JP2014010273A - 投写光学系及びこれを備えるプロジェクター - Google Patents

投写光学系及びこれを備えるプロジェクター Download PDF

Info

Publication number
JP2014010273A
JP2014010273A JP2012146532A JP2012146532A JP2014010273A JP 2014010273 A JP2014010273 A JP 2014010273A JP 2012146532 A JP2012146532 A JP 2012146532A JP 2012146532 A JP2012146532 A JP 2012146532A JP 2014010273 A JP2014010273 A JP 2014010273A
Authority
JP
Japan
Prior art keywords
group
optical system
diaphragm
lens
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012146532A
Other languages
English (en)
Inventor
Hidetoki Morikuni
栄時 守国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2012146532A priority Critical patent/JP2014010273A/ja
Publication of JP2014010273A publication Critical patent/JP2014010273A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

【課題】アスペクト比を切り替えて縦横比の調整された画像形成が可能なプロジェクターへの適用に際して、絞りにおいて光線を遮光することにより発生する熱の影響を抑制できる投写光学系及びこれを組み込んだプロジェクターを提供すること。
【解決手段】第2群40が光変調素子である液晶パネル18Gの調整方向と他方向とで異なるパワーを持つアナモフィック光学系であることで、幅と高さとの比であるアスペクト比の変換を可能としている。また、絞り70が、拡大光学系である第1群30とアナモフィック光学系である第2群40との間に配置されている。これにより、絞り70は、比較的容易に冷却でき、光線を遮光することによって発生する熱が絞り70の近辺に配置された光学部材に伝わって影響を及ぼすことを抑制できる。
【選択図】図3

Description

本発明は、投写像のアスペクト比を切り替えることができる投写光学系及びこれを備えるプロジェクターに関する。
プロジェクターの投写光学系に用いられるアスペクト比変換用のコンバーターとして、本来の投写光学系の前面位置すなわち像側正面に進退可能に配置されるフロント配置型のコンバーターが存在する。
しかしながら、この種のコンバーターは、プロジェクター本体から独立した外付けの光学部として設けられており、プロジェクターを大型化させるとともに、コンバーターを含めた全投写光学系の調整を複雑にし、或いは画像を著しく劣化させる。
なお、プロジェクターの投写光学系ではなく、カメラ等の撮像光学系に使用されるアスペクト比変換用のコンバーターやアナモフィック撮像システムとして、結像光学系の像側に着脱可能に配置されるリア配置型のリレー系が存在する(特許文献1,2参照)。例えば特許文献2のリレー系は、第1群と第2群と第3群とからなり、これらのうち中央の第2群は、アナモフィックコンバーターであり、第1群と第3群との間に挿脱可能になっている。
しかしながら、特許文献1等に開示された技術は、撮像光学系に関するものであり、これを投写光学系にそのまま用いると、種々の制約が生じる可能性がある。例えば、プロジェクターの投写光学系では、プロジェクターの光源から発せられた光を液晶パネル等の画像表示素子に均一に照射し、これを投写光学系で拡大投影するが、拡大投影する際に投写光学系内では一部の光が蹴られる(遮断される)。さらに、シネマ用のプロジェクターでは、投写光学系内に可動絞りを設置することで光束の広がりを制限し、高コントラストを実現するものもある。可動絞りを調整して光の量を大きく制限すると光エネルギーが変換されて発生する熱エネルギーが増加し、その熱エネルギーが特に可動絞りの近辺に配置されたレンズや鏡枠に伝わって、光学性能に大きな影響を及ぼす場合がある。この様な熱エネルギーの影響については、撮像系では必ずしも十分に考慮されていない。
特開2005−300928号公報 特表2008−511018号公報
本発明は、アスペクト比を切り替えて縦横比の調整された画像形成が可能なプロジェクターへの適用に際して、絞りにおいて光線を遮光することにより発生する熱の影響を抑制できる投写光学系及びこれを組み込んだプロジェクターを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明に係る投写光学系は、(a)光変調素子の画像を被投写面上に拡大投写する際に、光変調素子の画像の横縦比と、被投写面上に投写される画像の横縦比とを異なるものとする投写光学系であって、(b)被投写面側から順に、拡大光学系である第1群と、光軸に対して回転非対称な面を持つとともに、圧縮又は伸張による変換調整を行う調整方向と他方向とで異なるパワーを持った少なくとも1つ以上の光学要素で構成される調整光学要素を含み、光変調素子の縦方向と横方向とのうち少なくとも一方向を調整方向として上記変換調整を行う第2群と、光軸に対して回転対称な面を持った補正光学要素からなる第3群とを備え、(c)第1群と第2群との間に、光線を部分的に遮光する絞りが配置されている。
上記投写光学系において、第1群は、拡大投影を行う拡大光学系であり、第2群は、圧縮又は伸張によってアスペクト比の変換を行い、第3群は、光源側から広がって射出された光を狭める方向に角度補正する補正光学要素である。さらに、この投写光学系では、光線を遮光する絞りを、拡大光学系である第1群と、圧縮又は伸張による変換調整を行う調整光学要素を含む第2群との間に配置している。一般に、拡大光学系は円形のレンズ等で構成される一方、圧縮又は伸張による変換調整を行う調整光学要素は、例えばシリンドリカルレンズ等で構成され、矩形形状である。このため、第1群側と第2群側とでは、光学部材を組み付ける鏡枠の形状が別構造になるのが一般的である。また、鏡枠を一体とする場合でも、各群に対応する部分の間に空間を確保しやすい。従って、第1群と第2群との間に配置される絞りは、拡大光学系である第1群内に配置される絞りと比較すると、容易に冷却でき、遮光によって発生する熱が絞り近辺に配置された光学部材に伝わって影響を及ぼすことを抑制できる。
本発明の具体的な側面によれば、絞りが、遮光量を調整可能な可動絞りである。この場合、例えば遮光量を多くして高コントラストな画像を形成させたり、遮光量を少なくして明るい画像を形成させたりすることができる。
本発明の別の側面によれば、第1群が、ズーム光学系である。この場合、第1群において、投写倍率を変更することができる。さらに、絞りの位置が光路上ズーム光学系よりも前段側になるため、変倍を行っても、ズーム光学系において当該絞りによる周辺光のカットはなく、全ズーム位置で一定の明るさ(Fナンバー)を維持できる。これにより、望遠側でも明るい投写を実現することが可能になる。
本発明のさらに別の側面によれば、第1群が、絞りの近傍に異常低分散ガラス製のレンズを有する。この場合、色収差の補正を効率的に行うことができる。一般的に異常低分散ガラスは、絞りよりも光源側に配置されることが多い。その場合、絞りで蹴られた(遮断された)光線により異常低分散ガラスの温度が上昇する。特に異常低分散ガラスは温度上昇に対し、屈折率が大きく変動する特性を持つので、この温度上昇によりバックフォーカスが大きく変動する。本発明のように、絞りよりもスクリーン側に異常低分散ガラスを配置することで、温度による影響を最低限にとどめ、かつ色収差の補正を効率よく行うことが可能になる。
本発明のさらに別の側面によれば、第2群が、光路上に進退可能である。この場合、第2群を光路上に配置して横縦比又はアスペクト比を変換して投写する第1動作状態と、第2群を光路上に配置せず横縦比又はアスペクト比を変換しないで投写する第2動作状態とに切り替え可能になる。また、第2群を進退可能とすることで、絞りを配置した第1群と第2群との間の領域の冷却がさらに行いやすくなる。
本発明のさらに別の側面によれば、投写光学系が、絞りの周辺に配置され絞り及び絞りの近傍を冷却する冷却装置をさらに備える。この場合、絞りでの遮光によって発生する熱を、冷却装置を用いて積極的に除去できる。さらに、温度差により空気内で屈折率勾配が発生するシュリーレン現象を防止することができ、良好な映像を維持することが可能になる。
本発明のさらに別の側面によれば、絞りが、第1群と第2群との間であって、光変調素子からの各光線の主光線と周辺光線を略平行とする位置に配置されている。この場合、絞りにおいて高精度な遮光が可能になる。
発明に係るプロジェクターは、上述した投写光学系と、光変調素子とを備える。本プロジェクターによれば、投写光学系で発生する熱の影響を抑制できるので、光学性能を維持でき、投影に際して良好な画質を確保できる。
第1実施形態に係るプロジェクターの使用状態を説明する図である。 図1のプロジェクターの概略構成を示す図である。 図1のプロジェクターのうち投写光学系の構造を説明する図である。 (A)は、投写光学系の横断面の構成を示し、(B)は、投写光学系の縦断面の構成を示す。 (A)は、投写光学系の第1動作状態を示し、(B)は、投写光学系の第2動作状態を示す。 絞りと冷却装置を含めた絞りの周辺について説明するための一部拡大図である。 (A)は、相対的に開いた状態の絞り及びその周辺の様子を示す正面図であり、(B)は、相対的に閉じた状態の絞り及びその周辺の様子を示す正面図である。 第1実施形態の実施例1の光学系の横断面の構成について説明する図である。 第1実施形態の実施例1の光学系の縦断面の構成について説明する図である。 (A)は、第2実施形態に係るプロジェクターの投写光学系の横断面の構成を示し、(B)は、投写光学系の縦断面の構成を示す。
以下に図面を参照して、本発明の実施形態に係るプロジェクター及び投写光学系を詳細に説明する。
〔第1実施形態〕
図1に示すように、本発明の第1実施形態に係るプロジェクター2は、画像信号に応じて画像光PLを形成し、当該画像光PLをスクリーンSC等の被投写面へ向けて投写する。プロジェクター2の投写光学系20は、プロジェクター2内に内蔵された光変調素子である液晶パネル18G(18R,18B)の画像をスクリーン(被投写面)SC上に拡大投写する際に、液晶パネル18G(18R,18B)の画像の横縦比又はアスペクト比AR0に対して、スクリーンSC上に投写される画像の横縦比又はアスペクト比AR2を異なるものとすることができる。つまり、液晶パネル18Gの表示領域A0の横縦比AR0と、スクリーンSCの表示領域A2の横縦比AR2とは、異なるものとすることができるが、同一のものとすることもできる。具体的には、液晶パネル18Gの表示領域A0の横縦比AR0は、例えば1.78:1であり、スクリーンSCの表示領域A2の横縦比AR2は、例えば1.78:1、1.85:1、2.35:1、2.4:1等とされる。
図2に示すように、プロジェクター2は、画像光を投写する光学系部分50と、光学系部分50の動作を制御する回路装置80とを備える。
光学系部分50において、光源10は、例えば超高圧水銀ランプであって、R光,G光,及びB光を含む光を射出する。ここで、光源10は、超高圧水銀ランプ以外の放電光源であってもよいし、LEDやレーザーのような固体光源であってもよい。第1インテグレーターレンズ11及び第2インテグレーターレンズ12は、アレイ状に配列された複数のレンズ素子を有する。第1インテグレーターレンズ11は、光源10からの光束を複数に分割する。第1インテグレーターレンズ11の各レンズ素子は、光源10からの光束を第2インテグレーターレンズ12のレンズ素子近傍にて集光させる。第2インテグレーターレンズ12のレンズ素子は、重畳レンズ14と協働して、第1インテグレーターレンズ11のレンズ素子の像を液晶パネル18R,18G,18Bに形成する。このような構成により、光源10からの光が液晶パネル18R,18G,18Bの表示領域(図1の表示領域A0)全体を略均一な明るさで照明する。
偏光変換素子13は、第2インテグレーターレンズ12からの光を所定の直線偏光に変換させる。重畳レンズ14は、第1インテグレーターレンズ11の各レンズ素子の像を、第2インテグレーターレンズ12を介して液晶パネル18R,18G,18Bの表示領域上で重畳させる。
第1ダイクロイックミラー15は、重畳レンズ14から入射したR光を反射させ、G光及びB光を透過させる。第1ダイクロイックミラー15で反射されたR光は、反射ミラー16及びフィールドレンズ17Rを経て、光変調素子である液晶パネル18Rへ入射する。液晶パネル18Rは、R光を画像信号に応じて変調することにより、R色の画像を形成する。
第2ダイクロイックミラー21は、第1ダイクロイックミラー15からのG光を反射させ、B光を透過させる。第2ダイクロイックミラー21で反射されたG光は、フィールドレンズ17Gを経て、光変調素子である液晶パネル18Gへ入射する。液晶パネル18Gは、G光を画像信号に応じて変調することにより、G色の画像を形成する。第2ダイクロイックミラー21を透過したB光は、リレーレンズ22,24、反射ミラー23,25、及びフィールドレンズ17Bを経て、光変調素子である液晶パネル18Bへ入射する。液晶パネル18Bは、B光を画像信号に応じて変調することにより、B色の画像を形成する。
クロスダイクロイックプリズム19は、光合成用のプリズムであり、各液晶パネル18R,18G,18Bで変調された光を合成して画像光とし、投写光学系20へ進行させる。
投写光学系20は、各液晶パネル18G,18R,18Bによって変調されクロスダイクロイックプリズム19で合成された画像光PLを図1のスクリーンSC上に拡大投写する。この際、投写光学系20は、スクリーンSC上に投写される画像の横縦比AR2を、液晶パネル18G,18R,18Bの画像の横縦比AR0と異なるものとしたり、この横縦比AR0と等しいものとすることができる。
回路装置80は、ビデオ信号等の外部画像信号が入力される画像処理部81と、画像処理部81の出力に基づいて光学系部分50に設けた液晶パネル18G,18R,18Bを駆動する表示駆動部82と、投写光学系20に設けた駆動機構(不図示)を動作させて投写光学系20の状態を調整するレンズ駆動部83と、これらの回路部分81,82,83等の動作を統括的に制御する主制御部88とを備える。
画像処理部81は、入力された外部画像信号を各色の諧調等を含む画像信号に変換する。画像処理部81は、投写光学系20が画像の横縦比又はアスペクト比(縦横比)を変換して投写する第1動作状態である場合、投写光学系20による横縦比の変換を逆にした画像のアスペクト比変換を予め行ってスクリーンSC上に表示される画像が縦横に伸縮しないようにする。具体的には、投写光学系20によって例えば1.78:1から例えば2.4:1となるように横方向に画像の伸張が行われる場合、予め、横方向に0.742=1.78/2.4倍の画像の圧縮が行われ、或いは、縦方向に1.35=2.4/1.78倍の画像の伸張が行われる。一方、投写光学系20が画像の横縦比又はアスペクト比を変換しないで投写する第2動作状態である場合、画像処理部81は、上記のような画像のアスペクト比変換を行わない。なお、画像処理部81は、外部画像信号に対して歪補正や色補正等の各種画像処理を行うこともできる。また、入力された外部画像信号が予め圧縮・あるいは伸長されたデータの場合、第1動作状態であっても、画像処理を行わないようにすることもできる。
表示駆動部82は、画像処理部81から出力された画像信号に基づいて液晶パネル18G,18R,18Bを動作させることができ、当該画像信号に対応した画像又はこれに画像処理を施したものに対応する画像を液晶パネル18G,18R,18Bに形成させることができる。
レンズ駆動部83は、主制御部88の制御下で動作し、例えば投写光学系20を構成する一部の光学要素を光軸OAに沿って適宜移動させることにより、投写光学系20による図1のスクリーンSC上への画像の投写倍率を変化させることができる。また、レンズ駆動部83は、投写光学系20を構成する別の一部の光学要素を光軸OA上すなわち光路上に進退させることにより、図1のスクリーンSC上に投写される画像の横縦比AR2を変化させることができる。レンズ駆動部83は、投写光学系20全体を光軸OAに垂直な上下方向に移動させるアオリの調整により、図1のスクリーンSC上に投写される画像の縦位置を、歪みを抑制しつつ変化させることができる。また、レンズ駆動部83は、投写光学系20を構成する絞りのうち、XY面に平行な面内で伸縮する可動絞りである絞り70(図3参照)を動作させて遮光量を調整し、例えば高コントラストな画像形成を可能にしている。
以下、図3を参照して、実施形態の投写光学系20について説明する。投写光学系20は、レンズ等の複数の光学要素を組み合わせてなる本体部分20aと、本体部分20aの一部又は全体を移動させることでその結像状態を調整する駆動機構61,62,63,64とを備える。
本体部分20aは、スクリーンSC側から順に、第1群30と、第2群40と、絞り70と、第3群60とからなる。ここで、絞り70は、第1群30と第2群40との間に配置され第1群30とともに固定された状態となっている。また、投写光学系20は、絞り70を冷却する冷却装置90を備える。
第1群30は、第1レンズ部31と、第2レンズ部32とを有する。たとえば、第1レンズ部31を構成する少なくとも1枚のレンズを光軸OAに沿って手動等により微動させることにより、本体部分20aのフォーカス状態を調整することができる。また、第2レンズ部32を構成する少なくとも1枚のレンズを、図3の駆動機構61により光軸OAに沿って移動させて、本体部分20aによる投写倍率を変更することができる。つまり、第1群30は、拡大光学系であり、ズーム光学系である。
第2群40は、横方向(X方向)と縦方向(Y方向)で異なる焦点距離を持つ調整光学要素であり、結果的に第1群30も含めた投写光学系20の全系としても、縦方向と横方向とで異なる焦点距離を持つことになる。すなわち、本体部分20aによる投射に際して縦方向の拡大倍率と横方向の拡大倍率とが互いに異なるものとなり、液晶パネル18G(18R,18B)に表示された画像の横縦比AR0とは異なる横縦比AR2の画像をスクリーンSC上に投写することができる。第2群40は、光軸OAに対して回転非対称な面を持つ1つ以上の調整用の光学要素を含み、具体的には、図4(B)に示す縦方向(Y方向)の断面に関して、スクリーンSC側から順に、正のパワーを持つ第1の光学要素群41と、負のパワーを持つ第2の光学要素群42とで構成されている。なお、第1の光学要素群41と第2の光学要素群42とは、図4(A)に示す横方向(X方向)の断面に関して、パワーを有していない。
このように、アナモフィック光学系である第2群40を、縦断面に関して、正の屈折力を持つ第1の光学要素群41と負の屈折力を持つ第2の光学要素群42との組合せとすることにより、第2群をアフォーカル系のように機能させることができ、簡易に変倍すなわちズーミングを行なうことができる。
第2群40を図3に示す進退駆動機構である第1アナモフィック駆動機構62により一体として光路上に進退させることにより、スクリーンSC上に投写される画像の横縦比又はアスペクト比を所望のタイミングで切り替えることができる。具体的には、図5(A)に示すように、第2群40を光路上に配置した第1動作状態とすることにより、液晶パネル18G(18R,18B)に形成される画像を縦方向に圧縮した横縦比(例えば2.4:1)でスクリーンSC上に画像を投写することができる。あるいは、図5(B)に示すように、第2群40を光路上から退避させた第2動作状態とすることにより、液晶パネル18G(18R,18B)に形成される画像のままの横縦比(例えば1.78:1)でスクリーンSC上に画像を投写することができる。第2群40によってスクリーンSC上に投写される画像を縦方向に圧縮する構成は、横寸法が固定されたスクリーンSCを使用する際に有効である。つまり、このようなスクリーンSCに対して投写光学系20による投写距離等を変えずに横縦比だけの変更が可能になる。なお、第2群40を構成する第1の光学要素群41と第2の光学要素群42とを第2アナモフィック駆動機構63により光軸OA方向に移動させることもできる。これらの間隔を調整することにより、スクリーンSC上に投写される画像の横縦比又はアスペクト比(縦横比)を連続的に増減させることができる。
図5(B)に示すように投写光学系20を第2動作状態とした場合、すなわち第2群40を光路上から退避させている場合、投写光学系20は第1群30と第3群60とが協働して回転対称な光学要素のみで構成されることになるので、液晶パネル18G(18R,18B)の表示領域A0の横縦比又はアスペクト比とスクリーンSCの表示領域A2の横縦比又はアスペクト比とは一致することになる。ここで、第1群30は、一般的な投写光学系と同じ拡大光学系及び変倍光学系の機能を受け持ち、第1群30のみで液晶パネル18Gの像をスクリーンSC上で結像させることができる。さらに、第2群40を退避させた際には透過率が向上し、画像を明るくできる。第3群60は、詳しくは後述するが、複数のレンズを有し、光学系全体の収差を抑える補正光学要素として機能する。
また、図3に示すように、投写光学系20では、全系駆動機構64によって本体部分20a全体を光軸OAに垂直な方向に移動させてシフト量を調整することにより、スクリーンSC上に投写される画像の光軸OAからのズレ量を少ない画像歪みで増減させることができる。つまり、本体部分20aの光軸OAを液晶パネル18Gの中心軸AXに平行な状態を保ちつつ、本体部分20aの光軸OAを液晶パネル18Gの中心軸AXに対して適当なシフト量SFだけ移動させることで、光軸OAから例えば上方向(+Y方向)に外れた位置に画像を投写することができ、シフト量SFの調整によって画像の投写位置を縦方向に関して変化させることができる。なお、本体部分20aの光軸OAの液晶パネル18Gの中心軸AXを基準するズレ量であるシフト量SFは、必ずしも可変とする必要はなく、例えばゼロでない値で固定することもできる。駆動機構61、進退駆動機構である第1アナモフィック駆動機構62、第2アナモフィック駆動機構63、及び全系駆動機構64は、モーター、機械的な伝達機構、センサー等を有しており、図2のレンズ駆動部83からの駆動信号に応じて動作する。これらの駆動機構61,62,63,64は、レンズ駆動部83からの駆動信号によって単独で動作するだけでなく、複合的に動作する。
図4(A)及び4(B)に戻って、第3群60は、横方向及び縦方向にパワーを持つ回転対称な光学要素回転対称レンズを1枚以上含む。第3群60は、正のパワーを有するため光変調素子から射出した光の広がりを抑えることができる。そのため、第2群40へ入射する光の角度を抑えることができ、第2群40で発生する収差を抑えることができる。結果的に、第3群60は、投写光学系20全体の収差を抑える役割があり、補正光学要素として複数のレンズを有し、それらのレンズ中に正のパワーのレンズを有するものとし、必要であれば、非球面のものを含めるものとする。なお、第3群60において光変調素子から射出した光の広がりが抑えられる結果、図4において一例として模式的に示す光線LL1のように、第3群60からの各像高の光線を主光線に対して略平行化したものとなっている。
絞り70は、第1群30と第2群40との間に配置され、例えば第1群30のうち第2レンズ部32に近接して配置されている。絞り70は、光束を部分的に遮光する、すなわち第2群40を経て第1群30に向かう光束の一部を遮断することで、液晶パネル18G(18R,18B)から射出される光束すなわち画像光の周辺光線の射出角度や方向を調整することができる。つまり、絞り70は、液晶パネル18G(18R,18B)の画面の各位置におけるFナンバーを調整する。また、絞り70は、可動絞りであり、レンズ駆動部83からの駆動信号に従って動作する駆動機構61によって伸縮する。絞り70は、光軸OAを中心軸とする輪帯状であって、XY面に平行な面内で伸縮する可動絞りであることで、絞り量すなわち遮光量を調整可能にする調光部材である。具体的には、第2群40から第1群30に向かう光線のうち、光軸OAから離れた周辺側の位置を通過する成分のカット量を増減させて調光を行い、例えば絞り70を伸ばした状態(閉じた状態)にすることで、コントラスト性を落とす傾向にある光軸OAから離れた周辺側の成分を絞り70において遮光し、Fナンバーを大きく(暗く)することで、高コントラストな画像を形成できる。また、遮光量を少なくして明るい画像を形成させることも可能である。
ここで、一般的な従来の投写光学系では、拡大光学系を組み付ける鏡枠内という密閉された空間に絞りを配置することが多く、当該絞りやその周辺は、冷却しにくい。従って、このような従来型の絞りを、仮に、高コントラスト化のために可変絞りとし、コントラストの効果を高めるために像高位置の光線が全域に亘って通過する位置(瞳位置)又はその近辺の位置に配置してしまうと、特に温度が上昇しやすいものとなり、絞り周辺のレンズ等の光学性能に大きな影響を及ぼすことになると考えられる。
これに対して、本実施形態では、高コントラスト化のために可変絞りである絞り70の配置を、拡大光学系である第1群30とアナモフィック光学系を含む第2群40との間としている。この場合、絞り70は、遮光による温度上昇が生じても、冷却しやすい位置に配置されることになる。例えば、本実施形態では、既述のように、第1動作状態と第2動作状態とに切り替え可能とする、すなわち第2群40が第1群30に対して進退可能な構成としている。このため、第1群30と第2群40との間にはもともと隙間が形成されやすい構造となり、この位置にある絞り70は、比較的放熱しやすいことになる。さらに、ここでは、絞り70の近辺に冷却装置90を設けることで、効率的に絞り70とその周辺についての冷却を効率的に行うことができ、熱によって絞り70周辺の光学部材が温度上昇することを抑制できるものとしている。
絞り70は、例えば像高位置の光線が全域に亘って通過する位置(瞳位置)又はその近辺の位置に配置することで、コントラストによる効果が高いものにできるが、反面として、絞り70において、遮光に伴って多くの熱が発生し、温度が上昇し、鏡枠や空気中を伝わって、絞り70の近辺に配置された第1群30等を構成するレンズの温度を上昇させてしまう可能性も高くなる。仮に、これらのレンズの温度が大きく上昇してしまうとすると、レンズの曲率半径、レンズ厚み(間隔)、レンズの屈折率が変化し、投写光学系20の光学性能に大きな影響を及ぼすことになる。また、これらのレンズは遮光性を高めるため鏡枠内の密閉された空間に配置されることが多いことから、さらなる温度上昇を招くことになる。しかも、この温度上昇は、絞り70の近辺で生じる局所的なものであるため、投写光学系20の全域に亘り不均一な温度分布になり、温度上昇の状況の予測が難しい。それらの温度分布幅が極端に大きくなった場合、空気内にも屈折率勾配が発生し、シュリーレン現象が発生する。すなわち、空気に揺らぎが発生し、映像光を屈折させることで映像に悪影響を及ぼす。また、瞳位置又はその近傍に位置する絞り70の近くにあるレンズには、色収差を補正するために、屈折率温度係数がマイナスの異常低分散ガラス製のレンズ等を配置することが多く、鏡枠の温度上昇によるバックフォーカス移動量と同じ方向に移動しやすくなり、ガラス温度上昇によるバックフォーカス移動量を調整して、鏡枠の温度上昇による移動量による影響をキャンセルさせることが難しい。以上のような背景から、絞り70による温度上昇の影響をできるだけ排除することが望ましい。本実施形態では、上記のように、絞り70が比較的放熱しやすい位置に配置され、さらに、冷却装置90を設けていることで、絞り70周辺の光学部材が温度上昇することを抑制し、以上のようなレンズの性能低下を回避して、投写光学系20の光学性能を維持できるようにしている。また、局所的な温度勾配が発生しないようにもできるので、シュリーレン現象を防止することも可能になる。
また、以上のように絞り70をアナモフィック光学系である第2群40を通して拡大光学系である第1群30へ入射させる位置の近辺に配置できるのは、補正光学要素からなる第3群60を備えることで、液晶パネル18G(18R,18B)側から射出された光線を、第3群60において狭める方向に角度を補正しているからである。
図6は、絞り70とその周辺についての一部拡大図であり、図7(A)及び7(B)は、像面側すなわち液晶パネル18G側から見た正面図である。また、図6に示すように、ここでは、絞り70に近接して冷却装置90が設けられている。なお、冷却装置90は、絞り70に向けて送風を行う送風装置91と、絞り70に接触して放熱する冷却フィン92とで構成されている。
ここで、図6に示すように、絞り70は、第1群30のうち最も第2群40側(−Z側)に配置される第2レンズ部32の一部であるレンズ群32xと、第2群40のうち最も第1群30側(+Z側)に配置される第1の光学要素群41のレンズ群41xとの間に配置されている。また、図7(A)及び図7(B)に示すように、絞り70は、複数枚の絞り羽根70a(図示では8枚)を組み合わせて構成され、光軸OAについて回転対称な円形状の外形を有している。図示のように、絞り70において複数の絞り羽根70aが開閉動作することで、絞り70は、開口OPの大きさを変化させる可動絞りとして機能する。上述したように、第1群30は、ズーム光学系であり、光軸OAについて回転対称な円形状のレンズ群で構成されている(図7(A)に示すレンズ群32xを参照。)。従って、レンズ群32x等の第1群30の光学系を支持する第1鏡枠部LB1は、光軸OAを中心軸とする円筒状となっている。一方、第2群40は、アナモフィック光学系であり、矩形のシリンドリカルレンズで構成されている(図7(A)に示すレンズ群41xを参照。)。従って、レンズ群41x等の第2群40の光学系を支持する第2鏡枠部LB2は、矩形の支持部を有する構造とすれば、簡易なものにできる。以上から、第2鏡枠部LB2と第1鏡枠部LB1とを同じ形状とせず、別構造としている。さらに、第2群40は、第1群30に対して進退可能としている。このため、第1群30と第2群40との間は、メカ的な分離をせざるを得ない箇所となっている。以上から、第1群30と第2群40との間すなわち絞り70の近辺は、比較的排熱、冷却がしやすく、例えば第1群30の一部であるレンズ群32xを異常低分散ガラス製のレンズで構成しても、第1群30の光路前段側で絞り70で発生した熱を逃がすことができ、温度の影響を少なくすることが可能になる。なお、図7(A)及び7(B)に示す絞り70の構成は、一例であり、その他種々の態様の可変絞りが適用可能である。
以下、冷却装置90の構成の詳細について説明し、冷却装置90による絞り70及びその周辺の光学部材の冷却方法の一例について説明する。
送風装置91は、絞り70に向けて送風を行う一対の送風ファン91a,91bと、送風ファン91a,91bを駆動するファン駆動装置91cとを有する。一対の送風ファン91a,91bは、光路外の位置であって、かつ、第2群40の進退動作に影響しない位置に配置され、例えば光軸OAに対して上下方向或いは左右方向に対称に設けられている。送風ファン91a,91bは、ファン駆動装置91cによって適宜送風量を調整されて絞り70に向けて送風を行い、絞り70及びその近辺の部材を適度に冷却する。なお、ファン駆動装置91cは、モーター、機械的な伝達機構、センサー等を有しており、図2のレンズ駆動部83からの駆動信号に応じて動作する。また、ここでは、送風装置91は、一対の送風ファン91a,91bとしているが、単独のファンで構成されるものとしてもよく、また、2つ以上のファンで構成されるものとしてもよい。また、ファンを必ずしも近接させる必要はなく、例えばダクト等を設けて遠隔的に送風することも可能である。
冷却フィン92は、絞り70を周囲から囲って固定する輪帯状の部材であり、例えばアルミ等の熱伝導性が比較的高い材料で構成され、絞り70と外縁側において接触しており、絞り70での遮光によって発生した熱を伝導させて放熱する。なお、冷却フィン92は、釘NL等で第1鏡枠部LB1に打ち付けて組み付けられて固定されている。これにより、絞り70の第1群30に対する光軸方向についての相対的な位置も固定的に確定されている。
以上のように、本実施形態では、絞り70が元々冷却されやすい位置に配置されているだけでなく、さらに冷却装置90を備えることによって積極的に絞り70を冷却することで、絞り70及びその周辺での熱の発生をより効率的に抑制することが可能なものとなっている。
また、絞り70は、光路上ズーム光学系である第1群30よりも前段側に位置している。この場合、絞り70による光軸OAから離れ位置を通過する周辺側の成分が既にカットされた状態の光線が1群30に向かうことになる。このため、第1群30でのズーミングの動作において絞り70での遮光がズーム光学系の明るさの決定に際して影響するという事態が生じない。従って、ズーム光学系である第1群30において全ズーム位置で一定の明るさが略維持され、例えば望遠側でも明るい投写を実現することが可能になる
また、上記実施形態の投写光学系20の場合、調整光学要素である第2群40を構成する光学要素群41,42の片面又は両面をシリンドリカルレンズ面とすることで、上記圧縮変換が可能となる。これらのシリンドリカルレンズは、一方向のみに曲率を有する形状であることから、加工が容易で高精度が期待でき、コストダウンが可能である。また、平面断面側の偏芯感度が低く、組立性が向上し、結果的に、高性能化が期待できる。つまり、第2群40をシリンドリカルレンズで構成することで、投写光学系20の精度を確保しつつコストダウンが可能になる。
なお、第2群40を構成する光学要素群41,42の片面又は両面は、シリンドリカルレンズ面に限らず、アナモフィックレンズ(例えばトーリック又はトロイダルレンズ)とすることも可能である。
以上において、第2群40を構成するシリンドリカル型又はアナモフィックレンズ型の光学要素群41,42の片面又は両面は、横のX断面又は縦のY断面に関して非球面式、具体的には、以下の多項式hで表される形状を持つものとできる。
Figure 2014010273
ここで、yは光軸OAからの像の高さ(像高)、cは基準とする球面の曲率、kは円錐定数、A2、A4、A6、A8、A10、・・・のそれぞれは所定の補正項とする。
さらに、第2群40を構成する光学要素群41,42の片面又は両面は、自由曲面とすることができる。アナモフィックレンズを用いることにより、Y方向及びX方向の両断面で曲率をコントロールできるので、非点収差の低減が可能で、高性能化が可能になる。また、非球面とすることにより、各種収差の低減が可能で、高性能化が可能になる。さらに、自由曲面とすることにより、スクリーンSC上又は液晶パネル18G(18R,18B)上のイメージサークル面において、液晶パネル18G(18R,18B)の縦横方向以外の中間の斜め方向の結像状態の最適化も容易になり、高性能化が可能になる。
第2群40については、2枚の光学要素群41,42に限らず3枚以上の光学要素群で構成することができる。この際、第2群40によって色収差が発生しないことが望ましい。このため、以下の関係
Σ(φi×νi)≒0
ここで、
φi:第2群40を構成する各レンズの屈折率
νi:第2群40を構成する各レンズのアッベ数
が成り立つことが望ましい。
以上のように本実施形態の投写光学系20によれば、第2群40が光変調素子である液晶パネル18Gの調整方向と他方向とで異なるパワーを持つアナモフィック光学系であることで、幅と高さとの比であるアスペクト比の変換を可能としている。また、絞り70が、拡大光学系である第1群30とアナモフィック光学系である第2群40との間に配置されている。これにより、絞り70は、比較的容易に冷却でき、光線を遮光することによって発生する熱が絞り70の近辺に配置された光学部材に伝わって影響を及ぼすことを抑制できる。
〔実施例1〕
図8及び図9は、第1実施形態の投写光学系20の具体的な実施例1を説明する図であり、第1動作状態での投写光学系20を示すものである。図8は、横断面の状態を示し、図9は、縦断面の状態を示している。
投写光学系20は、レンズL1〜L24、絞り70からなる。このうちレンズL1〜L24に関しては、レンズL1〜L16によって第1群30が構成され、レンズL17〜L21によって第2群40が構成され、レンズL22〜L24によって第3群60が構成されている。絞り70は、第1群30のレンズL16と第2群40のレンズL17との間に配置されている。第1群30に含まれるレンズL1〜L16は、光軸OAのまわりに回転対称な球面のレンズである。第1群30のうち、レンズL1〜L7は、第1レンズ部31を構成し、レンズL8〜L16は、第2レンズ部32を構成している。第2群40のうち、接合レンズL17,L18は、縦のY方向に関して正のパワーを有するレンズとなっており、横のX方向に関してパワーを有しないシリンドリカルレンズとなっている。つまり、接合レンズL17,L18は、第1の光学要素群41を構成している。また、単独のレンズL19〜L21は、全体として縦のY方向に関して負のパワーを有するレンズとなっており、いずれも横のX方向に関してパワーを有しないシリンドリカルレンズとなっている。つまり、レンズL19〜L21は、第2の光学要素群42を構成している。第3群60に含まれるレンズL22,L23は、負のメニスカスレンズであり、レンズL24は、正のメニスカスレンズである。なお、第1群30のレンズL1,L7と、第2群のレンズL21と、第3群60のレンズL23とは、非球面レンズである。特に、レンズL21は、アナモフィック非球面レンズである。非球面式について具体的には、上述した多項式hで表される形状が同様に適用される。すなわち、
Figure 2014010273
に適宜数値を入れることで、形状が特定される。図示のように、第3群60において、収差の補正がなされる結果、第3群60は、各光線の主光線と周辺光線とを略平行な状態にして射出させるものとなっており、この状態は、絞り70付近においても保たれている。
また、絞り70は、図示の場合のように、全ての像高位置の光線が絞り70の全域に亘って通過する位置にある可動絞りとすることで、画面全域の光量を均一に低下させることが可能である。すなわち、一つの光束の周辺光をカットすることができるので、光学性能を向上させることができるとともに、パネルからの不要光もカットできるので、コントラスト向上にもつながる。なお、絞り70以外にも例えば絞りDP1,DP2等が存在するが、これらはいずれも開閉動作しない固定絞りであり、ゴースト光、フレアの発生等を抑制するために適宜設けられるものである。
以下の表1及び表2に、実施例1のレンズデータ等を示す。表1は、第1動作状態での投写光学系20に関するものである。表1の上欄において、「面番号」は、像面側から順に各レンズの面又は絞りに付した番号である。また、「R1」、「R2」は、Y及びX曲率半径を示し、「D」は、次の面との間のレンズ厚み或いは空気空間を表している。さらに、「Nd」は、レンズ材料のd線における屈折率を示し、「νd」は、レンズ材料のd線におけるアッベ数を示し、また、「Q1」、「Q2」は、Y及びX有効径を示す。なお、表1の下欄には、実施例1の投写光学系20を構成するレンズのうち、上述した非球面式又は多項式で表される非球面であるレンズL1,L7,L23について、非球面形状が示されている。
Figure 2014010273
また、アナモフィック非球面レンズであるレンズL21の非球面データは、以下の表2に示す通りである。
Figure 2014010273
〔第2実施形態〕
以下、第2実施形態に係る投写光学系等について説明する。なお、本実施形態は、第1実施形態の投写光学系等の変形例であり、特に説明しない部分又は事項は、第1実施形態の場合と同様である。
図10(A)及び10(B)は、図4(A)及び4(B)に示す投写光学系20の変形例である投写光学系120を説明する図である。第2群140は、縦方向(Y方向)と横方向(X方向)で異なる焦点距離を持っており、結果的に第1群30も含めた投写光学系120の全系としても、縦方向と横方向とで異なる焦点距離を持つことになる。この場合、第2群140は、横方向(X方向)の断面に関して、スクリーンSC側から順に、負のパワーを持つ第1の光学要素群141と、正のパワーを持つ第2の光学要素群142とで構成されている。なお、第1の光学要素群141と第2の光学要素群142とは、図10(B)に示す縦方向(Y方向)の断面に関して、パワーを有していない。図10(A)及び10(B)に示すように、第2群40を光路上に配置して、液晶パネル18G(18R,18B)に形成される画像を横方向に伸張した横縦比(例えば2.4:1)でスクリーンSC上に画像を投写することができる。図示を省略するが、この第2群140を光路上から退避させた場合、液晶パネル18G(18R,18B)に形成される画像のままの横縦比(例えば1.78:1)でスクリーンSC上に映像を投写することができる。つまり、横方向が伸張による変換調整を行う調整方向であり、縦方向が非調整方向である。さらに、第2群140を構成する第1の光学要素群141と第2の光学要素群142とを図3の第2アナモフィック駆動機構63により光軸OA方向に移動させてこれらの間隔を調整することにより、スクリーンSC上に投写される画像の縦横比(アスペクト比)又は横縦比を連続的に増減させることもできる。なお、第2群40によってスクリーンSC上に投写される画像を横方向に伸張する構成は、縦寸法が固定されたスクリーンSCを使用する際に有効である。つまり、このようなスクリーンSCに対して投写光学系120による投写距離等を変えずに横縦比だけの変更が可能になる。
図10(A)及び10(B)に示すように、絞り170は、拡大光学系である第1群30とアナモフィック光学系である第2群140との間に配置されている。これにより、絞り170は、比較的容易に冷却でき、光線を遮光することによって発生する熱が絞り170の近辺に配置された光学部材に伝わって影響を及ぼすことを抑制できる。
この発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
例えば、第2群40,140を進退可能としているが、進退可能とせず、常に第2群40,140を光路上に配置した第1動作状態のみで画像投写を行うものとしてもよい。また、第1群30を支持する第1鏡枠部LB1と第2群40を支持する第2鏡枠部LB2とを一体的な構造としてもよい。
例えば、上記実施形態では、投写光学系20等の第2群40等により、液晶パネル18G等に表示された画像を縦方向に圧縮(縮小)又は横方向に伸張してスクリーンSC上に相対的に横長のアスペクト比となるように変換した画像を投写したが、第2群40等のレンズ構成を変更することで、相対的に縦長のアスペクト比となるように変換した画像を投写することもできる。
また、上記では、縦方向についてのみ圧縮による変換調整を行うすなわち縦方向のみが調整方向であるとするか、横方向についてのみ伸張による変換調整を行うすなわち横方向のみが調整方向であるとしているが、縦方向への圧縮と横方向への伸張との双方を行い、縦方向及び横方向の双方とも調整方向とする態様も可能である。
液晶パネル18G,18R,18Bは、透過型に限らず、反射型とすることができる。ここで、「透過型」とは、液晶パネルが変調光を透過させるタイプであることを意味しており、「反射型」とは、液晶パネルが変調光を反射するタイプであることを意味している。
プロジェクターとしては、投写面を観察する方向から画像投写を行う前面投写型のプロジェクターと、投写面を観察する方向とは反対側から画像投写を行う背面投写型のプロジェクターとがあるが、図2等に示すプロジェクターの構成は、いずれにも適用可能である。
液晶パネル18G,18R,18Bに代えて、マイクロミラーを画素とするデジタル・マイクロミラー・デバイス等を、光変調素子として用いることもできる。
2…プロジェクター、 10…光源、 15,21…ダイクロイックミラー、 17B,17G,17R…フィールドレンズ、 18B,18G,18G…液晶パネル、 19…クロスダイクロイックプリズム、 20,120…投写光学系、 20a…本体部分、 30…第1群、 31…第1レンズ部(第1レンズ群)、 32…第2レンズ部、 40,140…第2群、 60…第3群、 41,42,141,142…光学要素群、 50…光学系部分、 61…ズーム駆動機構、 62…第1アナモフィック駆動機構、 63…第2アナモフィック駆動機構、 64…全系駆動機構、 70,170…絞り、 80…回路装置、 81…画像処理部、 83…レンズ駆動部、 88…主制御部、 90…冷却装置、 AX…中心軸、 L1-L24…レンズ、 OA…光軸、 PL…画像光、 SC…スクリーン

Claims (8)

  1. 光変調素子の画像を被投写面上に拡大投写する際に、前記光変調素子の画像の横縦比と、前記被投写面上に投写される画像の横縦比とを異なるものとする投写光学系であって、
    前記被投写面側から順に、拡大光学系である第1群と、光軸に対して回転非対称な面を持つとともに、圧縮又は伸張による変換調整を行う調整方向と他方向とで異なるパワーを持った少なくとも1つ以上の光学要素で構成される調整光学要素を含み、前記光変調素子の縦方向と横方向とのうち少なくとも一方向を前記調整方向として前記変換調整を行う第2群と、光軸に対して回転対称な面を持った補正光学要素からなる第3群とを備え、
    前記第1群と前記第2群との間に、光線を部分的に遮光する絞りが配置されている、投写光学系。
  2. 前記絞りは、遮光量を調整可能な可動絞りである、請求項1に記載の投写光学系。
  3. 前記第1群は、ズーム光学系である、請求項1及び2のいずれか一項に記載の投写光学系。
  4. 前記第1群は、前記絞りの近傍に異常低分散ガラス製のレンズを有する、請求項1から3までのいずれか一項に記載の投写光学系。
  5. 前記第2群は、光路上に進退可能である、請求項1から4までのいずれか一項に記載の投写光学系。
  6. 前記絞りの周辺に配置され前記絞り及び前記絞りの近傍を冷却する冷却装置をさらに備える、請求項1から5までのいずれか一項に記載の投写光学系。
  7. 前記絞りは、前記第1群と前記第2群との間であって、前記光変調素子からの各光線の主光線と周辺光線を略平行とする位置に配置されている、請求項1から6までのいずれか一項に記載の投写光学系。
  8. 請求項1から7までのいずれか一項に記載の投写光学系と、
    前記光変調素子とを備える、
    プロジェクター。
JP2012146532A 2012-06-29 2012-06-29 投写光学系及びこれを備えるプロジェクター Pending JP2014010273A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012146532A JP2014010273A (ja) 2012-06-29 2012-06-29 投写光学系及びこれを備えるプロジェクター

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146532A JP2014010273A (ja) 2012-06-29 2012-06-29 投写光学系及びこれを備えるプロジェクター

Publications (1)

Publication Number Publication Date
JP2014010273A true JP2014010273A (ja) 2014-01-20

Family

ID=50107045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146532A Pending JP2014010273A (ja) 2012-06-29 2012-06-29 投写光学系及びこれを備えるプロジェクター

Country Status (1)

Country Link
JP (1) JP2014010273A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849949A (zh) * 2014-02-19 2015-08-19 中强光电股份有限公司 投影***及其投影方法
WO2017047517A1 (ja) * 2015-09-17 2017-03-23 富士フイルム株式会社 投射レンズ、プロジェクタ及びその画像劣化防止方法
WO2017047518A1 (ja) * 2015-09-17 2017-03-23 富士フイルム株式会社 プロジェクタ及びその画像劣化防止方法
JP2018163851A (ja) * 2017-03-27 2018-10-18 大日本印刷株式会社 照明装置
CN116647654A (zh) * 2022-04-08 2023-08-25 宜宾市极米光电有限公司 投影仪热失焦的补偿方法、***、设备及可读存储介质

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104849949A (zh) * 2014-02-19 2015-08-19 中强光电股份有限公司 投影***及其投影方法
WO2017047517A1 (ja) * 2015-09-17 2017-03-23 富士フイルム株式会社 投射レンズ、プロジェクタ及びその画像劣化防止方法
WO2017047518A1 (ja) * 2015-09-17 2017-03-23 富士フイルム株式会社 プロジェクタ及びその画像劣化防止方法
JPWO2017047518A1 (ja) * 2015-09-17 2018-06-14 富士フイルム株式会社 プロジェクタ及びその画像劣化防止方法
US10234751B2 (en) 2015-09-17 2019-03-19 Fujifilm Corporation Projector, and image deterioration prevention method
JP2018163851A (ja) * 2017-03-27 2018-10-18 大日本印刷株式会社 照明装置
JP2021120948A (ja) * 2017-03-27 2021-08-19 大日本印刷株式会社 照明装置
JP7169554B2 (ja) 2017-03-27 2022-11-11 大日本印刷株式会社 照明装置
CN116647654A (zh) * 2022-04-08 2023-08-25 宜宾市极米光电有限公司 投影仪热失焦的补偿方法、***、设备及可读存储介质
CN116647654B (zh) * 2022-04-08 2024-02-23 宜宾市极米光电有限公司 投影仪热失焦的补偿方法、***、设备及可读存储介质

Similar Documents

Publication Publication Date Title
US10067324B2 (en) Projection device and projection system
US8662679B2 (en) Projection system and projector including the same
CN105892026B (zh) 投影光学***
JP5533798B2 (ja) 投写光学系及びこれを備えるプロジェクター
JP5605211B2 (ja) 投射光学系及び画像投射装置
WO2016199393A1 (ja) 投射光学系及びプロジェクター
JP2017138490A (ja) 投射光学系、プロジェクター及びプロジェクター用コンバージョンレンズ
JP6326717B2 (ja) 投射光学系および画像表示装置
JP6780438B2 (ja) 投写用ズームレンズ及び投写型画像表示装置
CN107636511B (zh) 投射光学***和投影仪
JP2013029569A (ja) 投写光学系及びこれを備えるプロジェクター
US11003061B2 (en) Image display apparatus and projection optical system
US9841578B2 (en) Projector
JP2014010273A (ja) 投写光学系及びこれを備えるプロジェクター
JP6662159B2 (ja) 投射光学系及びプロジェクター
US20190072838A1 (en) Projection system and projection-type image display apparatus
JP6598050B2 (ja) 投射装置および投射システム
JP6497573B2 (ja) 投射装置および投射システム
JP2017219630A (ja) 投射用ズームレンズおよび投射型画像表示装置
JP2013003369A (ja) 投写光学系及びこれを備えるプロジェクター
JP6784563B2 (ja) 投射用ズームレンズおよび投射型画像表示装置
JP2013254131A (ja) 投写光学系及びこれを備えるプロジェクター
WO2019065259A1 (ja) 画像投写装置
JP2018132565A (ja) 投射光学系および画像表示装置
JP2013057851A (ja) 投写光学系及びこれを備えるプロジェクター

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150108