JP2014007107A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2014007107A
JP2014007107A JP2012143323A JP2012143323A JP2014007107A JP 2014007107 A JP2014007107 A JP 2014007107A JP 2012143323 A JP2012143323 A JP 2012143323A JP 2012143323 A JP2012143323 A JP 2012143323A JP 2014007107 A JP2014007107 A JP 2014007107A
Authority
JP
Japan
Prior art keywords
active material
material layer
negative electrode
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012143323A
Other languages
Japanese (ja)
Other versions
JP5994977B2 (en
Inventor
Yoshio Tagawa
嘉夫 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2012143323A priority Critical patent/JP5994977B2/en
Priority to PCT/JP2013/056853 priority patent/WO2014002532A1/en
Priority to CN201380034508.7A priority patent/CN104412438A/en
Publication of JP2014007107A publication Critical patent/JP2014007107A/en
Application granted granted Critical
Publication of JP5994977B2 publication Critical patent/JP5994977B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery with superior input and output characteristics and high energy capacity characteristics.SOLUTION: A secondary battery comprises: an electrolyte; and an electrode member 2 immersed in the electrolyte and used. The electrode member 2 forms electrode pairs 41, 42 that in which a plurality of positive electrodes 10a, 10b having positive electrode active material layers 12, 13 formed on a surface of a positive electrode current collector foil 11, a negative electrode 20 having negative electrode active material layers 22, 23 formed on a surface of a negative electrode current collector foil 21, and separators 30 are stacked between the positive electrodes 10a, 10b and the negative electrode 20, and which is composed of the positive electrode active material layers 12, 13 and the negative electrode active material layers 22, 23 opposed each other through separators 30. Each of electrode pairs 41, 42 has a first electrode pair 41 consisting of a first active material layer having first characteristics of relatively highest output and low capacity, and a second electrode pair 42 consisting of a second active material layer having second characteristics of relatively lowest output and high capacity.

Description

本発明は二次電池に関する。   The present invention relates to a secondary battery.

従来、電気自動車やプラグインハイブリッド自動車等の電動車両に搭載されているモーター駆動用のバッテリとして、リチウムイオン二次電池等の二次電池が用いられている。電動車両に搭載される二次電池には、車両を登坂、加速及び低温駆動させるための大電流出力に応える優れた出力特性や、急速充電や回生時の大電流入力に応える優れた入力特性に加え、長時間駆動可能な高いエネルギー容量特性が求められる。   Conventionally, a secondary battery such as a lithium ion secondary battery has been used as a battery for driving a motor mounted on an electric vehicle such as an electric vehicle or a plug-in hybrid vehicle. Rechargeable batteries mounted on electric vehicles have excellent output characteristics that respond to large current outputs for climbing, accelerating, and driving at low temperatures, and excellent input characteristics that respond to large current inputs during rapid charging and regeneration. In addition, high energy capacity characteristics that can be driven for a long time are required.

このような二次電池の入出力特性やエネルギー容量特性を向上させるために、正極板と負極板の抵抗比が所定範囲になるように電極材料を調整した二次電池や、スパイラル状に巻回した電極の曲率に基づき電極材料の塗布量を調整した二次電池が提案されている(例えば、特許文献1、2参照)。   In order to improve the input / output characteristics and energy capacity characteristics of such a secondary battery, a secondary battery in which the electrode material is adjusted so that the resistance ratio between the positive electrode plate and the negative electrode plate is within a predetermined range, or a spiral wound There has been proposed a secondary battery in which the amount of electrode material applied is adjusted based on the curvature of the electrode (for example, see Patent Documents 1 and 2).

特開2011−187186号公報JP 2011-187186 A 特開平9−180704号公報JP-A-9-180704

しかしながら、二次電池の入出力特性とエネルギー容量特性とは相反する関係にあるため、上述したような二次電池であっても、瞬時に大電流を出し入れできる優れた入出力特性や、長時間駆動可能な高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができないという問題がある。   However, because the input / output characteristics and energy capacity characteristics of the secondary battery are in a contradictory relationship, even with the secondary battery as described above, excellent input / output characteristics that allow a large current to be taken in and out instantaneously, There is a problem that it is not possible to realize a secondary battery that simultaneously has high energy capacity that can be driven.

そこで、本発明はこのような事情に鑑み、優れた入出力特性及び高いエネルギー容量特性を同時に兼ね備えた二次電池を提供することを目的とする。   Accordingly, in view of such circumstances, an object of the present invention is to provide a secondary battery having both excellent input / output characteristics and high energy capacity characteristics.

上記課題を解決する本発明の態様は、電解液と、該電解液に浸漬されて用いられる電極部材とを具備する二次電池であって、前記電極部材は、正極集電箔の表面に形成された正極活物質層を有する正極と、負極集電箔の表面に形成された負極活物質層を有する負極と、前記正極と前記負極との間に配置されたセパレータとが積層されて、前記セパレータを介して相対向する前記正極活物質層と前記負極活物質層とで電極対を構成し、前記電極対は、相対的に高出力且つ低容量の第1の特性を具備する第1の活物質層からなる第1の電極対と、相対的に低出力且つ高容量の第2の特性を具備する第2の活物質層からなる第2の電極対とを備えることを特徴とする二次電池にある。   An aspect of the present invention for solving the above problems is a secondary battery comprising an electrolytic solution and an electrode member used by being immersed in the electrolytic solution, and the electrode member is formed on the surface of the positive electrode current collector foil A positive electrode having a positive electrode active material layer formed, a negative electrode having a negative electrode active material layer formed on the surface of a negative electrode current collector foil, and a separator disposed between the positive electrode and the negative electrode are laminated, The positive electrode active material layer and the negative electrode active material layer facing each other via a separator constitute an electrode pair, and the electrode pair has a first characteristic of relatively high output and low capacity. A first electrode pair made of an active material layer; and a second electrode pair made of a second active material layer having a second characteristic of relatively low output and high capacity. Next in the battery.

かかる本発明によれば、1つの電極部材内に、相対的に高出力且つ低容量の第1の特性を具備する第1の電極対と、相対的に低出力且つ高容量の第2の特性を具備する第2の電極対とを具備するので、これを電極として用いることにより、全体として、優れた入出力特性と高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができる。   According to the present invention, the first electrode pair having the first characteristic of relatively high output and low capacity and the second characteristic of relatively low output and high capacity in one electrode member. By using this as an electrode, a secondary battery having both excellent input / output characteristics and high energy capacity characteristics can be realized as a whole.

ここで、前記第1の電極対の前記第1の活物質層と、前記第2の電極対の前記第2の活物質層とは、層の厚さ、塗工量及び層を形成する活物質の種類の少なくともいずれかが異なることにより、前記第1の特性及び前記第2の特性に対応することが好ましい。   Here, the first active material layer of the first electrode pair and the second active material layer of the second electrode pair include a layer thickness, a coating amount, and an active layer forming layer. It is preferable to correspond to the first characteristic and the second characteristic by changing at least one of the types of substances.

これによれば、活物質層の厚さの違い、塗工量の違い又は活物質の種類の違いにより、前記第1の特性と前記第2の特性とを発現することができる。このため、1つの電極部材内に、相対的に高出力且つ低容量の第1の特性を具備する第1の電極対と、相対的に低出力且つ高容量の第2の特性を具備する第2の電極対とを具備するので、これを電極として用いることにより、全体として、優れた入出力特性と高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができる。   According to this, the first characteristic and the second characteristic can be expressed by the difference in the thickness of the active material layer, the difference in the coating amount, or the difference in the type of the active material. For this reason, the first electrode pair having the first characteristic of relatively high output and low capacity and the second characteristic of relatively low output and high capacity are provided in one electrode member. By using this as an electrode, a secondary battery having both excellent input / output characteristics and high energy capacity characteristics can be realized as a whole.

ここで、前記正極及び前記負極は、それぞれ集電箔の両面に活物質層を具備し、前記正極及び負極の少なくとも一方は、前記集電箔の一方の面に前記第1の特性に対応する前記第1の活物質層を具備すると共に他方の面に前記第2の特性に対応する前記第2の活物質層を具備することが好ましい。   Here, each of the positive electrode and the negative electrode has active material layers on both surfaces of the current collector foil, and at least one of the positive electrode and the negative electrode corresponds to the first characteristic on one surface of the current collector foil. It is preferable that the first active material layer is provided and the second active material layer corresponding to the second characteristic is provided on the other surface.

これによれば、正極及び負極の少なくとも一方の集電箔の両面に入出力特性及び容量特性の異なる活物質層がそれぞれ形成されるので、1つの電極部材内には、入出力特性及び容量特性の異なる活物質層がそれぞれ複数設けられる。このため、全体として、優れた入出力特性と高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができる。   According to this, since active material layers having different input / output characteristics and capacity characteristics are formed on both surfaces of at least one of the current collector foils of the positive electrode and the negative electrode, the input / output characteristics and capacity characteristics are formed in one electrode member. A plurality of different active material layers are provided. Therefore, as a whole, a secondary battery having both excellent input / output characteristics and high energy capacity characteristics can be realized.

ここで、前記正極及び前記負極の集電箔には複数の孔が形成されていることが好ましい。   Here, it is preferable that a plurality of holes are formed in the current collector foil of the positive electrode and the negative electrode.

これによれば、集電箔に孔を設けることで、充電及び放電後における活物質層の電位が異なる状態となった際に、リチウムイオンが集電箔の孔を介しても活物質層中を移動できるので、電位の緩和が促進される。   According to this, by providing a hole in the current collector foil, when the potentials of the active material layer after charging and discharging become different, lithium ions can pass through the hole in the current collector foil even in the active material layer. Can be moved, so that the relaxation of the potential is promoted.

また、前記第1の電極対と前記第2の電極対とが複数積層され又は巻回されて構成されていることが好ましい。   Further, it is preferable that a plurality of the first electrode pairs and the second electrode pairs are stacked or wound.

これによれば、電極対を複数積層して又は巻回することにより、活物質層のそれぞれの表面積を大きくすることができるので、二次電池の入出力特性及びエネルギー容量特性をさらに高めることができる。   According to this, since the surface area of each active material layer can be increased by stacking or winding a plurality of electrode pairs, the input / output characteristics and energy capacity characteristics of the secondary battery can be further improved. it can.

本発明の二次電池によれば、優れた入出力特性及び高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができる。   According to the secondary battery of the present invention, a secondary battery having both excellent input / output characteristics and high energy capacity characteristics can be realized.

実施形態1に係る二次電池の斜視図である。1 is a perspective view of a secondary battery according to Embodiment 1. FIG. 図1の二次電池のX−X′線断面模式図である。FIG. 2 is a schematic cross-sectional view taken along line XX ′ of the secondary battery in FIG. 1. 実施形態1に係る二次電池用電極部材の一部拡大断面模式図である。3 is a partially enlarged schematic cross-sectional view of a secondary battery electrode member according to Embodiment 1. FIG. 実施形態1に係る二次電池の第1の特性と第2の特性を示す各電極対の出力時間と電流値との関係図である。3 is a relationship diagram between an output time and a current value of each electrode pair showing a first characteristic and a second characteristic of the secondary battery according to Embodiment 1. FIG. 実施形態1に係る二次電池の充電状態を示す図である。It is a figure which shows the charge condition of the secondary battery which concerns on Embodiment 1. FIG. 実施形態2に係る集電箔の斜視図である。6 is a perspective view of a current collector foil according to Embodiment 2. FIG. 実施形態3に係る二次電池用電極部材の一部拡大断面模式図である。5 is a partially enlarged schematic cross-sectional view of a secondary battery electrode member according to Embodiment 3. FIG.

以下に本発明を実施形態に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

(実施形態1)
本実施形態に係る二次電池は、ラミネート型リチウムイオン二次電池であり、例えば、電気自動車である電動車両の底部(フロア下)に搭載され、電動車両の走行用モーター等に電力を供給するものである。
(Embodiment 1)
The secondary battery according to the present embodiment is a laminated lithium ion secondary battery, for example, mounted on the bottom (under the floor) of an electric vehicle that is an electric vehicle, and supplies electric power to a driving motor of the electric vehicle. Is.

本発明の実施形態1に係る二次電池及びそれに用いられる電極部材について、図1〜図3を用いて説明する。図1は、本実施形態に係るラミネート型リチウムイオン二次電池の斜視図であり、図2は、図1のX−X′線断面模式図であり、図3は、図2に示す二次電池の電極部材の一部拡大断面模式図である。   A secondary battery and an electrode member used therefor according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of a laminated lithium ion secondary battery according to the present embodiment, FIG. 2 is a schematic cross-sectional view taken along line XX ′ of FIG. 1, and FIG. 3 is a secondary view shown in FIG. It is a partial expanded cross section schematic diagram of the electrode member of a battery.

図1及び図2に示すように、ラミネート型リチウムイオン二次電池1は、電極部材2が収納された矩形平板状のラミネート外装体3と、該ラミネート外装体3の長手方向両側の短辺側から突出して設けられ、電極部材2から電力を取り出す正極端子4と負極端子5とから構成される。電極部材2は、複数の正極10と、複数の負極20とがセパレータ30を介して積層されたものであり、複数の正極10は正極端子4に、複数の負極20は、負極端子5に電気的に接続されている。また、電極部材2は、ラミネート外装体3内で電解液6に浸漬されている。   As shown in FIGS. 1 and 2, a laminated lithium ion secondary battery 1 includes a rectangular flat plate-shaped laminate exterior body 3 in which an electrode member 2 is accommodated, and short sides on both sides in the longitudinal direction of the laminate exterior body 3. The positive electrode terminal 4 and the negative electrode terminal 5 are provided so as to protrude from the electrode member 2 and extract electric power from the electrode member 2. The electrode member 2 is formed by laminating a plurality of positive electrodes 10 and a plurality of negative electrodes 20 via separators 30. The plurality of positive electrodes 10 are electrically connected to the positive electrode terminal 4, and the plurality of negative electrodes 20 are electrically connected to the negative electrode terminal 5. Connected. The electrode member 2 is immersed in the electrolyte solution 6 in the laminate outer package 3.

図3に示すように、電極部材2の正極10は、正極集電箔11の両面にそれぞれ正極活物質層が形成されたものであり、相対的に薄い第1の正極活物質層12が両面に形成された正極10aと、相対的に厚い第2の正極活物質層13が両面に形成された正極10bとを具備する。一方、負極20は、負極集電箔21の一方面に相対的に薄い第1の負極活物質層22が形成され、他方面には相対的に厚い第2の負極活物質層23が形成されたものである。これら正極10a、10bと負極20とは、間にセパレータ30を挟んで交互に積層され、正極10aの第1の正極活物質層12と負極20の第1の負極活物質層22とがセパレータ30を介して対向し、また、正極10bの第2の正極活物質層13と負極20の第2の負極活物質層23とがセパレータ30を介して対向するようになっている。そして、セパレータ30を介して第1の正極活物質層12と第1の負極活物質層22とが対向した部分が第1の電極対41となり、セパレータ30を介して第2の正極活物質層13と第2の負極活物質層23とが対向した部分が第2の電極対42となり、本実施形態では、2つの第1の電極対41と2つの第2の電極対42とが交互に積層された構成となっている。   As shown in FIG. 3, the positive electrode 10 of the electrode member 2 has positive electrode active material layers formed on both surfaces of the positive electrode current collector foil 11, and the relatively thin first positive electrode active material layer 12 has both surfaces. And a positive electrode 10b having a relatively thick second positive electrode active material layer 13 formed on both surfaces. On the other hand, in the negative electrode 20, a relatively thin first negative electrode active material layer 22 is formed on one surface of the negative electrode current collector foil 21, and a relatively thick second negative electrode active material layer 23 is formed on the other surface. It is a thing. The positive electrodes 10a and 10b and the negative electrode 20 are alternately stacked with the separator 30 interposed therebetween, and the first positive electrode active material layer 12 of the positive electrode 10a and the first negative electrode active material layer 22 of the negative electrode 20 are separated by the separator 30. In addition, the second positive electrode active material layer 13 of the positive electrode 10 b and the second negative electrode active material layer 23 of the negative electrode 20 are opposed to each other with the separator 30 interposed therebetween. A portion where the first positive electrode active material layer 12 and the first negative electrode active material layer 22 face each other through the separator 30 becomes the first electrode pair 41, and the second positive electrode active material layer passes through the separator 30. 13 and the second negative electrode active material layer 23 face each other to form a second electrode pair 42. In the present embodiment, the two first electrode pairs 41 and the two second electrode pairs 42 are alternately arranged. It has a laminated structure.

ここで、セパレータ30を介して第1の正極活物質層12と第1の負極活物質層22とが対向した第1の電極対41は、相対的に高出力且つ低容量の第1の特性を具備するものであり、セパレータ30を介して第2の正極活物質層13と第2の負極活物質層23とが対向した第2の電極対42は相対的に低出力且つ高容量の第2の特性を具備するものとなる。   Here, the first electrode pair 41 in which the first positive electrode active material layer 12 and the first negative electrode active material layer 22 face each other through the separator 30 has a first characteristic of relatively high output and low capacity. The second electrode pair 42 in which the second positive electrode active material layer 13 and the second negative electrode active material layer 23 face each other with the separator 30 interposed therebetween has a relatively low output and high capacity. It has two characteristics.

本実施形態では、相対的に厚さの異なる活物質層、すなわち、相対的に薄い第1の正極活物質層12と第1の負極活物質層22とからなる第1の電極対41と、相対的に厚い第2の正極活物質層13と第2の負極活物質層23とからなる第2の電極対42とを具備する電極部材2とすることにより、相反する2つの電池特性を具備する二次電池としている。   In the present embodiment, active material layers having relatively different thicknesses, that is, a first electrode pair 41 composed of a relatively thin first positive electrode active material layer 12 and first negative electrode active material layer 22, By using the electrode member 2 including the second electrode pair 42 including the relatively thick second positive electrode active material layer 13 and the second negative electrode active material layer 23, two contradictory battery characteristics are provided. Rechargeable battery.

ここで、相対的に高出力且つ低容量の第1の特性とは、この場合、第2の特性と比較して入出力特性が高く且つエネルギー容量特性が低いという意味であり、相対的に低出力且つ高容量の第2の特性とは、第1の特性と比較して入出力特性が低く且つエネルギー容量特性が高いという意味である。   Here, the first characteristic of relatively high output and low capacity means that, in this case, the input / output characteristics are high and the energy capacity characteristics are low compared to the second characteristics, and the relatively low characteristics. The second characteristic of output and high capacity means that the input / output characteristic is low and the energy capacity characteristic is high compared to the first characteristic.

このような第1の特性と第2の特性を図4を参照しながら説明する。図4は、二次電池の出力する時間と出力する電流値との関係を示すものである。   The first characteristic and the second characteristic will be described with reference to FIG. FIG. 4 shows the relationship between the output time of the secondary battery and the output current value.

図4に示すように、第1の電極対41の部分では、第1の正極活物質層12及び第1の負極活物質層22が薄い分、活物質層の内部抵抗が小さくなるため、大電流の入出力が可能だが、全体の活物質量が少ないので持続時間(容量)は小さくなる。一方、厚い正極活物質層13及び負極活物質層23を有する第2の電極対42の部分は、活物質層が厚いので第1の電極対41と比較して内部抵抗が大きくなり、第1の電極対41ほど大電流は流せないが、活物質層が厚い分、エネルギー容量は高いため、より大きな容量を得ることができる。本実施形態では、前者を第1の特性、後者を第2の特性としている。   As shown in FIG. 4, in the portion of the first electrode pair 41, since the first positive electrode active material layer 12 and the first negative electrode active material layer 22 are thin, the internal resistance of the active material layer is reduced. Although current can be input and output, the duration (capacity) is small because the total amount of active material is small. On the other hand, the portion of the second electrode pair 42 having the thick positive electrode active material layer 13 and the negative electrode active material layer 23 has a larger internal resistance than the first electrode pair 41 because the active material layer is thick, and the first The electrode pair 41 cannot flow as much current, but the larger the active material layer, the higher the energy capacity, so a larger capacity can be obtained. In the present embodiment, the former is the first characteristic and the latter is the second characteristic.

ここで、相対的に薄い第1の正極活物質層12と相対的に薄い第1の負極活物質層22とからなる第1の電極対41についてさらに説明する。リチウムイオン二次電池の充電や放電は、正極と負極間をリチウムイオンが移動(拡散)することで進行するため、リチウムイオンの移動する距離が短い、即ち、活物質層の厚さが薄い方が内部抵抗を下げることができ、入出力特性が向上するが、一方、容量は低下する。すなわち、第1の正極活物質層12と第1の負極活物質層22とからなる第1の電極対41は、大電流の入出力に対して応答性が速く、迅速に電位変化する優れた入出力特性を有するが、低容量であり、高出力且つ低容量の第1の特性を具備することになる。   Here, the first electrode pair 41 composed of the relatively thin first positive electrode active material layer 12 and the relatively thin first negative electrode active material layer 22 will be further described. Since charging and discharging of a lithium ion secondary battery proceeds as lithium ions move (diffuse) between the positive electrode and the negative electrode, the distance that the lithium ions move is shorter, that is, the active material layer is thinner However, the internal resistance can be lowered and the input / output characteristics are improved, while the capacitance is lowered. In other words, the first electrode pair 41 composed of the first positive electrode active material layer 12 and the first negative electrode active material layer 22 has excellent responsiveness to a large current input / output and a rapid potential change. Although it has input / output characteristics, it has a low capacity and has a first characteristic of high output and low capacity.

一方、相対的に厚い第2の正極活物質層13と第2の負極活物質層23とからなる第2の電極対42について説明する。リチウムイオン二次電池のエネルギー容量を向上させるためには、活物質層のエネルギー密度を高くすることが必要であり、このためには、例えば、活物質層の厚さを厚くすればよいが、逆にリチウムイオンの移動距離が大きくなるので、入出力特性については不利となる。このため、第2の正極活物質層13と第2の負極活物質層23とからなる第2の電極対42は、長時間駆動可能な高いエネルギー容量特性を有するが、低入出力特性となり、低出力且つ高容量の第2の特性を具備することになる。   On the other hand, the second electrode pair 42 composed of the relatively thick second positive electrode active material layer 13 and second negative electrode active material layer 23 will be described. In order to improve the energy capacity of the lithium ion secondary battery, it is necessary to increase the energy density of the active material layer. For this purpose, for example, the thickness of the active material layer may be increased, On the contrary, since the movement distance of lithium ions is increased, the input / output characteristics are disadvantageous. Therefore, the second electrode pair 42 composed of the second positive electrode active material layer 13 and the second negative electrode active material layer 23 has a high energy capacity characteristic that can be driven for a long time, but has a low input / output characteristic, The second characteristic of low output and high capacity is provided.

このような第1の特性及び第2の特性の両方を具備する二次電池とするためには、例えば、厚さの異なる第1の負極活物質層22と第2の負極活物質層23とを具備するようにすればよく、本実施形態では、負極集電箔21の両面に相対的に薄い第1の負極活物質層22と相対的に厚い負極活物質層23とを設け、第1の特性及び第2の特性の両方を兼ね備えるようにしている。本実施形態では、第1の負極活物質層22の厚さが1〜10μmの場合、第2の負極活物質層23の厚さは10〜100μmが好ましく、第1の負極活物質層22の厚さが10〜50μmの場合、第2の負極活物質層23の厚さが50〜200μmであるのが好ましい。   In order to obtain a secondary battery having both the first characteristic and the second characteristic, for example, a first negative electrode active material layer 22 and a second negative electrode active material layer 23 having different thicknesses are used. In this embodiment, a relatively thin first negative electrode active material layer 22 and a relatively thick negative electrode active material layer 23 are provided on both surfaces of the negative electrode current collector foil 21, and the first Both the second characteristic and the second characteristic are combined. In the present embodiment, when the thickness of the first negative electrode active material layer 22 is 1 to 10 μm, the thickness of the second negative electrode active material layer 23 is preferably 10 to 100 μm. When the thickness is 10 to 50 μm, the thickness of the second negative electrode active material layer 23 is preferably 50 to 200 μm.

また、相対的に薄い第1の負極活物質層22及び相対的に厚い第2の負極活物質層23には、それぞれに対応するリチウム移動量を具備する正極活物質層が必要であり、それぞれ第1の正極活物質層12及び第2の正極活物質層13を対応させて、第1の電極対41及び第2の電極対42を構成するようにしている。すなわち、第1の正極活物質層12と第1の負極活物質層22との間、また、第2の正極活物質層13と第2の負極活物質層23との間で、充電時及び放電時におけるリチウムイオンの一方の活物質層から他方の活物質層への移動を対等にし、電位変化を安定させ、二次電池の制御を容易にし、二次電池の信頼性を高めている。   In addition, the relatively thin first negative electrode active material layer 22 and the relatively thick second negative electrode active material layer 23 each need a positive electrode active material layer having a corresponding amount of lithium movement, The first positive electrode active material layer 12 and the second positive electrode active material layer 13 are made to correspond to each other to form the first electrode pair 41 and the second electrode pair 42. That is, between the first positive electrode active material layer 12 and the first negative electrode active material layer 22 and between the second positive electrode active material layer 13 and the second negative electrode active material layer 23 during charging and The movement of lithium ions from one active material layer to the other active material layer during discharge is made equal, the potential change is stabilized, the secondary battery is easily controlled, and the reliability of the secondary battery is enhanced.

なお、本実施形態では、正極10として、正極集電箔11の両面に相対的に薄い第1の正極活物質層12を有する正極10aと、正極集電箔11の両面に相対的に厚い第2の正極活物質層13を有する正極10bとを用いることで、第1の負極活物質層22及び第2の負極活物質層23に対応するようにしている。これは、表裏で異なる厚さの正極を形成するよりも、表裏で同じ厚さの正極を形成する方が容易であることに鑑みて、厚さの異なる二種類の正極10a、10bを用いている。勿論、正極集電箔11の一方面に薄い正極活物質層12、他方面に厚い正極活物質層13を設けた正極を用いてもよいことは言うまでもない。   In the present embodiment, as the positive electrode 10, the positive electrode 10 a having the first positive electrode active material layer 12 that is relatively thin on both surfaces of the positive electrode current collector foil 11, and the relatively thick first on both surfaces of the positive electrode current collector foil 11. By using the positive electrode 10 b having the two positive electrode active material layers 13, it corresponds to the first negative electrode active material layer 22 and the second negative electrode active material layer 23. In view of the fact that it is easier to form positive electrodes having the same thickness on the front and back sides than to form positive electrodes having different thicknesses on the front and back sides, two types of positive electrodes 10a and 10b having different thicknesses are used. Yes. Of course, it goes without saying that a positive electrode provided with a thin positive electrode active material layer 12 on one surface of the positive electrode current collector foil 11 and a thick positive electrode active material layer 13 on the other surface may be used.

以上説明したように、本実施形態に係る電極部材2は、1つの電極部材2内に異なる厚さの活物質層を形成することにより、相対的に高出力且つ低容量の第1の特性を具備する第1の電極対41と、相対的に低出力且つ高容量の第2の特性を具備する第2の電極対42とがそれぞれ複数形成される。これを電極として用いることにより、全体として優れた入出力特性及び高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができる。   As described above, the electrode member 2 according to this embodiment has the first characteristic of relatively high output and low capacity by forming active material layers having different thicknesses within one electrode member 2. A plurality of first electrode pairs 41 provided and a plurality of second electrode pairs 42 each having a second characteristic of relatively low output and high capacity are formed. By using this as an electrode, a secondary battery having both excellent input / output characteristics and high energy capacity characteristics as a whole can be realized.

ここで、第1の正極活物質層12及び第2の正極活物質層13を形成する正極活物質としては、例えば層状構造型の金属酸化物、スピネル型の金属酸化物及び金属化合物、リン酸塩型の金属酸化物などが挙げられる。層状構造型の金属酸化物としては、リチウムニッケル系複合酸化物、リチウムコバルト系複合酸化物、三元系複合酸化物(LiCo1/3Ni1/3Mn1/3)が挙げられる。リチウムニッケル系複合酸化物としては、好ましくはニッケル酸リチウム(LiNiO)が挙げられる。リチウムコバルト系複合酸化物としては、好ましくはコバルト酸リチウム(LiCoO)が挙げられる。スピネル型の金属酸化物としては、マンガン酸リチウム(LiMn)等のリチウムマンガン系複合酸化物が挙げられる。リン酸塩型の金属酸化物としては、リン酸鉄リチウム(LiFePO)、リン酸マンガンリチウム(LiMnPO)等が挙げられる。本実施形態では、正極の活物質としてLiCo1/3Ni1/3Mn1/3を用いているが、本発明に適用可能な正極活物質はこれに限定されず、また例示した正極活物質に限定されるものでもなく、正極における電池反応を生じるものであれば他にも用いることができる。 Here, examples of the positive electrode active material for forming the first positive electrode active material layer 12 and the second positive electrode active material layer 13 include layered structure type metal oxides, spinel type metal oxides and metal compounds, and phosphoric acid. Examples include salt-type metal oxides. Examples of the layered structure type metal oxide include lithium nickel composite oxide, lithium cobalt composite oxide, and ternary composite oxide (LiCo 1/3 Ni 1/3 Mn 1/3 O 2 ). The lithium-nickel-based composite oxide, and the like, preferably a lithium nickelate (LiNiO 2). Examples of the lithium cobalt composite oxide, and preferably lithium cobalt oxide (LiCoO 2). Examples of the spinel-type metal oxide include lithium manganese complex oxides such as lithium manganate (LiMn 2 O 4 ). Examples of the phosphate metal oxide include lithium iron phosphate (LiFePO 4 ) and lithium manganese phosphate (LiMnPO 4 ). In this embodiment, LiCo 1/3 Ni 1/3 Mn 1/3 O 2 is used as the positive electrode active material, but the positive electrode active material applicable to the present invention is not limited to this, and the illustrated positive electrode The material is not limited to the active material, and any other material that causes a battery reaction at the positive electrode can be used.

また、第1の負極活物質層22及び第2の負極活物質層23を形成する負極活物質としては、通常用いられる活物質、例えば黒鉛、ソフトカーボン又はハードカーボン等の非晶質炭素材料を挙げることができる。また、黒鉛は人造黒鉛であっても天然黒鉛であっても良い。また、金属リチウム、金属酸化物、金属硫化物、金属窒化物等を挙げることができる。金属酸化物としては、例えばスズ酸化物やケイ素酸化物などが挙げられる。本実施形態では、負極の活物質としては黒鉛を用いているが、本発明に適用可能な負極活物質はこれに限定されず、また例示した負極活物質に限定されるものでもなく、負極における電池反応を生じるものであれば他にも用いることができる。   Moreover, as the negative electrode active material for forming the first negative electrode active material layer 22 and the second negative electrode active material layer 23, an active material usually used, for example, an amorphous carbon material such as graphite, soft carbon, or hard carbon is used. Can be mentioned. The graphite may be artificial graphite or natural graphite. In addition, metal lithium, metal oxide, metal sulfide, metal nitride, and the like can be given. Examples of the metal oxide include tin oxide and silicon oxide. In the present embodiment, graphite is used as the negative electrode active material, but the negative electrode active material applicable to the present invention is not limited to this, and is not limited to the illustrated negative electrode active material. Any other material that causes a battery reaction can be used.

なお、正極活物質層及び負極活物質層を形成する場合、正極活物質又は負極活物質に、それぞれさらにバインダーが含有されていてもよく、例えばポリフッ化ビニリデンを用いることができる。なお、正極又は負極活物質層にはアセチレンブラック等の導電性向上剤が含まれていてもよい。   In addition, when forming a positive electrode active material layer and a negative electrode active material layer, the positive electrode active material or the negative electrode active material may respectively contain a binder, for example, polyvinylidene fluoride can be used. The positive electrode or negative electrode active material layer may contain a conductivity improver such as acetylene black.

また、電解液6は、通常用いられる溶媒、例えば環状炭酸エステルであるエチレンカーボネートやプロピレンカーボネートと、また、鎖状炭酸エステルであるジメチルカーボネートやエチルメチルカーボネート、ジエチルカーボネートとの混合溶液に六フッ化リン酸リチウム(LiPF)を1リットル当たり1モル濃度程度溶解した有機電解液が挙げられる。 In addition, the electrolyte solution 6 is hexafluorinated in a mixed solution of a commonly used solvent such as ethylene carbonate and propylene carbonate, which are cyclic carbonates, and dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate, which are chain carbonates. Examples thereof include an organic electrolytic solution in which lithium phosphate (LiPF 6 ) is dissolved at a concentration of about 1 mol per liter.

次に、図5(a)〜(c)に、本実施形態の二次電池の充電状態(以下「SOC」と言う。)を示す図を示す。なお、図5中のAは、相対的に薄い活物質層により構成された第1の電極対41の充電状態に対応し、図5中のBは、相対的に厚い活物質層により構成された第2の電極対42の充電状態に対応する。   Next, FIGS. 5A to 5C are diagrams showing the state of charge (hereinafter referred to as “SOC”) of the secondary battery of the present embodiment. Note that A in FIG. 5 corresponds to the charged state of the first electrode pair 41 constituted by a relatively thin active material layer, and B in FIG. 5 is constituted by a relatively thick active material layer. This corresponds to the charged state of the second electrode pair 42.

図5(a)は、充電が開始された時の電圧を示す図である。充電が開始された時は、相対的に薄い第1の負極活物質層22を具備する第1の電極対41(A)の方が内部抵抗が小さいため、電圧は急速に上昇し、これに伴い充電も急速に進行する。一方、相対的に厚い第2の負極活物質層23を具備する第2の電極対42(B)は、第1の電極対41と比べて内部抵抗が大きいため、充電は緩やかに進行していく。すなわち、充電は、正極活物質層から脱離したリチウムイオンが電解液を通り、セパレータを介して負極活物質層に移動することにより進行する。このため、リチウムイオンの移動距離が短い、即ち、第1の負極活物質層22を具備する第1の電極対41の方が充電が速く進行し、第2の負極活物質層23を具備する第2の電極対42の方は遅く進行する。   FIG. 5A is a diagram illustrating a voltage when charging is started. When charging is started, the first electrode pair 41 (A) having the relatively thin first negative electrode active material layer 22 has a smaller internal resistance, so the voltage rises more rapidly. Along with this, charging proceeds rapidly. On the other hand, since the second electrode pair 42 (B) having the relatively thick second negative electrode active material layer 23 has a larger internal resistance than the first electrode pair 41, charging proceeds slowly. Go. That is, charging proceeds as lithium ions desorbed from the positive electrode active material layer pass through the electrolytic solution and move to the negative electrode active material layer through the separator. For this reason, the movement distance of lithium ions is short, that is, the first electrode pair 41 including the first negative electrode active material layer 22 is charged faster, and the second negative electrode active material layer 23 is included. The second electrode pair 42 travels slower.

図5(b)は、充電が終了し、相対的に薄い第1の負極活物質層22を具備する第1の電極対41と相対的に厚い第2の負極活物質層23を具備する第2の電極対42の電位状態が緩和される時の電圧を示す図である。充電が終了した時は、第1の電極対41(A)のSOCが高く、第2の電極対42(B)のSOCは低い。これは、上記の充電速度の相違から、相対的に薄い第1の負極活物質層22では、容量が相対的に低いので充電量が許容範囲内で最大に満たされたからであり、相対的に厚い第2の負極活物質層23では、容量が相対的に大きいので、同時間で充電量が許容範囲を下回っているからである。この充電量の差(電位差)を緩和するために、リチウムイオンは相対的に薄い第1の負極活物質層22から相対的に厚い第2の負極活物質層23へ電解液を介して移動し、平衡状態へと移行していく。   In FIG. 5B, the charging is completed, and the first electrode pair 41 including the relatively thin first negative electrode active material layer 22 and the second electrode active material layer 23 including the relatively thick second negative electrode active material layer 23 are illustrated. It is a figure which shows a voltage when the electric potential state of the electrode pair of 2 is eased. When the charging is finished, the SOC of the first electrode pair 41 (A) is high, and the SOC of the second electrode pair 42 (B) is low. This is because, due to the difference in the charging speed described above, the relatively thin first negative electrode active material layer 22 has a relatively low capacity, so that the amount of charge is fully satisfied within an allowable range. This is because the thick second negative electrode active material layer 23 has a relatively large capacity, so that the charge amount falls below the allowable range at the same time. In order to mitigate this difference in charge (potential difference), lithium ions move from the relatively thin first negative electrode active material layer 22 to the relatively thick second negative electrode active material layer 23 via the electrolytic solution. , Transition to equilibrium.

図5(c)は、緩和が終了した時の電圧を示す図である。緩和が終了すると、相対的に薄い第1の負極活物質層22を具備する第1の電極対41と相対的に厚い第2の負極活物質層23を具備する第2の電極対42の電圧は同一となる。   FIG. 5C is a diagram illustrating a voltage when relaxation is completed. When the relaxation is finished, the voltage of the first electrode pair 41 having the relatively thin first negative electrode active material layer 22 and the voltage of the second electrode pair 42 having the relatively thick second negative electrode active material layer 23. Are the same.

このように、相対的に薄い第1の負極活物質層22を具備する第1の電極対41では、充電、特に急速充電のような大電流入力に対する応答性が速いので、入力特性に優れるが、厚さが薄い分、充電量がすぐに満たされてしまい、エネルギー容量特性は低くなる。一方、相対的に厚い第2の負極活物質層23を具備する第2の電極対42では、充電に対する応答性は遅いが、厚い分、高いエネルギー容量を確保することができる。なお、図5では、相対的に薄い活物質層により構成された第1の電極対41と相対的に厚い活物質層により構成された第2の電極対42の充電に対する入力特性及びエネルギー容量特性について説明したが、放電に対しても同様の出力特性及びエネルギー容量特性であることは言うまでもない。   As described above, the first electrode pair 41 having the relatively thin first negative electrode active material layer 22 is excellent in input characteristics because it has a quick response to a large current input such as charging, particularly rapid charging. Since the thickness is small, the charged amount is immediately filled, and the energy capacity characteristic is lowered. On the other hand, in the second electrode pair 42 having the relatively thick second negative electrode active material layer 23, the response to charging is slow, but a high energy capacity can be ensured by the thickness. In FIG. 5, the input characteristics and energy capacity characteristics with respect to charging of the first electrode pair 41 formed of a relatively thin active material layer and the second electrode pair 42 formed of a relatively thick active material layer. However, it goes without saying that the same output characteristics and energy capacity characteristics with respect to discharge.

したがって、1つの電極部材2内に、異なる厚さの活物質層からなる第1の電極対41と第2の電極対42を設けることにより、入出力特性に優れた部分及び高いエネルギー容量特性を有する部分とが共存することになる。これを電極として用いることにより、全体として優れた入出力特性及び高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができる。   Therefore, by providing the first electrode pair 41 and the second electrode pair 42 made of active material layers having different thicknesses in one electrode member 2, a portion having excellent input / output characteristics and high energy capacity characteristics can be obtained. The part it has will coexist. By using this as an electrode, a secondary battery having both excellent input / output characteristics and high energy capacity characteristics as a whole can be realized.

なお、上述した実施形態では、集電箔の両面に活物質層を設けて正極又は負極を形成したが、集電箔の片面のみに活物質層を設けた正極及び負極を用いて上述した電極部材を構成することもできる。   In the above-described embodiment, the positive electrode or the negative electrode is formed by providing the active material layer on both sides of the current collector foil. However, the electrode described above using the positive electrode and the negative electrode provided with the active material layer only on one side of the current collector foil. A member can also be comprised.

(実施形態2)
本実施形態は、実施形態1の電極部材の変形例であり、図6に示すように、全面に複数の貫通孔50を具備する正極集電箔11A及び負極集電箔21Aを用いて、実施形態1と同様の活物質層を設けた正極及び負極とした以外は、実施形態1と同様なものである。
(Embodiment 2)
The present embodiment is a modification of the electrode member of the first embodiment. As shown in FIG. 6, the positive electrode current collector foil 11A and the negative electrode current collector foil 21A having a plurality of through holes 50 on the entire surface are used. Except for the positive electrode and the negative electrode provided with the same active material layer as in the first embodiment, it is the same as in the first embodiment.

このような正極集電箔11A及び負極集電箔21Aを用いるのは、上述した図5(b)の電位状態の緩和を促進するためである。すなわち、電位状態の緩和の際に、例えば、リチウムイオンは相対的に薄い第1の負極活物質層22から相対的に厚い第2の負極活物質層23へ貫通孔50を介しても移動するようになり、平衡状態への移行が促進される。   The reason for using the positive electrode current collector foil 11A and the negative electrode current collector foil 21A is to promote the relaxation of the potential state shown in FIG. That is, when the potential state is relaxed, for example, lithium ions move from the relatively thin first negative electrode active material layer 22 to the relatively thick second negative electrode active material layer 23 through the through holes 50. Thus, the transition to the equilibrium state is promoted.

なお、貫通孔50の形成位置は図示のものに限定されず、例えば、貫通孔50の形成密度を場所によって変更してもよく、例えば、各集電箔の短手方向の中央部が短手方向の端部よりも密となるようにしてもよい。また、貫通孔50の形状についても円形状に限定されず、例えば略矩形状であってもよい。   In addition, the formation position of the through-hole 50 is not limited to the illustrated one. For example, the formation density of the through-hole 50 may be changed depending on the location. You may make it denser than the edge part of a direction. Further, the shape of the through hole 50 is not limited to a circular shape, and may be a substantially rectangular shape, for example.

(実施形態3)
本発明の実施形態3について、図7を用いて説明する。実施形態3は、電極部材の構成の変形例であり、実施形態1と同一部材には同一符号を付し、重複する説明は省略する。
(Embodiment 3)
Embodiment 3 of the present invention will be described with reference to FIG. The third embodiment is a modification of the configuration of the electrode member, and the same members as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

実施形態1では、第1の特性を有する第1の電極対41と第2の特性を有する第2の電極対42とを設けるために、相対的に薄い第1の正極活物質層12及び第1の負極活物質層22と、相対的に厚い第2の正極活物質層13及び第2の負極活物質層23とを形成したが、本実施形態では、活性物質層を形成する正極活性物質の種類を異なるものとすることにより、相対的に異なる第1の特性と第2の特性とを設けたものである。   In Embodiment 1, in order to provide the first electrode pair 41 having the first characteristic and the second electrode pair 42 having the second characteristic, the relatively thin first positive electrode active material layer 12 and the second The first negative electrode active material layer 22 and the relatively thick second positive electrode active material layer 13 and second negative electrode active material layer 23 are formed, but in this embodiment, the positive electrode active material forming the active material layer By making the types of these different, relatively different first characteristics and second characteristics are provided.

図7は、本実施形態に係る電極部材の一部拡大断面模式図である。同図に示すように、電極部材2Aは、正極集電箔11の一方面に第1の正極活物質層12Aを、他方面に第2の正極活物質層13Aをそれぞれ形成した正極10Aを具備する。ここで、第1の正極活物質層12Aと、第2の正極活物質層13Aとは、詳細は後述するが、異なる活物質を用いて形成されて、異なる特性を具備するものである。   FIG. 7 is a partially enlarged schematic cross-sectional view of the electrode member according to the present embodiment. As shown in the figure, the electrode member 2A includes a positive electrode 10A in which a first positive electrode active material layer 12A is formed on one surface of a positive electrode current collector foil 11, and a second positive electrode active material layer 13A is formed on the other surface. To do. Here, although the details of the first positive electrode active material layer 12A and the second positive electrode active material layer 13A will be described later, they are formed using different active materials and have different characteristics.

具体的には、第1の正極活物質層12Aは、相対的に高出力且つ低容量の第1の特性を有する活物質の種類から構成され、第2の正極活物質層13Aは、相対的に低出力且つ高容量の第2の特性を有する活物質の種類から構成される。そのため、第1の正極活物質層12Aと第2の正極活物質層13Aの厚さはほぼ同等であるが、それぞれ異なる特性を具備するものである。勿論、活物質の種類と同時に厚さを変えて第1の正極活物質層12Aを薄くし、第2の正極活物質層13Aを厚くしてもよい。   Specifically, the first positive electrode active material layer 12A is composed of a type of active material having a first characteristic of relatively high output and low capacity, and the second positive electrode active material layer 13A is relatively And a kind of active material having the second characteristic of low output and high capacity. For this reason, the first positive electrode active material layer 12A and the second positive electrode active material layer 13A have substantially the same thickness, but have different characteristics. Of course, the thickness of the first positive electrode active material layer 12A may be reduced by changing the thickness simultaneously with the type of the active material, and the second positive electrode active material layer 13A may be increased.

一方、正極10Aに対応する負極としては、第1の正極活物質層12Aに対向する位置には、負極集電箔21の両面に相対的に薄い第1の負極活物質層22を形成した負極20aを設け、第2の正極活物質層13Aに対向する位置には、負極集電箔21の両面に相対的に厚い第2の負極活物質層23を形成した負極20bを設けたものである。そして、第1の正極活物質層12Aと第1の負極活物質層22とで第1の特性を有する第1の電極対41Aを構成し、第2の正極活物質層13Aと第2の負極活物質層23とで第2の特性を有する第2の電極対42Aを構成している。   On the other hand, as a negative electrode corresponding to the positive electrode 10A, a negative electrode in which a relatively thin first negative electrode active material layer 22 is formed on both surfaces of the negative electrode current collector foil 21 at a position facing the first positive electrode active material layer 12A. The negative electrode 20b in which the relatively thick second negative electrode active material layer 23 is formed on both surfaces of the negative electrode current collector foil 21 is provided at a position facing the second positive electrode active material layer 13A. . The first positive electrode active material layer 12A and the first negative electrode active material layer 22 constitute a first electrode pair 41A having a first characteristic, and the second positive electrode active material layer 13A and the second negative electrode are formed. The active material layer 23 constitutes a second electrode pair 42A having the second characteristic.

なお、第1の特性とは、実施形態1と同様に、相対的に高出力且つ低容量という意味であり、第2の特性とは、相対的に低出力且つ高容量という意味である。   As in the first embodiment, the first characteristic means relatively high output and low capacity, and the second characteristic means relatively low output and high capacity.

このように、実施形態1では、第1の特性を具備する第1の電極対41と、第2の特性を具備する第2の電極対42との特性の差を、各電極対を構成する活物質層の厚さを異なるものとすることにより設けたが、本実施形態では、活物質層の厚さではなく、正極活物質の種類を異なるものとし、正極活物質層と対向する負極活物質層の厚さを正極活物質の特性に対応させることで、第1と第2の特性の差を設けた。   As described above, in the first embodiment, the difference in characteristics between the first electrode pair 41 having the first characteristic and the second electrode pair 42 having the second characteristic constitutes each electrode pair. In this embodiment, the thickness of the active material layer is different, but in this embodiment, the type of the positive electrode active material is different, not the thickness of the active material layer, and the negative electrode active material facing the positive electrode active material layer is used. By making the thickness of the material layer correspond to the characteristics of the positive electrode active material, a difference between the first and second characteristics was provided.

例えば、高出力且つ低容量の第1の特性を具備する第1の電極対41Aについては、電子伝導性の高い活物質を適用する。すなわち、リチウムイオン二次電池の入出力特性を向上させるためには、例えば、活物質層の内部抵抗を下げればよいが、電子伝導性が高ければ、充電時及び放電時における活物質の表面及び活物質間での電子の伝導が迅速に進行し、活物質層の内部抵抗を下げることができる。そして、このような活性層は高い入出力特性を維持することができる。   For example, for the first electrode pair 41A having the first characteristic of high output and low capacity, an active material with high electron conductivity is applied. That is, in order to improve the input / output characteristics of the lithium ion secondary battery, for example, the internal resistance of the active material layer may be lowered, but if the electronic conductivity is high, the surface of the active material during charging and discharging and Electron conduction between the active materials proceeds rapidly, and the internal resistance of the active material layer can be reduced. Such an active layer can maintain high input / output characteristics.

一方、低出力且つ高容量の第2の特性を具備する第2の電極対42Aについては、高いエネルギー容量を備えた活物質を適用する。リチウムイオン二次電池のエネルギー容量を向上させるためには、活物質自体のエネルギー密度(容量)を高くすることが必要だからである。   On the other hand, for the second electrode pair 42A having the second characteristic of low output and high capacity, an active material having a high energy capacity is applied. This is because in order to improve the energy capacity of the lithium ion secondary battery, it is necessary to increase the energy density (capacity) of the active material itself.

ここで、高出力且つ低容量の第1の特性を有する正極活物質と、低出力且つ高容量の第2の特性を有する正極活物質について説明する。   Here, the positive electrode active material having the first characteristic of high output and low capacity and the positive electrode active material having the second characteristic of low output and high capacity will be described.

高出力特性を有するか否かは、各種活物質の種類及びその粒子径や添加される導電助剤量により判断できる。   Whether or not it has high output characteristics can be determined by the type of various active materials, their particle diameters, and the amount of conductive additive added.

一方、高容量特性を有するか否かは、例えば、活物質の理論容量に基づき判断することができる。LiCoOの理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/g、LiFePOの理論容量は170mAh/gである。よって、ここではLiCoO及びLiNiOは、LiMn及びLiFePOと比較して相対的に高容量の特性を有するものと判断でき、LiFePOは、LiMnと比較して相対的に高容量の特性を有するものと判断できる。 On the other hand, whether or not it has a high capacity characteristic can be determined based on, for example, the theoretical capacity of the active material. The theoretical capacity of LiCoO 2 is 274 mAh / g, the theoretical capacity of LiNiO 2 is 274 mAh / g, the theoretical capacity of LiMn 2 O 4 is 148 mAh / g, and the theoretical capacity of LiFePO 4 is 170 mAh / g. Thus, where LiCoO 2 and LiNiO 2 is, it can be determined to have the characteristics of relatively high capacity compared to LiMn 2 O 4 and LiFePO 4, LiFePO 4 is relative compared to LiMn 2 O 4 It can be determined that the battery has a high capacity characteristic.

このように、活物質の種類及びその粒子径や添加される導電助剤量や、理論容量、好ましくは実容量の値を相対的に比較することにより、高出力且つ低容量の第1の特性を有する活物質と低出力且つ高容量の第2の特性を有する活物質との組み合わせを選択することができ、本実施形態では、第1の正極活物質層12Aを形成する正極活物質としては、相対的に高出力低容量のLiMnを用い、第2の正極活物質層13Aを形成する正極活物質としては、相対的に低出力で高容量のLiFePOを用いた。 In this way, the first characteristic of high output and low capacity can be obtained by relatively comparing the type of active material, the particle size thereof, the amount of conductive additive added, and the theoretical capacity, preferably the actual capacity. A combination of an active material having a low-power and high-capacitance active material having a second characteristic can be selected. In the present embodiment, as the positive electrode active material forming the first positive electrode active material layer 12A, A relatively high output and low capacity LiMn 2 O 4 was used, and a relatively low output and high capacity LiFePO 4 was used as the positive electrode active material for forming the second positive electrode active material layer 13A.

勿論、活物質層の入出力特性や実容量の値は、活物質の粒子サイズを変えたり、導電材料を添加したり、表面処理を施したり、結晶構造やバルク改質等を行うことにより変動する値であるため、これらを同時に変更することにより、第1の正極活物質層12Aと第2の正極活物質層13Aとの入出力特性及び容量特性を変更するようにしてもよい。   Of course, the input / output characteristics and actual capacity values of the active material layer fluctuate by changing the particle size of the active material, adding a conductive material, applying surface treatment, crystal structure, bulk modification, etc. Therefore, the input / output characteristics and capacity characteristics of the first positive electrode active material layer 12A and the second positive electrode active material layer 13A may be changed by simultaneously changing these values.

また、このような活物質の改質により、極めて優れた高出力且つ低容量の第1の特性を有する活物質と、これと相反する低出力且つ極めて優れた高容量の第2の特性を有する活物質を形成することは可能であり、これらを組み合わせた電極部材を用いれば、さらに優れた入出力特性及び高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができる。   Further, by such modification of the active material, the active material having the first characteristic of extremely excellent high output and low capacity, and the second characteristic of low output and extremely excellent high capacity contrary to this. An active material can be formed. If an electrode member that combines these materials is used, a secondary battery having both superior input / output characteristics and high energy capacity characteristics can be realized.

なお、第1及び第2の負極活物質層22,23を形成する負極活物質としては、実施形態1に例示した活物質から適宜選択して、厚さを変更して設ければよいが、上述した正極活物質と同様に、活物質の特性を検討して第1の特性に対応する負極活物質と第2の特性に対応する負極活物質とを異なるようにしてもよく、活物質の種類と同時に厚さを変更するようにしてもよい。   Note that the negative electrode active material for forming the first and second negative electrode active material layers 22 and 23 may be appropriately selected from the active materials exemplified in Embodiment 1 and the thickness thereof may be changed. Similar to the positive electrode active material described above, the characteristics of the active material may be examined so that the negative electrode active material corresponding to the first characteristic and the negative electrode active material corresponding to the second characteristic may be different. The thickness may be changed simultaneously with the type.

以上のように、本実施形態に係る電極部材2Aも、実施形態1と同様に、相対的に高出力且つ低容量の第1の特性を具備する第1の電極対41Aと、相対的に低出力且つ高容量の第2の特性を具備する第2の電極対42Aを具備するので、これを電極として用いることにより、全体として優れた入出力特性及び高いエネルギー容量特性を同時に兼ね備えた二次電池を実現することができる。   As described above, similarly to the first embodiment, the electrode member 2A according to this embodiment is also relatively low in comparison with the first electrode pair 41A having the first characteristic of relatively high output and low capacity. Since the second electrode pair 42A having the second characteristic of output and high capacity is provided, by using this as an electrode, a secondary battery having both excellent input / output characteristics and high energy capacity characteristics at the same time Can be realized.

(他の実施形態)
上述した実施形態では、正極及び負極が厚さ方向に積層された積層型の電極を例示したが、長尺の正極及び負極を巻回した巻回型の電極としてもよい。例えば、実施形態1の例では、図3に示すような、正極を構成する3層及び負極を構成する4層の計7層の積層体を巻回すれば、巻回型の電極部材とすることができる。
(Other embodiments)
In the embodiment described above, the stacked electrode in which the positive electrode and the negative electrode are stacked in the thickness direction is illustrated, but a wound electrode in which a long positive electrode and a negative electrode are wound may be used. For example, in the example of the first embodiment, as shown in FIG. 3, if a laminate of a total of 7 layers of 3 layers constituting the positive electrode and 4 layers constituting the negative electrode is wound, a wound electrode member is obtained. be able to.

また、上述した実施形態では、リチウムイオン二次電池用電極部材を例示したが、特にこれに限定されず、例えば、電解質にゲル状のポリマーを利用したリチウムポリマー二次電池にも適用することができる。また、携帯電話やノート型パソコン等の小型ポータブル電子機器に搭載されるニッケルカドミニウム電池やニッケル水素電池等のアルカリ二次電池にも適用することができる。   Moreover, although the electrode member for lithium ion secondary batteries was illustrated in embodiment mentioned above, it is not limited to this especially, For example, it can apply also to the lithium polymer secondary battery using a gel-like polymer for electrolyte. it can. Further, the present invention can also be applied to alkaline secondary batteries such as nickel cadmium batteries and nickel hydride batteries mounted on small portable electronic devices such as mobile phones and notebook computers.

また、本実施形態に係る二次電池の容器、形状は、ラミネート型又は缶型であるが、これに限定されない。例えばコイン型、円筒型、ボタン型、シート型、角型等であってもよい。また、これらの二次電池は、複数個を直列に接続したものでもよいし、並列に接続したものでもよい。   Moreover, although the container and shape of the secondary battery which concern on this embodiment are a laminate type or a can type | mold, it is not limited to this. For example, a coin type, a cylindrical type, a button type, a sheet type, a square type, or the like may be used. In addition, these secondary batteries may be connected in series, or may be connected in parallel.

1 ラミネート型リチウムイオン二次電池
2 電極部材
3 ラミネート外装体
4 正極端子
5 負極端子
6 電解液
10 正極
11 正極集電箔
12 第1の正極活物質層
13 第2の正極活物質層
20 負極
21 負極集電箔
22 第1の負極活物質層
23 第2の負極活物質層
30 セパレータ
41 第1の電極対
42 第2の電極対
50 貫通孔
DESCRIPTION OF SYMBOLS 1 Laminate type lithium ion secondary battery 2 Electrode member 3 Laminate exterior body 4 Positive electrode terminal 5 Negative electrode terminal 6 Electrolytic solution 10 Positive electrode 11 Positive electrode current collector foil 12 1st positive electrode active material layer 13 2nd positive electrode active material layer 20 Negative electrode 21 Negative electrode current collector foil 22 First negative electrode active material layer 23 Second negative electrode active material layer 30 Separator 41 First electrode pair 42 Second electrode pair 50 Through-hole

Claims (5)

電解液と、該電解液に浸漬されて用いられる電極部材とを具備する二次電池であって、
前記電極部材は、正極集電箔の表面に形成された正極活物質層を有する正極と、負極集電箔の表面に形成された負極活物質層を有する負極と、前記正極と前記負極との間に配置されたセパレータとが積層されて、前記セパレータを介して相対向する前記正極活物質層と前記負極活物質層とで電極対を構成し、
前記電極対は、相対的に高出力且つ低容量の第1の特性を具備する第1の活物質層からなる第1の電極対と、相対的に低出力且つ高容量の第2の特性を具備する第2の活物質層からなる第2の電極対とを備えることを特徴とする二次電池。
A secondary battery comprising an electrolytic solution and an electrode member used by being immersed in the electrolytic solution,
The electrode member includes a positive electrode having a positive electrode active material layer formed on a surface of a positive electrode current collector foil, a negative electrode having a negative electrode active material layer formed on a surface of a negative electrode current collector foil, and the positive electrode and the negative electrode A separator disposed therebetween is laminated, and the positive electrode active material layer and the negative electrode active material layer facing each other via the separator constitute an electrode pair,
The electrode pair has a first electrode pair made of a first active material layer having a first characteristic of relatively high output and low capacity, and a second characteristic of relatively low output and high capacity. A secondary battery comprising a second electrode pair made of a second active material layer.
前記第1の電極対の前記第1の活物質層と、前記第2の電極対の前記第2の活物質層とは、層の厚さ、塗工量及び層を形成する活物質の種類の少なくともいずれかが異なることにより、前記第1の特性及び前記第2の特性に対応することを特徴とする請求項1に記載の二次電池。   The first active material layer of the first electrode pair and the second active material layer of the second electrode pair are the thickness of the layer, the coating amount, and the type of active material forming the layer. 2. The secondary battery according to claim 1, wherein the second battery corresponds to the first characteristic and the second characteristic by being different from each other. 前記正極及び前記負極は、それぞれ集電箔の両面に活物質層を具備し、前記正極及び負極の少なくとも一方は、前記集電箔の一方の面に前記第1の特性に対応する前記第1の活物質層を具備すると共に他方の面に前記第2の特性に対応する前記第2の活物質層を具備することを特徴とする請求項1又は2に記載の二次電池。   The positive electrode and the negative electrode each have an active material layer on both surfaces of the current collector foil, and at least one of the positive electrode and the negative electrode corresponds to the first characteristic on one surface of the current collector foil. The secondary battery according to claim 1, wherein the second active material layer corresponding to the second characteristic is provided on the other surface of the secondary battery. 前記正極及び前記負極の集電箔には複数の孔が形成されていることを特徴とする請求項3に記載の二次電池。   The secondary battery according to claim 3, wherein a plurality of holes are formed in the current collector foil of the positive electrode and the negative electrode. 前記第1の電極対と前記第2の電極対とが複数積層され又は巻回されて構成されていることを特徴とする請求項1〜4の何れか一項に記載の二次電池。   The secondary battery according to any one of claims 1 to 4, wherein a plurality of the first electrode pairs and the second electrode pairs are stacked or wound.
JP2012143323A 2012-06-26 2012-06-26 Secondary battery Active JP5994977B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012143323A JP5994977B2 (en) 2012-06-26 2012-06-26 Secondary battery
PCT/JP2013/056853 WO2014002532A1 (en) 2012-06-26 2013-03-12 Secondary cell
CN201380034508.7A CN104412438A (en) 2012-06-26 2013-03-12 Secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143323A JP5994977B2 (en) 2012-06-26 2012-06-26 Secondary battery

Publications (2)

Publication Number Publication Date
JP2014007107A true JP2014007107A (en) 2014-01-16
JP5994977B2 JP5994977B2 (en) 2016-09-21

Family

ID=49782712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143323A Active JP5994977B2 (en) 2012-06-26 2012-06-26 Secondary battery

Country Status (3)

Country Link
JP (1) JP5994977B2 (en)
CN (1) CN104412438A (en)
WO (1) WO2014002532A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056388A (en) * 2013-09-13 2015-03-23 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
JP2019175615A (en) * 2018-03-27 2019-10-10 日立化成株式会社 Electrode group and zinc battery
EP3719913A4 (en) * 2017-11-30 2020-12-23 Panasonic Corporation Non-aqueous electrolyte secondary battery
WO2023170960A1 (en) * 2022-03-11 2023-09-14 武蔵精密工業株式会社 Storage cell, storage module, and method for manufacturing storage cell

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210144266A (en) * 2020-05-22 2021-11-30 주식회사 엘지에너지솔루션 Electrode assembly and method for manufacturing the same, secondary battery
CN111916777B (en) * 2020-08-04 2022-02-15 太仓中科赛诺新能源科技有限公司 Light brine battery with lean solution structure
WO2023060494A1 (en) * 2021-10-13 2023-04-20 宁德时代新能源科技股份有限公司 Electrode assembly, secondary battery, battery module, battery pack, and electric apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085015A (en) * 1999-09-17 2001-03-30 Sumitomo Metal Steel Products Inc Porous nickel foil for alkaline storage battery negative electrode and manufacture therefor
WO2003026054A1 (en) * 2001-09-19 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Hybrid cell
JP2004247221A (en) * 2003-02-14 2004-09-02 Sanyo Electric Co Ltd Alkaline storage battery
JP2007109512A (en) * 2005-10-13 2007-04-26 Nec Tokin Corp Non-aqueous electrolytic liquid secondary battery
JP2007207525A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2009070781A (en) * 2007-09-18 2009-04-02 Fuji Heavy Ind Ltd Power storage device
JP2010020921A (en) * 2008-07-08 2010-01-28 Fdk Corp Power storage cell, and power storage cell module

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036325A (en) * 1998-07-16 2000-02-02 Asahi Glass Co Ltd Secondary power supply
JP4825344B2 (en) * 2000-06-07 2011-11-30 Fdk株式会社 Battery / capacitor composite element
KR100807702B1 (en) * 2000-11-17 2008-03-03 가부시끼가이샤 케이알아이 Nonaqueous lithium secondary cell
JP2005203131A (en) * 2004-01-13 2005-07-28 Hitachi Ltd Energy device
JP2006252902A (en) * 2005-03-10 2006-09-21 Kawasaki Heavy Ind Ltd Hybrid battery
CN101536243A (en) * 2006-11-16 2009-09-16 松下电器产业株式会社 Electricity storage device
JP5526481B2 (en) * 2007-06-06 2014-06-18 日産自動車株式会社 Secondary battery and manufacturing method thereof
JP5091573B2 (en) * 2007-07-17 2012-12-05 富士重工業株式会社 Electricity storage device
JP5378720B2 (en) * 2007-07-27 2013-12-25 パナソニック株式会社 Lithium ion secondary battery
JP5810479B2 (en) * 2009-05-26 2015-11-11 日産自動車株式会社 ELECTRODE STRUCTURE FOR LITHIUM ION SECONDARY BATTERY, LITHIUM ION SECONDARY BATTERY, AND METHOD FOR PRODUCING ELECTRODE FOR LITHIUM ION SECONDARY BATTERY
AU2010292966B2 (en) * 2009-08-27 2014-07-24 Commonwealth Scientific And Industrial Research Organisation Electrical storage device and electrode thereof
CN102201604A (en) * 2011-04-22 2011-09-28 华南师范大学 Electric core of capacitance battery and manufacturing method of electric core

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085015A (en) * 1999-09-17 2001-03-30 Sumitomo Metal Steel Products Inc Porous nickel foil for alkaline storage battery negative electrode and manufacture therefor
WO2003026054A1 (en) * 2001-09-19 2003-03-27 Kawasaki Jukogyo Kabushiki Kaisha Hybrid cell
JP2004247221A (en) * 2003-02-14 2004-09-02 Sanyo Electric Co Ltd Alkaline storage battery
JP2007109512A (en) * 2005-10-13 2007-04-26 Nec Tokin Corp Non-aqueous electrolytic liquid secondary battery
JP2007207525A (en) * 2006-01-31 2007-08-16 Sanyo Electric Co Ltd Nickel-hydrogen storage battery
JP2009070781A (en) * 2007-09-18 2009-04-02 Fuji Heavy Ind Ltd Power storage device
JP2010020921A (en) * 2008-07-08 2010-01-28 Fdk Corp Power storage cell, and power storage cell module

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056388A (en) * 2013-09-13 2015-03-23 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
EP3719913A4 (en) * 2017-11-30 2020-12-23 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2019175615A (en) * 2018-03-27 2019-10-10 日立化成株式会社 Electrode group and zinc battery
JP7083561B2 (en) 2018-03-27 2022-06-13 昭和電工マテリアルズ株式会社 Electrode group and zinc battery
WO2023170960A1 (en) * 2022-03-11 2023-09-14 武蔵精密工業株式会社 Storage cell, storage module, and method for manufacturing storage cell

Also Published As

Publication number Publication date
WO2014002532A1 (en) 2014-01-03
CN104412438A (en) 2015-03-11
JP5994977B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5994977B2 (en) Secondary battery
US20060197496A1 (en) Combination of lithium ion batteries
US20140287304A1 (en) Electrode and method for maufacturing the same
KR101245283B1 (en) Electrochemical device having plural power characteristics
KR20100071786A (en) Secondary battery having enhanced uniformity of temperature distribution
JP2016207614A (en) Solid-state battery
JP5214172B2 (en) Electrode manufacturing method and storage device manufacturing method
KR101834035B1 (en) Electrode assembly, battery cell and device comprising the same
JP2013093216A (en) Battery
JP2014120404A (en) Secondary battery
JP2014007108A (en) Secondary battery
JP6580680B2 (en) Secondary battery with improved output characteristics
KR101959127B1 (en) Lithium ion secondary battery
KR102011679B1 (en) Electrode Assembly Comprising Electrode Plate Having Different Loading Amounts of Active Material on both Sides
KR101773103B1 (en) Electrode, a method for preparing the same, electrode prepared using the same and secondary battery containing the same
KR102025564B1 (en) Electrode Assembly Comprising Unit Cell Sandwiched between Battery Elements
KR20180043183A (en) Lithium secondary battery
KR101636115B1 (en) Electrode assembly for lithium secondary battery and lithium secondary battery
US9356294B2 (en) Secondary battery including collectors with pores and manufacturing method thereof
KR20180113640A (en) Flat-type secondary battery
JP6028916B2 (en) Secondary battery
JP5678569B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP2013143353A (en) Lithium ion secondary battery
JP6770687B2 (en) Lithium ion secondary battery
CN107834111B (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R151 Written notification of patent or utility model registration

Ref document number: 5994977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350