JP2014008449A - Exhaust gas treatment device and method - Google Patents

Exhaust gas treatment device and method Download PDF

Info

Publication number
JP2014008449A
JP2014008449A JP2012146375A JP2012146375A JP2014008449A JP 2014008449 A JP2014008449 A JP 2014008449A JP 2012146375 A JP2012146375 A JP 2012146375A JP 2012146375 A JP2012146375 A JP 2012146375A JP 2014008449 A JP2014008449 A JP 2014008449A
Authority
JP
Japan
Prior art keywords
exhaust gas
seawater
power generation
generation facility
binary power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012146375A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishizaka
浩 石坂
Takayuki Saito
隆行 斎藤
Atsushi Katagawa
篤 片川
Koji Muramoto
考司 村本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2012146375A priority Critical patent/JP2014008449A/en
Publication of JP2014008449A publication Critical patent/JP2014008449A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas treatment system which does not cause a large increase in a facility cost and has high energy-saving dust removal performance.SOLUTION: In exhaust gas treatment method, boiler exhaust gas is cooled with a gas cooling device 5 and, after dust in the exhaust gas is removed, sulfur oxide in the exhaust gas is absorbed and removed by placing the exhaust gas in contact with seawater with a seawater desulfurization device 10. The gas cooling device 5 is connected to a binary power generation facility 9 which generates power with a low boiling media using recovered heat through the gas cooling device 5. A total or a portion of the seawater supplied to the seawater desulfurization device 10 is also used as a cooling media to cool the low boiling media in the binary power generation facility 9. When desulfurizing the exhaust gas with a wet desulfurization device 3 which uses calcium absorbing liquid, the total or the portion of the seawater supplied to a seawater desalination facility 11 is used as the cooling media to cool the low boiling media in a binary power generation facility 10.

Description

本発明は、ボイラなどの燃焼装置から排出される排ガス中の煤塵や有害成分を除去する排ガス処理装置都方法に係わり、特に、ガス冷却器とバイナリ発電設備を組み合せることで、省電力化を図りながら煤塵除去性能を高めることができる排ガス処理装置と方法に関するものである。   The present invention relates to an exhaust gas treatment apparatus that removes dust and harmful components in exhaust gas discharged from a combustion apparatus such as a boiler, and in particular, saves power by combining a gas cooler and a binary power generation facility. The present invention relates to an exhaust gas treatment apparatus and method that can improve dust removal performance while being planned.

従来技術のボイラなどの燃焼装置から排出される排ガスの浄化処理システムとして、低低温EPシステムの概略系統図を図4に示す。
図4に示すように、低低温EPシステムは、主に電気集塵機(EP)1、ファン2、湿式脱硫装置3、ガス冷却器5及びガス再加熱器6などから構成される。ガス冷却器5とガス再加熱器6は配管によって閉ループで接続されており、熱媒体として配管内を温水が循環している。ガス冷却器5で昇温された熱媒体はガス再加熱器6に流入し、排ガスとの熱交換により減温された後、ガス冷却器5に戻る。
FIG. 4 shows a schematic system diagram of a low-temperature EP system as a purification system for exhaust gas discharged from a combustion apparatus such as a conventional boiler.
As shown in FIG. 4, the low-temperature EP system is mainly composed of an electrostatic precipitator (EP) 1, a fan 2, a wet desulfurization apparatus 3, a gas cooler 5, a gas reheater 6, and the like. The gas cooler 5 and the gas reheater 6 are connected in a closed loop by piping, and hot water circulates in the piping as a heat medium. The heat medium raised in temperature by the gas cooler 5 flows into the gas reheater 6 and is returned to the gas cooler 5 after being reduced in temperature by heat exchange with the exhaust gas.

図示していないボイラから排出される排ガスは、図示していない空気予熱器で燃焼用空気と熱交換された後、ガス冷却器5に導入され、さらに温度が下げられてから電気集塵機1に導入され、排ガス中の煤塵の大半が除去される。その後、排ガスはファン2によって昇圧されて湿式脱硫装置3に送られ、排ガス中の硫黄酸化物などの酸性有害物質が除去される。湿式脱硫装置3で飽和ガス温度まで冷却された排ガスは、ガス冷却器5の回収熱を用いて再加熱器6によって昇温され、煙突4より大気に排出される。   Exhaust gas discharged from a boiler (not shown) is heat-exchanged with combustion air by an air preheater (not shown) and then introduced into the gas cooler 5 and further introduced into the electric dust collector 1 after the temperature is lowered. And most of the dust in the exhaust gas is removed. Thereafter, the exhaust gas is pressurized by the fan 2 and sent to the wet desulfurization apparatus 3 to remove acidic harmful substances such as sulfur oxides in the exhaust gas. The exhaust gas cooled to the saturated gas temperature by the wet desulfurization device 3 is heated by the reheater 6 using the recovered heat of the gas cooler 5 and discharged from the chimney 4 to the atmosphere.

この低低温EPシステムにおいて、ガス冷却器5によって電気集塵機1に流入する排ガス温度を下げると、排ガス中の煤塵の電気抵抗率が低下し、電気集塵機1での集塵性能が向上することは公知の技術であり、すでに実用化されている。   In this low and low temperature EP system, it is known that when the temperature of the exhaust gas flowing into the electric dust collector 1 is lowered by the gas cooler 5, the electrical resistivity of the dust in the exhaust gas is lowered and the dust collection performance in the electric dust collector 1 is improved. This technology has already been put into practical use.

日本国内など、煙突4からの排ガスの拡散(着地濃度)の問題から、煙突4からの排ガス排出温度が規定されている場合には、図4に示す従来技術のように湿式脱硫装置3の出口の水分で飽和した排ガスをガス再加熱器6で昇温することになる。   When exhaust gas discharge temperature from the chimney 4 is regulated due to the problem of diffusion (landing concentration) of the exhaust gas from the chimney 4 such as in Japan, the outlet of the wet desulfurization device 3 as in the prior art shown in FIG. The temperature of the exhaust gas saturated with water is raised by the gas reheater 6.

これに対して、海外では特に煙突4からの排ガス排出温度に規定がなく、水分飽和の状態のままで煙突4から排出させる場合が多い。この場合、高価なガス再加熱器6は不要であり、図5に示すようなシステム構成となる。ただし、ガス再加熱器6が無くなるとガス冷却器で昇温された熱媒体を冷却する手段を失うことになり、別途、冷却手段を講じる必要がある。図5のシステムでは、図4のガス再加熱器6の代わりに液−液熱交換器7を設け、ガス冷却器5と液−液熱交換器7の間で熱媒体を循環させ、液−液熱交換器7で熱媒体の温度を下げるようにしている。液−液熱交換器7には冷媒が必要となるが、冷却装置8を設置し、液−液熱交換器7と冷却装置8との間で冷却水を循環させ、液−熱交換器7で冷却水が得た熱は、冷却装置8によって大気に放散させることになる(特開2007−263078号公報)。   On the other hand, there is no particular restriction on the exhaust gas discharge temperature from the chimney 4 overseas, and in many cases the exhaust gas is discharged from the chimney 4 in a water saturated state. In this case, the expensive gas reheater 6 is unnecessary, and a system configuration as shown in FIG. 5 is obtained. However, when the gas reheater 6 is eliminated, the means for cooling the heat medium heated by the gas cooler is lost, and it is necessary to take a cooling means separately. In the system of FIG. 5, a liquid-liquid heat exchanger 7 is provided instead of the gas reheater 6 of FIG. 4, and a heat medium is circulated between the gas cooler 5 and the liquid-liquid heat exchanger 7. The liquid heat exchanger 7 lowers the temperature of the heat medium. Although the liquid-liquid heat exchanger 7 requires a refrigerant, a cooling device 8 is installed, and cooling water is circulated between the liquid-liquid heat exchanger 7 and the cooling device 8, so that the liquid-heat exchanger 7 The heat obtained by the cooling water is dissipated into the atmosphere by the cooling device 8 (Japanese Patent Laid-Open No. 2007-263078).

ただし、図5のシステムではガス冷却器5で排ガスから回収した熱は廃熱として全て冷却装置8から放散させているだけであり、廃熱の有効利用という観点では何ら配慮されていない。   However, in the system of FIG. 5, all the heat recovered from the exhaust gas by the gas cooler 5 is merely dissipated from the cooling device 8 as waste heat, and no consideration is given from the viewpoint of effective use of waste heat.

この点に関しては、図6に示したように、図5に示す液−液熱交換器7をバイナリ発電設備9に置き換えることによって、ガス冷却器5で排ガスから回収した熱の一部を利用して発電することが可能となり、省エネ型の排ガス処理システムとすることができる(特開2011−231636号公報参照)。   In this regard, as shown in FIG. 6, by replacing the liquid-liquid heat exchanger 7 shown in FIG. 5 with a binary power generation facility 9, a part of the heat recovered from the exhaust gas by the gas cooler 5 is used. Power generation, and an energy-saving exhaust gas treatment system can be obtained (see Japanese Patent Application Laid-Open No. 2011-231636).

また、図5の液−熱交換器7で冷却水が得た熱を大気中に放散するのではなくボイラ復水の加熱に利用して熱エネルギーを節約する技術が特開2006−308269号公報に開示されている。
しかしながら、図5及び図6のいずれの場合も冷却装置8は大規模なものとなり、コストインパクトが大きいことから、海外において低低温EPシステムを適用する場合の最大の課題となる。
Japanese Patent Laid-Open No. 2006-308269 discloses a technique for saving heat energy by heating the boiler condensate instead of dissipating the heat obtained by the cooling water in the liquid-heat exchanger 7 of FIG. 5 into the atmosphere. Is disclosed.
However, in both cases of FIG. 5 and FIG. 6, the cooling device 8 is large-scale and has a large cost impact, which is the biggest problem when applying a low-temperature EP system overseas.

なお、従来から排ガスの脱硫のために海水を使用する海水脱硫装置が知られている。図7には海水脱硫装置の概略図を示す。海水脱硫装置には排ガス入口21aから排ガスが導入され、吸収塔21内に設けられたスプレヘッダ22から海水がポンプ23により圧送され、スプレノズル24から噴霧される。噴霧状の海水が排ガスと接触して排ガス中の硫黄酸化物が海水中に吸収され、吸収塔21の下部のタンク26内に溜まった後、酸化タンク27に送られる。また、吸収塔21内で海水と接触した後の排ガスはミストエリミネータ28で海水ミストを除去された後、浄化ガスとして大気中に放出される。一方、硫黄酸化物を吸収した海水は酸化タンク27に送られて、酸化タンク27に導入される空気中の酸素と反応して酸化されてpHが回復された後、そのまま海洋水中に放出される。   Conventionally, seawater desulfurization apparatuses that use seawater for desulfurization of exhaust gas are known. FIG. 7 shows a schematic view of a seawater desulfurization apparatus. Exhaust gas is introduced into the seawater desulfurization apparatus from the exhaust gas inlet 21 a, seawater is pumped from the spray header 22 provided in the absorption tower 21 by the pump 23, and sprayed from the spray nozzle 24. The sprayed seawater comes into contact with the exhaust gas, and sulfur oxides in the exhaust gas are absorbed into the seawater and are collected in the tank 26 below the absorption tower 21, and then sent to the oxidation tank 27. Moreover, after the seawater mist is removed by the mist eliminator 28, the exhaust gas after contacting the seawater in the absorption tower 21 is discharged into the atmosphere as purified gas. On the other hand, the seawater that has absorbed sulfur oxides is sent to the oxidation tank 27 and is reacted with oxygen in the air introduced into the oxidation tank 27 to be oxidized and the pH is recovered. .

特開2007−263078号公報JP 2007-263078 A 特開2011−231636号公報JP 2011-231636 A 特開2006−308269号公報JP 2006-308269 A

上記従来技術では、電気集塵機の上流側にガス冷却器を配置した低低温EPシステムにバイナリ発電設備を組み合わせるなどの対策で、省エネ型の高煤塵除去排ガス処理システムとすることができるが、バイナリ発電設備で使いきれないガス冷却器での回収熱を大気に放散させるための冷却装置の規模が大きく、設備コストが高くなる問題があった。   In the above prior art, an energy-saving high dust removal exhaust gas treatment system can be obtained by taking measures such as combining a binary power generation facility with a low-temperature EP system in which a gas cooler is arranged upstream of the electrostatic precipitator. The scale of the cooling device for dissipating the recovered heat from the gas cooler that cannot be used in the facility to the atmosphere is large, and there is a problem that the equipment cost becomes high.

このように前記従来技術においては、ガス冷却器で排ガスから回収した熱の放散に用いる大規模な冷却装置の設備費を低減することに関して十分配慮されていない。
本発明の課題は、設備費を大幅に増大させることなく、省エネ対応で煤塵除去性能が高い排ガス処理システムを得ることにある。
Thus, in the said prior art, sufficient consideration is not given regarding reducing the installation cost of the large-scale cooling device used for dissipating the heat recovered from the exhaust gas by the gas cooler.
An object of the present invention is to obtain an exhaust gas treatment system capable of saving energy and having high dust removal performance without significantly increasing the facility cost.

本発明の上記課題は、次の解決手段により解決される。
請求項1記載の発明は、ボイラを含む燃焼装置から排出される排ガス中の煤塵を除去する電気集塵機(1)と、該電気集塵機(1)の上流側にガス冷却器(5)、下流側に排ガスと海水を接触させて排ガス中の硫黄酸化物を吸収除去する海水脱硫装置(10)を備えた排ガス処理装置において、前記ガス冷却器(5)で回収した回収熱を利用して低沸点媒体で発電するバイナリ発電設備(9)をガス冷却器(5)に接続し、バイナリ発電設備(9)内に海水脱硫装置(10)に供給される海水の全量または一部を冷却媒体として流す低沸点媒体の凝縮器を設けたことを特徴とする排ガス処理装置である。
The above-described problems of the present invention are solved by the following solution means.
The invention described in claim 1 is an electric dust collector (1) for removing dust in exhaust gas discharged from a combustion apparatus including a boiler, a gas cooler (5) on the upstream side of the electric dust collector (1), and a downstream side In the exhaust gas treatment device equipped with a seawater desulfurization device (10) for contacting the exhaust gas with seawater to absorb and remove sulfur oxides in the exhaust gas, low boiling point using the recovered heat recovered by the gas cooler (5) A binary power generation facility (9) that generates power using a medium is connected to a gas cooler (5), and the whole or a part of the seawater supplied to the seawater desulfurization device (10) is allowed to flow as a cooling medium in the binary power generation facility (9). An exhaust gas treatment apparatus provided with a condenser having a low boiling point medium.

請求項2記載の発明は、ボイラを含む燃焼装置から排出される排ガス中の煤塵を除去する電気集塵機(1)と、該電気集塵機(1)の上流側にガス冷却器(5)、下流側に排ガスとカルシウム系の吸収液を接触させて排ガス中の硫黄酸化物を吸収除去する湿式脱硫装置(3)を備えた排ガス処理装置において、前記ガス冷却器(5)で回収した回収熱を利用して低沸点媒体で発電するバイナリ発電設備(9)をガス冷却器(5)に接続し、海水淡水化設備(11)に供給される海水の全量または一部を、冷却媒体として用いる低沸点媒体凝縮器をバイナリ発電設備(9)内に設けたことを特徴とする排ガス処理装置である。   The invention described in claim 2 is an electric dust collector (1) for removing dust in exhaust gas discharged from a combustion apparatus including a boiler, a gas cooler (5) on the upstream side of the electric dust collector (1), and a downstream side In the exhaust gas treatment device equipped with a wet desulfurization device (3) for contacting the exhaust gas with a calcium-based absorption liquid to absorb and remove sulfur oxides in the exhaust gas, the recovered heat recovered by the gas cooler (5) is used. The binary power generation facility (9) that generates power with a low boiling point medium is connected to the gas cooler (5), and the whole or part of the seawater supplied to the seawater desalination facility (11) is used as the cooling medium. An exhaust gas treatment apparatus characterized in that a medium condenser is provided in a binary power generation facility (9).

請求項3記載の発明は、ボイラを含む燃焼装置から排出される排ガスをガス冷却器(5)で冷却し、次いで排ガス中の煤塵を除去した後に海水脱硫装置(10)で排ガスを海水と接触させて排ガス中の硫黄酸化物を吸収除去する排ガス処理方法において、前記ガス冷却器(5)で回収した回収熱を利用して低沸点媒体で発電するバイナリ発電設備(9)をガス冷却器(5)に接続し、前記バイナリ発電設備(9)内に海水脱硫装置(10)に供給される海水の全量または一部を低沸点媒体の冷却媒体として使用することを特徴とする排ガス処理方法である。   In the invention according to claim 3, the exhaust gas discharged from the combustion apparatus including the boiler is cooled by the gas cooler (5), and then the dust in the exhaust gas is removed, and then the seawater desulfurization apparatus (10) contacts the exhaust gas with the sea water. In the exhaust gas treatment method for absorbing and removing sulfur oxides in the exhaust gas, a binary power generation facility (9) that generates power with a low boiling point medium using the recovered heat recovered by the gas cooler (5) is replaced with a gas cooler (9). 5) An exhaust gas treatment method characterized by using the whole or part of seawater supplied to the seawater desulfurization device (10) in the binary power generation facility (9) as a cooling medium for the low boiling point medium. is there.

請求項4記載の発明は、ボイラを含む燃焼装置から排出される排ガスをガス冷却器(5)で冷却し、次いで排ガス中の煤塵を除去した後に湿式脱硫装置(3)で排ガスをカルシウム系の吸収液と接触させて排ガス中の硫黄酸化物を吸収除去する排ガス処理方法において、前記ガス冷却器(5)で回収した回収熱を利用して低沸点媒体で発電するバイナリ発電設備(9)をガス冷却器(5)に接続し、前記バイナリ発電設備(9)内での低沸点媒体の冷却媒体として海水淡水化設備(11)に供給される海水の全量または一部を用いることを特徴とする排ガス処理方法である。   In the invention according to claim 4, the exhaust gas discharged from the combustion apparatus including the boiler is cooled by the gas cooler (5), and then the dust in the exhaust gas is removed, and then the exhaust gas is converted into calcium-based by the wet desulfurization apparatus (3). In the exhaust gas treatment method of absorbing and removing sulfur oxides in exhaust gas by contacting with an absorbing solution, a binary power generation facility (9) for generating electricity with a low boiling point medium using recovered heat recovered by the gas cooler (5) It is connected to a gas cooler (5), and the whole or part of the seawater supplied to the seawater desalination facility (11) is used as a cooling medium for the low boiling point medium in the binary power generation facility (9). This is an exhaust gas treatment method.

(作用)
従来技術においては、ガス冷却器で排ガスから回収した熱の放散に用いる大規模な冷却装置の設備費を低減することに関して十分配慮されていない。
これらの点に関して、本発明では、まず脱硫装置が海水脱硫方式である場合に、ガス冷却器にバイナリ発電設備を接続し、バイナリ発電設備内での低沸点媒体凝縮器の冷却媒体として、海水脱硫装置に供給される海水の全量または一部を用いるようにしており、専用の冷却装置と冷却水を用意する必要がない。海から取水した海水を一旦バイナリ発電設備側に通すことにより、海水温度は2℃〜5℃程度上昇するが、この程度の温度上昇は海水脱硫装置に対して何ら悪影響を及ぼすことはない。しかし、2℃〜5℃程度上昇した海水は、図3に示すように亜硫酸の酸化速度が上がるので、脱硫には非常に有利である。
(Function)
In the prior art, sufficient consideration is not given to reducing the equipment cost of a large-scale cooling device used for dissipating heat recovered from exhaust gas by a gas cooler.
Regarding these points, in the present invention, first, when the desulfurization apparatus is a seawater desulfurization system, a binary power generation facility is connected to the gas cooler, and the seawater desulfurization is used as a cooling medium for the low boiling point medium condenser in the binary power generation facility. The whole or part of the seawater supplied to the apparatus is used, and there is no need to prepare a dedicated cooling device and cooling water. By passing seawater taken from the sea once through the binary power generation facility, the seawater temperature rises by about 2 ° C to 5 ° C, but such a temperature rise has no adverse effect on the seawater desulfurization apparatus. However, seawater that has risen by about 2 ° C. to 5 ° C. is very advantageous for desulfurization because the oxidation rate of sulfurous acid increases as shown in FIG.

また、発電所内に海水淡水化設備が併設されている場合には、ガス冷却器での回収熱を利用して低沸点媒体で発電するバイナリ発電設備をガス冷却器に接続し、バイナリ発電設備内での低沸点媒体凝縮器の冷却媒体として、海水淡水化設備に供給される海水の全量または一部を用いることでも同様の効果を得ることができる。この場合、海水淡水化設備に導入する海水の温度が上昇するため、海水淡水化設備で使用される蒸気量を低減することも可能となる。   In addition, if a seawater desalination facility is installed in the power plant, a binary power generation facility that generates power with a low boiling point medium using the heat recovered by the gas cooler is connected to the gas cooler, and The same effect can be obtained by using the whole or a part of the seawater supplied to the seawater desalination facility as the cooling medium of the low boiling point medium condenser. In this case, since the temperature of the seawater introduced into the seawater desalination facility increases, the amount of steam used in the seawater desalination facility can be reduced.

請求項1,3記載の発明によれば、ガス冷却器で排ガスから熱を回収し昇温された熱媒体を冷却するための専用の冷却装置と冷却水を用意する必要がなく、安価な設備費で低低温EPシステムによる高い煤塵除去性能を得られるだけでなく、バイナリ発電で得られた電力を海水取水ポンプや海水脱硫装置の補機動力として利用することが可能となり、省エネ型の高煤塵除去排ガス処理システムとすることができる。   According to the first and third aspects of the invention, it is not necessary to prepare a dedicated cooling device and cooling water for recovering the heat medium heated by recovering the heat from the exhaust gas with the gas cooler, and inexpensive equipment. In addition to high dust removal performance with low-temperature and low-temperature EP systems at low cost, it is possible to use the electric power obtained from binary power generation as auxiliary power for seawater intake pumps and seawater desulfurization equipment. It can be set as a removal exhaust gas processing system.

請求項2,4記載の発明によれば、ガス冷却器で排ガスから熱を回収し昇温された熱媒体を冷却するための専用の冷却装置と冷却水を用意する必要がなく、安価な設備費で低低温EPシステムによる高い煤塵除去性能を得られるだけでなく、バイナリ発電で得られた電力を海水取水ポンプや湿式脱硫装置の補機動力として利用することが可能となり、省エネ型の高煤塵除去排ガス処理システムとすることができる。   According to the second and fourth aspects of the present invention, it is not necessary to prepare a dedicated cooling device and cooling water for recovering the heat medium whose temperature has been recovered by recovering the heat from the exhaust gas with the gas cooler, and is inexpensive. In addition to high dust removal performance with low-temperature and low-temperature EP systems, it is possible to use the power obtained by binary power generation as auxiliary power for seawater intake pumps and wet desulfurization equipment. It can be set as a removal exhaust gas processing system.

本発明による実施例であり、海水脱硫装置との組み合わせによる排ガス処理システムの概略系統図である。It is an Example by this invention, and is a schematic system diagram of the waste gas processing system by a combination with a seawater desulfurization apparatus. 本発明の他の実施例であり、海水淡水化設備との組み合わせによる排ガス処理システムの概略系統図である。It is another Example of this invention, and is a schematic system diagram of the waste gas processing system by a combination with seawater desalination equipment. 本発明の海水温度と亜硫酸の酸化速度との関係を示す図である。It is a figure which shows the relationship between the seawater temperature of this invention, and the oxidation rate of sulfurous acid. 従来技術におけるガス冷却器とガス再加熱器を組み合わせた低低温EPシステムによる排ガス処理システムの概略系統図である。It is a schematic system diagram of the exhaust gas treatment system by the low-temperature EP system which combined the gas cooler and gas reheater in a prior art. 図4におけるガス再加熱器を省略し、別途熱交換器と冷却装置から成る冷却系を設けた低低温EPシステムによる排ガス処理システムの概略系統図である。FIG. 5 is a schematic system diagram of an exhaust gas treatment system using a low-temperature EP system in which the gas reheater in FIG. 4 is omitted and a cooling system including a heat exchanger and a cooling device is separately provided. 図5における熱交換器をバイナリ発電設備に置き換えた低低温EPシステムによる排ガス処理システムの概略系統図である。FIG. 6 is a schematic system diagram of an exhaust gas treatment system using a low-temperature EP system in which the heat exchanger in FIG. 5 is replaced with a binary power generation facility. 一般的な海水脱硫装置の構成図である。It is a block diagram of a general seawater desulfurization apparatus.

本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1に本実施例の排ガス処理装置の一部を示す。本実施例の低低温EPシステムは、主に電気集塵機1、ファン2、ガス冷却器5、海水脱硫装置10及び煙突4などから構成される。ガス冷却器5とバイナリ発電設備9が配管によって閉ループで接続されており、配管内を流れる熱媒体として温水を使用する。ガス冷却器5で昇温された熱媒体は熱媒体循環ライン12を経由してバイナリ発電設備9に流入し、バイナリ発電設備9内で発電に利用された後、熱媒体の全量が海水により冷却される。   FIG. 1 shows a part of the exhaust gas treatment apparatus of this embodiment. The low-temperature EP system of the present embodiment mainly includes an electric dust collector 1, a fan 2, a gas cooler 5, a seawater desulfurization device 10, a chimney 4 and the like. The gas cooler 5 and the binary power generation equipment 9 are connected in a closed loop by piping, and hot water is used as a heat medium flowing in the piping. The heat medium heated by the gas cooler 5 flows into the binary power generation facility 9 via the heat medium circulation line 12 and is used for power generation in the binary power generation facility 9, and then the entire amount of the heat medium is cooled by seawater. Is done.

バイナリ発電設備9内で熱媒体の冷却に利用される海水は、海水を汲み上げる海水汲み上げライン14から海水ポンプ15により汲み上げられ、海水脱硫装置10に送られる。海水汲み上げライン14から分岐する海水供給ライン16からバイナリ発電設備9にも海水が供給され、バイナリ発電設備9で発電後の熱媒体の冷却に使用された海水は海水回収ライン17から海水汲み上げライン14に戻る構成になっている。また、海水脱硫装置10で脱硫に使用された海水は海水戻りライン18を通って海に戻される。   Seawater used for cooling the heat medium in the binary power generation facility 9 is pumped by a seawater pump 15 from a seawater pumping line 14 for pumping seawater and sent to the seawater desulfurization apparatus 10. Seawater is also supplied to the binary power generation facility 9 from the seawater supply line 16 branched from the seawater pumping line 14, and the seawater used for cooling the heat medium after power generation in the binary power generation facility 9 is supplied from the seawater recovery line 17 to the seawater pumping line 14. It is configured to return to. The seawater used for the desulfurization in the seawater desulfurization apparatus 10 is returned to the sea through the seawater return line 18.

海水汲み上げライン14と海水供給ライン16にはそれぞれバイパス弁19と流量調整弁20が設けられているので、バイナリ発電設備9と海水脱硫装置10にそれぞれ必要な海水量のバランスをこれらの弁19,20で調整することができる。   Since the seawater pumping line 14 and the seawater supply line 16 are provided with a bypass valve 19 and a flow rate adjusting valve 20, respectively, the balance of the amount of seawater necessary for the binary power generation equipment 9 and the seawater desulfurization device 10 is adjusted to these valves 19, 20 can be adjusted.

すなわち、流量調整弁20によって流量調整された海水は、冷却水としてバイナリ発電設備9に導入され、バイナリ発電設備9内の低沸点媒体凝縮器(図示せず)の冷却媒体として使用され、ガス冷却器5で回収した排ガスの熱のうち、バイナリ発電で利用されなかった熱を奪い、海水温度が2℃〜5℃程度上昇した状態で海水脱硫装置10に送られる。この程度の海水温度上昇は海水脱硫に対して何ら悪影響を及ぼすことはない。むしろ図3に示すように海水脱硫装置での排ガス脱硫反応で得られる亜硫酸塩の酸化速度が高まる。   That is, the seawater whose flow rate is adjusted by the flow rate adjusting valve 20 is introduced into the binary power generation facility 9 as cooling water, used as a cooling medium for a low boiling point medium condenser (not shown) in the binary power generation facility 9, and gas cooling. Of the heat of the exhaust gas recovered by the vessel 5, heat that has not been used in binary power generation is taken, and the seawater temperature is raised to about 2 ° C. to 5 ° C. and sent to the seawater desulfurization device 10. This level of seawater temperature rise has no adverse effect on seawater desulfurization. Rather, as shown in FIG. 3, the oxidation rate of the sulfite obtained by the exhaust gas desulfurization reaction in the seawater desulfurization apparatus is increased.

本実施例では専用の冷却装置と冷却水を用意する必要がなく、安価な設備費で低低温EPシステムによる高い煤塵除去性能を得られるだけでなく、バイナリ発電で得られた電力を海水ポンプ15や海水脱硫装置10の補機動力として利用することが可能となり、省エネ型の高煤塵除去排ガス処理システムとすることができる。   In this embodiment, it is not necessary to prepare a dedicated cooling device and cooling water, and not only high dust removal performance by the low-temperature EP system can be obtained with low equipment cost, but also the electric power obtained by binary power generation is used for the seawater pump 15. It can be used as auxiliary power for the seawater desulfurization apparatus 10 and an energy saving type high dust removal exhaust gas treatment system.

本発明の他の実施例を図2に示す。本実施例は、図1に示す海水脱硫装置10に代えて工業用水をベースにカルシウム系の脱硫剤を添加した吸収液を用いる湿式脱硫装置3を用い、また図1に示す場合と同様にガス冷却器5とバイナリ発電設備9との間には熱媒体循環ライン12を設け、さらにバイナリ発電設備9内の低沸点媒体凝縮器の冷却媒体として海水が使用される。ただし、図2に示す構成では、海水は海水淡水化設備11で利用されることが図1に示す構成とは異なる。   Another embodiment of the present invention is shown in FIG. This embodiment uses a wet desulfurization apparatus 3 that uses an absorption liquid in which a calcium-based desulfurization agent is added to industrial water as a base instead of the seawater desulfurization apparatus 10 shown in FIG. 1, and gas as in the case shown in FIG. A heat medium circulation line 12 is provided between the cooler 5 and the binary power generation facility 9, and seawater is used as a cooling medium for the low boiling point medium condenser in the binary power generation facility 9. However, the configuration shown in FIG. 2 is different from the configuration shown in FIG. 1 in that seawater is used in the seawater desalination facility 11.

図2に示す構成では、ガス冷却器5での回収熱を利用して低沸点媒体で発電するバイナリ発電設備9をガス冷却器5に接続し、バイナリ発電設備9内での低沸点媒体凝縮器(図示せず)の冷却媒体として、海水淡水化設備11に供給される海水の全量または一部を用いる点で図1に示す実施例と異なる。   In the configuration shown in FIG. 2, a binary power generation facility 9 that generates power with a low boiling point medium using the heat recovered by the gas cooler 5 is connected to the gas cooler 5, and a low boiling point medium condenser in the binary power generation facility 9 is connected. 1 differs from the embodiment shown in FIG. 1 in that the whole or part of the seawater supplied to the seawater desalination facility 11 is used as a cooling medium (not shown).

海水は、海水を汲み上げる海水汲み上げライン14から海水ポンプ15により汲み上げられ、一部は海水回収ライン17から海水淡水化設備11に供給され、残りは海水汲み上げライン14から分岐する海水供給ライン16を経由してバイナリ発電設備9に供給される。   Seawater is pumped from a seawater pumping line 14 for pumping seawater by a seawater pump 15, partly supplied to a seawater desalination facility 11 from a seawater recovery line 17, and the rest via a seawater supply line 16 branched from the seawater pumping line 14. And supplied to the binary power generation facility 9.

海水淡水化設備11で海水の淡水化に使用された海水は海水戻りライン18を通って海に戻され、またバイナリ発電設備9で発電後の熱媒体の冷却に使用された海水は海水回収ライン17から海水淡水化設備11に供給される。   Seawater used for seawater desalination in the seawater desalination facility 11 is returned to the sea through the seawater return line 18, and seawater used for cooling the heat medium after power generation in the binary power generation facility 9 is used in the seawater recovery line. 17 is supplied to seawater desalination equipment 11.

海水汲み上げライン14と海水供給ライン16にはそれぞれバイパス弁19と流量調整弁20が設けられているので、バイナリ発電設備9と海水淡水化設備11にそれぞれ必要な海水量のバランスをこれらの弁13,14で調整することができる。流量調整弁20によって流量調整された海水は、冷却水としてバイナリ発電設備9に導入され、バイナリ発電設備9内の低沸点媒体凝縮器の冷却媒体として使用され、ガス冷却器5で回収した排ガスの熱のうち、バイナリ発電で利用されなかった熱を奪い、海水温度が2℃〜5℃程度上昇した状態で海水淡水化設備11に送られる。   Since the seawater pumping line 14 and the seawater supply line 16 are provided with a bypass valve 19 and a flow rate adjusting valve 20, respectively, the balance of the amount of seawater necessary for the binary power generation equipment 9 and the seawater desalination equipment 11 is adjusted to these valves 13 respectively. , 14 can be adjusted. The seawater whose flow rate is adjusted by the flow rate adjusting valve 20 is introduced into the binary power generation facility 9 as cooling water, used as a cooling medium for the low boiling point medium condenser in the binary power generation facility 9, and the exhaust gas recovered by the gas cooler 5 is used. Of the heat, heat that has not been used in binary power generation is taken away and the seawater temperature is sent to the seawater desalination facility 11 in a state where the seawater temperature has increased by about 2 ° C to 5 ° C.

本実施例の場合、海水淡水化設備10に導入する海水の温度が上昇することになるため、海水淡水化設備で使用される蒸気量を低減することが可能となる。   In the case of the present embodiment, since the temperature of the seawater introduced into the seawater desalination facility 10 increases, the amount of steam used in the seawater desalination facility can be reduced.

1 電気集塵機 2 ファン
3 湿式脱硫装置 4 煙突
5 ガス冷却器 6 ガス再加熱器
7 液−液熱交換器 8 冷却装置
9 バイナリ発電設備 10 海水脱硫装置
11 海水淡水化設備 12 熱媒体循環ライン
14 海水汲み上げライン 15 海水ポンプ
16 海水供給ライン 17 海水回収ライン
18 海水戻りライン 19 バイパス弁
20 流量調整弁 21 吸収塔
21a 排ガス入口 22 スプレヘッダ
23 ポンプ 24 スプレノズル
26 貯留タンク 27 酸化タンク
28 ミストエリミネータ
DESCRIPTION OF SYMBOLS 1 Electric dust collector 2 Fan 3 Wet desulfurization device 4 Chimney 5 Gas cooler 6 Gas reheater 7 Liquid-liquid heat exchanger 8 Cooling device 9 Binary power generation equipment 10 Seawater desulfurization equipment 11 Seawater desalination equipment 12 Heat medium circulation line 14 Seawater Pumping line 15 Seawater pump 16 Seawater supply line 17 Seawater recovery line 18 Seawater return line 19 Bypass valve 20 Flow rate adjustment valve 21 Absorption tower 21a Exhaust gas inlet 22 Spray header 23 Pump 24 Spray nozzle 26 Storage tank 27 Oxidation tank 28 Mist eliminator

Claims (4)

ボイラを含む燃焼装置から排出される排ガス中の煤塵を除去する電気集塵機と、該電気集塵機の上流側にガス冷却器、下流側に排ガスと海水を接触させて排ガス中の硫黄酸化物を吸収除去する海水脱硫装置を備えた排ガス処理装置において、
前記ガス冷却器で回収した回収熱を利用して低沸点媒体で発電するバイナリ発電設備をガス冷却器に接続し、バイナリ発電設備内に海水脱硫装置に供給される海水の全量または一部を冷却媒体として流す低沸点媒体の凝縮器を設けたことを特徴とする排ガス処理装置。
An electric dust collector that removes the dust in the exhaust gas discharged from the combustion device including the boiler, and a gas cooler on the upstream side of the electric dust collector, and the exhaust gas and seawater are contacted on the downstream side to absorb and remove sulfur oxides in the exhaust gas. In an exhaust gas treatment device equipped with a seawater desulfurization device,
A binary power generation facility that generates power with a low boiling point medium using the recovered heat recovered by the gas cooler is connected to the gas cooler, and all or part of the seawater supplied to the seawater desulfurization device is cooled in the binary power generation facility. An exhaust gas treatment apparatus provided with a condenser of a low boiling point medium that flows as a medium.
ボイラを含む燃焼装置から排出される排ガス中の煤塵を除去する電気集塵機と、該電気集塵機の上流側にガス冷却器、下流側に排ガスとカルシウム系の吸収液を接触させて排ガス中の硫黄酸化物を吸収除去する湿式脱硫装置を備えた排ガス処理装置において、
前記ガス冷却器で回収した回収熱を利用して低沸点媒体で発電するバイナリ発電設備をガス冷却器に接続し、
海水淡水化設備に供給される海水の全量または一部を、冷却媒体として用いる低沸点媒体凝縮器をバイナリ発電設備内に設けたことを特徴とする排ガス処理装置。
An electric dust collector that removes the dust in the exhaust gas discharged from the combustion device including the boiler, a gas cooler on the upstream side of the electric dust collector, and sulfur oxide in the exhaust gas by contacting the exhaust gas and the calcium-based absorbent on the downstream side In an exhaust gas treatment apparatus equipped with a wet desulfurization apparatus that absorbs and removes substances,
A binary power generation facility that generates electricity with a low boiling point medium using the recovered heat recovered by the gas cooler is connected to the gas cooler,
An exhaust gas treatment apparatus, wherein a low-boiling-point medium condenser that uses all or part of seawater supplied to a seawater desalination facility as a cooling medium is provided in a binary power generation facility.
ボイラを含む燃焼装置から排出される排ガスをガス冷却器で冷却し、次いで排ガス中の煤塵を除去した後に海水脱硫装置で排ガスを海水と接触させて排ガス中の硫黄酸化物を吸収除去する排ガス処理方法において、
前記ガス冷却器で回収した回収熱を利用して低沸点媒体で発電するバイナリ発電設備をガス冷却器に接続し、前記バイナリ発電設備内に海水脱硫装置に供給される海水の全量または一部を低沸点媒体の冷却媒体として使用することを特徴とする排ガス処理方法。
Exhaust gas treatment in which exhaust gas discharged from a combustion device including a boiler is cooled by a gas cooler, and then dust is removed from the exhaust gas, and then the exhaust gas is contacted with seawater by a seawater desulfurization device to absorb and remove sulfur oxides in the exhaust gas. In the method
A binary power generation facility that generates power with a low-boiling point medium using the recovered heat recovered by the gas cooler is connected to the gas cooler, and all or part of the seawater supplied to the seawater desulfurization device is connected to the binary power generation facility. An exhaust gas treatment method characterized by being used as a cooling medium for a low boiling point medium.
ボイラを含む燃焼装置から排出される排ガスをガス冷却器で冷却し、次いで排ガス中の煤塵を除去した後に湿式脱硫装置で排ガスをカルシウム系の吸収液と接触させて排ガス中の硫黄酸化物を吸収除去する排ガス処理方法において、
前記ガス冷却器で回収した回収熱を利用して低沸点媒体で発電するバイナリ発電設備をガス冷却器に接続し、前記バイナリ発電設備内での低沸点媒体の冷却媒体として海水淡水化設備に供給される海水の全量または一部を用いることを特徴とする排ガス処理方法。
The exhaust gas discharged from the combustion device including the boiler is cooled with a gas cooler, and after removing dust in the exhaust gas, the exhaust gas is brought into contact with a calcium-based absorbent with a wet desulfurization device to absorb sulfur oxides in the exhaust gas. In the exhaust gas treatment method to be removed,
A binary power generation facility that generates electricity with a low boiling point medium using the heat recovered by the gas cooler is connected to the gas cooler and supplied to the seawater desalination facility as a cooling medium for the low boiling point medium in the binary power generation facility. An exhaust gas treatment method characterized by using all or part of the seawater to be used.
JP2012146375A 2012-06-29 2012-06-29 Exhaust gas treatment device and method Pending JP2014008449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012146375A JP2014008449A (en) 2012-06-29 2012-06-29 Exhaust gas treatment device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012146375A JP2014008449A (en) 2012-06-29 2012-06-29 Exhaust gas treatment device and method

Publications (1)

Publication Number Publication Date
JP2014008449A true JP2014008449A (en) 2014-01-20

Family

ID=50105607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012146375A Pending JP2014008449A (en) 2012-06-29 2012-06-29 Exhaust gas treatment device and method

Country Status (1)

Country Link
JP (1) JP2014008449A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109114580A (en) * 2017-06-26 2019-01-01 中国石油化工股份有限公司 Waste-heat recovery device
CN112371680A (en) * 2020-10-20 2021-02-19 德清之家纺织有限公司 Electrostatic dust removal device for factory workshop

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109114580A (en) * 2017-06-26 2019-01-01 中国石油化工股份有限公司 Waste-heat recovery device
CN112371680A (en) * 2020-10-20 2021-02-19 德清之家纺织有限公司 Electrostatic dust removal device for factory workshop

Similar Documents

Publication Publication Date Title
JP5450540B2 (en) Boiler heat recovery system with CO2 recovery device
JP5275064B2 (en) Exhaust gas treatment apparatus and method for oxyfuel coal fired boiler
JP5686987B2 (en) Exhaust gas treatment system equipped with carbon dioxide chemical absorption equipment
JP2012239958A (en) Wet type flue gas desulfurizing apparatus and method
WO2012176430A1 (en) Combustion exhaust gas treatment system and combustion exhaust gas treatment method
US9216380B1 (en) Ammonia stripper for a carbon capture system for reduction of energy consumption
WO2011132660A1 (en) Exhaust gas treatment system having carbon dioxide removal device
AU2020316185B2 (en) Gas turbine plant
WO2013161574A1 (en) Co2 recovery device, and co2 recovery method
JP2011235247A (en) Exhaust gas treatment system including carbon dioxide chemical absorption facility and method
JP2011194292A (en) Method and apparatus for treating exhaust gas
JP2013078742A (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP2015073955A (en) Exhaust gas treatment method, and exhaust gas treatment device
US20120285171A1 (en) Heat recovery system and heat recovery method of co2 recovery unit
JP2014008449A (en) Exhaust gas treatment device and method
AU2013313605A1 (en) Heat recovery system and heat recovery method
JP6225572B2 (en) Carbon dioxide recovery method and recovery apparatus
JP5039719B2 (en) High humidity gas turbine system and recovered water degassing method for gas turbine system
US20180169569A1 (en) System and method for a chilled ammonia-based carbon dioxide removal process
JP2015223555A (en) Method and apparatus for recovering carbon dioxide
CN211677009U (en) Smoke whitening system
JP5720463B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2001248826A (en) Equipment and method for boiler exhaust gas treatment
JPS6230530A (en) Method and apparatus for wet treatment of flue gas accompanying electrodialysis
JP5972130B2 (en) Gas turbine system using high humidity air

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141219