JP2014009791A - Earthquake tremor reducing apparatus - Google Patents

Earthquake tremor reducing apparatus Download PDF

Info

Publication number
JP2014009791A
JP2014009791A JP2012148801A JP2012148801A JP2014009791A JP 2014009791 A JP2014009791 A JP 2014009791A JP 2012148801 A JP2012148801 A JP 2012148801A JP 2012148801 A JP2012148801 A JP 2012148801A JP 2014009791 A JP2014009791 A JP 2014009791A
Authority
JP
Japan
Prior art keywords
coil spring
seat plate
vibration
spring
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012148801A
Other languages
Japanese (ja)
Other versions
JP6033591B2 (en
Inventor
Kozo Okamoto
興三 岡本
Toshihiko Hioki
敏彦 火置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokkyokiki Corp
Original Assignee
Tokkyokiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokkyokiki Corp filed Critical Tokkyokiki Corp
Priority to JP2012148801A priority Critical patent/JP6033591B2/en
Publication of JP2014009791A publication Critical patent/JP2014009791A/en
Application granted granted Critical
Publication of JP6033591B2 publication Critical patent/JP6033591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supports For Pipes And Cables (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake tremor reducing apparatus capable of accurately cutting off or attenuating external force caused by a large earthquake not only when a supported body is in normal operation or an earthquake is a normal magnitude, but also when a large earthquake occurs in a state that a heavy suspended object or a target placed on a floor is supported.SOLUTION: An expandable earthquake tremor reducing apparatus 10 allowed to be expanded/contracted between a supporting body 100 and a supported body 200, and when receiving external force, reducing overload applied to the supporting body 100 is configured so that not only a coil spring 400 is arranged between opposite faces of a seat plate 120 attached on the side of the supporting body 100 and a seated plate 220 attached on the side of the supported body 200 but also an earthquake tremor reducing damper 500 for reducing external force by applying compression resistance against such overload that a space between the opposite faces of the seat plate 120 and the seated plate 220 is narrowed is arranged between the opposite faces.

Description

本発明は、天井吊下型として吊下げられる吊支対象物、例えば空調室内器や配管或いは軽天井などの落下防止対策或いは床面設置型として床置きされた床置対象物と天井部とを接続し、床置対象物を天井部から吊り支えてその転倒防止対策に用いられるようなものであって、大地震に見舞われた際でも有効な減震装置に関する。   The present invention relates to a suspended object to be suspended as a ceiling suspended mold, for example, an air-conditioning indoor unit, piping, or a light-ceiling preventive measure such as a floor-mounted object and a floor-mounted object and a ceiling part. The present invention relates to a seismic reduction device that is connected and suspended from a ceiling to be used as a measure for preventing its falling, and is effective even in the event of a major earthquake.

従来、減震構造として例えば建築構造物の天井部に打ち込まれた支持体(アンカー)と、これより吊り下げられた被支持体(吊支対象物)との間をコイルバネで伸縮自由に支持し、被支持体が振動を生ずるようなものである場合、被支持体から発生した振動が天井部に伝達しないようにこれを遮断する伸縮式の装置が利用されている(例えば特許文献1参照)。被支持体が軽天井のようなそれ自身振動を発生しないようなものである場合には、天井部から伝わってきた振動を遮断して軽天井に伝達されないようにしている。   Conventionally, as a seismic reduction structure, for example, a support between a support (anchor) driven into a ceiling portion of a building structure and a supported body (an object to be supported) suspended from the support are supported by a coil spring so as to freely expand and contract. When the supported body is such that vibration is generated, a telescopic device is used to block the vibration generated from the supported body so as not to be transmitted to the ceiling (see, for example, Patent Document 1). . In the case where the supported body does not generate vibration itself, such as a light ceiling, the vibration transmitted from the ceiling portion is blocked so that it is not transmitted to the light ceiling.

この伸縮式の装置の具体例として図10(特許文献1の代表図)に示すように、支持体50と被支持体60との間に配設され、支持体50に取り付けられた取付部51には先端にフック部1aを有した略U字型のハンガー1が取り付けられている。このハンガー1はコイルバネ4の支持体50側の端部からコイルバネ4の内側を通って先端のフック部1aがコイルバネ4の被支持体60側の端部に引っ掛けられている。   As a specific example of this telescopic device, as shown in FIG. 10 (representative diagram of Patent Document 1), an attachment portion 51 is provided between the support 50 and the supported body 60 and attached to the support 50. Is attached with a substantially U-shaped hanger 1 having a hook portion 1a at the tip. The hanger 1 has a hook portion 1 a at the tip thereof hooked on an end portion of the coil spring 4 on the supported body 60 side through the inside of the coil spring 4 from the end portion of the coil spring 4 on the support body 50 side.

又、被支持体60に取り付けられた取付部61には前記ハンガー1と同じ形状で先端にフック部2aを有した被支持体60側の被ハンガー2が取り付けられている。被ハンガー2はコイルバネ4の被支持体60側の端部からコイルバネ4の内側を通って先端のフック部2aがコイルバネ4の支持体50側の端部に引っ掛けられている。   Further, the supported hanger 2 on the supported body 60 side having the same shape as the hanger 1 and having the hook portion 2a at the tip is attached to the mounting portion 61 attached to the supported body 60. In the hanger 2, the hook portion 2 a at the tip is hooked on the end portion on the support body 50 side of the coil spring 4 from the end portion of the coil spring 4 on the support body 60 side through the inside of the coil spring 4.

そして、被支持体60自体の振動や、逆に被支持体60に振動や地震等の外力が加わって、被支持体60が支持体50から離れる方向に変位しようとすると、被ハンガー2先端のフック部2aがコイルバネ4の支持体50側端部を被支持体60側に引っ張ることとなる。これにより、コイルバネ4は被ハンガー2先端のフック部2aとハンガー1先端のフック部1aとの間(支持体50と被支持体60との間)で押し縮められて圧縮され、前記振動や地震等の外力に合わせて伸縮を繰り返す。このコイルバネ4の伸縮動作により支持体50から被支持体60への或いは被支持体60から支持体50への振動の伝達を遮断又は緩和している。その結果、通常の被支持体60の稼動時や普通の地震発生時に入力した振動に対応してコイルバネ4の伸縮動作によって支持体50と被支持体60との相対的な位置関係を変化させることができるので、支持体50や吊り下げられる部分が破壊されることが無くなり、被支持体60を安定して支持し続けることができる。   Then, when the support 60 itself is subjected to vibration or an external force such as vibration or earthquake is applied to the support 60 and the support 60 is displaced in the direction away from the support 50, The hook portion 2a pulls the end of the coil spring 4 on the support 50 side toward the supported body 60. As a result, the coil spring 4 is compressed and compressed between the hook portion 2a at the tip of the hanger 2 and the hook portion 1a at the tip of the hanger 1 (between the support 50 and the support 60). Repeat expansion and contraction according to external force. The expansion and contraction of the coil spring 4 blocks or relaxes the transmission of vibration from the support 50 to the supported body 60 or from the supported body 60 to the support 50. As a result, the relative positional relationship between the support 50 and the supported body 60 is changed by the expansion and contraction operation of the coil spring 4 in response to vibration input during normal operation of the supported body 60 or when an ordinary earthquake occurs. Therefore, the support body 50 and the suspended part are not destroyed, and the supported body 60 can be supported stably.

被支持体60の通常の稼動時や地震が通常の大きさである場合は被支持体60の揺れはさほど大きくなく、通常の揺れによって支持体50は支障を来たすことはない。ところが、大地震が発生した場合は強大な衝撃エネルギーにより被支持体60が大きく且つ衝撃的に且つ繰り返して揺さ振られるため上述したような被支持体60の通常の稼動や地震が通常の大きさに対応するための1つのコイルバネ4を装備した装置では十分に対処できない。特に、被支持体60が重量物である場合は支持体50にかかる負荷が益々増大して対処できない。   When the supported body 60 is in normal operation or when the earthquake is of a normal magnitude, the supported body 60 does not sway so much that the support body 50 does not interfere with the normal vibration. However, when a large earthquake occurs, the supported body 60 is greatly and shockably and repeatedly shaken by strong impact energy, so that the normal operation and the earthquake of the supported body 60 as described above are normal. A device equipped with one coil spring 4 to cope with this problem cannot sufficiently cope with it. In particular, when the supported body 60 is a heavy object, the load on the support body 50 increases more and cannot be dealt with.

特開2002−54684号公報JP 2002-54684 A

そこで本発明の主たる課題は、被支持体の通常の稼動時や地震が通常の大きさである場合は勿論、重量のある吊支対象物や床置対象物を支持している状態で大地震が発生しても、その大地震による外力を的確に遮断又は減衰させることができる安全性の高い減震装置を提供することを目的とする。   Therefore, the main problem of the present invention is that a large earthquake is supported in a state in which a heavy support object or a floor object is supported, as well as a normal operation of a supported body or an earthquake having a normal size. An object of the present invention is to provide a highly safe earthquake-reducing device capable of accurately interrupting or attenuating the external force caused by a large earthquake even if an earthquake occurs.

請求項1に記載した発明は「支持体100と被支持体200との間で伸縮を許容させる伸縮式の減震装置10であって、
伸縮方向に貫通された挿通空所121を有して前記支持体100寄りに設けられる座板120と、
前記座板120に対向し、前記挿通空所121の対面位置にて伸縮方向に貫通された被挿通空所221を有して前記被支持体200寄りに設けられる被座板220と、
前記座板120と被座板220との対向面間にて、挿通空所121及び被挿通空所221の周囲に接するように配設されたコイルバネ300と、
前記コイルバネ300の伸縮方向に伸縮するものであって、コイルバネ300の外周を囲うように又は内周に沿うように配置され、前記コイルバネ300より短く設定して前記座板120と被座板220との対向面間に隙間Aを設けて介在され、外部から前記隙間Aを超える過荷重が入力された時に始めて圧縮が開始される過荷重減震用の減震ダンパー500と、
前記支持体100に取り付けられた係止部131と、該係止部131の両側から同一方向に伸び前記座板120の挿通空所121に挿通される少なくとも2本の腕部132と、該腕部132の先端部に形成されて前記被座板220の被挿通空所221を挿通し該被座板220の被支持体側端部224に係止されるフック部133とで構成されたハンガー130と、
前記被支持体200に取り付けられた被係止部231と、該被係止部231の両側から同一方向に伸び、前記被座板220の被挿通空所221に挿通される少なくとも2本の被腕部232と、該被腕部232の先端部に形成されて前記座板120の挿通空所121を挿通し該座板120の支持体側端部124に係止される被フック部233とで構成された被ハンガー230とを備えて構成した」ことを特徴とする減震装置10である。
The invention described in claim 1 is “the telescopic vibration reducing device 10 that allows expansion and contraction between the support 100 and the supported body 200,
A seat plate 120 having an insertion space 121 penetrating in the telescopic direction and provided near the support body 100;
A seated plate 220 that is opposed to the seating plate 120 and has an inserted space 221 that penetrates in the expansion and contraction direction at the facing position of the insertion space 121, and is provided near the supported body 200;
A coil spring 300 disposed between the opposing surfaces of the seat plate 120 and the seat plate 220 so as to contact the periphery of the insertion space 121 and the insertion space 221;
The coil spring 300 expands and contracts in the expansion / contraction direction, and is arranged so as to surround the outer periphery of the coil spring 300 or along the inner periphery, and is set shorter than the coil spring 300 so that the seat plate 120 and the seat plate 220 A shock-absorbing damper 500 for overload reduction that is interposed when an overload exceeding the gap A is inputted from the outside, and compression starts only when an overload is input from the outside.
A locking portion 131 attached to the support body 100; at least two arm portions 132 extending from both sides of the locking portion 131 in the same direction and inserted into the insertion space 121 of the seat plate 120; A hanger 130 formed of a hook portion 133 formed at the tip end portion of the portion 132 and inserted through the insertion space 221 of the seat plate 220 to be engaged with the support-side end portion 224 of the seat plate 220. When,
The to-be-latched portion 231 attached to the supported body 200 and at least two to-be-inserted spaces 221 extending in the same direction from both sides of the to-be-latched portion 231 and inserted into the insertion space 221 of the seat plate 220 An arm portion 232 and a hooked portion 233 that is formed at the distal end portion of the arm portion 232 and passes through the insertion space 121 of the seat plate 120 and is locked to the support side end portion 124 of the seat plate 120. The seismic reduction device 10 is characterized by comprising a hanger 230 that is configured.

前記隙間Aとは、被支持体200の荷重により伸縮方向において圧縮されたコイルバネ300の上端位置と、過荷重により圧縮が開始される減震ダンパー500の上端位置との間隔であり、被支持体200が静止体の場合では、被支持体200の静荷重により変動しないが、被支持体200が稼動体であって被支持体200の稼動による振動や支持体100から伝わった通常の地震その他の外部振動を受けた場合には変動している。この隙間Aを設けるのは、被支持体200の通常の負荷に対応して先にコイルバネ300が圧縮対応して被支持体200の負荷を支えているのに対し、その後、隙間Aを超える大地震のような過荷重が発生した時に減震ダンパー500が始めて圧縮対応して過荷重を減震(振動の遮断或いは軽減)させるよう対処するものである。   The gap A is an interval between the upper end position of the coil spring 300 compressed in the expansion / contraction direction due to the load of the supported body 200 and the upper end position of the vibration damping damper 500 where compression starts due to overload. In the case where 200 is a stationary body, it does not fluctuate due to the static load of the supported body 200, but the supported body 200 is an operating body and vibrations due to the operation of the supported body 200, normal earthquakes transmitted from the supporting body 100, and other It fluctuates when subjected to external vibration. The gap A is provided in response to the normal load of the supported body 200, while the coil spring 300 first supports the load of the supported body 200 by compressing, whereas the gap A is larger than the gap A thereafter. When an overload such as an earthquake occurs, the anti-seismic damper 500 starts to cope with compression so as to reduce the overload (block or reduce vibration).

請求項2に記載した発明は、請求項1に記載の減震装置10において、
「前記減震ダンパー500は、減震コイルバネ510であって、前記コイルバネ300のバネ定数と同じか、それより大きいバネ定数を有する」ことを特徴とする。
The invention described in claim 2 is the vibration reduction device 10 according to claim 1,
“The anti-seismic damper 500 is an anti-seismic coil spring 510 having a spring constant equal to or greater than the spring constant of the coil spring 300”.

コイルバネ300のバネ定数と減震コイルバネ510のバネ定数を設定する際、被支持体200を吊持した時の荷重に対してはコイルバネ300のみが対応して伸縮付勢にてこれを支持し、大地震による過荷重に対してはコイルバネ300に協働して減震コイルバネ510が対応して伸縮付勢にてこれを支持する。従って、大地震等の過荷重に対してはコイルバネ300と減震コイルバネ510との両バネ300,510のバネ反力が働いて過荷重に対処することができる。このため、減震コイルバネ510のバネ定数は少なくともコイルバネ300のバネ定数と同じか、それ以上に設定する。   When setting the spring constant of the coil spring 300 and the spring constant of the anti-seismic coil spring 510, only the coil spring 300 corresponds to the load when the supported body 200 is suspended, and this is supported by expansion and contraction biasing. In response to an overload due to a large earthquake, the anti-seismic coil spring 510 cooperates with the coil spring 300 and supports it by extending and contracting. Therefore, for an overload such as a large earthquake, the spring reaction force of both the springs 300 and 510 of the coil spring 300 and the anti-seismic coil spring 510 works to cope with the overload. For this reason, the spring constant of the vibration reducing coil spring 510 is set to be equal to or more than at least the spring constant of the coil spring 300.

請求項3に記載した発明は、請求項1に記載の減震装置10において、
「前記減震ダンパー500は、バネ封入筒体540であって、バネ封入筒体540は前記コイルバネ300のバネ定数と同じか、それより大きいバネ定数を有する減震コイルバネ510を弾性エラストマ530で筒状にモールド成形されたものである」ことを特徴とする。
According to a third aspect of the present invention, in the vibration damping device 10 according to the first aspect,
“The anti-seismic damper 500 is a spring-enclosed cylinder 540, and the spring-enclosed cylinder 540 is formed by using an elastic elastomer 530 to form an anti-vibration coil spring 510 having a spring constant equal to or larger than the spring constant of the coil spring 300. It is molded into a shape ”.

バネ封入筒体540は、内部にバネ定数の大きい性質を有する減震コイルバネ510が存在し、その周囲をゴム材、低反発ゴム等の弾性エラストマ530で覆って一体に構成したものである。   The spring-sealed cylindrical body 540 has an anti-seismic coil spring 510 having a large spring constant inside, and is integrally formed by covering the periphery with an elastic elastomer 530 such as a rubber material or a low-rebound rubber.

請求項4に記載した発明は、請求項1に記載の減震装置10において、
「前記減震ダンパー500は、シリンダ570とピストン580とから構成されるものであって、
前記シリンダ570は内部に粘性体550を装填した内部空間560を有し、
前記ピストン580は前記座板120から伸びて前記シリンダ570の内部空間560の粘性体550内を進退自由に挿通されている」ことを特徴とする。
According to a fourth aspect of the present invention, in the vibration damping device 10 according to the first aspect,
“The vibration damping damper 500 is composed of a cylinder 570 and a piston 580,
The cylinder 570 has an internal space 560 in which a viscous body 550 is loaded,
The piston 580 extends from the seat plate 120 and is inserted through the viscous body 550 of the internal space 560 of the cylinder 570 so as to freely advance and retreat. "

粘性体550は、ピストン580の動きに抵抗を与えるものであればよく、粘性の高い液体、シリコン材等を混入した液状媒体を用いる。   The viscous body 550 only needs to give resistance to the movement of the piston 580, and a liquid medium containing a highly viscous liquid, silicon material, or the like is used.

請求項1に記載の発明によれば、座板120と被座板220との対向面間にコイルバネ300を介在させることにより、このコイルバネ300が被支持体200の静荷重(被支持体200の重さ)をコイルバネ300が支えることができる。換言すれば、被支持体200は静止状態のものもあれば、それ自身が稼動して振動を生じることもあり、又、支持体100側に外部振動が伝わることもあるが、前述のようにコイルバネ300は被支持体200の静止荷重に応じて圧縮されて均衡し、その均衡位置で入力した振動に対応して伸縮し、支持体100への振動の伝達を遮断する。或いは、外部振動が支持体100に伝達した時、この外部振動に対応してコイルバネ300が伸縮し、被支持体200への振動の伝達を遮断する。この時点では隙間Aを越えてコイルバネ300が圧縮されることはない。   According to the first aspect of the present invention, the coil spring 300 is interposed between the opposed surfaces of the seat plate 120 and the seat plate 220 so that the coil spring 300 is subjected to a static load on the supported body 200 (the The coil spring 300 can support the weight). In other words, the supported body 200 may be stationary, or may itself operate to generate vibration, and external vibration may be transmitted to the support 100 side, as described above. The coil spring 300 is compressed and balanced in accordance with the static load of the supported body 200, expands and contracts in response to the vibration input at the balanced position, and blocks transmission of vibration to the support body 100. Alternatively, when external vibration is transmitted to the support body 100, the coil spring 300 expands and contracts in response to the external vibration, and the transmission of vibration to the supported body 200 is blocked. At this time, the coil spring 300 is not compressed beyond the gap A.

これに対し、衝撃力等の大きな外力、例えば大地震のような過荷重を受けた時は、コイルバネ300が隙間Aを越えて圧縮されることになって、コイルバネ300と共に減震ダンパー500が圧縮される。この結果、減震ダンパー500が大地震のような過荷重に対し圧縮抵抗を与えてその強大な過荷重の被支持体200への伝達を軽減することになるので、被支持体200のダメージは大幅に軽減されることになる。換言すれば、減震ダンパー500が強大な過荷重に基づく破壊力の発生を消滅又は軽減させる過荷重回避機能が得られるので安全性の高い減震装置として利用することができる。よって、空調室内器、配管や軽天井などの吊支対象物の落下防止対策や、天井から吊られた床置対象物の転倒防止対策等の用途に有効に利用できる。   On the other hand, when a large external force such as an impact force, for example, an overload such as a large earthquake, is applied, the coil spring 300 is compressed beyond the gap A, and the vibration reducing damper 500 is compressed together with the coil spring 300. Is done. As a result, the vibration reduction damper 500 gives a compression resistance to an overload such as a large earthquake and reduces the transmission of the strong overload to the supported body 200. It will be greatly reduced. In other words, the seismic damper 500 can provide an overload avoidance function that eliminates or reduces the occurrence of destructive force based on a strong overload, and thus can be used as a highly safe seismic reduction device. Therefore, it can be effectively used for applications such as measures for preventing the falling of suspended objects such as air-conditioning indoor units, piping and light ceilings, and measures for preventing falling of objects placed on the floor suspended from the ceiling.

請求項2に記載の発明によれば、コイルバネ300と、減震コイルバネ510とが概略同心円上で2重に環状配置され、両方のバネ300,510で対応することになる。即ち、通常の荷重が掛かっている場合ではバネ定数を例えば小さく(柔らかい)設定しているコイルバネ300の弾性作用によって荷重を支える。これに対し、隙間Aを越える衝撃力のような強大な過荷重(例えば、大地震)が加わったときは、コイルバネ300に加えてバネ定数を例えば大きく(硬い)設定している減震コイルバネ510の弾性作用が働いて過荷重が被支持体200に伝達されるのを遮断又は緩和減震させる。この時、両方のバネ反力が働くためバネ定数がコイルバネ300の2倍以上になり顕著な減震作用を得ることができる。特に、減震コイルバネ510をバネ定数の大きい硬いバネ性としているため過荷重の大きさに比例して圧縮時のバネ反力が増大する。このため、大地震になるほどバネ反力が増大し、支持体100に及ぼす強大な衝撃力を減殺させ、被支持体200の揺れを緩和減震させる安全性の高い減震ダンパー500を得ることができる。   According to the second aspect of the present invention, the coil spring 300 and the anti-seismic coil spring 510 are arranged in a double ring shape on a substantially concentric circle, and both springs 300 and 510 correspond to each other. That is, when a normal load is applied, the load is supported by the elastic action of the coil spring 300 in which the spring constant is set to be small (soft), for example. On the other hand, when a strong overload (for example, a large earthquake) such as an impact force exceeding the gap A is applied, in addition to the coil spring 300, the spring constant is set to a large (hard) spring constant, for example. The elastic action of (2) acts to block or mitigate the overload transmitted to the supported body 200. At this time, since both spring reaction forces work, the spring constant becomes more than twice that of the coil spring 300, and a remarkable vibration reduction effect can be obtained. In particular, since the anti-seismic coil spring 510 is made of a hard spring having a large spring constant, the spring reaction force during compression increases in proportion to the magnitude of the overload. For this reason, the spring reaction force increases as a large earthquake occurs, and a highly safe earthquake-damping damper 500 that reduces the strong impact force exerted on the support body 100 and moderates and reduces the shaking of the supported body 200 can be obtained. it can.

請求項3に記載の発明によれば、減震コイルバネ510を弾性エラストマ530で筒状にモールド成形して全体が弾力を有するように構成することによって、バネ封入筒体540を減震ダンパー500として用いることができる。前述同様、強大な過荷重を受けた際は、バネ封入筒体540に封入されている減震コイルバネ510が圧縮されることにより過荷重にバネ反力を与えて過荷重を減衰させることができ、この減震コイルバネ510の圧縮時におけるバネ反力の働きにより支持体100に対する的確な減震効果が得られる。さらに、バネ封入筒体540は弾性エラストマ530が減震コイルバネ510の伸縮に伴って伸縮し、入力して振動エネルギーを熱に変えて減震させる効果を発揮する。なお、この弾性エラストマ530は減震コイルバネ510に接した状態で備えられるため減震コイルバネ510に接して微振動を吸収する微振動吸収体400と同じ作用効果が得られる。このため、バネ封入筒体540を用いれば、微振動吸収体400を省略することができ、部品点数の削減及び取扱い性の容易化を図ることができる。   According to the third aspect of the present invention, the spring-encapsulated cylindrical body 540 is formed as the vibration-reducing damper 500 by molding the vibration-reducing coil spring 510 into a cylindrical shape with the elastic elastomer 530 so that the whole has elasticity. Can be used. As described above, when a strong overload is applied, the anti-seismic coil spring 510 enclosed in the spring-filled cylinder 540 is compressed, so that a spring reaction force can be applied to the overload and the overload can be attenuated. An accurate seismic reduction effect on the support body 100 can be obtained by the action of the spring reaction force when the seismic reduction coil spring 510 is compressed. Further, the spring-enclosed cylinder 540 expands and contracts as the elastic elastomer 530 expands and contracts with the expansion and contraction of the vibration-reducing coil spring 510 and exerts an effect of reducing vibration by converting vibration energy into heat. Since the elastic elastomer 530 is provided in contact with the vibration reducing coil spring 510, the same effect as that of the fine vibration absorber 400 that contacts the vibration reducing coil spring 510 and absorbs minute vibration can be obtained. For this reason, if the spring encapsulated cylinder 540 is used, the fine vibration absorber 400 can be omitted, and the number of parts can be reduced and the handling can be facilitated.

請求項4に記載の発明によれば、粘性体550を封入したシリンダ570とその内部に進退自由に挿通されるピストン580とで伸縮式の減震ダンパー500を構成しているため、隙間Aを越えて強大な過荷重が入力される場合は、過荷重を受けた座板120と被座板220との間が圧縮されようとすることに基づき、ピストン580が粘性体550内を移動し、そのときに粘性抵抗を受けながら移動するため、その動きの中で強大な過荷重を熱に変え減震させることができる。このように、強大な過荷重を減震させる減震構造をシリンダ570とピストン580を用いて構成すれば、減震コイルバネ510に代えて減震装置を構築することができる。   According to the invention described in claim 4, since the expansion and contraction-type vibration-reducing damper 500 is constituted by the cylinder 570 enclosing the viscous body 550 and the piston 580 that is freely inserted and retracted therein, the gap A is formed. When a strong overload is input beyond the piston 580, the piston 580 moves in the viscous body 550 based on the compression between the seat plate 120 and the seat plate 220 that have received the overload. Since it moves while receiving viscous resistance at that time, it is possible to reduce tremors by converting a strong overload into heat during the movement. In this way, if a vibration reducing structure that reduces a strong overload is configured using the cylinder 570 and the piston 580, a vibration reducing device can be constructed instead of the vibration reducing coil spring 510.

図1(A)は本発明の実施例1の減震装置を示す要部縦断面図、同図(B)は本発明の実施例1における被座板の部分拡大断面図、同図(C)は本発明の実施例1の平面図である。FIG. 1 (A) is a longitudinal sectional view of a main part showing a vibration damping device of Embodiment 1 of the present invention, and FIG. 1 (B) is a partially enlarged sectional view of a seat plate in Embodiment 1 of the present invention. ) Is a plan view of the first embodiment of the present invention. 同実施例1の減震装置の分解図である。It is an exploded view of the earthquake-reduction apparatus of the Example 1. FIG. 同実施例1の減震装置の座板と被座板を示す要部斜視図である。It is a principal part perspective view which shows the seat board and seat board of the seismic-reduction apparatus of the Example 1. FIG. 同実施例1の減震装置における過荷重入力時の動作状態を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the operation state at the time of the overload input in the seismic-reduction apparatus of the Example 1. FIG. 同実施例1の減震装置を複数用いた使用状態を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the use condition which used two or more the vibration isolator of the Example 1. FIG. 本発明の実施例2の減震装置を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the seismic-reduction apparatus of Example 2 of this invention. 同実施例2における減震装置の過荷重入力時の動作状態を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the operation state at the time of the overload input of the seismic reduction apparatus in the Example 2. FIG. 図8(A)は本発明の実施例3の減震装置を示す縦断面図、同図(B)は本発明の実施例3の要部拡大縦断面図、同図(C)は本発明の実施例3の要部拡大横断面図である。FIG. 8 (A) is a longitudinal sectional view showing a vibration damping device of Embodiment 3 of the present invention, FIG. 8 (B) is an enlarged longitudinal sectional view of an essential part of Embodiment 3 of the present invention, and FIG. It is a principal part expanded horizontal sectional view of Example 3. 同実施例3における減震装置の過荷重入力時の動作状態を示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which shows the operation state at the time of the overload input of the seismic-reduction apparatus in the Example 3. 従来のコイルバネを用いた伸縮式の装置を示す正面図である。It is a front view which shows the expansion-contraction apparatus using the conventional coil spring.

以下、本発明を図面に従って説明する。   The present invention will be described below with reference to the drawings.

[実施例1]
図1は本発明にかかる減震装置10の使用状態を示した図であり、図2はその減震装置10の構成部品を分解して示した図であり、図3は減震装置10に備えられる上下一対の座板120と被座板220を示した斜視図であり、図4は減震装置10の外力受圧時の圧縮状態を示す図である。ここでは減震装置10を天井吊支型に用いた例を示している。
[Example 1]
FIG. 1 is a view showing a use state of a vibration isolator 10 according to the present invention, FIG. 2 is an exploded view of components of the vibration reducer 10, and FIG. FIG. 4 is a perspective view showing a pair of upper and lower seat plates 120 and a seat plate 220 provided, and FIG. 4 is a view showing a compressed state when the seismic reduction device 10 receives external force. Here, an example in which the vibration isolator 10 is used as a ceiling support type is shown.

この減震装置10は、建築構造物の天井部11に備えられる上部の支持体100側に、取付具110と座板120とハンガー130が備えられ、下部の被支持体200側に、被取付具210と被座板220と被ハンガー230が備えられ、これらのハンガー130と被ハンガー230は上下逆向きとなる対称形に配置されている。そして、これらの中間部となる座板120と被座板220との上下の対向面間に、コイルバネ300と、必要に応じて設けられる微振動吸収体400と、減震ダンパー500の一例として備えられる減震コイルバネ510と、必要に応じて設けられる弾性筒体520とを組み込んで構成している。   The seismic reduction device 10 is provided with a fixture 110, a seat plate 120, and a hanger 130 on the upper support body 100 side provided in the ceiling portion 11 of the building structure, and is attached to the lower support body 200 side. A tool 210, a seat plate 220, and a hanger 230 are provided, and the hanger 130 and the hanger 230 are arranged in a symmetrical shape that is upside down. The coil spring 300, the micro-vibration absorber 400 provided as necessary, and the vibration reduction damper 500 are provided as an example between the upper and lower opposing surfaces of the seat plate 120 and the seat plate 220 serving as an intermediate portion. The vibration-reducing coil spring 510 to be provided and an elastic cylinder 520 provided as necessary are incorporated.

上述の支持体100は、天井吊支型のアンカーとして建築構造物の天井部11にインサートされ、この天井部11より該支持体100の下部を吊支部101として下方に露出させている。この吊支部101に、吊支接続用として設けられたリング状の取付具110が吊支部101の枢支ピン111に枢支されて揺動自由に取り付けられている。勿論、これらを用いず、何らかの手段により直接支持体100に取り付けるようにしてもよい。   The support 100 described above is inserted into the ceiling portion 11 of the building structure as a ceiling suspension type anchor, and the lower portion of the support 100 is exposed downward as the suspension support portion 101 from the ceiling portion 11. A ring-shaped attachment 110 provided for connecting the suspension support is pivotally attached to the suspension support 101 by a pivot pin 111 of the suspension support 101 so as to freely swing. Of course, you may make it attach directly to the support body 100 by some means, without using these.

座板120は、図3の上側にも示すように、円板の中央部を平面視十字形に貫通して設けた挿通空所121を有する円板である。この挿通空所121は広幅で溝長さが長いハンガー挿通溝122と、狭幅で溝長さが短い被ハンガー挿通溝123を円板の中央部で十字形に交差させて開口したものである。そして、一方のハンガー挿通溝122には後述する線径が大径のハンガー130が挿通され、他方の被ハンガー挿通溝123には後述する線径が小径の被ハンガー230が挿通される。勿論、ハンガー挿通溝122、123は同じ幅、同じ長さに形成してもよい。   As shown also in the upper side of FIG. 3, the seat plate 120 is a disc having an insertion space 121 provided through the center of the disc in a cross shape in plan view. The insertion space 121 is formed by opening a hanger insertion groove 122 having a wide width and a long groove length and a hanger insertion groove 123 having a narrow width and a short groove length so as to intersect each other in a cross shape at the center of the disk. . A hanger 130 having a large wire diameter, which will be described later, is inserted into one hanger insertion groove 122, and a hanger 230 having a small wire diameter, which will be described later, is inserted into the other hanger insertion groove 123. Of course, the hanger insertion grooves 122 and 123 may have the same width and the same length.

又、座板120の上面は、後述する被ハンガー230の被フック部233を係止させる支持体側端部124となっている。これに対し、座板120の下面は、後述する弾性筒体520の上端周縁部521を嵌合させて取り付ける環状溝125が形成されている。コイルバネ300の外側に減震コイルバネ510が設けられる場合には、この環状溝125を境とする内径側の座板120の下面が、後述するコイルバネ300の上端面を受け止める上バネ座126となり、環状溝125を境とする外径側の座板120の下面が、後述する減震コイルバネ510の上端面を受け止める上バネ座127となっている。従って、コイルバネ300の内側に減震コイルバネ510が設けられる場合にはその逆となる。   Further, the upper surface of the seat plate 120 is a support-side end portion 124 for locking a hooked portion 233 of a hanger 230 to be described later. On the other hand, the lower surface of the seat plate 120 is formed with an annular groove 125 to which an upper end peripheral portion 521 of an elastic cylinder 520 described later is fitted. When the vibration-reducing coil spring 510 is provided outside the coil spring 300, the lower surface of the inner diameter side seat plate 120 with the annular groove 125 as a boundary serves as an upper spring seat 126 that receives the upper end surface of the coil spring 300, which will be described later. The lower surface of the seat plate 120 on the outer diameter side with the groove 125 as a boundary is an upper spring seat 127 that receives the upper end surface of a vibration reducing coil spring 510 described later. Therefore, when the vibration reducing coil spring 510 is provided inside the coil spring 300, the reverse is true.

上述のハンガー130は、断面円形の金属線材を略U字形に曲げ加工し、その中央部付近の曲部は支持体100の取付部110に係止させて取り付けるための係止部131となっている。さらに、係止部131の両側には同一方向に平行して長く伸びる2本の腕部132を有しており、その先端部には外側に開いたフック部133が形成されている。又、ハンガー130の2本の腕部132は上述した座板120のハンガー挿通溝122の溝内両端部で上下方向に挿通ガイドされる。又、ハンガー130の金属線材の外径はハンガー挿通溝122の広幅に対応した外径寸法を有している。   The above-described hanger 130 is formed by bending a metal wire having a circular cross section into a substantially U shape, and a curved portion near the center thereof is a locking portion 131 for locking and mounting to the mounting portion 110 of the support 100. Yes. Furthermore, the both sides of the locking part 131 have two arm parts 132 extending long in parallel in the same direction, and a hook part 133 that opens outward is formed at the tip part. Further, the two arms 132 of the hanger 130 are inserted and guided in the vertical direction at both ends in the groove of the hanger insertion groove 122 of the seat plate 120 described above. The outer diameter of the metal wire rod of the hanger 130 has an outer diameter dimension corresponding to the wide width of the hanger insertion groove 122.

さらに、このハンガー130は上部側に配置される座板120のハンガー挿通溝122で挿通ガイドされるだけでなく下部側に配置される後述する被座板220のハンガー挿通溝222においても同様に上下方向に挿通ガイドされる。   Furthermore, the hanger 130 is not only guided through the hanger insertion groove 122 of the seat plate 120 disposed on the upper side, but also in the hanger insertion groove 222 of the seat plate 220 described below disposed on the lower side. Guided through the direction.

被支持体200は、室内空調器、ダクト、配管、軽天井等の吊支対象物であり、減震装置10を介して上方の支持体100により吊支される。また、ビルの電源装置や変圧器のような床置対象物で天井部11(図示はしないがキュービクル内の天井部を含む)とを接続し、床置対象物を天井部11から吊り支えてその転倒防止対策に用いることもできる。従って、このような床置対象物も被支持体200に含まれる。この被支持体200の上部の被吊支部201に、吊支接続用として設けられたリング状の被取付具210が被吊支部201の枢支ピン211に枢支されて揺動自由に取り付けられている。勿論、これらを用いず、何らかの手段により直接被支持体200に取り付けるようにしてもよい。   The supported body 200 is a suspended support object such as an indoor air conditioner, a duct, a pipe, or a light ceiling, and is supported by the upper support body 100 via the vibration damping device 10. Further, the ceiling part 11 (including a ceiling part in a cubicle (not shown)) is connected with a floor object such as a building power supply device or a transformer, and the floor object is suspended and supported from the ceiling part 11. It can also be used as a measure for preventing the fall. Therefore, such a floor placement object is also included in the supported body 200. A ring-shaped attachment 210 provided for connecting a suspension support is pivotally supported by a pivot pin 211 of the suspension support 201 and attached to the suspension support 201 at the upper part of the supported body 200 so as to freely swing. ing. Of course, it is possible to attach them directly to the supported body 200 by some means without using them.

被座板220は、上述した座板120と同形状を有して上下対称に組み込まれるものであって、図3の下側にも示すように、円板の中央部を平面視十字形に貫通して設けた被挿通空所221を有する円板である。この被挿通空所221は円板の中心部で広幅で溝長さが長いハンガー挿通溝222と、狭幅で溝長さが短い被ハンガー挿通溝223を十字形に交差させて開口している。勿論、被ハンガー挿通溝222,223は前述のハンガー挿通溝122、123と同様、同じ幅、同じ長さに形成してもよい。   The seat plate 220 has the same shape as the seat plate 120 described above and is incorporated in a vertically symmetrical manner. As shown in the lower side of FIG. This is a disk having an insertion space 221 provided therethrough. The insertion space 221 is opened by crossing a hanger insertion groove 222 having a wide width and a long groove length and a hanger insertion groove 223 having a narrow width and a short groove length in a cross shape at the center of the disk. . Of course, the hanger insertion grooves 222 and 223 may have the same width and the same length as the hanger insertion grooves 122 and 123 described above.

そして、ハンガー挿通溝222には上述した線径が大径のハンガー130が挿通され、被ハンガー挿通溝223には後述する線径が小径の被ハンガー230が挿通される。なお、ハンガー130と被ハンガー230は座板120の挿通空所121と被座板220の被挿通空所221でそれぞれ十字形に交差して挿通されるが、これらの交差するハンガー130,230の各腕部132,232が干渉しない大・小のU字形の間隔に設定している。   The hanger 130 having a large wire diameter is inserted into the hanger insertion groove 222, and the hanger 230 having a small wire diameter, which will be described later, is inserted into the hanger insertion groove 223. The hanger 130 and the hanger 230 are inserted in a cross shape in the insertion space 121 of the seat plate 120 and the insertion space 221 of the seat plate 220, respectively. The large and small U-shaped intervals at which the arms 132 and 232 do not interfere with each other are set.

又、被座板220の下面は、ハンガー130の後述するフック部133を係止させる被支持体側端部224となっている。これに対し、被座板220の上面は、後述する弾性筒体520の下端周縁部522を嵌合させて取り付ける環状溝225が形成されている。この環状溝225を境とする内径側の被座板220の上面が、後述するコイルバネ300の下端面を受け止める下バネ座226となり、環状溝225を境とする外径側の被座板220の上面が、後述する減震コイルバネ510の下端面を受け止める下バネ座227となっている。この場合も上述した座板120と同様、コイルバネ300の内側に減震コイルバネ510が設けられる場合にはその逆となる。   Further, the lower surface of the seat plate 220 serves as a supported-body-side end portion 224 that locks a hook portion 133 (described later) of the hanger 130. On the other hand, the upper surface of the seat plate 220 is formed with an annular groove 225 to which a lower end peripheral portion 522 of an elastic cylinder 520 described later is fitted. The upper surface of the seat plate 220 on the inner diameter side with the annular groove 225 as a boundary serves as a lower spring seat 226 that receives a lower end surface of a coil spring 300 described later, and the seat plate 220 on the outer diameter side with the annular groove 225 as a boundary. The upper surface is a lower spring seat 227 that receives a lower end surface of a vibration reducing coil spring 510 described later. Also in this case, as in the case of the seat plate 120 described above, when the anti-seismic coil spring 510 is provided inside the coil spring 300, the opposite is true.

上述の被ハンガー230は、上述したハンガー130と比較して、そのハンガー130のU字形内に収まる程度の狭幅で小径の金属線材を用いた点が異なり、他は同じ構造を有している。そして、上述したハンガー130とは上下対称に配置して組み込まれる。即ち、この被ハンガー230の場合も略U字形に曲げ加工し、その中央部付近の曲部は被支持体200の被取付具210に係止させて取り付けるための被係止部231となっている。さらに、被係止部231の両側には同一方向に平行して長く伸びる2本の腕部232を有しており、その先端部には外側に開いた被フック部233が形成されている。又、被ハンガー230の2本の腕部232は上述した被座板220の被ハンガー挿通溝223の溝内両端部で上下方向に挿通ガイドされる。また、被ハンガー230の金属線材の外径は被ハンガー挿通溝223の狭幅に対応した外径寸法を有している。   The above-described hanger 230 differs from the above-described hanger 130 in that a metal wire having a narrow width and a small diameter that fits in the U-shape of the hanger 130 is used, and the other has the same structure. . And it arrange | positions symmetrically with the hanger 130 mentioned above, and is integrated. That is, the hanger 230 is also bent into a substantially U shape, and the bent portion near the center becomes a locked portion 231 for locking and mounting to the mounting tool 210 of the supported body 200. Yes. Furthermore, the both sides of the to-be-latched part 231 have the two arm parts 232 extended long in parallel with the same direction, The hook part 233 opened outside is formed in the front-end | tip part. Further, the two arm portions 232 of the hanger 230 are inserted and guided in the vertical direction at both ends in the groove of the hanger insertion groove 223 of the seat plate 220 described above. The outer diameter of the metal wire rod of the hanger 230 has an outer diameter corresponding to the narrow width of the hanger insertion groove 223.

なお、ハンガー130,230は上記の場合、異なる線径のものを使用している例が示すが、勿論、これに限られず、前述のハンガー挿通溝122,123や被ハンガー挿通溝222,223の幅や大きさが同じ場合、同じ大きさとしてもよい。   In addition, although the example which uses the thing of a different wire diameter in the above case shows the hanger 130,230, of course, it is not restricted to this, The above-mentioned hanger insertion groove 122,123 or the hanger insertion groove 222,223 is mentioned. If the width and size are the same, they may be the same size.

さらに、この被ハンガー230は下部側に配置される被座板220の被ハンガー挿通溝223で挿通ガイドされるだけでなく上部側に配置される上述した座板120の被ハンガー挿通溝123においても同様に上下方向に挿通ガイドされる。   Further, the hanger 230 is not only guided through the hanger insertion groove 223 of the seat plate 220 disposed on the lower side, but also in the hanger insertion groove 123 of the seat plate 120 disposed on the upper side. Similarly, the guide is inserted vertically.

ここで、同形状を有して上下一対に対設される座板120と被座板220によりハンガー130と被ハンガー230は上下方向に摺動自由にガイドされる。この際、各ハンガー130,230は平面視十字形に交差するが、広幅に設けられたハンガー130のU字形空間を狭幅に設けられた被ハンガー230の介在スペースに用いて構成している。このため、被ハンガー230が上下方向に摺動しても接触することはない。   Here, the hanger 130 and the hanger 230 are slidably guided in the vertical direction by the seat plate 120 and the seat plate 220 having the same shape and arranged in a pair in the vertical direction. At this time, each of the hangers 130 and 230 intersects in a cross shape in plan view, but the U-shaped space of the hanger 130 having a wide width is used as an intervening space for the hanger 230 having a narrow width. For this reason, even if the hanger 230 slides up and down, it does not contact.

なお、ハンガー130と被ハンガー230を平面視十字形に交差させて組み込んだ際、その同一の図面上で双方を明瞭に表すために、図1及び図2では一方のハンガー130をそのまま表示し、他方の被ハンガー230をその形状が視認し易い向きに変えて表示している。   In addition, when the hanger 130 and the hanger 230 are assembled so as to intersect with a cross in plan view, in order to clearly represent both on the same drawing, one hanger 130 is displayed as it is in FIG. 1 and FIG. The other hanger 230 is displayed with its shape changed to a direction in which it can be easily seen.

コイルバネ300は、上述の垂直に支持されるハンガー130,230を上下方向に貫通させた状態に内挿させる大きさで上下方向に伸縮自由に設けられ、そのバネ定数は被支持体200の荷重及び想定される被支持体200の稼動時の振動、さらには予想される通常の地震の揺れに合わせて適宜設定される。   The coil spring 300 has a size that allows the above-described vertically supported hangers 130 and 230 to be inserted in a state of penetrating in the vertical direction, and can be freely expanded and contracted in the vertical direction. It is set as appropriate in accordance with the expected vibration during the operation of the supported body 200 and the expected normal earthquake.

必要に応じて設けられる微振動吸収体400は、天然ゴム、低反発ゴム或いは各種ゴムや弾性を有する樹脂等のエラストマが用いられている。この微振動吸収体400をコイルバネ300に接触させることにより該コイルバネ300の振動を吸収する弾性部材であるため、微振動吸収体400の外径をコイルバネ300の内径よりやや大きくして内側から接触させて(又は、微振動吸収体400の内径をコイルバネ300の外径よりやや大きくして外嵌して)微振動吸収体400とコイルバネ300との接触性を高めている。又、微振動吸収体400の長さも伸長時(無負荷時の自由長)のコイルバネ300の長さと略同長さにしてコイルバネ300の伸縮にかかわらず終始接触させるようにしている。微振動吸収体400の取り付けに際しては、前述のように微振動吸収体400がコイルバネ300に弾性接触するようにコイルバネ300の内周面側、或いは外周面側のいずれに配置してもよい。   As the fine vibration absorber 400 provided as necessary, an elastomer such as natural rubber, low-resilience rubber, various rubbers or elastic resin is used. Since the fine vibration absorber 400 is an elastic member that absorbs the vibration of the coil spring 300 by bringing the fine vibration absorber 400 into contact with the coil spring 300, the outer diameter of the fine vibration absorber 400 is made slightly larger than the inner diameter of the coil spring 300 and contacted from the inside. (Or by fitting the inner diameter of the micro-vibration absorber 400 to be slightly larger than the outer diameter of the coil spring 300), the contact between the micro-vibration absorber 400 and the coil spring 300 is enhanced. Further, the length of the micro-vibration absorber 400 is set to be substantially the same as the length of the coil spring 300 when extended (the free length when there is no load) so that the micro-vibration absorber 400 is in contact with the entire length regardless of the expansion / contraction of the coil spring 300. When attaching the micro-vibration absorber 400, the micro-vibration absorber 400 may be disposed on either the inner peripheral surface side or the outer peripheral surface side of the coil spring 300 so that the micro-vibration absorber 400 elastically contacts the coil spring 300 as described above.

減震コイルバネ510は、過荷重減震用の減震ダンパー500の一例として構成されるものであって、この減震コイルバネ510はコイルバネ300よりも一回り大径に形成している。(勿論、コイルバネ300の内側に配置する場合には、コイルバネ300の内径より一回り小径に形成されることになる。)このため、コイルバネ300と減震コイルバネ510とを同心円状に組み込んだ際は2重に環状配置されることになる。   The anti-seismic coil spring 510 is configured as an example of the anti-seismic damper 500 for overload reduction. The anti-seismic coil spring 510 is formed to have a larger diameter than the coil spring 300. (Of course, when arranged inside the coil spring 300, it is formed to be slightly smaller in diameter than the inner diameter of the coil spring 300.) Therefore, when the coil spring 300 and the vibration reducing coil spring 510 are assembled concentrically, It will be arranged in a double ring.

さらに、この減震コイルバネ510は、長さ方向においてコイルバネ300より短く設定している。このため、無負荷時、或いは被支持体200を取り付けて一定の負荷(静荷重)が掛かってコイルバネ300が圧縮された状態であっても、座板120と被座板220との対向面間にコイルバネ300と減震コイルバネ510との長さの差である隙間Aを生じさせた状態で減震コイルバネ510が介在される。そして、この隙間Aの範囲では座板120と被座板220との対向面間でコイルバネ300は単独で自由に伸縮できるようになっている。そして、外部から隙間Aを超える大地震のような過荷重が入力された時に始めて圧縮開始される。   Further, the vibration reducing coil spring 510 is set shorter than the coil spring 300 in the length direction. For this reason, even when no load is applied or when a constant load (static load) is applied to the supported body 200 and the coil spring 300 is compressed, the space between the opposed surfaces of the seat plate 120 and the seat plate 220 is reduced. The vibration-reducing coil spring 510 is interposed in a state where a gap A that is a difference in length between the coil spring 300 and the vibration-reducing coil spring 510 is generated. In the range of the gap A, the coil spring 300 can be freely expanded and contracted independently between the opposed surfaces of the seat plate 120 and the seat plate 220. The compression starts only when an overload such as a large earthquake exceeding the gap A is input from the outside.

ここで隙間Aとは、換言すれば、伸縮方向(図の場合は垂直方向)において静荷重により圧縮されたコイルバネ300の上端位置と、過荷重により圧縮が開始される減震コイルバネ510の上端位置との間に形成される上下空間の長さである。   Here, the clearance A is, in other words, the upper end position of the coil spring 300 compressed by a static load in the expansion / contraction direction (vertical direction in the figure) and the upper end position of the vibration reducing coil spring 510 where compression is started by an overload. Is the length of the upper and lower spaces formed between the two.

このように、静荷重(及び被支持体200の稼働による振動や、通常の地震)に対してはコイルバネ300のみが対応し、通常の地震を超える大地震のような過荷重に対してはコイルバネ300と共に減震コイルバネ510が対応する。従って、大地震等の過荷重に対してはコイルバネ300と減震コイルバネ510との両バネ300,510のバネ反力が働いて過荷重に対処することになる。このため、減震コイルバネ510のバネ定数は少なくともコイルバネ300のバネ定数と同じか、それ以上に設定されることになる。なお、減震コイルバネ510の下端は自重によりコイルバネ300とともに、被座板220の上面に受け止められている。   As described above, only the coil spring 300 can cope with a static load (and vibration due to the operation of the supported body 200 or a normal earthquake), and a coil spring against an overload such as a large earthquake exceeding a normal earthquake. 300 and a vibration reducing coil spring 510 correspond. Therefore, for an overload such as a large earthquake, the spring reaction force of both the springs 300 and 510 of the coil spring 300 and the anti-seismic coil spring 510 works to deal with the overload. For this reason, the spring constant of the vibration reducing coil spring 510 is set to be at least equal to or greater than the spring constant of the coil spring 300. In addition, the lower end of the vibration reducing coil spring 510 is received by the upper surface of the seat plate 220 together with the coil spring 300 by its own weight.

必要に応じて設けられる弾性筒体520は、減震コイルバネ510がコイルバネ300に外嵌される場合、コイルバネ300より大径で減震コイルバネ510より小径の筒体であって、これらのバネ間を仕切る部材である。(従って、減震コイルバネ510がコイルバネ300に内嵌される配置構成の場合には、ここに用いられる弾性筒体520が減震コイルバネ510より大径でコイルバネ300より小径の筒体ということになる。)そして、この弾性筒体520の上端周縁部521が座板120の下面に形成されている環状溝125に嵌合され、下端周縁部522が被座板220の上面に形成されている環状溝225に嵌合されて取り付けられる(図1(B)参照)。この弾性筒体520は各バネ300,510の伸縮性を良好にするためフッ素ゴムやエラストマ等の滑り抵抗の少ない弾性材で形成している。なお、弾性筒体520を設けない場合には、減震コイルバネ510とコイルバネ300との間の仕切りがないため、減震コイルバネ510とコイルバネ300の巻き方向を違えて両者の絡まりを防ぐようにすることもできる。   The elastic cylindrical body 520 provided as necessary is a cylindrical body having a diameter larger than that of the coil spring 300 and smaller than that of the vibration reducing coil spring 510 when the vibration reducing coil spring 510 is externally fitted to the coil spring 300. It is a member to partition. (Thus, in the case of the arrangement configuration in which the vibration reducing coil spring 510 is fitted in the coil spring 300, the elastic cylinder 520 used here is a cylinder having a larger diameter than the vibration reducing coil spring 510 and a smaller diameter than the coil spring 300. .) The upper peripheral edge 521 of the elastic cylinder 520 is fitted into an annular groove 125 formed on the lower surface of the seat plate 120, and the lower peripheral edge 522 is formed on the upper surface of the seat plate 220. It is fitted and attached to the groove 225 (see FIG. 1B). The elastic cylinder 520 is formed of an elastic material having a low sliding resistance such as fluoro rubber or elastomer in order to improve the elasticity of the springs 300 and 510. If the elastic cylindrical body 520 is not provided, there is no partition between the vibration reducing coil spring 510 and the coil spring 300, so that the winding direction of the vibration reducing coil spring 510 and the coil spring 300 is different to prevent entanglement between them. You can also

このように構成された天井吊支型で伸縮する減震装置10は、図1に示すように、天井部11に固定されている支持体100から減震装置10を介して被支持体200を吊支している。この場合、被支持体200の静荷重が被ハンガー230の被フック部233を介して座板120に掛かり、該座板120を被座板220側に押し下げるように静荷重の負荷が掛かる。そして、この座板120に掛かった下向きの負荷はコイルバネ300を圧縮するように掛かり、コイルバネ300の付勢力に抗して該コイルバネ300を圧縮させている。   As shown in FIG. 1, the seismic reduction device 10 that is extended and contracted by the ceiling suspension type configured as described above is configured to move the supported body 200 from the support 100 fixed to the ceiling portion 11 via the seismic reduction device 10. Suspended. In this case, the static load of the supported body 200 is applied to the seat plate 120 via the hooked portion 233 of the hanger 230, and the static load is applied so as to push down the seat plate 120 to the seat plate 220 side. The downward load applied to the seat plate 120 is applied so as to compress the coil spring 300, and the coil spring 300 is compressed against the urging force of the coil spring 300.

この吊支状態で、比較的小さい外力(小さい地震)を受けると、バネ定数の小さい内側のコイルバネ300の弾性伸縮作用によってその小さい外力を遮断又は緩和して被支持体200の揺れを抑制する。一方、この吊支状態で大地震による強大な衝撃力が減震装置10に伝達されると、図4に示すように、コイルバネ300が圧縮され始めるだけでなく、それまで圧縮されなかった減震コイルバネ510が圧縮され始める。この減震コイルバネ510は硬いバネ性を有しているため圧縮時にコイルバネ300と相まってバネ反力が倍増し、これらの両バネ300,510の相乗効果により強大な衝撃力を緩和減震させる。このうち、減震コイルバネ510は、外力の大きさに比例して圧縮抵抗が増大する性質を有しているため、大地震になるほど圧縮抵抗が増大し、支持体100に及ぼす強大な衝撃力を減殺させる。このため、被支持体200の揺れを遮断又は緩和して減震させる安全性の高い装置となる。   When a relatively small external force (small earthquake) is received in this suspended state, the small external force is blocked or relaxed by the elastic expansion and contraction action of the inner coil spring 300 having a small spring constant, thereby suppressing the shaking of the supported body 200. On the other hand, when a strong impact force due to a large earthquake is transmitted to the vibration reducing device 10 in this suspended state, not only the coil spring 300 starts to be compressed as shown in FIG. The coil spring 510 starts to be compressed. Since this anti-seismic coil spring 510 has a hard spring property, the spring reaction force is doubled together with the coil spring 300 during compression, and the strong impact force is moderated and reduced by the synergistic effect of these two springs 300 and 510. Of these, the anti-seismic coil spring 510 has the property that the compression resistance increases in proportion to the magnitude of the external force. Therefore, the compression resistance increases as a large earthquake occurs, and the strong impact force exerted on the support 100 is increased. It is killed. For this reason, it becomes an apparatus with high safety | security which cuts off the vibration of the to-be-supported body 200, and reduces or reduces it.

さらに、この減震装置10にはコイルバネ300に接触させて該コイルバネ300の振動(被支持体200自体に稼動により発生した周波数の高い振動や、外部から天井部11に伝わってきた周波数の高い外乱)を吸収する微振動吸収体400を備えているため、周波数の高い振動がコイルバネ300に伝わっても、その振動を該微振動吸収体400が熱に変換して吸収する。これによって、コイルバネ300にサージング(共振現象)が生じようとしても確実に防ぐことができる。   Further, the vibration isolator 10 is brought into contact with the coil spring 300 to vibrate the coil spring 300 (high-frequency vibration generated by operation of the supported body 200 itself or high-frequency disturbance transmitted from the outside to the ceiling portion 11. ) Is absorbed, even if vibration with a high frequency is transmitted to the coil spring 300, the vibration is absorbed by the fine vibration absorber 400 by converting it into heat. Thus, even if surging (resonance phenomenon) occurs in the coil spring 300, it can be surely prevented.

又、弾性筒体520は弾性を有しているためコイルバネ300や減震コイルバネ510の伸縮動作とともに伸縮し、さらに滑り抵抗の少ない弾性材(エラストマ)を使用しているため各バネ300,510の伸縮動作を円滑にしている。   In addition, since the elastic cylinder 520 has elasticity, it expands and contracts with the expansion and contraction operation of the coil spring 300 and the anti-seismic coil spring 510, and further uses an elastic material (elastomer) with less sliding resistance, so The telescopic motion is smooth.

上述のように、大地震が発生して強大な過荷重(大きな衝撃力や大きな揺れ)が天井部11の支持体100に掛かったとしても、その大きな揺れをコイルバネ300と減震コイルバネ510が伸縮して被支持体200に伝達されるべき大きな衝撃力や大きな揺れを緩和して被支持体200の揺れや被支持体200に与えられる衝撃が小さくすることができる。なお、実施例1では吊支対象物の揺れ防止対策について説明したが、既に述べたように天井部11から本発明の減震装置10を吊るし、床置対象物に取り付けることで床置対象物の転倒防止対策としても利用できる。   As described above, even if a large earthquake occurs and a strong overload (a large impact force or a large vibration) is applied to the support body 100 of the ceiling portion 11, the coil spring 300 and the vibration reducing coil spring 510 expand and contract due to the large vibration. As a result, a large impact force or a large vibration to be transmitted to the supported body 200 can be alleviated, and a vibration of the supported body 200 or an impact applied to the supported body 200 can be reduced. In addition, in Example 1, although the countermeasure for preventing shaking of the suspended support object was described, the floor vibration object 10 is hung from the ceiling 11 and attached to the floor object as described above. It can also be used as a preventive measure against falling.

さらに、上述した減震装置10を複数個組み合わせて用いることもできる。例えば、上述の減震装置10を2個用意し、これらの減震装置10を左右対称に併設してその中間部に位置する1つの被支持体200を左右両側から支持するようにした複合支持構造の一例を図5に示す。   Furthermore, it is possible to use a combination of a plurality of the above-described vibration reduction devices 10. For example, a composite support in which two of the above-described vibration-reducing devices 10 are prepared, and these vibration-reducing devices 10 are provided side-by-side symmetrically to support one supported body 200 located in the middle thereof from both the left and right sides. An example of the structure is shown in FIG.

まず、左側の減震装置10は、ハンガー130上部の係止部131を左側の斜め上方に設置された支持体100の係止具110に係止させ、被ハンガー230下部の被係止部231を、中央下部に位置する被支持体200の被係止具210に係止させて左側の減震装置10が左側上方より傾斜状態で被支持体200を支持している。   First, the left vibration isolator 10 locks the locking portion 131 at the top of the hanger 130 with the locking tool 110 of the support body 100 installed obliquely above the left side, and the locked portion 231 at the bottom of the hanger 230. Is held by the locked member 210 of the supported body 200 located at the lower center, and the left vibration isolator 10 supports the supported body 200 in an inclined state from the upper left side.

同様に右側の減震装置10は、ハンガー130上部の係止部131を右側の斜め上方に設置された支持体100の係止具110に係止させ、被ハンガー230下部の被係止部231を、中央下部に位置する被支持体200の被係止具210に係止させて右側の減震装置10が右側上方より傾斜状態で被支持体200を支持している。   Similarly, the seismic reduction device 10 on the right side locks the locking part 131 on the upper part of the hanger 130 with the locking tool 110 of the support body 100 installed obliquely upward on the right side, and the locked part 231 on the lower part of the hanger 230. Is locked to the locked member 210 of the supported body 200 located at the lower center, and the right side vibration isolator 10 supports the supported body 200 in an inclined state from the upper right side.

このように構成した場合は、被支持体200を左右両側から分散させて支持することができる。このため、減震装置10を単独に用いる場合に比べて、より安全性の高い支持構造が得られる。ことに、大地震のような強大で揺れる方向が異なる不規則な衝撃力を受けても揺れる方向に近い向きの減震装置10が対応して瞬時に減震させることができる。   When comprised in this way, the to-be-supported body 200 can be disperse | distributed and supported from both right and left sides. For this reason, compared with the case where the seismic-reduction apparatus 10 is used independently, a safer support structure is obtained. In particular, even if it receives an irregular impact force that is strong and has different swing directions such as a large earthquake, the vibration isolator 10 in the direction close to the swing direction can respond and instantaneously reduce the vibration.

[実施例2]
図6は減震装置10に組み込まれる減震ダンパー500の他の例を示し、図7はその減震装置10が減震作用する過荷重入力時の動作状態を示している。この実施例2の減震装置10は実施例1の減震装置10と比較して一部分が異なる略同一の構成であり、その異なる点は減震ダンパー500の構成である。このため、同一部分の構成の説明は省略し、異なる点についてのみ説明する。
[Example 2]
FIG. 6 shows another example of the vibration damping damper 500 incorporated in the vibration damping device 10, and FIG. 7 shows an operating state at the time of an overload input in which the vibration damping device 10 performs a vibration reducing action. The seismic reduction device 10 of the second embodiment has substantially the same configuration that is partially different from that of the first embodiment. The difference is the configuration of the vibration reduction damper 500. For this reason, description of the structure of the same part is abbreviate | omitted and only a different point is demonstrated.

この減震ダンパー500は、前述同様、コイルバネ300よりも一回り大径で(或いは小さく)且つコイルバネ300のバネ定数より大きいバネ定数を有する減震コイルバネ510を伸縮可能に弾性エラストマ530で筒状にモールド成形したバネ封入筒体540により構成したものである。   As described above, the vibration damping damper 500 is formed in a cylindrical shape by the elastic elastomer 530 so that the vibration damping coil spring 510 having a spring diameter larger than (or smaller than) the coil spring 300 and having a spring constant larger than that of the coil spring 300 can be expanded and contracted. This is constituted by a molded spring-enclosed cylinder 540.

このように減震コイルバネ510を弾性エラストマ530でモールドすることにより、バネ封入筒体540は全体が弾性筒状を有したまま圧縮可能となり、減震コイルバネ510の伸縮する動きを妨げないようにしている。このため、減震コイルバネ510は弾性材に包まれた状態で一体に伸縮される。   By molding the vibration reducing coil spring 510 with the elastic elastomer 530 in this way, the spring-sealed cylindrical body 540 can be compressed while having the entire elastic cylindrical shape, so that the expansion and contraction movement of the vibration reducing coil spring 510 is not hindered. Yes. For this reason, the vibration reducing coil spring 510 is expanded and contracted integrally in a state of being wrapped in an elastic material.

さらに、バネ封入筒体540を前述同様、コイルバネ300の同心円上に環状配置するとともに、該バネ封入筒体540の内周面がコイルバネ300の外周面に接した状態で(或いは逆の状態で)該バネ封入筒体540を座板120と被座板220との対向面間に、且つ隙間Aを設けて組み込むものである。この場合、バネ封入筒体540の減震コイルバネ510の間に弾性エラストマ530が存在するため、仮にコイルバネ300と減震コイルバネ510の巻き方向が同じであったとしても絡まないため、両者をセパレートする弾性筒体520は不要となる。そして、バネ封入筒体540の外表面(又は内表面)の弾性エラストマ530がコイルバネ300に接しているため、上述した微振動吸収体400と同じ効果が得られる。   Further, the spring-enclosed cylinder 540 is annularly arranged on the concentric circle of the coil spring 300 as described above, and the inner peripheral surface of the spring-enclosed cylinder 540 is in contact with the outer peripheral surface of the coil spring 300 (or in the reverse state). The spring-sealed cylindrical body 540 is incorporated with a gap A between the opposed surfaces of the seat plate 120 and the seat plate 220. In this case, since the elastic elastomer 530 exists between the anti-seismic coil spring 510 of the spring-enclosed cylinder 540, even if the winding directions of the coil spring 300 and the anti-seismic coil spring 510 are the same, they will not be entangled. The elastic cylinder 520 becomes unnecessary. Since the elastic elastomer 530 on the outer surface (or inner surface) of the spring-enclosed cylindrical body 540 is in contact with the coil spring 300, the same effect as the above-described fine vibration absorber 400 can be obtained.

このように構成された減震装置10を用いた場合も、減震ダンパー500として備えられるバネ封入筒体540は、通常の地震のような小さな荷重を受けてもコイルバネ300が対応するため、さほど圧縮されないが、大地震のような強大な過荷重を受けた際は、図7に示すように、バネ封入筒体540に封入されているバネ定数の大きい減震コイルバネ510の圧縮時のバネ反力により強大な過荷重に抵抗を与えてその過荷重の被支持体200への伝達を緩和させることができる。さらに、バネ封入筒体540は単体であって、実施例1と比較して減震コイルバネ510と微振動吸収体400と弾性筒体520との3部品を1つにまとめた構成を有しているため部品点数の削減及び取扱い性の容易化を図ることができる。   Even when the seismic reduction device 10 configured in this way is used, the spring-encapsulated cylindrical body 540 provided as the anti-seismic damper 500 can cope with the coil spring 300 even under a small load such as a normal earthquake. Although not compressed, when subjected to a strong overload such as a large earthquake, as shown in FIG. 7, the spring reaction at the time of compression of the vibration-reducing coil spring 510 having a large spring constant enclosed in the spring-sealed cylindrical body 540 is obtained. Resistance can be applied to a strong overload by force, and the transmission of the overload to the supported body 200 can be relaxed. Further, the spring-sealed cylindrical body 540 is a single body, and has a configuration in which three parts of the vibration reducing coil spring 510, the micro-vibration absorber 400, and the elastic cylindrical body 520 are combined into one as compared with the first embodiment. Therefore, it is possible to reduce the number of parts and facilitate handling.

[実施例3]
図8は減震装置10に組み込まれる減震ダンパー500の他の例を示し、図9はその減震装置10が減震作用する外力受圧時の動作状態を示している。この実施例3の減震装置10は実施例1の減震装置10と比較して一部分が異なる略同一の構成であり、その異なる点は減震ダンパー500の構成である。このため、同一部分の構成の説明は省略し、異なる点についてのみ説明する。
[Example 3]
FIG. 8 shows another example of the vibration damping damper 500 incorporated in the vibration damping device 10, and FIG. 9 shows an operation state when the vibration damping device 10 receives external force that acts to reduce vibration. The seismic reduction device 10 of the third embodiment has substantially the same configuration, which is partially different from that of the first embodiment. The difference is the configuration of the vibration reduction damper 500. For this reason, description of the structure of the same part is abbreviate | omitted and only a different point is demonstrated.

この減震ダンパー500はシリンダ570とピストン580を用いて圧縮ストローク時の流動抵抗を得るものであり、この減震ダンパー500を座板120と被座板220との対向面間に、隙間Aを設けて介在させる構成としたものである。   The seismic damper 500 uses a cylinder 570 and a piston 580 to obtain a flow resistance during a compression stroke. The seismic damper 500 has a gap A between the opposed surfaces of the seat plate 120 and the seat plate 220. It is set as the structure which provides and interposes.

上述のシリンダ570は、図8(A)に示すように、内部に液体や液状媒体などの流動抵抗の高い粘性体550を装填した内部空間560を有する筒体で構成されている。このシリンダ570は座板120と被座板220との対向面間に介在され、且つ図8(C)に示すように、周方向に複数個を等分して設置(図では4等分)したものである。   As shown in FIG. 8A, the above-described cylinder 570 includes a cylindrical body having an internal space 560 in which a viscous body 550 having a high flow resistance such as a liquid or a liquid medium is loaded. The cylinder 570 is interposed between the opposed surfaces of the seat plate 120 and the seat plate 220, and as shown in FIG. 8C, a plurality of cylinders 570 are equally divided in the circumferential direction. It is a thing.

さらに、シリンダ570に対しては補強支持体590として補強円板591を備えている。この補強円板591は周方向にシリンダ設置数と同数のシリンダ挿通孔592を等分して設けた中空円板であり、各シリンダ挿通孔592に各シリンダ570を挿通させて支持している。又、補強円板591の中空部593にはコイルバネ300が収納された状態となる。   Further, the cylinder 570 is provided with a reinforcing disk 591 as a reinforcing support 590. This reinforcing disk 591 is a hollow disk in which the same number of cylinder insertion holes 592 as the number of cylinders installed are equally divided in the circumferential direction, and each cylinder 570 is inserted into and supported by each cylinder insertion hole 592. Further, the coil spring 300 is housed in the hollow portion 593 of the reinforcing disk 591.

又、補強円板591はシリンダ570の上部と下部とその中間部を支持する三枚の補強円板591で強固に固定するように構成し、さらにこれらの補強円板591を連結片594で上下方向に連結して一体化している。このため、各シリンダ570は補強支持体590により強固に保持され、後述するピストン580の安定したストローク動作を確保している。又、上述の補強支持体590は、補強円板591や連結片594を組み合わせた構成に代えて単一の中空円柱体を用い、この中空円柱体の周方向に等分して複数のシリンダ挿通孔592を貫通させて設けることもできる。このほか、シリンダ570とピストン580自体を大型にして補強部材を省略することも可能である。   Further, the reinforcing disc 591 is configured to be firmly fixed by three reinforcing discs 591 that support the upper and lower portions of the cylinder 570 and the intermediate portion thereof, and these reinforcing discs 591 are vertically connected by connecting pieces 594. It is connected and integrated in the direction. For this reason, each cylinder 570 is firmly held by the reinforcing support 590 to ensure a stable stroke operation of a piston 580 described later. The above-mentioned reinforcing support 590 uses a single hollow cylindrical body instead of the combination of the reinforcing disk 591 and the connecting piece 594, and is divided into a plurality of cylinders by equally dividing the hollow cylindrical body in the circumferential direction. The hole 592 may be provided so as to penetrate therethrough. In addition, it is possible to enlarge the cylinder 570 and the piston 580 themselves and omit the reinforcing member.

なお、シリンダ570は同心円上で複数個を環状に等分配置して構成するものに限らず、図示していないが、減震装置10の中心に1個配置して構成することもできる。又、シリンダ570の長さは、被支持体200の荷重が掛かっている状態で座板120と被座板220との両座板120,220の対向面間長さより短い長さに設定している。換言すれば、補強支持体590の下面と被座板220の上面との間に隙間Aを設け、通常の負荷ではコイルバネ300が対応するように両座板120,220の対向間隔を十分伸縮可能に設けている。   Note that the cylinder 570 is not limited to a concentric circle and is formed by equally dividing a plurality of cylinders, but one cylinder 570 may be arranged at the center of the vibration damping device 10 although not shown. Further, the length of the cylinder 570 is set to be shorter than the length between the opposing surfaces of the seat plates 120 and 220 of the seat plate 120 and the seat plate 220 in a state where the load of the supported body 200 is applied. Yes. In other words, a gap A is provided between the lower surface of the reinforcing support 590 and the upper surface of the seat plate 220, and the facing distance between the seat plates 120 and 220 can be sufficiently expanded and contracted so that the coil spring 300 corresponds to the normal load. Provided.

上述のピストン580は、長尺軸(ピストンバー)581とその下端に設けられた円板状の抵抗板582とで形成されている。そして、長尺軸581の基端部(上端部)には図8(B)に示すように、長尺軸581より太径の保持軸部583が設けられており、この保持軸部583がシリンダ570の上端開口部570aに係合している。座板120の下方に垂下される保持軸部583及び長尺軸581はシリンダ570の上端開口部570aよりその内方の内部空間560へと伸びて収納されている。   The above-described piston 580 is formed by a long shaft (piston bar) 581 and a disk-shaped resistance plate 582 provided at the lower end thereof. As shown in FIG. 8B, a holding shaft portion 583 having a diameter larger than that of the long shaft 581 is provided at the base end portion (upper end portion) of the long shaft 581. The cylinder 570 engages with the upper end opening 570a. The holding shaft portion 583 and the long shaft 581 that are suspended below the seat plate 120 extend from the upper end opening portion 570a of the cylinder 570 to the inner space 560 and housed therein.

そして、ピストン580の先端に取り付けられた抵抗板582がシリンダ570内の粘性体550に常時浸った状態にあり、この状態で過大荷重(地震エネルギー)が入力されると、図9に示すように、隙間Aを超えてコイルバネ300が撓められ、被座板220が持ち上げられてシリンダ570と一体の補強支持体590の下面に接触し、これを持ち上げた時に粘性体550が抵抗板582と内部空間560との間の狭い隙間を通過する時の抵抗を受け、入力した過大地震エネルギーの一部を熱に変換して吸収し、被支持体200に伝達される揺れを大幅に緩和する。   Then, the resistance plate 582 attached to the tip of the piston 580 is constantly immersed in the viscous body 550 in the cylinder 570, and if an excessive load (earthquake energy) is input in this state, as shown in FIG. The coil spring 300 is deflected beyond the gap A, the seat plate 220 is lifted and comes into contact with the lower surface of the reinforcing support 590 integrated with the cylinder 570, and when this is lifted, the viscous body 550 is connected to the resistance plate 582 and the inside of the resistance plate 582. It receives resistance when passing through a narrow gap with the space 560, converts a part of the input excessive seismic energy into heat and absorbs it, and greatly reduces the vibration transmitted to the supported body 200.

上述の実施例では天井吊支型の減震装置10の構成例を説明したが、これに限らず、床置設置型の減震装置10としても適用できる。天井吊支型では吊支対象物(被支持体200)の上部を吊支して下部を浮かした中吊り状態であるのに対し、床置設置型では床面に床置対象物を置いた状態で上部を減震装置10で支持して倒れないようにするものであるため、減震装置10の構造を変えることなくそのまま適用することができる。又、上述の減震装置10は被支持体200を垂直に支持する例を示したが、図5にも示したように、斜め方向など垂直方向以外の向きに支持して構成することもできる。   In the above-described embodiment, the configuration example of the ceiling-suspended-type seismic reduction device 10 has been described. In the ceiling suspension type, while the upper part of the suspension object (supported body 200) is suspended and the lower part is lifted, the floor installation type places the floor object on the floor surface. Since the upper part is supported by the vibration isolator 10 so as not to fall down, it can be applied as it is without changing the structure of the vibration absorber 10. Moreover, although the above-mentioned seismic-reduction device 10 showed the example which supports the to-be-supported body 200 perpendicularly | vertically, as shown also in FIG. 5, it can also support and comprise in directions other than perpendicular directions, such as an oblique direction. .

10…減震装置
100…支持体
120…座板
121…挿通空所
130…ハンガー
200…被支持体
220…被座板
221…被挿通空所
230…被ハンガー
300…コイルバネ
400…微振動吸収体
500…減震ダンパー
510…減震コイルバネ
520…弾性筒体
540…バネ封入筒体
550…粘性体
560…内部空間
570…シリンダ
580…ピストン
A…隙間
DESCRIPTION OF SYMBOLS 10 ... Anti-seismic device 100 ... Support body 120 ... Seat plate 121 ... Insertion space 130 ... Hanger 200 ... Supported body 220 ... Seat plate 221 ... Insertion space 230 ... Hanger 300 ... Coil spring 400 ... Micro vibration absorber 500 ... Damping damper 510 ... Damping coil spring 520 ... Elastic cylinder 540 ... Spring-sealed cylinder 550 ... Viscous body 560 ... Internal space 570 ... Cylinder 580 ... Piston A ... Gap

Claims (4)

支持体と被支持体との間で伸縮を許容させる伸縮式の減震装置であって、
伸縮方向に貫通された挿通空所を有して前記支持体寄りに設けられる座板と、
前記座板に対向し、前記挿通空所の対面位置にて伸縮方向に貫通された被挿通空所を有して前記被支持体寄りに設けられる被座板と、
前記座板と被座板との対向面間にて、挿通空所及び被挿通空所の周囲に接するように配設されたコイルバネと、
前記コイルバネ縮方向に伸縮するものであって、コイルバネの外周を囲うように又は内周に沿うように配置され、前記コイルバネより短く設定して前記座板と被座板との対向面間に隙間を設けて介在され、外部から前記隙間を超える過荷重が入力された時に始めて圧縮が開始される過荷重減震用の減震ダンパーと、
前記支持体に取り付けられた係止部と、該係止部の両側から同一方向に伸び前記座板の挿通空所に挿通される少なくとも2本の腕部と、該腕部の先端部に形成されて前記被座板の被挿通空所を挿通し該被座板の被支持体側端部に係止されるフック部とで構成されたハンガーと、
前記被支持体に取り付けられた被係止部と、該被係止部の両側から同一方向に伸び、前記被座板の被挿通空所に挿通される少なくとも2本の被腕部と、該被腕部の先端部に形成されて前記座板の挿通空所を挿通し該座板の支持体側端部に係止される被フック部とで構成された被ハンガーとを備えて構成したことを特徴とする減震装置。
A telescopic vibration reduction device that allows expansion and contraction between a support and a supported body,
A seat plate provided near the support body with an insertion space penetrating in the expansion and contraction direction;
A seated plate facing the seat plate and provided near the supported body, having a to-be-inserted space that is penetrated in a telescopic direction at a facing position of the insertion space,
Between the opposing surfaces of the seat plate and the seat plate, a coil spring disposed so as to contact the periphery of the insertion space and the insertion space;
The coil spring expands and contracts, and is arranged so as to surround the outer periphery of the coil spring or along the inner periphery, and is set shorter than the coil spring so that there is a gap between the facing surfaces of the seat plate and the seat plate. And an anti-vibration damper for overload reduction that starts compression only when an overload exceeding the gap is input from the outside,
Formed at the locking portion attached to the support, at least two arm portions extending in the same direction from both sides of the locking portion and inserted into the insertion space of the seat plate, and at the distal end portion of the arm portion A hanger configured with a hook portion that is inserted through the insertion space of the seat plate and is locked to the support-side end of the seat plate,
A locked portion attached to the supported body, at least two armed portions that extend in the same direction from both sides of the locked portion, and are inserted into the inserted space of the seat plate, A hanger to be hung, which is formed at the tip of the armed portion and is inserted into the insertion space of the seat plate and is hooked to the support side end of the seat plate. An anti-seismic device characterized by
前記減震ダンパーは、減震コイルバネであって、前記コイルバネのバネ定数と同じか、それより大きいバネ定数を有することを特徴とする請求項1に記載の減震装置。   2. The vibration reduction device according to claim 1, wherein the vibration reduction damper is a vibration reduction coil spring and has a spring constant equal to or greater than a spring constant of the coil spring. 前記減震ダンパーは、バネ封入筒体であって、バネ封入筒体は前記コイルバネのバネ定数と同じか、それより大きいバネ定数を有する減震コイルバネを弾性エラストマで筒状にモールド成形されたものであることを特徴とする請求項1に記載の減震装置。   The anti-seismic damper is a spring-enclosed cylinder, and the spring-enclosed cylinder is formed by molding an anti-seismic coil spring having a spring constant equal to or greater than the spring constant of the coil spring into a cylindrical shape with an elastic elastomer. The vibration-reducing device according to claim 1, wherein 前記減震ダンパーは、シリンダとピストンとから構成されるものであって、
前記シリンダは内部に粘性体を装填した内部空間を有し、
前記ピストンは前記座板から伸びて前記シリンダの内部空間の粘性体内を進退自由に挿入されていることを特徴とする請求項1に記載の減震装置。
The vibration damping damper is composed of a cylinder and a piston,
The cylinder has an internal space filled with a viscous material,
The vibration reducing device according to claim 1, wherein the piston extends from the seat plate and is freely inserted into a viscous body in the internal space of the cylinder.
JP2012148801A 2012-07-02 2012-07-02 Seismic reduction device Active JP6033591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012148801A JP6033591B2 (en) 2012-07-02 2012-07-02 Seismic reduction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012148801A JP6033591B2 (en) 2012-07-02 2012-07-02 Seismic reduction device

Publications (2)

Publication Number Publication Date
JP2014009791A true JP2014009791A (en) 2014-01-20
JP6033591B2 JP6033591B2 (en) 2016-11-30

Family

ID=50106669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012148801A Active JP6033591B2 (en) 2012-07-02 2012-07-02 Seismic reduction device

Country Status (1)

Country Link
JP (1) JP6033591B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246782A (en) * 2016-10-17 2016-12-21 安徽信泽科技有限公司 A kind of rod-pulling type complex spring antivibrator of predeterminable early stage rigidity
CN106286699A (en) * 2016-10-17 2017-01-04 安徽信泽科技有限公司 A kind of complex spring antivibrator of scalable rigidity in early days
CN106286669A (en) * 2016-10-17 2017-01-04 安徽信泽科技有限公司 The coiled spring damper that a kind of early stage rigidity is predeterminable
CN106369094A (en) * 2016-10-17 2017-02-01 安徽信泽科技有限公司 Pull rod guide type disc spring damper
CN106438805A (en) * 2016-10-17 2017-02-22 安徽信泽科技有限公司 Pull rod guide type complex spring damper
CN106499763A (en) * 2016-10-17 2017-03-15 安徽信泽科技有限公司 A kind of coiled spring damper that can adjust early stage rigidity
WO2017090375A1 (en) * 2015-11-26 2017-06-01 日立工機株式会社 Reciprocating work machine
CN107327632A (en) * 2017-07-18 2017-11-07 贵州大学 A kind of pipeline of shale gas buffer-type damping installation structure
CN107673184A (en) * 2017-09-15 2018-02-09 江苏大力城电气有限公司 Alarm type constant force spring hanging frame
CN112211953A (en) * 2020-10-10 2021-01-12 江苏腾胜管道设备有限公司 Novel constant force spring hanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437631A (en) * 1945-04-20 1948-03-09 Gen Spring Corp Support
JPS5079185U (en) * 1973-11-21 1975-07-09
JPS5620180U (en) * 1979-07-24 1981-02-23
JPS5853932U (en) * 1981-10-09 1983-04-12 トヨタ自動車株式会社 Double coil spring assembly
JPS61131544U (en) * 1985-02-04 1986-08-16
JPH0615091A (en) * 1992-06-30 1994-01-25 Matsushita Electric Ind Co Ltd Damping apparatus for washing machine
JPH0656531U (en) * 1993-01-20 1994-08-05 ネミー工業株式会社 Anti-vibration device for supporting heavy objects
JP2002054684A (en) * 2000-08-11 2002-02-20 Tokkyokiki Corp Vibration control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2437631A (en) * 1945-04-20 1948-03-09 Gen Spring Corp Support
JPS5079185U (en) * 1973-11-21 1975-07-09
JPS5620180U (en) * 1979-07-24 1981-02-23
JPS5853932U (en) * 1981-10-09 1983-04-12 トヨタ自動車株式会社 Double coil spring assembly
JPS61131544U (en) * 1985-02-04 1986-08-16
JPH0615091A (en) * 1992-06-30 1994-01-25 Matsushita Electric Ind Co Ltd Damping apparatus for washing machine
JPH0656531U (en) * 1993-01-20 1994-08-05 ネミー工業株式会社 Anti-vibration device for supporting heavy objects
JP2002054684A (en) * 2000-08-11 2002-02-20 Tokkyokiki Corp Vibration control device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090375A1 (en) * 2015-11-26 2017-06-01 日立工機株式会社 Reciprocating work machine
JPWO2017090375A1 (en) * 2015-11-26 2018-09-06 工機ホールディングス株式会社 Reciprocating machine
CN106246782A (en) * 2016-10-17 2016-12-21 安徽信泽科技有限公司 A kind of rod-pulling type complex spring antivibrator of predeterminable early stage rigidity
CN106286699A (en) * 2016-10-17 2017-01-04 安徽信泽科技有限公司 A kind of complex spring antivibrator of scalable rigidity in early days
CN106286669A (en) * 2016-10-17 2017-01-04 安徽信泽科技有限公司 The coiled spring damper that a kind of early stage rigidity is predeterminable
CN106369094A (en) * 2016-10-17 2017-02-01 安徽信泽科技有限公司 Pull rod guide type disc spring damper
CN106438805A (en) * 2016-10-17 2017-02-22 安徽信泽科技有限公司 Pull rod guide type complex spring damper
CN106499763A (en) * 2016-10-17 2017-03-15 安徽信泽科技有限公司 A kind of coiled spring damper that can adjust early stage rigidity
CN107327632A (en) * 2017-07-18 2017-11-07 贵州大学 A kind of pipeline of shale gas buffer-type damping installation structure
CN107327632B (en) * 2017-07-18 2023-04-25 贵州大学 Buffering type damping installation structure for shale gas pipeline
CN107673184A (en) * 2017-09-15 2018-02-09 江苏大力城电气有限公司 Alarm type constant force spring hanging frame
CN112211953A (en) * 2020-10-10 2021-01-12 江苏腾胜管道设备有限公司 Novel constant force spring hanger

Also Published As

Publication number Publication date
JP6033591B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6033591B2 (en) Seismic reduction device
RU2279580C1 (en) Plate-type vibration isolator with pendulum suspension
US20170138510A1 (en) Hanger-type vibration isolating device
KR101960160B1 (en) Vibration isolation viscoelastic module for earthquake reduction
RU2279584C1 (en) Rubber vibration isolator for equipment
JP6217181B2 (en) Floor seismic isolation system
KR20110108913A (en) 2-directional tuned mass damper for earthquake response reduction of electric cabinet
KR101853094B1 (en) The seismic stopper combined with vibration isolation system
JP4918619B1 (en) Isolation device
JP6345501B2 (en) Vertical seismic isolation structure
RU2537984C1 (en) Kochetov's disk-shaped vibration isolator with dry friction damper
RU2538491C1 (en) Kochetov's dry friction damper
RU2293229C2 (en) Vibration insulator with plate springs
RU2551568C1 (en) Kochetov's spring vibration isolator
RU2546383C1 (en) Kochetov's mesh vibration isolator
JP2001082542A (en) Three-dimensional base isolation device
JP2005330799A (en) Base isolation structure
RU2287727C1 (en) Plate vibration insulator with pendulum suspension
KR102314390B1 (en) Vibration Isolation for Case
JP2015010650A (en) Oil damper, and damper system
JP4386058B2 (en) Uniaxial vibration damping unit
RU2495295C1 (en) Hydraulic damper
KR20170004215A (en) High loaded MR mount using squeeze mode and flow mode of magneto-rheological fluid
RU2457374C1 (en) Damper
RU2303178C2 (en) Vibration insulator with ring plate springs

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6033591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250