結露水の排水が助長されて着霜が発生し難くなる。   On the other hand, a water-repellent coating film may be formed on the surface of the heat exchanger 1 instead of the hydrophilic coating film. When the water-repellent coating film is formed, the contact area between the dew condensation water and the surface of the heat exchanger 1 is reduced, so that even a small amount of dew condensation water is released to the outside of the heat exchanger 1. Thereby, even when the gap is narrow like the gap of the fins 4, it is difficult to form a bridge and it is difficult for dew condensation water to remain. Thus, also when a water-repellent coating film is formed on the surface of the heat exchanger 1, drainage of condensed water is promoted and frost formation is less likely to occur as in the case where a hydrophilic coating film is formed.

次に、熱交換器1の表面処理方法について、図4に示す手順に沿って、図5〜図8を用いて説明する。図4は熱交換器1の表面処理方法の手順を示すフローチャートである。図5は熱交換器1の表面処理方法における熱交換器1の薬液への浸漬を示す概略説明図、図6は第一液切り工程または第二液切り工程を示す概略説明図、図7は第一液切り工程を説明するための垂直断面部分拡大図、図8は第二液切り工程を説明するための垂直断面部分拡大図である。   Next, the surface treatment method of the heat exchanger 1 will be described using FIGS. 5 to 8 along the procedure shown in FIG. FIG. 4 is a flowchart showing the procedure of the surface treatment method of the heat exchanger 1. FIG. 5 is a schematic explanatory view showing immersion of the heat exchanger 1 in the chemical solution in the surface treatment method of the heat exchanger 1, FIG. 6 is a schematic explanatory view showing the first liquid draining step or the second liquid draining step, and FIG. FIG. 8 is a partially enlarged view of a vertical cross section for explaining the second liquid draining process, and FIG. 8 is a partially enlarged vertical cross section for explaining the second liquid draining process.

なお、図5は後述する脱脂工程、下地処理工程及び親水性塗料塗布工程における熱交換器1の薬液Mへの浸漬の状況を説明する図であって、容器Vに貯留された薬液Mはそれぞれの工程において異なる。また、図6〜図8のX方向、Y方向及びZ方向は図1の各方向と同じ方向を示す。   In addition, FIG. 5 is a figure explaining the condition of the immersion to the chemical | medical solution M of the heat exchanger 1 in the degreasing | defatting process mentioned later, a base treatment process, and a hydrophilic coating application process, Comprising: The chemical | medical solution M stored in the container V is respectively In the process. Moreover, the X direction, Y direction, and Z direction of FIGS. 6-8 show the same direction as each direction of FIG.

ここで、熱交換器1の表面処理に先立って、熱交換器1の組み立てが完了しているものとする。熱交換器1は分流管2、伝熱管3、フィン4及び排水部5が予め決められた形状(図1〜図3参照)に組み立てられ、各部材の接合部分がロウ付け処理等の接続方法で固定される。   Here, it is assumed that the assembly of the heat exchanger 1 is completed prior to the surface treatment of the heat exchanger 1. In the heat exchanger 1, the shunt pipe 2, the heat transfer pipe 3, the fins 4 and the drainage part 5 are assembled in a predetermined shape (see FIGS. 1 to 3), and the joining portion of each member is connected by a brazing method or the like. It is fixed with.

熱交換器1の組み立てが完了すると、熱交換器1の表面処理が実行される。熱交換器1の表面処理としてはディップコート法を採用している。   When the assembly of the heat exchanger 1 is completed, the surface treatment of the heat exchanger 1 is performed. As a surface treatment of the heat exchanger 1, a dip coating method is adopted.

熱交換器1の表面処理を開始すると(図4のスタート)、熱交換器1の表面の油分などを除去する脱脂工程を実行する(図4のステップ#101)。脱脂工程は、図5における薬液Mとして強アルカリ脱脂剤が貯留された容器Vに組み立てが完了した熱交換器1を浸漬することによって実行される。   When the surface treatment of the heat exchanger 1 is started (start of FIG. 4), a degreasing process for removing oil and the like on the surface of the heat exchanger 1 is executed (step # 101 of FIG. 4). The degreasing step is performed by immersing the heat exchanger 1 that has been assembled in a container V in which a strong alkaline degreasing agent is stored as the chemical solution M in FIG.

脱脂工程では熱交換器1を60℃の温度の市販の強アルカリ脱脂剤(例えば日本パーカライジング社製脱脂剤)の2%溶液中に2分間浸漬して脱脂処理を行う。この脱脂処理により、熱交換器1の金属材料表面の油分などの汚れを除去し、後に形成する親水性塗膜を滑らかな均一な塗膜として形成することができる。   In the degreasing step, the heat exchanger 1 is degreased by immersing it in a 2% solution of a commercially available strong alkaline degreasing agent (for example, a degreasing agent manufactured by Nippon Parkerizing Co., Ltd.) at a temperature of 60 ° C. for 2 minutes. By this degreasing treatment, dirt such as oil on the surface of the metal material of the heat exchanger 1 can be removed, and a hydrophilic coating film to be formed later can be formed as a smooth and uniform coating film.

脱脂工程の後、洗浄工程を実行する(ステップ#102)。この洗浄工程では上水または純水により熱交換器1を水洗して脱脂剤を洗い流す。   After the degreasing process, a cleaning process is executed (step # 102). In this washing step, the heat exchanger 1 is washed with clean water or pure water to wash away the degreasing agent.

続いて、熱交換器1の表面に耐食性、耐錆性などを付与する下地処理工程を実行する(ステップ#103)。下地処理工程は、図5における薬液Mとして化成処理剤溶液が貯留された容器Vに脱脂処理が施された熱交換器1を浸漬することによって実行される。   Subsequently, a ground treatment process for imparting corrosion resistance, rust resistance and the like to the surface of the heat exchanger 1 is executed (step # 103). The ground treatment step is performed by immersing the heat exchanger 1 subjected to the degreasing treatment in the container V in which the chemical conversion agent solution is stored as the chemical solution M in FIG.

下地処理工程では熱交換器1を70℃の温度の市販の化成処理剤溶液(例えば日本パーカライジング社製化成剤をpH4に調整したもの)中に2分間浸漬することによって化成処理を実施してジルコニア酸化物皮膜による下地膜を形成する。この下地膜により熱交換器1に耐食性、耐錆性などを付与する。下地膜の形成方法はこのような酸による化成処理に限らず、エッチング、酸化、金属蒸着などの方法を用いて下地膜を形成しても良い。   In the ground treatment step, the heat exchanger 1 is subjected to chemical conversion treatment by immersing it in a commercially available chemical conversion solution at a temperature of 70 ° C. (for example, a chemical conversion agent manufactured by Nihon Parkerizing Co., Ltd. adjusted to pH 4) for 2 minutes. A base film is formed by an oxide film. This base film imparts corrosion resistance, rust resistance, and the like to the heat exchanger 1. The formation method of the base film is not limited to such a chemical conversion treatment with an acid, and the base film may be formed using a method such as etching, oxidation, or metal vapor deposition.

化成処理後、洗浄工程を実行する(ステップ#104)。この洗浄工程では純水により熱交換器1を水洗して化成処理剤を洗い流す。   After the chemical conversion treatment, a cleaning process is executed (step # 104). In this washing step, the heat exchanger 1 is washed with pure water to wash away the chemical conversion treatment agent.

続いて、熱交換器1の表面に親水性塗膜の原液である塗料を塗布する親水性塗料塗布工程を実行する(ステップ#105)。親水性塗料塗布工程は、図5における薬液Mとして親水性塗料が貯留された容器Vに下地処理が施された熱交換器1を浸漬することによって実行される。   Subsequently, a hydrophilic paint coating process is performed in which a paint that is a stock solution of the hydrophilic coating film is applied to the surface of the heat exchanger 1 (step # 105). The hydrophilic coating application step is executed by immersing the heat exchanger 1 subjected to the base treatment in a container V in which the hydrophilic coating is stored as the chemical solution M in FIG.

親水性塗料塗布工程では熱交換器1を親水性塗料(例えば関西ペイント社製SX−01など)中に浸漬して引き上げた後、所定の膜厚になるように膜厚管理を行う。膜厚の管理は親水性塗料の塗布処理の前後における熱交換器1の重量変化量により管理する。重量管理を行う方法としては、親水性塗料の固形分濃度及び密度、熱交換器1の表面積からウェット時の塗布重量を算出し(例えばSX−01の場合、1.2g/m2)、その重量を初期重量から増加した重量として合算する。 In the hydrophilic coating application step, the heat exchanger 1 is dipped in a hydrophilic coating (for example, SX-01 manufactured by Kansai Paint Co., Ltd.) and pulled up, and then the film thickness is controlled so that a predetermined film thickness is obtained. The management of the film thickness is controlled by the amount of change in weight of the heat exchanger 1 before and after the coating treatment with the hydrophilic paint. As a method for weight management, the wet coating weight is calculated from the solid content concentration and density of the hydrophilic coating and the surface area of the heat exchanger 1 (for example, 1.2 g / m 2 in the case of SX-01), The weight is added as the weight increased from the initial weight.

続いて、熱交換器1の表面に塗布された親水性塗料の膜厚を調整するための液切り工程を実行する(ステップ#106及びステップ#107)。液切り工程では熱交換器1のフィン4及び排水部5に空気流を吹き付けて余分な塗料を除去し、重量測定して所望の膜厚に相当する重量になるようにする。   Subsequently, a liquid draining process for adjusting the film thickness of the hydrophilic paint applied to the surface of the heat exchanger 1 is executed (step # 106 and step # 107). In the liquid draining process, an air flow is blown onto the fins 4 and the drainage part 5 of the heat exchanger 1 to remove excess paint, and the weight is measured to obtain a weight corresponding to a desired film thickness.

液切り工程では、図6〜図8に示すように熱交換器1のフィン4に対する通風方向(図のZ方向)の上流側及び/または下流側からフィン4または排水部5に空気流を吹き付けて余分な塗料を除去する。また、液切り工程では、図6に示すように伝熱管3が延びる方向(図のX方向)に関して局部的にフィン4及び排水部5に空気流を吹き付けるノズル101を有する吹き付け部100を伝熱管3が延びる方向(X方向)に沿って移動させる。これにより、フィン4及び排水部5の全域にわたって空気流を吹き付ける。なお、図6〜図8では吹き付け部100の移動方向を白抜き矢印で描画し、空気流の流通方向を実線矢印で描画している。   In the liquid draining process, as shown in FIGS. 6 to 8, an air flow is blown from the upstream side and / or the downstream side in the ventilation direction (Z direction in the figure) to the fin 4 of the heat exchanger 1 to the fin 4 or the drainage unit 5. Remove excess paint. Further, in the liquid draining step, as shown in FIG. 6, the blowing unit 100 having the nozzle 101 that blows an air flow locally on the fins 4 and the drainage unit 5 in the direction in which the heat transfer tube 3 extends (X direction in the figure) is used as the heat transfer tube. It moves along the direction (X direction) where 3 extends. Thereby, an air flow is sprayed over the whole area of the fin 4 and the drainage part 5. 6-8, the moving direction of the spraying part 100 is drawn by the white arrow, and the distribution | circulation direction of an airflow is drawn by the solid line arrow.

そして、液切り工程は、図4に示すように第一液切り工程(ステップ#106)と第二液切り工程(ステップ#107)とを有し、第一液切り工程の後に第二液切り工程を実行する。   Then, as shown in FIG. 4, the liquid draining process includes a first liquid draining process (step # 106) and a second liquid draining process (step # 107), and the second liquid draining process is performed after the first liquid draining process. Execute the process.

第一液切り工程は、図7に示すように熱交換器1のフィン4に対する通風方向(図7のZ方向)の上流側または下流側のいずれかからフィン4に空気流を吹き付けて余分な塗料を除去する。空気流の吹き付けにはフィン4の部分のみに空気流が送り出される第一ノズル101aが利用される。   In the first liquid draining step, as shown in FIG. 7, an excess air flow is blown onto the fin 4 from either the upstream side or the downstream side in the ventilation direction (Z direction in FIG. 7) with respect to the fin 4 of the heat exchanger 1. Remove paint. The first nozzle 101a from which the air flow is sent out only to the fins 4 is used for blowing the air flow.

第二液切り工程は、図8に示すように熱交換器1のフィン4に対する通風方向(図8のZ方向)の上流側及び下流側の双方から排水部5に空気流を吹き付けて余分な塗料を除去する。空気流の吹き付けには排水部5の部分のみに空気流が送り出される第二ノズル101bが利用される。なお、第二液切り工程は空気流の吹き付け強さが第一液切り工程より弱くなっている。   In the second liquid draining step, as shown in FIG. 8, an excess air flow is blown to the drainage part 5 from both the upstream side and the downstream side in the ventilation direction (Z direction in FIG. 8) with respect to the fins 4 of the heat exchanger 1. Remove paint. The second nozzle 101b from which the air flow is sent out only to the drainage portion 5 is used for blowing the air flow. In the second liquid draining process, the blowing strength of the air flow is weaker than that in the first liquid draining process.

続いて、熱交換器1の表面の親水性塗料を膜化させる膜化工程を実行する(ステップ#108)。膜化工程では熱交換器1を100℃の乾燥装置内で10分間焼成させて親水性塗料を膜化させる。なお、親水性塗料としては熱硬化性、光硬化性などを有し、いずれの性質を備えた塗料を用いても構わない。膜化工程において、熱硬化性の親水性塗料を用いている場合には熱交換器1を加熱する乾燥装置を用い、光硬化性の親水性塗料を用いている場合には親水性塗料の硬化に必要な波長の光を照射する乾燥装置を用いる。   Subsequently, a film forming process for forming a hydrophilic paint on the surface of the heat exchanger 1 is executed (step # 108). In the film forming step, the heat exchanger 1 is baked in a drying apparatus at 100 ° C. for 10 minutes to form a hydrophilic paint. In addition, as a hydrophilic coating material, it has thermosetting property, photocuring property, etc., You may use the coating material provided with any property. In the film forming process, when a thermosetting hydrophilic paint is used, a drying device that heats the heat exchanger 1 is used. When a photocurable hydrophilic paint is used, the hydrophilic paint is cured. A drying apparatus that irradiates light having a wavelength necessary for the above is used.

膜化工程が完了すると、熱交換器1の表面処理は終了となる(図4のエンド)。   When the film forming step is completed, the surface treatment of the heat exchanger 1 is finished (end in FIG. 4).

上記のように、分流管2、伝熱管3、フィン4及び排水部5を有する熱交換器1の表面に結露水の排水を助長する表面処理膜を形成する熱交換器1の表面処理方法は、親水性塗料塗布工程と、フィン4に空気流を吹き付けて塗料を除去し、フィン4への塗料の付着量を調整する第一液切り工程と、第一液切り工程の後、排水部5に空気流を吹き付けて塗料を除去し、排水部5への塗料の付着量を調整する第二液切り工程と、膜化工程とを有する。これにより、第一液切り工程でフィン4の余分な塗料が除去され、その後第二液切り工程で排水部5の余分な塗料が除去される。したがって、フィン4の余分な塗料が排水部5に移動して排水部5で残留することを防止することができる。   As described above, the surface treatment method of the heat exchanger 1 for forming a surface treatment film for promoting drainage of condensed water on the surface of the heat exchanger 1 having the branch pipe 2, the heat transfer pipe 3, the fins 4 and the drainage part 5 is as follows. After the first liquid draining process, the hydrophilic liquid coating process, the first liquid draining process in which the paint is removed by blowing an air flow to the fin 4 and the amount of the paint adhering to the fin 4 is adjusted. The second liquid draining step of adjusting the amount of the paint to be adhered to the drainage part 5 and the film forming step are performed by blowing an air flow onto the drainage part 5. Thereby, the excess paint of the fin 4 is removed in the first liquid draining process, and then the excessive paint of the drainage part 5 is removed in the second liquid draining process. Therefore, it is possible to prevent excess paint on the fins 4 from moving to the drainage part 5 and remaining in the drainage part 5.

また、第一液切り工程は熱交換器1のフィン4に対する通風方向上流側または下流側のいずれかからフィン4に空気流を吹き付けて塗料を除去する。これにより、フィン5に対して短時間で確実に余分な塗料の液切りを実行することができる。また、第二液切り工程は熱交換器1のフィン4に対する通風方向上流側及び下流側の双方から排水部5に空気流を吹き付けて塗料を除去する。これにより、伝熱管3の通風方向上流側及び下流側の外面に形成された排水部5に対して短時間で確実に余分な塗料の液切りを実行することができる。   Further, in the first liquid draining step, the paint is removed by blowing an air flow on the fin 4 from either the upstream side or the downstream side in the ventilation direction with respect to the fin 4 of the heat exchanger 1. As a result, it is possible to reliably remove excess paint from the fins 5 in a short time. Further, in the second liquid draining step, the paint is removed by blowing an air flow to the drainage part 5 from both the upstream side and the downstream side in the ventilation direction with respect to the fins 4 of the heat exchanger 1. Accordingly, it is possible to reliably drain excess paint in a short time with respect to the drainage portions 5 formed on the outer surfaces of the heat transfer tubes 3 on the upstream side and the downstream side in the ventilation direction.

さらに、第二液切り工程は空気流の吹き付け強さが第一液切り工程より弱いので、フィン4に対する空気流の吹き付け強さより、排水部5に対する空気流の吹き付け強さのほうが弱くなる。したがって、排水部5から除去された余分な塗料がフィン4側に移動することを抑制することが可能である。   Furthermore, since the second liquid draining step has a weaker airflow blowing strength than the first liquid draining step, the airflow blowing strength against the drainage portion 5 is weaker than the airflow blowing strength against the fins 4. Therefore, it is possible to suppress the excessive paint removed from the drainage part 5 from moving to the fin 4 side.

また、第一液切り工程及び第二液切り工程は、伝熱管3が延びる方向に関して局部的にフィン4及び排水部5に空気流を吹き付けるノズル101を伝熱管3が延びる方向に沿って移動させ、フィン4及び排水部5の全域にわたって空気流を吹き付ける。これにより、フィン4及び排水部5において容易に且つ確実に余分な塗料を除去することができる。   Further, in the first liquid draining step and the second liquid draining step, the nozzle 101 that blows an air flow locally on the fins 4 and the drainage portion 5 is moved along the direction in which the heat transfer tube 3 extends in the direction in which the heat transfer tube 3 extends. The air flow is blown over the entire area of the fin 4 and the drainage part 5. Thereby, excess paint can be removed easily and reliably in the fin 4 and the drainage part 5.

そして、本発明の上記実施形態の構成によれば、熱交換器1の表面に結露水の排水を助長する表面処理膜、すなわち親水性塗膜を形成するに際し、親水性塗料の液切り工程において余分な塗料を確実に除去することができ、均一な厚さの親水性塗膜を形成することが可能な熱交換器1の表面処理方法を提供することができる。   And according to the structure of the said embodiment of this invention, when forming the surface treatment film which promotes the drainage of condensed water on the surface of the heat exchanger 1, ie, a hydrophilic coating film, in the draining process of a hydrophilic coating material It is possible to provide a surface treatment method for the heat exchanger 1 that can reliably remove excess paint and can form a hydrophilic coating film having a uniform thickness.

<第2実施形態>
次に、本発明の第2実施形態の熱交換器の表面処理方法について、図9を用いて説明する。図9は熱交換器の表面処理方法の第一液切り工程または第二液切り工程を示す概略説明図である。なお、この実施形態の基本的な構成は図1〜図8を用いて説明した前記第1実施形態と同じであるので、第1実施形態と共通する構成要素には前と同じ符号を付し、図面の記載及びその説明を省略するものとする。
Second Embodiment
Next, the surface treatment method of the heat exchanger of 2nd Embodiment of this invention is demonstrated using FIG. FIG. 9 is a schematic explanatory view showing the first liquid draining step or the second liquid draining step of the heat exchanger surface treatment method. Since the basic configuration of this embodiment is the same as that of the first embodiment described with reference to FIGS. 1 to 8, the same components as those of the first embodiment are denoted by the same reference numerals as before. The description of the drawings and the description thereof will be omitted.

第2実施形態の熱交換器1の表面処理方法は、図9に示すように第一液切り工程及び第二液切り工程において、対向する一対の分流管2の間の中間部から一対の分流管2各々に向かってノズル101を有する吹き付け部100を移動させる。吹き付け部100は伝熱管3が延びる方向(X方向)に沿って2個並べて設けられている。吹き付け部100の一方はフィン4または排水部5に向かって空気流を吹き付けながらX方向の右方に向かって移動し、他方はフィン4または排水部5に向かって空気流を吹き付けながらX方向の左方に向かって移動する。なお、1個の吹き付け部100を用いて、対向する一対の分流管2の間の中間部から一対の分流管2各々に向かって順番に吹き付け部100を移動させることにしても良い。   As shown in FIG. 9, the surface treatment method of the heat exchanger 1 according to the second embodiment is a pair of diversions from an intermediate portion between a pair of diversion pipes 2 facing each other in the first liquor draining step and the second liquor draining step. The spraying part 100 having the nozzle 101 is moved toward each pipe 2. Two spraying parts 100 are provided side by side along the direction (X direction) in which the heat transfer tubes 3 extend. One of the blowing parts 100 moves to the right in the X direction while blowing an air flow toward the fins 4 or the drainage part 5, and the other of the blowing parts 100 in the X direction while blowing an airflow toward the fins 4 or the drainage part 5. Move to the left. In addition, you may decide to move the spraying part 100 in order toward each of a pair of shunting pipes 2 from the intermediate part between a pair of opposing shunting pipes 2 using one spraying part 100. FIG.

この構成によれば、熱交換器1の熱交換効率の向上に最も寄与する一対の分流管2の間の中間部から一対の分流管2各々に向かって空気流の吹き付け領域が移動する。したがって、一対の分流管2の間の中間部において確実にフィン4及び排水部5の余分な親水性塗料を除去することができる。   According to this configuration, the airflow blowing region moves from the intermediate portion between the pair of branch pipes 2 that contributes most to the improvement of the heat exchange efficiency of the heat exchanger 1 toward the pair of branch pipes 2. Therefore, it is possible to reliably remove excess hydrophilic paint on the fins 4 and the drainage part 5 at the intermediate part between the pair of flow dividing pipes 2.

以上、本発明の実施形態につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。   Although the embodiments of the present invention have been described above, the scope of the present invention is not limited to these embodiments, and various modifications can be made without departing from the spirit of the invention.

例えば、上記実施形態では熱交換器1の表面に表面処理膜として親水性塗膜を形成することを例に掲げて説明したが、親水性塗膜に替えてに撥水性塗膜を形成するようにしても良い。   For example, in the above embodiment, the description has been given by taking as an example the formation of a hydrophilic coating film as a surface treatment film on the surface of the heat exchanger 1, but a water-repellent coating film is formed instead of the hydrophilic coating film. Anyway.

本発明は、熱交換器の表面処理方法において利用可能である。   The present invention can be used in a surface treatment method for a heat exchanger.

1 熱交換器
2 分流管
3 伝熱管
4 フィン
5 排水部
100 吹き付け部
101 ノズル
DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Diverging pipe 3 Heat transfer pipe 4 Fin 5 Drainage part 100 Spraying part 101 Nozzle

Claims (5)

対向する一対の分流管を複数の伝熱管で接続し、隣り合う前記伝熱管の間にフィンを配置して接合し、前記伝熱管の通風方向上流側及び下流側の外面に結露水を排水するための排水部を形成した熱交換器の表面に結露水の排水を助長する表面処理膜を形成する熱交換器の表面処理方法であって、
前記熱交換器の表面に前記表面処理膜の原液を塗布する塗布工程と、
前記フィンに空気流を吹き付けて前記原液を除去し、前記フィンへの前記原液の付着量を調整する第一液切り工程と、
前記第一液切り工程の後、前記排水部に空気流を吹き付けて前記原液を除去し、前記排水部への前記原液の付着量を調整する第二液切り工程と、
前記原液を膜化させる膜化工程と、
を有することを特徴とする熱交換器の表面処理方法。
A pair of opposed shunt tubes are connected by a plurality of heat transfer tubes, fins are arranged and joined between adjacent heat transfer tubes, and condensed water is drained to the outer surfaces of the heat transfer tubes on the upstream side and the downstream side in the ventilation direction. A surface treatment method for a heat exchanger that forms a surface treatment film that promotes drainage of condensed water on the surface of the heat exchanger that has formed a drainage portion for
A coating step of coating the surface treatment film stock solution on the surface of the heat exchanger;
A first liquid removing step of blowing an air flow to the fin to remove the stock solution and adjusting an amount of the stock solution to the fin;
After the first liquid draining step, a second liquid draining step of removing the stock solution by blowing an air flow to the drainage unit and adjusting the amount of the stock solution adhering to the drainage unit;
A film forming step of forming the stock solution into a film;
A surface treatment method for a heat exchanger, comprising:
前記第一液切り工程は、前記熱交換器の前記フィンに対する通風方向上流側または下流側のいずれかから前記フィンに空気流を吹き付けて前記原液を除去し、
前記第二液切り工程は、前記熱交換器の前記フィンに対する通風方向上流側及び下流側の双方から前記排水部に空気流を吹き付けて前記原液を除去する
ことを特徴とする請求項1に記載の熱交換器の表面処理方法。
In the first liquid draining step, the stock solution is removed by blowing an air flow on the fin from either the upstream side or the downstream side in the ventilation direction with respect to the fin of the heat exchanger,
The said 2nd liquid removal process sprays an airflow on the said waste_water | drain part from both the ventilation direction upstream with respect to the said fin with respect to the said fin of the said heat exchanger, and removes the said undiluted | stock solution. Heat exchanger surface treatment method.
前記第二液切り工程は、空気流の吹き付け強さが前記第一液切り工程より弱いことを特徴とする請求項1または請求項2に記載の熱交換器の表面処理方法。   The surface treatment method for a heat exchanger according to claim 1 or 2, wherein the second liquid draining step has an air flow blowing strength weaker than that of the first liquid draining step. 前記第一液切り工程及び前記第二液切り工程は、前記伝熱管が延びる方向に関して局部的に前記フィン及び前記排水部に空気流を吹き付けるノズルを前記伝熱管が延びる方向に沿って移動させ、前記フィン及び前記排水部の全域にわたって空気流を吹き付けることを特徴とする請求項1〜請求項3のいずれか1項に記載の熱交換器の表面処理方法。   In the first liquid draining step and the second liquid draining step, a nozzle that blows an air flow locally on the fins and the drainage portion in the direction in which the heat transfer tube extends is moved along the direction in which the heat transfer tube extends, The surface treatment method for a heat exchanger according to any one of claims 1 to 3, wherein an air flow is blown over the entire area of the fins and the drainage section. 前記第一液切り工程及び前記第二液切り工程は、対向する一対の前記分流管の間の中間部から一対の前記分流管各々に向かって前記ノズルを移動させることを特徴とする請求項4に記載の熱交換器の表面処理方法。   The said 1st liquid draining process and said 2nd liquid draining process move the said nozzle toward each of a pair of said branch pipe from the intermediate part between a pair of said branch pipes which oppose. The surface treatment method of the heat exchanger as described in 2.
JP2012151278A 2012-07-05 2012-07-05 Surface treatment method for heat exchanger Active JP6029876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012151278A JP6029876B2 (en) 2012-07-05 2012-07-05 Surface treatment method for heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012151278A JP6029876B2 (en) 2012-07-05 2012-07-05 Surface treatment method for heat exchanger

Publications (2)

Publication Number Publication Date
JP2014013129A true JP2014013129A (en) 2014-01-23
JP6029876B2 JP6029876B2 (en) 2016-11-24

Family

ID=50108902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012151278A Active JP6029876B2 (en) 2012-07-05 2012-07-05 Surface treatment method for heat exchanger

Country Status (1)

Country Link
JP (1) JP6029876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057401B1 (en) * 2016-10-13 2017-01-11 有限会社博多ラスター Air-conditioning outdoor unit painting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366395A (en) * 1991-06-11 1992-12-18 Hitachi Ltd Heat exchanger and manufacture thereof
JP2005321166A (en) * 2004-05-11 2005-11-17 Denso Corp Surface treatment method of heat exchanger
US20080141525A1 (en) * 2006-11-22 2008-06-19 Johnson Controls Technology Company Method for Making a Shaped Multichannel Heat Exchanger
JP2010243147A (en) * 2009-03-17 2010-10-28 Nippon Light Metal Co Ltd Drainage structure of corrugated fin-type heat exchanger
WO2010140337A1 (en) * 2009-06-02 2010-12-09 三菱電機株式会社 Method for coating instrument and process for producing heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04366395A (en) * 1991-06-11 1992-12-18 Hitachi Ltd Heat exchanger and manufacture thereof
JP2005321166A (en) * 2004-05-11 2005-11-17 Denso Corp Surface treatment method of heat exchanger
US20080141525A1 (en) * 2006-11-22 2008-06-19 Johnson Controls Technology Company Method for Making a Shaped Multichannel Heat Exchanger
JP2010243147A (en) * 2009-03-17 2010-10-28 Nippon Light Metal Co Ltd Drainage structure of corrugated fin-type heat exchanger
WO2010140337A1 (en) * 2009-06-02 2010-12-09 三菱電機株式会社 Method for coating instrument and process for producing heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057401B1 (en) * 2016-10-13 2017-01-11 有限会社博多ラスター Air-conditioning outdoor unit painting method

Also Published As

Publication number Publication date
JP6029876B2 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US2514469A (en) Method of fabricating heat exchangers
US20110126419A1 (en) Drying appliance comprising a heat exchanger having a coating
JP6029876B2 (en) Surface treatment method for heat exchanger
CN104374123A (en) Microchannel heat exchanger
JP2013190169A (en) Heat exchanger
JP5014992B2 (en) Method for producing heat exchanger including surface treatment and heat exchanger thus obtained
JP5939679B2 (en) Surface treatment method for heat exchanger
WO2019146445A1 (en) Electrodeposition coating method and electrodeposition coating apparatus
JP5897953B2 (en) Manufacturing method of heat exchanger
WO2015011912A1 (en) Method for manufacturing and device for manufacturing aluminum product
JP5481039B2 (en) Coating composition, fins and heat exchanger
JPS5913078A (en) Surface treatment of aluminum evaporator
JP2011163646A (en) Aluminum fin for heat exchanger and the heat exchanger
JP2018115836A (en) Air-conditioning fin material for indoor equipment featuring low odors and water contents, and method for producing the same
JP2013188769A (en) Heat exchanger
JP5902528B2 (en) Heat exchanger fins and heat exchangers
US8001675B2 (en) Apparatus for manufacturing heat exchanger
JP5506566B2 (en) Aluminum fin for heat exchanger and heat exchanger
JP2006046853A (en) Heat exchanger, and tabular member for heat exchange in heat exchanger
JP2013190170A (en) Heat exchanger
JP2019143068A (en) Coating composition for forming hydrophilic coating film, aluminum fin and heat exchanger
JPS58208593A (en) Hidrophilic treatment of heat exchanger
JPH0223265B2 (en)
JPH0527717B2 (en)
CN208743882U (en) A kind of self-cleaning brazing flux recycling component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161019

R150 Certificate of patent or registration of utility model

Ref document number: 6029876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150