JP2014011038A - Cell stack device and fuel battery module and fuel battery device - Google Patents

Cell stack device and fuel battery module and fuel battery device Download PDF

Info

Publication number
JP2014011038A
JP2014011038A JP2012147091A JP2012147091A JP2014011038A JP 2014011038 A JP2014011038 A JP 2014011038A JP 2012147091 A JP2012147091 A JP 2012147091A JP 2012147091 A JP2012147091 A JP 2012147091A JP 2014011038 A JP2014011038 A JP 2014011038A
Authority
JP
Japan
Prior art keywords
support member
cell stack
fuel
cell
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012147091A
Other languages
Japanese (ja)
Other versions
JP5769669B2 (en
Inventor
Kazutaka Uchi
一隆 内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2012147091A priority Critical patent/JP5769669B2/en
Publication of JP2014011038A publication Critical patent/JP2014011038A/en
Application granted granted Critical
Publication of JP5769669B2 publication Critical patent/JP5769669B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell stack device capable of reducing stresses occurring in a support member, and a fuel battery module and a fuel battery device.SOLUTION: Current extraction members 7a interconnected by an interconnection member 25 are provided in a support member 5 so as to be located on an adjacent cell stack 2 side apart from the center of the support member 5 in a direction orthogonal to the arrangement direction of a fuel battery cell 3. As a result, even when the interconnection member 25 expands with heat during power generation, stresses occurring in the support member 5 via the current extraction members 7a can be reduced, and an electrical connection between the cell stack 2 and the support member 5 can therefore be maintained for a long time.

Description

本発明は、複数個の燃料電池セルを配列してなるセルスタックを含むセルスタック装置および燃料電池モジュールならびに燃料電池装置に関する。   The present invention relates to a cell stack device including a cell stack formed by arranging a plurality of fuel cells, a fuel cell module, and a fuel cell device.

近年、次世代エネルギーとして、セルスタック(装置)を収納容器に収納してなる燃料電池装置が提案されている(例えば、特許文献1参照)。   In recent years, a fuel cell device in which a cell stack (device) is stored in a storage container has been proposed as next-generation energy (see, for example, Patent Document 1).

セルスタックは、燃料ガス(水素ガス)と酸素含有ガス(通常、空気である)とを用いて電力を得ることができる燃料電池セルの複数個を配列して構成されている。   The cell stack is configured by arranging a plurality of fuel cells that can obtain electric power using a fuel gas (hydrogen gas) and an oxygen-containing gas (usually air).

このような燃料電池装置においては、中空平板状の複数個の燃料電池セルを集電部材を介して立設させた状態で配列するとともに、その配列方向の両端部に端部集電部材を介して燃料電池セルと平行となるように細長平板状の導電性の支持部材を配置してセルスタックが構成されており、複数のセルスタックの支持部材には、外側に延びるようにそれぞれ電流引出部材が設けられている。   In such a fuel cell device, a plurality of hollow flat plate fuel cells are arranged in a standing state via current collectors, and end current collectors are arranged at both ends in the arrangement direction. The cell stack is configured by disposing an elongated flat plate-like conductive support member so as to be parallel to the fuel cell, and each of the support members of the plurality of cell stacks has a current extraction member extending outward. Is provided.

そして、隣接するセルスタックが直列接続となるようにセルスタックの一方の支持部材の電流引出部材同士が連結部材で接続され、この状態で燃料電池セルに燃料ガス等を供給するためのガスタンクに固定されてセルスタック装置が構成され、このセルスタック装置が収納容器内に収納されて燃料電池モジュールが構成されている。   The current drawing members of one support member of the cell stack are connected by a connecting member so that adjacent cell stacks are connected in series, and fixed in a gas tank for supplying fuel gas or the like to the fuel cell in this state Thus, a cell stack device is configured, and this cell stack device is stored in a storage container to form a fuel cell module.

連結部材で連結される電流引出部材は、燃料電池セルの配列方向と直交する方向における支持部材の中央、言い換えれば、支持部材の幅方向中央に位置するように設けられている。   The current drawing member connected by the connecting member is provided so as to be located at the center of the support member in the direction orthogonal to the arrangement direction of the fuel cells, in other words, at the center in the width direction of the support member.

特開2009−205805号公報JP 2009-205805 A

しかしながら、セルスタックで発電される電圧は、特に、固体酸化物形燃料電池(SOFC)では高いため、電流引出部材と連結部材とはずれ等が生じないようにしっかりと固定されており、従来のように、電流引出部材が、支持部材の幅方向中央に位置するように設けられていた場合には、発電時に、連結部材が高温に晒され熱膨張することにより、電流引出部材を介して支持部材に大きな曲げ応力が常時発生しており、セルスタックと支持部材との間の電気的な接続が経時的に低下するおそれがあった。   However, since the voltage generated by the cell stack is particularly high in the solid oxide fuel cell (SOFC), it is firmly fixed so that the current extraction member and the connecting member do not come off. In addition, when the current extraction member is provided so as to be positioned at the center in the width direction of the support member, the connection member is exposed to a high temperature and thermally expanded during power generation, whereby the support member is interposed via the current extraction member. In this case, a large bending stress is constantly generated, and there is a possibility that the electrical connection between the cell stack and the support member may deteriorate over time.

すなわち、セルスタックの下端部がガスタンクに固定されていたため、電流引出部材の配置位置が、支持部材の幅方向中央よりも外側にいくほど、セルスタックの下端部がガスタンクに固定された状態で、該固定部よりも上部が、連結部材の熱膨張に伴って電流引出部材により押され、固定部に対して曲げる(捩る)ような応力が発生し易く、セルスタックと支持部材とが剥離し易くなり、セルスタックと支持部材との電気的な接続が経時的に低下するおそれがあった。   That is, since the lower end portion of the cell stack is fixed to the gas tank, the lower the end portion of the cell stack is fixed to the gas tank as the arrangement position of the current extraction member goes outside the center in the width direction of the support member, The upper part of the fixed part is pushed by the current drawing member with the thermal expansion of the connecting member, and stress that tends to bend (twist) with respect to the fixed part is easily generated, and the cell stack and the support member are easily separated. As a result, the electrical connection between the cell stack and the support member may decrease over time.

本発明は、支持部材に生じる応力を低減できるセルスタック装置および燃料電池モジュ
ールならびに燃料電池装置を提供することを目的とする。
An object of the present invention is to provide a cell stack device, a fuel cell module, and a fuel cell device that can reduce stress generated in a support member.

本発明のセルスタック装置は、長さ方向にガス流路を有する柱状の燃料電池セルを複数個立設させた状態で配列し、隣接する燃料電池セル同士を電気的に接続してなるとともに、前記燃料電池セルの配列方向と直交する方向に所定間隔をおいて複数並置されたセルスタックと、該セルスタックの下端部が固定されるとともに、前記燃料電池セルのガス流路に反応ガスを供給するためのガスタンクと、下端部が前記ガスタンクに固定されるとともに、前記燃料電池セルの配列方向における両端部から前記セルスタックを挟持するように配置され前記燃料電池セルと反対側に延びるようにそれぞれ設けられた電流引出部材を備える一対の支持部材と、隣接する前記セルスタックに電流が直列に流れるように前記電流引出部材同士を連結する連結部材とを具備するとともに、前記連結部材で連結された前記電流引出部材は、前記燃料電池セルの配列方向と直交する方向における前記支持部材の中央よりも前記隣接するセルスタック側に位置するように、前記支持部材に設けられていることを特徴とする。   The cell stack device of the present invention is arranged in a state where a plurality of columnar fuel cells having gas flow paths in the length direction are erected, and electrically connecting adjacent fuel cells, A plurality of cell stacks juxtaposed at predetermined intervals in a direction orthogonal to the arrangement direction of the fuel cells, and a lower end of the cell stack are fixed, and a reaction gas is supplied to a gas flow path of the fuel cells A gas tank and a lower end of the gas tank are fixed to the gas tank, and are arranged so as to sandwich the cell stack from both ends in the arrangement direction of the fuel cells, and extend to the opposite side of the fuel cells. A pair of support members each provided with a current extraction member provided, and a connecting portion for connecting the current extraction members so that current flows in series in the adjacent cell stack And the current drawing member connected by the connecting member is positioned closer to the adjacent cell stack than the center of the support member in the direction orthogonal to the arrangement direction of the fuel cells. It is provided on the support member.

本発明の燃料電池モジュールは、上記のセルスタック装置を、収納容器内に収納してなることを特徴とする。   The fuel cell module of the present invention is characterized in that the cell stack device is stored in a storage container.

本発明の燃料電池装置は、上記の燃料電池モジュールと、該燃料電池モジュールを作動させるための補機とを、外装ケース内に収納してなることを特徴とする。   A fuel cell device according to the present invention is characterized in that the fuel cell module described above and an auxiliary machine for operating the fuel cell module are housed in an outer case.

本発明のセルスタック装置によれば、連結部材で連結される電流引出部材は、燃料電池セルの配列方向と直交する方向における支持部材の中央よりも隣接するセルスタック側に位置して設けられているため、発電時に連結部材が熱膨張等したとしても、電流引出部材を介して支持部材に発生する応力を低減でき、セルスタックと支持部材との間の電気的な接続を長期間維持できる。これにより、長期信頼性を向上した燃料電池モジュール、燃料電池装置を提供できる。   According to the cell stack device of the present invention, the current extraction member connected by the connecting member is provided to be positioned closer to the cell stack side than the center of the support member in the direction orthogonal to the arrangement direction of the fuel cells. Therefore, even if the connecting member undergoes thermal expansion during power generation, the stress generated in the support member via the current extraction member can be reduced, and the electrical connection between the cell stack and the support member can be maintained for a long period of time. Thereby, a fuel cell module and a fuel cell device with improved long-term reliability can be provided.

セルスタック装置の一例を示し、(a)はセルスタック装置を概略的に示す側面図、(b)は(a)のセルスタック装置の破線で囲った部分の一部拡大断面図である。An example of a cell stack apparatus is shown, (a) is a side view schematically showing the cell stack apparatus, and (b) is a partially enlarged sectional view of a portion surrounded by a broken line of the cell stack apparatus of (a). 図1の支持部材の一例を示す斜視図である。It is a perspective view which shows an example of the supporting member of FIG. 集電部材の一例を示す斜視図である。It is a perspective view which shows an example of a current collection member. セルスタック装置の一例を示し、(a)はセルスタック装置を概略的に示す平面図、(b)は(a)のセルスタック装置の正面図である。An example of a cell stack apparatus is shown, (a) is a top view which shows a cell stack apparatus roughly, (b) is a front view of the cell stack apparatus of (a). セルスタック装置を構成する支持部材の他の一例を示す斜視図である。It is a perspective view which shows another example of the supporting member which comprises a cell stack apparatus. セルスタック装置を構成する支持部材のさらに他の一例を示す斜視図である。It is a perspective view which shows another example of the supporting member which comprises a cell stack apparatus. セルスタック装置を構成する支持部材のさらに他の一例を示す斜視図である。It is a perspective view which shows another example of the supporting member which comprises a cell stack apparatus.

図1は、本形態のセルスタック装置1の一例を示したものであり、(a)はセルスタック装置1を概略的に示す側面図、(b)は(a)のセルスタック装置1の一部拡大断面図であり、(a)で示した破線で囲った部分を抜粋して示している。また、同一の部材については同一の番号を付すものとし、以下同様とする。なお、(b)において(a)で示した破線で囲った部分の対応する部分を明確とするため矢印にて示している。   1A and 1B show an example of a cell stack device 1 according to the present embodiment. FIG. 1A is a side view schematically showing the cell stack device 1, and FIG. 1B is a diagram of the cell stack device 1 of FIG. It is a partial expanded sectional view, and has shown and extracted the part enclosed with the broken line shown by (a). The same members are denoted by the same reference numerals, and so on. In addition, in (b), the corresponding part of the part enclosed with the broken line shown by (a) is shown with the arrow in order to clarify.

ここで、セルスタック装置1は、一対の対向する平坦面をもつ柱状の導電性支持基板13(以下、支持基板13と略す場合がある)の一方の平坦面上に燃料極層9、固体電解質層10及び空気極層11を順次積層してなる柱状の燃料電池セル3の複数個を、隣接する燃料電池セル3間に集電部材4aを介装して電気的に直列に接続してセルスタック2を形成し、燃料電池セル3の下端部を、燃料電池セル3に燃料ガスを供給するガスタンク8に固定して形成されている。   Here, the cell stack device 1 includes a fuel electrode layer 9 and a solid electrolyte on one flat surface of a columnar conductive support substrate 13 (hereinafter, may be abbreviated as support substrate 13) having a pair of opposed flat surfaces. A plurality of columnar fuel cells 3 formed by sequentially laminating a layer 10 and an air electrode layer 11 are electrically connected in series with a current collecting member 4 a interposed between adjacent fuel cells 3. The stack 2 is formed, and the lower end portion of the fuel cell 3 is fixed to a gas tank 8 that supplies fuel gas to the fuel cell 3.

そして、セルスタック2は、下端部がガスタンク8に固定され、燃料電池セル3の配列方向xの両端部から端部集電部材4bを介してセルスタック2を挟持するように配置された弾性変形可能な支持部材本体5aと、下端部がガスタンク8に固定され、支持部材本体5aと所定の間隔を置いて配置された断熱材支持部材5bとを具備している。支持部材5は、支持部材本体5aと断熱材支持部材5bとを具備して構成されている。   The cell stack 2 is elastically deformed so that the lower end portion is fixed to the gas tank 8 and the cell stack 2 is sandwiched from both ends in the arrangement direction x of the fuel cells 3 via the end current collecting members 4b. A possible support member main body 5a, a lower end portion is fixed to the gas tank 8, and a support member main body 5a and a heat insulating material support member 5b arranged at a predetermined interval are provided. The support member 5 includes a support member main body 5a and a heat insulating material support member 5b.

また、図1に示す支持部材本体5aにおいては、燃料電池セル3の配列方向xに沿って、外側に向けて延びた形状で、燃料電池セル3の発電により生じる電流を引き出すための電流引出部7a、7bが設けられている。   Further, in the support member main body 5a shown in FIG. 1, a current extraction portion for extracting a current generated by power generation of the fuel cell 3 in a shape extending outward along the arrangement direction x of the fuel cells 3. 7a and 7b are provided.

さらに、燃料電池セル3の他方の平坦面上にはインターコネクタ12が設けられており、支持基板13の内部には、燃料電池セル3に反応ガスを流すためのガス流路14が設けられている。なお、図1に示すセルスタック装置1においては、ガス流路14にガスタンク8より燃料ガス(水素ガス)を供給する場合の例を示している。   Further, an interconnector 12 is provided on the other flat surface of the fuel cell 3, and a gas flow path 14 for flowing a reaction gas to the fuel cell 3 is provided inside the support substrate 13. Yes. In addition, in the cell stack apparatus 1 shown in FIG. 1, the example in the case of supplying fuel gas (hydrogen gas) from the gas tank 8 to the gas flow path 14 is shown.

また、インターコネクタ12の外面(上面)にはP型半導体15を設けることもできる。集電部材4aを、P型半導体15を介してインターコネクタ12に接続させることにより、両者の接触がオーム接触となり、電位降下を少なくし、集電性能の低下を有効に回避することが可能となる。   Further, the P-type semiconductor 15 can be provided on the outer surface (upper surface) of the interconnector 12. By connecting the current collecting member 4a to the interconnector 12 via the P-type semiconductor 15, the contact between the two becomes an ohmic contact, the potential drop can be reduced, and the deterioration of the current collecting performance can be effectively avoided. Become.

また、支持基板13は燃料極層9を兼ねるものとし、その表面に固体電解質層10および空気極層11を順次積層して燃料電池セル3を構成することもできる。   The support substrate 13 also serves as the fuel electrode layer 9, and the fuel cell 3 can be configured by sequentially laminating the solid electrolyte layer 10 and the air electrode layer 11 on the surface thereof.

なお、燃料電池セル3としては、各種燃料電池セルが知られているが、燃料電池を小型化する上で、固体酸化物形燃料電池セルとすることができる。それにより、燃料電池を小型化することができるとともに、家庭用燃料電池で求められる変動する負荷に追従する負荷追従運転を行なうことができる。   Various types of fuel cells are known as the fuel cell 3, but a solid oxide fuel cell can be used for downsizing the fuel cell. As a result, the fuel cell can be reduced in size, and a load following operation that follows a fluctuating load required for a household fuel cell can be performed.

以下に、図1において示すセルスタック装置1(燃料電池セル3等)を構成する各部材について説明する。   Below, each member which comprises the cell stack apparatus 1 (fuel cell 3 etc.) shown in FIG. 1 is demonstrated.

燃料極層9は、一般的に公知のものを使用することができ、多孔質の導電性セラミックス、例えば希土類元素が固溶しているZrO(安定化ジルコニアと称する)とNiおよび/またはNiOとから形成することができる。 As the fuel electrode layer 9, generally known materials can be used. For example, porous conductive ceramics such as ZrO 2 (referred to as stabilized zirconia) in which a rare earth element is dissolved, Ni and / or NiO are used. And can be formed from

固体電解質層10は、電極間の電子の橋渡しをする電解質としての機能を有していると同時に、燃料ガスと酸素含有ガスとのリークを防止するためにガス遮断性を有することが必要とされ、3〜15モル%の希土類元素が固溶したZrOから形成される。なお、上記特性を有する限りにおいては、他の材料等を用いて形成してもよい。 空気極層11は、一般的に用いられるものであれば特に制限はなく、例えば、いわゆるABO型のペロブスカイト型酸化物からなる導電性セラミックスから形成することができる。空気極層10はガス透過性を有していることが必要であり、開気孔率が20%以上、特に30〜50
%の範囲にあることが好ましい。
The solid electrolyte layer 10 has a function as an electrolyte that bridges electrons between the electrodes, and at the same time, has to have a gas barrier property in order to prevent leakage between the fuel gas and the oxygen-containing gas. , 3 to 15 mol% of rare earth elements are formed from ZrO 2 in solid solution. In addition, as long as it has the said characteristic, you may form using another material etc. The air electrode layer 11 is not particularly limited as long as it is generally used. For example, the air electrode layer 11 can be formed of a conductive ceramic made of a so-called ABO 3 type perovskite oxide. The air electrode layer 10 needs to have gas permeability and has an open porosity of 20% or more, particularly 30 to 50.
% Is preferable.

インターコネクタ12は、導電性セラミックスから形成することができるが、燃料ガス(水素ガス)および酸素含有ガス(空気等)と接触するため、耐還元性及び耐酸化性を有することが必要であり、それゆえランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)が好適に使用される。インターコネクタ12は支持基板13に形成されたガス流路14を流通する燃料ガス、および支持基板13の外側を流通する酸素含有ガスのリークを防止するために緻密質でなければならず、93%以上、特に95%以上の相対密度を有していることが好ましい。 支持基板13としては、燃料ガスを燃料極層9まで透過するためにガス透過性であること、さらには、インターコネクタ12を介して集電するために導電性であることが要求される。したがって、支持基板13としては、かかる要求を満足するものを材質として採用する必要があり、例えば導電性セラミックスやサーメット等を用いることができる。 Although the interconnector 12 can be formed from conductive ceramics, it is required to have reduction resistance and oxidation resistance in order to contact with a fuel gas (hydrogen gas) and an oxygen-containing gas (air, etc.) Therefore, a lanthanum chromite-based perovskite oxide (LaCrO 3 -based oxide) is preferably used. The interconnector 12 must be dense in order to prevent leakage of fuel gas flowing through the gas flow path 14 formed in the support substrate 13 and oxygen-containing gas flowing outside the support substrate 13, and 93% As described above, it is particularly preferable to have a relative density of 95% or more. The support substrate 13 is required to be gas permeable in order to allow the fuel gas to pass to the fuel electrode layer 9 and to be conductive in order to collect current via the interconnector 12. Therefore, as the support substrate 13, it is necessary to adopt a material satisfying such a requirement as a material, and for example, conductive ceramics, cermet, or the like can be used.

また図1に示した燃料電池セル3において、柱状(中空平板状)の支持基板13は、立設方向に細長く延びる板状片であり、平坦な両面と半円形状の両側面を有する。そして燃料電池セル3の下端部と、後述する支持部材5aの下端部と、断熱材支持部材5bの下端部とが、燃料電池セル3に反応ガス(燃料ガス)を供給するガスタンク8に接合材で固定され、支持基板13に設けられたガス流路14は、燃料ガス室(図示せず)に連通せしめられる。なお、以降の説明において、中空平板状の燃料電池セル3を用いて説明する。   Further, in the fuel cell 3 shown in FIG. 1, the columnar (hollow flat plate) support substrate 13 is a plate-like piece that is elongated in the standing direction, and has both flat and semicircular sides. The lower end portion of the fuel cell 3, the lower end portion of the support member 5 a described later, and the lower end portion of the heat insulating material support member 5 b are joined to the gas tank 8 that supplies the reaction gas (fuel gas) to the fuel cell 3. The gas flow path 14 fixed to the support substrate 13 is communicated with a fuel gas chamber (not shown). In the following description, a description will be given using a hollow flat fuel cell 3.

ちなみに、燃料電池セル3を作製するにあたり、燃料極層9または固体電解質層10との同時焼成により支持基板13を作製する場合においては、鉄属金属成分と特定希土類酸化物とから支持基板13を形成することが好ましい。また、支持基板13は、所要ガス透過性を備えるために開気孔率が30%以上、特に35〜50%の範囲にあるのが好適であり、そしてまたその導電率は300S/cm以上、特に440S/cm以上であるのが好ましい。さらに、P型半導体層15としては、遷移金属ペロブスカイト型酸化物からなる層を例示することができる。具体的には、インターコネクタ11を構成するランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)よりも電子伝導性が大きいもの、例えば、BサイトにMn、Fe、Coなどが存在するLaMnO系酸化物、LaFeO系酸化物、LaCoO系酸化物などの少なくとも一種からなるP型半導体セラミックスを使用することができる。このようなP型半導体層15の厚みは、一般に、30〜100μmの範囲にあることが好ましい。 Incidentally, when the support substrate 13 is manufactured by co-firing with the fuel electrode layer 9 or the solid electrolyte layer 10 when the fuel cell 3 is manufactured, the support substrate 13 is formed from the iron group metal component and the specific rare earth oxide. It is preferable to form. Further, the support substrate 13 preferably has an open porosity of 30% or more, particularly 35 to 50% in order to have the required gas permeability, and its conductivity is 300 S / cm or more, particularly It is preferable that it is 440 S / cm or more. Furthermore, as the P-type semiconductor layer 15, a layer made of a transition metal perovskite oxide can be exemplified. Specifically, a material having higher electron conductivity than a lanthanum chromite-based perovskite oxide (LaCrO 3 -based oxide) constituting the interconnector 11, for example, LaMnO in which Mn, Fe, Co, etc. are present at the B site. P-type semiconductor ceramics made of at least one of three- based oxides, LaFeO 3 -based oxides, LaCoO 3 -based oxides and the like can be used. In general, the thickness of the P-type semiconductor layer 15 is preferably in the range of 30 to 100 μm.

そして、燃料電池セル3を電気的に接続するために介装される集電部材4aおよび端部集電部材4bは、弾性を有する金属または合金からなる部材あるいは金属繊維または合金繊維から成るフェルトに所要の表面処理を加えた部材から構成することができる。なお、集電部材4aおよび端部集電部材4bの形状については後述する。燃料電池セル3と集電部材4a、端部集電部材4bとの間、端部集電部材4bと支持部材5との間は、導電性接着材で接合されている。   The current collecting member 4a and the end current collecting member 4b interposed for electrically connecting the fuel cells 3 are formed of a member made of an elastic metal or alloy or a felt made of metal fiber or alloy fiber. It can be comprised from the member which gave the required surface treatment. The shapes of the current collecting member 4a and the end current collecting member 4b will be described later. The fuel cell 3 and the current collecting member 4a, the end current collecting member 4b, and the end current collecting member 4b and the support member 5 are joined by a conductive adhesive.

ここで、燃料電池セル3の配列方向xの両端部から端部集電部材4bを介してセルスタック2を挟持するように、導電性の支持部材5がガスタンク8に立設して固定されている。   Here, the conductive support member 5 is erected and fixed to the gas tank 8 so as to sandwich the cell stack 2 from both ends in the arrangement direction x of the fuel cells 3 via the end current collecting members 4b. Yes.

支持部材本体5aとしては、燃料電池セル3の変形に柔軟に追従して変形して変化することができることが好ましく、弾性変形可能な支持部材本体5aとすることが好ましい。   The support member main body 5a can preferably be deformed and changed flexibly following the deformation of the fuel cell 3, and is preferably an elastically deformable support member main body 5a.

ここで、弾性変形可能な支持部材本体5aのうち下端部が、燃料電池セル3に反応ガスを供給するためのガスタンク8に固定されることにより、支持部材本体5aのうちガスタ
ンク8に固定されていない部位(領域)は、燃料電池セル3の変形に対して柔軟に追従して変形することができることとなる。それにより、燃料電池セル3に生じる応力、特には上端部に生じる応力を緩和することができる。
Here, the lower end portion of the elastically deformable support member body 5 a is fixed to the gas tank 8 for supplying the reaction gas to the fuel cell 3, thereby being fixed to the gas tank 8 of the support member body 5 a. The non-existing portion (region) can be deformed by flexibly following the deformation of the fuel cell 3. Thereby, the stress which arises in the fuel cell 3, especially the stress which arises in an upper end part can be relieved.

なお、支持部材本体5aを弾性変形可能な部材とするにあたり、支持部材本体5aを弾性変形可能な材料で構成するほか、厚みを薄くすることが好ましい。それにより、支持部材本体5aが弾性変形可能(もしくは、より弾性変形可能)となり、燃料電池セル3の変形に対して柔軟に追従して変形することができる。そのため、支持部材5の厚みとしては、例えば2mm程度、好ましくは1mm程度とすることができる。   In order to make the support member main body 5a a member that can be elastically deformed, it is preferable that the support member main body 5a is made of a material that can be elastically deformed, and that the thickness is reduced. As a result, the support member body 5a can be elastically deformed (or more elastically deformable), and can be deformed by flexibly following the deformation of the fuel cell 3. Therefore, the thickness of the support member 5 can be, for example, about 2 mm, preferably about 1 mm.

また、支持部材5の高さ(立設方向の長さ)としては、燃料電池セル3に生じる応力を効果的に緩和するとともに、燃料電池セル3で生じた電流を効率よく集電するために、ガスタンク8に固定された状態で、燃料電池セル3の上端と同じ高さまたはそれ以上の高さとなるようにするのが好ましい。   Further, the height of the support member 5 (length in the standing direction) is to effectively relieve the stress generated in the fuel cell 3 and efficiently collect the current generated in the fuel cell 3. It is preferable that the height of the fuel cell 3 is equal to or higher than that of the upper end of the fuel cell 3 while being fixed to the gas tank 8.

また、支持部材5は、支持部材本体5aと所定の間隔を置いて断熱材を支持するための断熱材支持部材5bが配置されて構成されている。なお、ここで、所定の間隔とは、弾性変形可能な支持部材本体5aが変形した場合であっても、断熱材支持部材5bと接触することがない間隔(距離)とすることが好ましく、セルスタック装置1の大きさや、支持部材本体5aの変形度合いを予め調査して定めるなど、適宜設定することができる。また、支持部材本体5aと、セルスタック2の燃料電池セル3の配列方向xに沿って配置される断熱材との間隔とすることもできる。   Further, the support member 5 is configured by arranging a heat insulating material support member 5b for supporting the heat insulating material at a predetermined interval from the support member main body 5a. Here, the predetermined interval is preferably an interval (distance) that does not come into contact with the heat insulating material support member 5b even when the elastically deformable support member body 5a is deformed. The size of the stack device 1 and the degree of deformation of the support member main body 5a can be set as appropriate by, for example, investigating and determining in advance. Moreover, it can also be set as the space | interval of the heat insulating material arrange | positioned along the arrangement direction x of the fuel cell 3 of the cell stack 2 and the support member main body 5a.

ここで、断熱材支持部材5bと当接するように断熱材を配置するだけで、断熱材の位置合わせを行うことができ、燃料電池装置の組立工程の煩雑さを解消することができる。なお、本発明において、断熱材は断熱材支持部材5bと必ずしも当接する必要はなく、断熱材支持部材5bと断熱材とに隙間をあけて支持されるような形状であっても良い。なお、本形態では、断熱材支持部材5bは必ずしも必要ではない。   Here, only by arranging the heat insulating material so as to contact the heat insulating material supporting member 5b, the heat insulating material can be aligned, and the complexity of the assembly process of the fuel cell device can be eliminated. In the present invention, the heat insulating material is not necessarily in contact with the heat insulating material support member 5b, and may be shaped so as to be supported with a gap between the heat insulating material support member 5b and the heat insulating material. In this embodiment, the heat insulating material support member 5b is not always necessary.

図2は、図1の支持部材5を示したもので、支持部材本体5aおよび断熱材支持部材5bが、それぞれ板状の平板部16、板状の平板部17を有している例を示している。それにより、支持部材本体5aは、中空平板状の燃料電池セル3と接触面積を大きくすることができ、燃料電池セル3の発電により生じる電流を、効率よく集電することができる。   FIG. 2 shows the support member 5 of FIG. 1, and shows an example in which the support member main body 5a and the heat insulating material support member 5b have a plate-like flat plate portion 16 and a plate-like flat plate portion 17, respectively. ing. Thereby, the support member main body 5a can increase the contact area with the hollow flat fuel cell 3 and can efficiently collect the current generated by the power generation of the fuel cell 3.

また、断熱材支持部材5bもまた板状の平板部17を有していることから、例えばセルスタック装置1の燃料電池セル3の配列方向の端部側に板状の断熱材(ボード状の断熱材等)を配置する場合に、断熱材と断熱材支持部材5bとの接触面積を大きくすることができ、断熱材の位置あわせを容易に行うことができる。   Further, since the heat insulating material support member 5b also has the plate-shaped flat plate portion 17, for example, a plate-shaped heat insulating material (board-shaped heat insulating material) is formed on the end side in the arrangement direction of the fuel cells 3 of the cell stack device 1. In the case where a heat insulating material or the like is disposed, the contact area between the heat insulating material and the heat insulating material supporting member 5b can be increased, and the heat insulating material can be easily aligned.

なお、図2に示した支持部材本体5aおよび断熱材支持部材5bは、それぞれの下端を、下端部接続板18により接続した構成とすることもでき、この図2に示した支持部材本体5aおよび断熱材支持部材5bは、一枚の板状部材を適宜切り取ることや、折り曲げることにより作製できる。   The support member main body 5a and the heat insulating material support member 5b shown in FIG. 2 can be configured such that the lower ends thereof are connected by the lower end connecting plate 18, and the support member main body 5a shown in FIG. The heat insulating material support member 5b can be produced by appropriately cutting or bending a single plate-like member.

また、図2においては、支持部材本体5aの平板部16より、燃料電池セル3の配列方向xに沿って外側に延びる電流引出部7が設けられている。それにより、燃料電池セル3の発電により生じる電流を容易に引き出すことができる。   Moreover, in FIG. 2, the current extraction part 7 extended outside from the flat plate part 16 of the support member main body 5a along the arrangement direction x of the fuel cells 3 is provided. Thereby, the current generated by the power generation of the fuel cell 3 can be easily drawn out.

また、電流引出部7を設けるにあたっては、電流引出部7を平板部16の下端側に設けることが好ましく、またこの電流引出部7を接続する支持部材本体5aをガスタンク8に
固定するにあたっては、平板部16のうち、電流引出部7がガスタンク8に接触しないように固定することが好ましい。ここで、電流引出部7の高さは、ガスタンク8の形状や、平板部16の大きさ等により適宜設定することができる。それに伴い、平板部16のうちガスタンク8に固定される領域も適宜設定することができる。
Further, in providing the current extraction part 7, it is preferable to provide the current extraction part 7 on the lower end side of the flat plate part 16, and in fixing the support member body 5a connecting the current extraction part 7 to the gas tank 8, Of the flat plate portion 16, it is preferable to fix the current drawing portion 7 so as not to contact the gas tank 8. Here, the height of the current extraction portion 7 can be appropriately set depending on the shape of the gas tank 8, the size of the flat plate portion 16, and the like. Accordingly, the region of the flat plate portion 16 that is fixed to the gas tank 8 can also be set as appropriate.

また、支持部材本体5aおよび断熱材支持部材5bの下端部は、ガラスシール材等の絶縁性接合材によりガスタンク8に固定され、同様に下端部接続板18もガラスシール材によりガスタンク8に固定される。それゆえ、下端部接続板18をガスタンク8に強固に固定すべく、下端部接続板18に孔部を適宜設けることもできる。   Further, the lower end portions of the support member main body 5a and the heat insulating material support member 5b are fixed to the gas tank 8 by an insulating bonding material such as a glass seal material. Similarly, the lower end connection plate 18 is also fixed to the gas tank 8 by a glass seal material. The Therefore, in order to firmly fix the lower end connecting plate 18 to the gas tank 8, a hole can be appropriately provided in the lower end connecting plate 18.

図3は、燃料電池セル3間を電気的に接続するための集電部材4aの一例を示したものである。図3に示した集電部材4aは、隣接する一方の燃料電池セル3の平坦面に当接する第1導電体片20と、隣接する一方の燃料電池セル3の端部から隣接する他方の燃料電池セル3の他方の端部へと傾斜して延びる第2導電体片21と、他方の燃料電池セル3の平坦面に当接する第3導電体片22と、他方の燃料電池セル3の一方の端部から一方の燃料電池セル3の他方の端部へと傾斜して延びる第4導電体片23とを基本要素として具備する。第1〜第4の導電体片はこの順序で端部同士を次々に連結されており、さらにこの順序で繰り返し導電体片が連結されることにより、軸方向に延在する一繋がりの集電部材4aを形成している。   FIG. 3 shows an example of a current collecting member 4 a for electrically connecting the fuel cells 3. The current collecting member 4a shown in FIG. 3 includes a first conductor piece 20 that contacts the flat surface of one adjacent fuel cell 3 and the other fuel adjacent from the end of the adjacent one fuel cell 3. A second conductor piece 21 extending obliquely toward the other end of the battery cell 3, a third conductor piece 22 contacting the flat surface of the other fuel battery cell 3, and one of the other fuel battery cells 3 And a fourth conductor piece 23 extending from the other end of the fuel cell 3 to the other end of the one fuel cell 3 as a basic element. The ends of the first to fourth conductor pieces are connected one after another in this order, and further, the conductor pieces are connected repeatedly in this order, so that a continuous current collector extending in the axial direction is obtained. The member 4a is formed.

このような集電部材4aは、燃料電池セル3の変形に対して良好な追従性を有する形状であるため、本発明のセルスタック装置1において有用となる。また端部集電部材4bも、集電部材4aと同じ形状とすることができる。   Such a current collecting member 4a is useful in the cell stack device 1 of the present invention because it has a shape having good followability to the deformation of the fuel cell 3. The end current collecting member 4b can also have the same shape as the current collecting member 4a.

図4は、本形態のセルスタック1を、燃料電池セル3の配列方向xを互いに平行に、かつセルスタック1の同じ側の端で電流極性が逆となるように2つ並置するとともに、セルスタック1の同じ側の端に配置される電流引出部7a同士を導電性の連結部材25により連結してなるセルスタック装置24を示したものであり、(a)は平面図であり、(b)は正面図である。なお、(a)において各燃料電池セル3を電気的に接続するための集電部材4aは省略して示している。   FIG. 4 shows two cell stacks 1 of the present embodiment juxtaposed such that the arrangement direction x of the fuel cells 3 is parallel to each other and the current polarity is reversed at the end on the same side of the cell stack 1. The cell stack apparatus 24 formed by connecting the current extraction portions 7a arranged at the same side end of the stack 1 by the conductive connecting member 25 is shown, (a) is a plan view, (b ) Is a front view. In addition, in (a), the current collection member 4a for electrically connecting each fuel battery cell 3 is abbreviate | omitted and shown.

図4に示すように、電流極性が逆となるように2つ並置したセルスタック1の同じ側の端に配置される電流引出部7a同士を、導電性の連結部材25をネジ26で螺着して連結することで、2つのセルスタック1を電気的に直列に接続することができる。なお、電流引出部7bは収納容器外に引き出される。   As shown in FIG. 4, the current extraction portions 7 a arranged on the same side of the cell stack 1 juxtaposed so that the current polarities are opposite to each other are screwed together with a conductive connecting member 25 with a screw 26. Thus, the two cell stacks 1 can be electrically connected in series. Note that the current drawing portion 7b is drawn out of the storage container.

それにより、2つのセルスタック1を電気的に直列に接続することが容易となるとともに、2つのセルスタック1を小スペースに配置可能となる。   Thereby, it becomes easy to electrically connect the two cell stacks 1 in series, and the two cell stacks 1 can be arranged in a small space.

なお、この場合において、ガスタンク8は、セルスタック1の下部、支持部材5の下部等が収容される2つの枠体28を、内部に空洞を有する部材(台座)27に連結して構成されている。これにより、1つの反応ガス供給管41よりセルスタック装置24を構成する2つのセルスタック1のガスタンク8に反応ガスを供給することができる。それにより、セルスタック装置24を小型化することができる。   In this case, the gas tank 8 is configured by connecting two frames 28 accommodating the lower part of the cell stack 1 and the lower part of the support member 5 to a member (pedestal) 27 having a cavity inside. Yes. As a result, the reaction gas can be supplied from one reaction gas supply pipe 41 to the gas tanks 8 of the two cell stacks 1 constituting the cell stack device 24. Thereby, the cell stack device 24 can be reduced in size.

そして、本形態では、連結部材25で連結される電流引出部材7aは、燃料電池セル3の配列方向xと直交する方向における支持部材5の中央(言い換えれば、支持部材5の幅方向B中央)よりも隣接するセルスタック1側に位置するように、支持部材5に設けられている。   In this embodiment, the current drawing member 7a connected by the connecting member 25 is the center of the support member 5 in the direction orthogonal to the arrangement direction x of the fuel cells 3 (in other words, the center of the support member 5 in the width direction B). The support member 5 is provided so as to be positioned closer to the adjacent cell stack 1 side.

これにより、連結部材25で連結される電流引出部材7aは、燃料電池セル3の配列方向xと直交する方向における支持部材5の中央よりも隣接するセルスタック1側に位置して設けられているため、発電時に連結部材25が熱膨張等したとしても、電流引出部材7aを介して支持部材5に発生する応力を低減でき、スタック1と支持部材5との間の電気的な接続を長期間維持することができる。   Thereby, the current drawing member 7 a connected by the connecting member 25 is provided on the cell stack 1 side adjacent to the center of the support member 5 in the direction orthogonal to the arrangement direction x of the fuel cells 3. Therefore, even if the connecting member 25 undergoes thermal expansion during power generation, the stress generated in the support member 5 via the current extraction member 7a can be reduced, and the electrical connection between the stack 1 and the support member 5 can be maintained for a long time. Can be maintained.

特に、電流引出部材7aは導電性を向上すべく短く形成されるため、支持部材5に発生する応力が高くなり易く、本形態を好適に用いることができる。   In particular, since the current extraction member 7a is formed to be short so as to improve conductivity, the stress generated in the support member 5 tends to be high, and this embodiment can be suitably used.

電流引出部材7aの幅方向中央((a)で破線で示す)と支持部材5の外側端との距離をAとし、電流引出部材7aの支持部材の幅方向中央と支持部材5の内側端との距離をBとした時、A/Bは1.01〜5、特には2〜4、さらには2.5〜3であることが望ましい。なお、電流引出部材7bは、燃料電池セル3の配列方向xと直交する方向における支持部材5の中央に位置している。   The distance between the center in the width direction of the current extraction member 7a (indicated by a broken line in (a)) and the outer end of the support member 5 is A, and the center in the width direction of the support member of the current extraction member 7a and the inner end of the support member 5 When the distance is B, A / B is preferably 1.01 to 5, particularly 2 to 4, and more preferably 2.5 to 3. The current extraction member 7 b is located at the center of the support member 5 in the direction orthogonal to the arrangement direction x of the fuel cells 3.

また、2個のセルスタック1が並置されており、燃料電池セル3の配列方向xにおける支持部材5とガスタンク8端との距離は、連結部材25で連結されていない側の支持部材5とガスタンク8端との距離L1よりも、連結部材25で接続された側の支持部材5とガスタンク8端との距離L2が長いことが望ましい。これにより、セルスタック1および支持部材5をガスタンク8に強固に接合することが可能となる。さらに、連結部材25で接続された側の支持部材5とガスタンク8端との距離L2の間に、改質器からの燃料ガスを供給する反応ガス供給管41を接合することができ、この反応ガス供給管41からの燃料ガスと、最も近い燃料電池セル3との距離を一定以上離すことができ、これにより、最も近い燃料電池セル3に燃料ガスが過剰に供給されることを抑制できる。   The two cell stacks 1 are juxtaposed, and the distance between the support member 5 and the gas tank 8 end in the arrangement direction x of the fuel cells 3 is the same as the support member 5 and the gas tank on the side not connected by the connecting member 25. It is desirable that the distance L2 between the support member 5 on the side connected by the connecting member 25 and the gas tank 8 end is longer than the distance L1 between the eight ends. Thereby, the cell stack 1 and the support member 5 can be firmly joined to the gas tank 8. Further, a reaction gas supply pipe 41 for supplying fuel gas from the reformer can be joined between the distance L2 between the support member 5 on the side connected by the connecting member 25 and the end of the gas tank 8, and this reaction can be performed. The distance between the fuel gas from the gas supply pipe 41 and the closest fuel cell 3 can be increased by a certain distance or more, thereby suppressing excessive supply of fuel gas to the closest fuel cell 3.

図5は図2で示した電流引出部7aを、支持部材5の断熱材支持部材5bの平板部17に接続している形態を示している。この場合においても同様に、本形態に用いることができ、燃料電池セル3の発電により生じる電流を容易に引き出すことができる。   FIG. 5 shows a mode in which the current extraction portion 7 a shown in FIG. 2 is connected to the flat plate portion 17 of the heat insulating material support member 5 b of the support member 5. In this case as well, it can be used in the present embodiment, and the current generated by the power generation of the fuel cell 3 can be easily extracted.

図6は、支持部材5の他の形態を示すものであり、断熱材支持部材5bの平板部17の両縁側からセルスタック2側に屈曲して延びる一対の側板部21を具備していることを示しており、側板部21は平面視で支持部材本体5aの平板部16よりも外側に位置するように配置されている。このような支持部材5も本形態に用いることができる。   FIG. 6 shows another form of the support member 5 and includes a pair of side plate portions 21 that bend and extend from both edge sides of the flat plate portion 17 of the heat insulating material support member 5b to the cell stack 2 side. The side plate portion 21 is disposed so as to be positioned outside the flat plate portion 16 of the support member main body 5a in a plan view. Such a support member 5 can also be used in this embodiment.

ここで、断熱材支持部材5bは、平板部17の両縁側からセルスタック2側に屈曲して延びる一対の側板部21を具備していることから、断熱材支持部材5b(平板部17)の剛性を高めることができる。   Here, since the heat insulating material support member 5b includes a pair of side plate portions 21 that are bent and extended from both edge sides of the flat plate portion 17 to the cell stack 2 side, the heat insulating material support member 5b (the flat plate portion 17) is provided. Stiffness can be increased.

それにより、セルスタック1の燃料電池セル3の配列方向xにおける端部側に断熱材を配置する場合に、断熱材を断熱材支持部材5bにより強固に固定することができ、断熱材の位置あわせをさらに容易に行うことができる。   Thereby, when arrange | positioning a heat insulating material to the edge part side in the arrangement direction x of the fuel cell 3 of the cell stack 1, a heat insulating material can be firmly fixed with the heat insulating material support member 5b, and alignment of a heat insulating material is possible. Can be performed more easily.

また、断熱材支持部材5b(平板部17)の剛性を高めることができるから、断熱材支持部材5bに近接(当接)して断熱材を配置した場合でも、断熱材支持部材5b(平板部17)が、支持部材本体5a側に傾いて接触することを抑制(防止)することができ、それにより燃料電池セル3に生じる応力の緩和を阻害することなく、燃料電池セル3の破損を抑制することができる。   Moreover, since the rigidity of the heat insulating material support member 5b (the flat plate portion 17) can be increased, the heat insulating material support member 5b (the flat plate portion) even when the heat insulating material is disposed close to (in contact with) the heat insulating material support member 5b. 17) can be suppressed (prevented) from inclining and contacting the support member main body 5a, thereby preventing damage to the fuel cell 3 without inhibiting the relaxation of stress generated in the fuel cell 3. can do.

また、側板部21は、平面視で支持部材本体5aの平板部16よりも外側に位置するように配置されていることから、側板部21が、燃料電池セル3の反りに伴う支持部材本体
5a(平板部16)の変形を阻害することを抑制できる。
Further, since the side plate portion 21 is disposed outside the flat plate portion 16 of the support member main body 5a in plan view, the side plate portion 21 is supported by the support member main body 5a accompanying the warp of the fuel cell 3. It is possible to suppress the deformation of the (flat plate portion 16).

それゆえ、断熱材支持部材5b(平板部17)に一対の側板部21を設けることにより、断熱材支持部材5bの剛性を高めることができ、断熱材の位置あわせをさらに容易に行なうことができるとともに、燃料電池セル3の破損を抑制することができる。   Therefore, by providing the pair of side plate portions 21 on the heat insulating material support member 5b (flat plate portion 17), the rigidity of the heat insulating material support member 5b can be increased, and the alignment of the heat insulating material can be more easily performed. At the same time, the fuel cell 3 can be prevented from being damaged.

図7は図2等で説明した断熱材支持部材を有しない支持部材5を示すもので、このような支持部材であっても本形態に用いることができる。   FIG. 7 shows the support member 5 that does not have the heat insulating material support member described in FIG. 2 and the like, and even such a support member can be used in this embodiment.

本発明の燃料電池モジュールは、上記したセルスタック装置1を収納容器内に収納して構成されている。このような燃料電池モジュールでは、スタックと支持部材との間の電気的な接続を長期間維持できるセルスタック装置1を用いるため、長期信頼性に優れた燃料電池モジュールを得ることができる。また、本発明の燃料電池装置は、上記燃料電池モジュールと、該燃料電池モジュールを作動させるための補機とを外装ケース内に収納してなるため、長期信頼性に優れた燃料電池装置を得ることができる。   The fuel cell module of the present invention is configured by storing the above-described cell stack device 1 in a storage container. In such a fuel cell module, since the cell stack device 1 that can maintain the electrical connection between the stack and the support member for a long period of time is used, a fuel cell module having excellent long-term reliability can be obtained. In addition, the fuel cell device of the present invention has the above-described fuel cell module and an auxiliary machine for operating the fuel cell module housed in an outer case, thereby obtaining a fuel cell device having excellent long-term reliability. be able to.

なお、上述した説明においては、燃料電池セル3の内部に燃料ガスを供給し、燃料電池セル3の外側に酸素含有ガスを流す例を示したが、例えば燃料電池セル3の内部に酸素含有ガスを供給し、燃料電池セル3の外側に燃料ガスを流すような構成の燃料電池セル3であってもよい。   In the above description, an example in which the fuel gas is supplied to the inside of the fuel cell 3 and the oxygen-containing gas is allowed to flow outside the fuel cell 3 has been described. The fuel cell 3 may be configured to supply the fuel gas and flow the fuel gas to the outside of the fuel cell 3.

また、集電部材4aおよび端部集電部材4bの形状は、上述した形状以外にも、燃料電池セル3間を電気的に接続することができるとともに、燃料電池セル3間に酸素含有ガスを流通することができる形状であれば、他の形状のものを使用することもできる。   In addition to the shapes described above, the shape of the current collecting member 4a and the end current collecting member 4b can be electrically connected between the fuel cells 3, and an oxygen-containing gas can be introduced between the fuel cells 3. Other shapes can be used as long as they can be distributed.

さらに、上記形態では、燃料電池セル3として中空平板型を用いたが、円筒型であっても良いことは勿論である。   Further, in the above embodiment, the hollow flat plate type is used as the fuel battery cell 3, but it is needless to say that it may be a cylindrical type.

また、上記形態では、セルスタック1の下部、支持部材5の下部等が収容される2つの枠体28を、内部に空洞を有する部材(台座)27に連結してガスタンク8を構成した形態について説明したが、箱状のガスタンク8自体に複数のセルスタック等を収容する開口部を設け、この開口部に複数のセルスタックを収容し、シール材等で接合しても良いことは勿論である。   In the above embodiment, the gas tank 8 is configured by connecting the two frame bodies 28 in which the lower part of the cell stack 1 and the lower part of the support member 5 are accommodated to a member (pedestal) 27 having a cavity inside. As described above, the box-shaped gas tank 8 itself may be provided with openings for accommodating a plurality of cell stacks, etc., and a plurality of cell stacks may be accommodated in the openings and joined by a sealing material or the like. .

1:セルスタック装置
2:セルスタック
3:燃料電池セル
4a:集電部材
4b:端部集電部材
5:支持部材
5a:支持部材本体
5b:断熱材支持部材
7a、7b:電流引出部
8:ガスタンク
16:平板部
17:平板部
19:側板部
1: cell stack device 2: cell stack 3: fuel cell 4a: current collecting member 4b: end current collecting member 5: support member 5a: support member main body 5b: heat insulating material support members 7a, 7b: current extraction unit 8: Gas tank 16: Flat plate portion 17: Flat plate portion 19: Side plate portion

Claims (5)

長さ方向にガス流路を有する柱状の燃料電池セルを複数個立設させた状態で配列し、隣接する燃料電池セル同士を電気的に接続してなるとともに、前記燃料電池セルの配列方向と直交する方向に所定間隔をおいて複数並置されたセルスタックと、該セルスタックの下端部が固定されるとともに、前記燃料電池セルのガス流路に反応ガスを供給するためのガスタンクと、下端部が前記ガスタンクに固定されるとともに、前記燃料電池セルの配列方向における両端部から前記セルスタックを挟持するように配置され前記燃料電池セルと反対側に延びるようにそれぞれ設けられた電流引出部を備える一対の支持部材と、隣接する前記セルスタックに電流が直列に流れるように前記電流引出部材同士を連結する連結部材とを具備するとともに、前記連結部材で連結された前記電流引出部材は、前記燃料電池セルの配列方向と直交する方向における前記支持部材の中央よりも前記隣接するセルスタック側に位置するように、前記支持部材に設けられていることを特徴とするセルスタック装置。   A plurality of columnar fuel cells having gas flow paths in the longitudinal direction are arranged in a standing state, and adjacent fuel cells are electrically connected to each other, and the arrangement direction of the fuel cells A plurality of cell stacks juxtaposed at predetermined intervals in a direction perpendicular to each other, a gas tank for fixing a lower end portion of the cell stack and supplying a reaction gas to a gas flow path of the fuel cell, and a lower end portion Is fixed to the gas tank, and is provided with current drawing portions that are disposed so as to sandwich the cell stack from both ends in the arrangement direction of the fuel cells, and are respectively provided so as to extend to the opposite side of the fuel cells. A pair of supporting members, and a connecting member that connects the current extraction members so that a current flows in series in the adjacent cell stack. The current drawing members connected by the members are provided on the support member so as to be positioned on the adjacent cell stack side with respect to the center of the support member in a direction orthogonal to the arrangement direction of the fuel cells. A cell stack apparatus characterized by that. 前記複数のセルスタックが一つの前記ガスタンクに固定されていることを特徴とする請求項1に記載のセルスタック装置。   The cell stack device according to claim 1, wherein the plurality of cell stacks are fixed to one gas tank. 2個の前記セルスタックが並置されており、前記燃料電池セルの配列方向における前記支持部材と前記ガスタンク端との距離は、前記連結部材で接続された側の前記支持部材と前記ガスタンク端との距離が長いことを特徴とする請求項2に記載のセルスタック装置。   The two cell stacks are juxtaposed, and the distance between the support member and the gas tank end in the arrangement direction of the fuel cells is the distance between the support member on the side connected by the connecting member and the gas tank end. The cell stack device according to claim 2, wherein the distance is long. 請求項1乃至3のうちいずれかに記載のセルスタック装置を、収納容器内に収納してなることを特徴とする燃料電池モジュール。   A fuel cell module comprising the cell stack device according to claim 1 stored in a storage container. 請求項4に記載の燃料電池モジュールと、該燃料電池モジュールを作動させるための補機とを、外装ケース内に収納してなることを特徴とする燃料電池装置。   5. A fuel cell device comprising: the fuel cell module according to claim 4; and an auxiliary machine for operating the fuel cell module, housed in an outer case.
JP2012147091A 2012-06-29 2012-06-29 Cell stack device, fuel cell module, and fuel cell device Active JP5769669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012147091A JP5769669B2 (en) 2012-06-29 2012-06-29 Cell stack device, fuel cell module, and fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012147091A JP5769669B2 (en) 2012-06-29 2012-06-29 Cell stack device, fuel cell module, and fuel cell device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015124831A Division JP6023275B2 (en) 2015-06-22 2015-06-22 Cell stack device, fuel cell module, and fuel cell device

Publications (2)

Publication Number Publication Date
JP2014011038A true JP2014011038A (en) 2014-01-20
JP5769669B2 JP5769669B2 (en) 2015-08-26

Family

ID=50107555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012147091A Active JP5769669B2 (en) 2012-06-29 2012-06-29 Cell stack device, fuel cell module, and fuel cell device

Country Status (1)

Country Link
JP (1) JP5769669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474928A (en) * 2019-02-27 2021-10-01 京瓷株式会社 Single cell stack device, module, and module housing device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6023275B2 (en) * 2015-06-22 2016-11-09 京セラ株式会社 Cell stack device, fuel cell module, and fuel cell device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334297A (en) * 1993-05-20 1994-12-02 Murata Mfg Co Ltd Mounting structure of electronic part
JP2001143726A (en) * 1999-11-15 2001-05-25 Toto Ltd Solid electrolyte fuel cell
JP2003282102A (en) * 2002-03-25 2003-10-03 Toto Ltd Cylindrical solid oxide fuel cell
JP2004288542A (en) * 2003-03-24 2004-10-14 Toto Ltd Fuel cell system
JP2007250281A (en) * 2006-03-14 2007-09-27 Kyocera Corp Fuel cell stack device, fuel cell stack connecting device, and fuel cell
JP2008066127A (en) * 2006-09-07 2008-03-21 Kyocera Corp Cell stack device and fuel cell module
JP2009021052A (en) * 2007-07-10 2009-01-29 Seiko Instruments Inc Fuel cell
JP2009158121A (en) * 2007-12-25 2009-07-16 Kyocera Corp Fuel cell stack device, fuel cell module, and fuel cell device
JP2009205805A (en) * 2008-02-26 2009-09-10 Kyocera Corp Fuel cell device
WO2011149017A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Semiconductor module substrate and semiconductor module

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334297A (en) * 1993-05-20 1994-12-02 Murata Mfg Co Ltd Mounting structure of electronic part
JP2001143726A (en) * 1999-11-15 2001-05-25 Toto Ltd Solid electrolyte fuel cell
JP2003282102A (en) * 2002-03-25 2003-10-03 Toto Ltd Cylindrical solid oxide fuel cell
JP2004288542A (en) * 2003-03-24 2004-10-14 Toto Ltd Fuel cell system
JP2007250281A (en) * 2006-03-14 2007-09-27 Kyocera Corp Fuel cell stack device, fuel cell stack connecting device, and fuel cell
JP2008066127A (en) * 2006-09-07 2008-03-21 Kyocera Corp Cell stack device and fuel cell module
JP2009021052A (en) * 2007-07-10 2009-01-29 Seiko Instruments Inc Fuel cell
JP2009158121A (en) * 2007-12-25 2009-07-16 Kyocera Corp Fuel cell stack device, fuel cell module, and fuel cell device
JP2009205805A (en) * 2008-02-26 2009-09-10 Kyocera Corp Fuel cell device
WO2011149017A1 (en) * 2010-05-27 2011-12-01 京セラ株式会社 Semiconductor module substrate and semiconductor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113474928A (en) * 2019-02-27 2021-10-01 京瓷株式会社 Single cell stack device, module, and module housing device
CN113474928B (en) * 2019-02-27 2024-05-14 京瓷株式会社 Single cell stack device, module, and module storage device

Also Published As

Publication number Publication date
JP5769669B2 (en) 2015-08-26

Similar Documents

Publication Publication Date Title
JP5111036B2 (en) Fuel cell stack and fuel cell
JP5207729B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP5791854B1 (en) Cell stack device, module and module housing device
JP5334456B2 (en) Cell stack device, fuel cell module, and fuel cell device
JP2010129270A (en) Fuel battery cell stack device, fuel battery module, and fuel battery device
JP6175385B2 (en) Cell stack device, fuel cell module and fuel cell device
JP6100577B2 (en) Cell stack device and electrochemical device
JP5769669B2 (en) Cell stack device, fuel cell module, and fuel cell device
JP5241430B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP5100036B2 (en) Fuel cell stack device, fuel cell stack coupling device and fuel cell
JP5289009B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP5334731B2 (en) Fuel cell stack device, fuel cell module and fuel cell device
JP2011210411A (en) Cell stack device, fuel cell module, and fuel cell device
JP6023275B2 (en) Cell stack device, fuel cell module, and fuel cell device
JP2008135304A (en) Cell stack of fuel cell and fuel cell
JP2010192273A (en) Fuel battery cell stack device, fuel battery module, and fuel battery device
JP6687463B2 (en) Cell stack device, module and module storage device
JP5806104B2 (en) FUEL CELL STACK DEVICE, FUEL CELL STACK CONNECTION DEVICE, AND FUEL CELL DEVICE
JP6117690B2 (en) Cell stack device, fuel cell module and fuel cell device
JP2005019240A (en) Fuel cell
JP2010108687A (en) Current collecting member, cell stack device including the same, fuel cell module and fuel cell device
JP2012014864A (en) Cell stack device, fuel battery module and fuel battery device
JP6871350B2 (en) Conductive members, cell stack devices, modules and module storage devices
JP2011113828A (en) Cell stack device, fuel cell module, and fuel cell device
JP5164630B2 (en) Cell stack and fuel cell module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150623

R150 Certificate of patent or registration of utility model

Ref document number: 5769669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150