JP2014005742A - Exhaust cleaning device of internal combustion engine - Google Patents

Exhaust cleaning device of internal combustion engine Download PDF

Info

Publication number
JP2014005742A
JP2014005742A JP2012140010A JP2012140010A JP2014005742A JP 2014005742 A JP2014005742 A JP 2014005742A JP 2012140010 A JP2012140010 A JP 2012140010A JP 2012140010 A JP2012140010 A JP 2012140010A JP 2014005742 A JP2014005742 A JP 2014005742A
Authority
JP
Japan
Prior art keywords
exhaust
urea water
addition
amount
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012140010A
Other languages
Japanese (ja)
Inventor
Ataru Ichikawa
中 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012140010A priority Critical patent/JP2014005742A/en
Priority to US13/900,693 priority patent/US20130340412A1/en
Priority to DE102013106205A priority patent/DE102013106205A1/en
Publication of JP2014005742A publication Critical patent/JP2014005742A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • F01N3/208Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/0601Parameters used for exhaust control or diagnosing being estimated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1411Exhaust gas flow rate, e.g. mass flow rate or volumetric flow rate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1622Catalyst reducing agent absorption capacity or consumption amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust cleaning device of an internal combustion engine which prevents an additive added into an exhaust pipe from an adding means from being stuck to an exhaust pipe wall surface, in the exhaust cleaning device of the internal combustion engine which selectively cleans specified harmful components such as NOx in exhaust by means of a catalyst disposed on an exhaust pipe.SOLUTION: An urea water addition valve 2 for adding urea water into an exhaust pipe 13 is disposed on an exhaust pipe 13 of an engine 101 of a vehicle. On the downstream side from the urea water addition valve 2 of the exhaust pipe 13, an SCR catalyst 1 which converts the added urea water into ammonia and stores the ammonia to reduce NOx in exhaust by the use of the ammonia is disposed. An ECU 11 as an exhaust cleaning device of the internal combustion engine calculates a space speed of the exhaust in the SCR catalyst 1 as exhaust flow velocity based on exhaust flow rate, catalyst temperature and atmospheric pressure. When the calculated exhaust flow velocity is low, the ECU 11 controls the urea water addition valve 2 such that the addition amount of the urea water per unit time becomes less than that when the calculated exhaust flow velocity is high.

Description

本発明は、内燃機関の排気浄化装置に関し、詳細には尿素SCRシステムなどの排気浄化システムに備えられ、排気管に設けられた触媒により排気中の所定の有害成分(NOx等)を選択的に浄化する内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more specifically, is provided in an exhaust gas purification system such as a urea SCR system, and selectively removes predetermined harmful components (NOx, etc.) in the exhaust gas by a catalyst provided in an exhaust pipe. The present invention relates to an exhaust emission control device for an internal combustion engine to be purified.

従来、内燃機関の排気浄化システムの一つに尿素SCRシステムが知られている。その尿素SCRシステムでは排気管に排気中のNOxを選択的に還元浄化する触媒(SCR触媒、NOx選択還元触媒)が設けられる。その触媒より上流側には、排気管内に尿素水(添加剤)を添加する添加弁(添加手段)が設けられる。触媒は、尿素水添加弁から添加された尿素水をアンモニアに変換して貯蔵し、貯蔵したアンモニアで排気中のNOxを窒素と水とに分解(還元)する。   Conventionally, a urea SCR system is known as one of exhaust gas purification systems for internal combustion engines. In the urea SCR system, a catalyst (SCR catalyst, NOx selective reduction catalyst) that selectively reduces and purifies NOx in the exhaust is provided in the exhaust pipe. An addition valve (addition means) for adding urea water (additive) into the exhaust pipe is provided upstream of the catalyst. The catalyst converts urea water added from the urea water addition valve into ammonia and stores it, and decomposes (reduces) NOx in the exhaust gas into nitrogen and water with the stored ammonia.

触媒でのアンモニアの貯蔵可能量は触媒温度によって変化する。そのため、触媒でのNOx浄化率を高めるには触媒に貯蔵するアンモニアの貯蔵量を触媒温度に応じて最適にする必要がある。例えばアンモニア貯蔵量が少ないと十分なNOx還元が行えない。反対にアンモニア貯蔵量が多すぎて触媒温度の急激な変化で貯蔵可能量を超えてしまうと、超えた分のアンモニアが触媒から放出されるアンモニアスリップという現象が発生する。このような不具合の発生を防止するためには、触媒に貯蔵されているアンモニアの貯蔵量を正確に推定し、推定した貯蔵量に応じて添加弁による尿素水の添加を適切に行う必要がある。   The amount of ammonia that can be stored in the catalyst varies depending on the catalyst temperature. Therefore, in order to increase the NOx purification rate in the catalyst, it is necessary to optimize the amount of ammonia stored in the catalyst according to the catalyst temperature. For example, if the amount of ammonia stored is small, sufficient NOx reduction cannot be performed. On the other hand, if the amount of ammonia stored is too large and exceeds the storable amount due to a rapid change in the catalyst temperature, a phenomenon called ammonia slip occurs in which the excess ammonia is released from the catalyst. In order to prevent the occurrence of such problems, it is necessary to accurately estimate the storage amount of ammonia stored in the catalyst and appropriately add urea water using the addition valve according to the estimated storage amount. .

そして従来、触媒でのアンモニア貯蔵量は、内燃機関(エンジン)から排出されたNOxの排出量、添加弁から添加された尿素水量(NH3量)、触媒で消費したアンモニア量の収支に基づき推定されていた(例えば特許文献1参照)。   Conventionally, the amount of ammonia stored in the catalyst is estimated based on the amount of NOx discharged from the internal combustion engine (engine), the amount of urea water added from the addition valve (NH3 amount), and the balance of the amount of ammonia consumed by the catalyst. (For example, refer to Patent Document 1).

特許第3951774号公報Japanese Patent No. 3951774

ところで、触媒での添加剤(アンモニア)の貯蔵量を正確に推定するには、添加弁から添加された添加剤(尿素水)を排気に乗せて触媒まで到達させる必要がある。しかし、排気流速が低いときには、排気のエネルギー不足により添加弁からの添加剤が触媒に到達しないで排気管壁面に付着することがある。この場合、触媒での貯蔵量の推定値に誤差が生じるため、最適な添加剤添加を行うことができず、その結果、触媒での浄化率が低下するという問題が発生する。   By the way, in order to accurately estimate the storage amount of the additive (ammonia) in the catalyst, it is necessary to allow the additive (urea water) added from the addition valve to reach the catalyst on the exhaust. However, when the exhaust gas flow rate is low, the additive from the addition valve may not reach the catalyst and adhere to the exhaust pipe wall surface due to insufficient exhaust energy. In this case, since an error occurs in the estimated value of the storage amount in the catalyst, the optimum additive cannot be added, resulting in a problem that the purification rate in the catalyst is lowered.

本発明は上記事情に鑑みてなされたものであり、排気管に設けられた触媒により排気中の所定の有害成分(NOx等)を選択的に浄化する内燃機関の排気浄化装置において、添加手段から排気管内に添加された添加剤が排気管壁面に付着してしまうのを防止することを課題とする。   The present invention has been made in view of the above circumstances. In an exhaust gas purification apparatus for an internal combustion engine that selectively purifies predetermined harmful components (NOx and the like) in exhaust gas by a catalyst provided in an exhaust pipe, It is an object to prevent the additive added in the exhaust pipe from adhering to the wall surface of the exhaust pipe.

上記課題を解決するために、本発明の内燃機関の排気浄化装置は、内燃機関の排気管に設けられ、前記排気管に所定の添加剤を添加する添加手段と、
前記排気管の前記添加手段より下流側に設けられ、前記添加手段で添加された添加剤を貯蔵しその添加剤で排気中の所定の有害成分を浄化する触媒とを備えた排気浄化システムに備えられ、
前記添加手段で添加すべき添加剤の添加量を決定する添加量決定手段と、
その添加量決定手段が決定した添加量である総添加量ぶんの添加剤が前記排気管に添加されるように前記添加手段を制御する添加制御手段と、
排気流速を算出する流速算出手段とを備え、
前記添加制御手段は、前記流速算出手段が算出した排気流速が低いほど単位時間当たりの添加剤の添加量が小さくなるように前記添加手段を制御することを特徴とする。
In order to solve the above problems, an exhaust emission control device for an internal combustion engine of the present invention is provided in an exhaust pipe of the internal combustion engine, and an adding means for adding a predetermined additive to the exhaust pipe;
Provided in an exhaust purification system provided with a catalyst provided downstream of the adding means of the exhaust pipe and storing an additive added by the adding means and purifying predetermined harmful components in the exhaust gas with the additive. And
An addition amount determining means for determining the amount of additive to be added by the adding means;
An addition control means for controlling the addition means so that the total addition amount of additive which is the addition amount determined by the addition amount determination means is added to the exhaust pipe;
A flow velocity calculating means for calculating the exhaust flow velocity,
The addition control means controls the addition means so that the additive addition amount per unit time becomes smaller as the exhaust flow velocity calculated by the flow velocity calculation means is lower.

本発明によれば、添加量決定手段が決定した総添加量ぶんの添加剤を添加手段で添加する際に、排気流速が低いほど単位時間当たりの添加量を小さくしている。排気流速が低いときには添加剤を触媒まで搬送する排気のエネルギーが小さくなるが、この場合には単位時間当たりの添加量を小さくしているので、添加された添加剤を排気に効率良く乗せることができ、触媒に効率良く到達させることができる。つまり、添加された添加剤が排気管壁面に付着してしまうのを防止できる。   According to the present invention, when adding the total addition amount of additive determined by the addition amount determining means by the adding means, the addition amount per unit time is made smaller as the exhaust gas flow rate is lower. When the exhaust gas flow rate is low, the energy of the exhaust gas that conveys the additive to the catalyst becomes small. In this case, since the additive amount per unit time is reduced, the added additive can be efficiently put on the exhaust gas. And can reach the catalyst efficiently. That is, it is possible to prevent the added additive from adhering to the exhaust pipe wall surface.

排気浄化システム100の構成図である。1 is a configuration diagram of an exhaust purification system 100. FIG. 第1実施形態におけるECU11が実行する処理のフローチャートである。It is a flowchart of the process which ECU11 in 1st Embodiment performs. 排気流速としての空間速度SVの算出方法の第1例を説明する図である。It is a figure explaining the 1st example of the calculation method of space velocity SV as exhaust flow velocity. 排気流速としての空間速度SVの算出方法の第2例を説明する図である。It is a figure explaining the 2nd example of the calculation method of space velocity SV as exhaust flow velocity. 触媒温度に対する最大NH3貯蔵量を示した図である。It is the figure which showed the largest NH3 storage amount with respect to catalyst temperature. 触媒温度に対する最大NH3貯蔵量のライン203及び目標NH3貯蔵量のライン204を示した図である。It is the figure which showed the line 203 of the maximum NH3 storage amount with respect to catalyst temperature, and the line 204 of the target NH3 storage amount. 排気流速Vexが低くなるにしたがって連続的に分割回数N(尿素水添加するときの添加回数)を大きくしていくマップ301である。This is a map 301 in which the number of divisions N (the number of times of addition when urea water is added) is continuously increased as the exhaust flow velocity Vex decreases. 排気流速Vexが低くなるにしたがって段階的に分割回数Nを大きくしていくマップ302である。The map 302 increases the number of divisions N stepwise as the exhaust flow velocity Vex decreases. 排気流速Vexが閾値Vth以上の高いときと、閾値Vth以下の低いときとで択一的に分割回数Nを切り替えるマップ303を示している。A map 303 is shown in which the number of divisions N is alternatively switched between when the exhaust flow velocity Vex is higher than the threshold Vth and when it is lower than the threshold Vth. 第1実施形態において、排気流速が高いか低いかで、尿素水添加がどのように変わるか、それによってSCR触媒1へのNH3貯蔵量がどのように変わるかを説明する図である。In 1st Embodiment, it is a figure explaining how urea water addition changes depending on whether the exhaust gas flow rate is high or low, and how NH3 storage amount to the SCR catalyst 1 changes by it. 第2実施形態におけるECU11が実行する処理のフローチャートを示している。The flowchart of the process which ECU11 in 2nd Embodiment performs is shown. 排気流速Vexに対する駆動デューティDのマップ401である。It is the map 401 of the drive duty D with respect to the exhaust flow velocity Vex. 第2実施形態において、排気流速が高いか低いかで、尿素水添加がどのように変わるか、それによってSCR触媒1へのNH3貯蔵量がどのように変わるかを説明する図である。In a 2nd embodiment, it is a figure explaining how urea water addition changes depending on whether an exhaust gas flow rate is high or low, and how NH3 storage amount to SCR catalyst 1 changes by it. 第3実施形態におけるECU11が実行する処理のフローチャートを示している。The flowchart of the process which ECU11 in 3rd Embodiment performs is shown. 排気流速Vexに対する駆動周期Fのマップ501である。It is the map 501 of the driving period F with respect to the exhaust flow velocity Vex. 第3実施形態において、排気流速が高いか低いかで、尿素水添加がどのように変わるか、それによってSCR触媒1へのNH3貯蔵量がどのように変わるかを説明する図である。In 3rd Embodiment, it is a figure explaining how urea water addition changes by the exhaust gas flow rate being high or low, and how NH3 storage amount to the SCR catalyst 1 changes by it.

(第1実施形態)
以下、本発明に係る内燃機関の排気浄化装置の第1実施形態を図面を参照しながら説明する。図1は、車両に搭載された排気浄化システム100の構成図である。排気浄化システム100は、内燃機関としてのディーゼルエンジン101から排出される排気中のNOxを浄化する尿素SCRシステムとして構築されている。排気浄化システム100では、エンジン101に排気管13が接続されており、エンジン101からの排気はその排気管13を通って車両外に排出されるようになっている。排気管13には、排気中のNOxを選択的に還元するSCR触媒1(NOx選択還元触媒)が設けられている。そのSCR触媒1は、後述する尿素水添加弁2から添加された尿素水(添加剤、還元剤)を加水分解によりアンモニア(NH3)に変換してそのアンモニアを貯蔵する。そして、SCR触媒1は、貯蔵したアンモニア(NH3)と排気中のNOxとを例えば下記式1、式2の反応を行わせることで、NOxを水や窒素に分解(浄化)する。
4NO+4NH3+O2→4N2+6H2O ・・・(式1)
6NO2+8NH3→7N2+3H2O ・・・(式2)
(First embodiment)
Hereinafter, a first embodiment of an exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an exhaust purification system 100 mounted on a vehicle. The exhaust purification system 100 is constructed as a urea SCR system that purifies NOx in exhaust discharged from a diesel engine 101 as an internal combustion engine. In the exhaust purification system 100, an exhaust pipe 13 is connected to the engine 101, and exhaust from the engine 101 is discharged outside the vehicle through the exhaust pipe 13. The exhaust pipe 13 is provided with an SCR catalyst 1 (NOx selective reduction catalyst) that selectively reduces NOx in the exhaust. The SCR catalyst 1 converts urea water (additive, reducing agent) added from a urea water addition valve 2 described later into ammonia (NH 3) by hydrolysis and stores the ammonia. Then, the SCR catalyst 1 decomposes (purifies) NOx into water or nitrogen by causing the stored ammonia (NH3) and NOx in the exhaust to react, for example, by the following formulas 1 and 2.
4NO + 4NH3 + O2 → 4N2 + 6H2O (Formula 1)
6NO2 + 8NH3 → 7N2 + 3H2O (Formula 2)

なお、SCR触媒1は無尽蔵にアンモニアを貯蔵できるわけではなく、SCR触媒1に貯蔵できるアンモニアの最大貯蔵量(最大NH3貯蔵量)は、図5に示すように、SCR触媒1の温度(触媒温度)によって変化する。具体的には、触媒温度が高いほど最大NH3貯蔵量は低下する。   In addition, the SCR catalyst 1 cannot store ammonia inexhaustably, and the maximum storage amount of ammonia that can be stored in the SCR catalyst 1 (maximum NH3 storage amount) is the temperature of the SCR catalyst 1 (catalyst temperature) as shown in FIG. ). Specifically, the maximum NH3 storage amount decreases as the catalyst temperature increases.

排気管13のSCR触媒1より上流側には尿素水を排気管13内に添加する尿素水添加弁2が設けられている。その尿素水添加弁2は、エンジン101の筒内に燃料を噴射するインジェクタ(図示外)と同様の構造を有している。具体的には、尿素水添加弁2は、電磁ソレノイド等からなる駆動部と、尿素水を流通させる尿素水通路や先端噴出口を開閉するためのニードルを有する弁本部とを備えた電磁式開閉弁として構成されており、ECU11からの駆動信号に基づき開弁又は閉弁する。すなわち、駆動信号に基づき電磁ソレノイドが通電されると、その通電に伴いニードルが開弁方向に移動し、そのニードルの移動に伴い先端噴出口から尿素水が添加(噴射)される。   A urea water addition valve 2 for adding urea water into the exhaust pipe 13 is provided upstream of the SCR catalyst 1 in the exhaust pipe 13. The urea water addition valve 2 has the same structure as an injector (not shown) that injects fuel into the cylinder of the engine 101. Specifically, the urea water addition valve 2 is an electromagnetic opening / closing provided with a drive unit composed of an electromagnetic solenoid or the like, and a valve main unit having a needle for opening and closing a urea water passage through which urea water flows and a tip jet port. It is comprised as a valve and opens or closes based on the drive signal from ECU11. That is, when the electromagnetic solenoid is energized based on the drive signal, the needle moves in the valve opening direction along with the energization, and urea water is added (injected) from the tip ejection port as the needle moves.

尿素水添加弁2に対しては、尿素水タンク7から尿素水が逐次供給される。以下、尿素水供給系の構成について説明する。なお、以下の説明では便宜上、尿素水タンク7から尿素水添加弁2に対して尿素水が供給される場合を基準として、尿素水タンク7側を上流側、尿素水添加弁2側を下流側として記載する。   The urea water is sequentially supplied from the urea water tank 7 to the urea water addition valve 2. Hereinafter, the configuration of the urea water supply system will be described. In the following description, for convenience, the urea water tank 7 side is the upstream side and the urea water addition valve 2 side is the downstream side, based on the case where urea water is supplied from the urea water tank 7 to the urea water addition valve 2. It describes as.

尿素水タンク7は、給液キャップ付きの密閉容器にて構成されており、その内部に所定の規定濃度の尿素水が貯蔵されている。尿素水タンク7と尿素水添加弁2とは尿素水供給管15により接続されており、尿素水供給管15内に尿素水通路が形成されている。尿素水供給管15のうち尿素水タンク7側の先端部には、尿素水を吸い込むための吸込口が形成されており、その吸込口が尿素水タンク7内に尿素水が貯留された状態において尿素水に浸漬した状態になっている。   The urea water tank 7 is configured by a sealed container with a liquid supply cap, and urea water having a predetermined specified concentration is stored therein. The urea water tank 7 and the urea water addition valve 2 are connected by a urea water supply pipe 15, and a urea water passage is formed in the urea water supply pipe 15. A suction port for sucking urea water is formed at the end of the urea water supply pipe 15 on the urea water tank 7 side, and the suction port is in a state where urea water is stored in the urea water tank 7. It is in a state immersed in urea water.

尿素水供給管15の途中には、尿素水ポンプ6が設けられている。尿素水ポンプ6は、ECU11からの駆動信号により回転駆動されるインライン式の電動ポンプである。本実施形態では、尿素水ポンプ6は尿素水タンク7内の尿素水に浸漬した状態で設けられているが、尿素水タンク7外に設けられたとしても良い。   A urea water pump 6 is provided in the middle of the urea water supply pipe 15. The urea water pump 6 is an in-line electric pump that is rotationally driven by a drive signal from the ECU 11. In this embodiment, the urea water pump 6 is provided so as to be immersed in the urea water in the urea water tank 7, but it may be provided outside the urea water tank 7.

尿素水供給管15の途中には、尿素水を濾過する多孔質状の尿素水フィルタ3が設けられている。この尿素水フィルタ3によって尿素水内の異物が除去され、尿素水添加弁2や尿素水タンク7内に異物が入り込むのが抑制される。   In the middle of the urea water supply pipe 15, a porous urea water filter 3 for filtering the urea water is provided. Foreign substances in the urea water are removed by the urea water filter 3, and foreign substances are prevented from entering the urea water addition valve 2 and the urea water tank 7.

また、尿素水ポンプ6よりも下流側には、尿素水添加圧が所定の圧力となるように調整する尿素水圧レギュレータ5が設けられている。尿素水圧レギュレータ5にて圧力調整の結果、余剰となった尿素水は尿素水タンク7に戻される。また、尿素水供給管15の途中には、尿素水供給管15内の尿素水の圧力を検出する尿素水圧センサ4が設けられている。尿素水添加圧を尿素水圧レギュレータ5で機械的に制御する方法に代えて、尿素水圧センサ4の検出値に基づきECU11が尿素水ポンプ6の駆動を制御することで、尿素水添加圧を調整する方法を採用しても良い。   A urea water pressure regulator 5 that adjusts the urea water addition pressure to a predetermined pressure is provided downstream of the urea water pump 6. As a result of pressure adjustment by the urea water pressure regulator 5, surplus urea water is returned to the urea water tank 7. A urea water pressure sensor 4 that detects the pressure of the urea water in the urea water supply pipe 15 is provided in the middle of the urea water supply pipe 15. Instead of the method of mechanically controlling the urea water addition pressure with the urea water pressure regulator 5, the ECU 11 controls the drive of the urea water pump 6 based on the detected value of the urea water pressure sensor 4, thereby adjusting the urea water addition pressure. A method may be adopted.

排気管13のSCR触媒1より上流側にはエンジン101からの排気流量を検出する排気流量センサ9が設けられている。なお、排気流量センサ9は、尿素水添加弁2よりも上流側に設けられている。また、排気管13のSCR触媒1よりも上流側(尿素水添加弁2とSCR触媒1の間)には、SCR触媒1の上流側の排気温度を検出する排気温センサ12と、SCR触媒1の上流側のNOx濃度を検出する上流側NOxセンサ81とが設けられている。排気管13のSCR触媒1よりも下流側には、SCR触媒1の下流側のNOx濃度を検出する下流側NOxセンサ82が設けられている。また、大気圧を検出する大気圧センサ10が設けられている。各センサ9、12、81、82、10とECU111とは接続されており、各センサ9、12、81、82、10の検出値はECU11に入力されるようになっている。   An exhaust flow rate sensor 9 for detecting the exhaust flow rate from the engine 101 is provided upstream of the SCR catalyst 1 in the exhaust pipe 13. The exhaust flow sensor 9 is provided on the upstream side of the urea water addition valve 2. Further, on the upstream side of the exhaust pipe 13 from the SCR catalyst 1 (between the urea water addition valve 2 and the SCR catalyst 1), an exhaust temperature sensor 12 for detecting the exhaust temperature upstream of the SCR catalyst 1, and the SCR catalyst 1 And an upstream NOx sensor 81 for detecting the upstream NOx concentration. A downstream NOx sensor 82 that detects the NOx concentration on the downstream side of the SCR catalyst 1 is provided downstream of the SCR catalyst 1 in the exhaust pipe 13. An atmospheric pressure sensor 10 that detects atmospheric pressure is provided. The sensors 9, 12, 81, 82, 10 and the ECU 111 are connected to each other, and the detection values of the sensors 9, 12, 81, 82, 10 are input to the ECU 11.

ECU11は、周知のマイクロコンピュータを備え、各種センサの検出値に基づいて尿素水添加弁2による排気管13内への尿素水添加を制御する。また、ECU11はメモリ111を備え、そのメモリ111にはECU11が実行する処理に必要な各種データ(後述する各種マップなど)が記憶されている。なお、ECU11が本発明に係る「内燃機関の排気浄化装置」に相当する。以下、ECU11が実行する処理の詳細を説明する。図2はECU11が実行する処理のフローチャートを示している。図2の処理は例えばエンジン101の始動と同時に開始され、以後、エンジン101が停止するまで一定間隔で繰り返し実行される。   The ECU 11 includes a known microcomputer, and controls urea water addition into the exhaust pipe 13 by the urea water addition valve 2 based on detection values of various sensors. The ECU 11 includes a memory 111, and various data (such as various maps described later) necessary for processing executed by the ECU 11 are stored in the memory 111. The ECU 11 corresponds to an “exhaust gas purification device for an internal combustion engine” according to the present invention. Hereinafter, details of processing executed by the ECU 11 will be described. FIG. 2 shows a flowchart of processing executed by the ECU 11. The processing in FIG. 2 is started at the same time as the engine 101 is started, for example, and thereafter repeatedly executed at regular intervals until the engine 101 stops.

図2の処理が開始されると、先ず、排気温度Tex(℃)、大気圧Pa(Pa)及び排気流量Mf(kg/s)を、排気温センサ12、大気圧センサ10、排気流量センサ9から取り込む(S11)。本実施形態では、排気流量Mfは、質量流量(kg/s)として取り込んでいる。なお、排気流量センサ9の検出値の代わりに、エンジン101への空気吸入量を検出するエアフロメーター(図示外)の検出値で、排気流量を代用しても良い。   When the processing of FIG. 2 is started, first, the exhaust temperature Tex (° C.), the atmospheric pressure Pa (Pa), and the exhaust flow rate Mf (kg / s) are set to the exhaust temperature sensor 12, the atmospheric pressure sensor 10, and the exhaust flow rate sensor 9. (S11). In the present embodiment, the exhaust flow rate Mf is taken in as a mass flow rate (kg / s). Instead of the detection value of the exhaust flow sensor 9, the detection value of an air flow meter (not shown) that detects the amount of air sucked into the engine 101 may be used instead.

次いで、排気流速Vexを算出する(S12)。本実施形態では、排気流速Vexとして、SCR触媒1における排気の空間速度SVを算出している(S12)。排気の空間速度SVの算出の考え方を説明すると、先ずSCR触媒1の上流の排気密度(kg/m)を算出する。排気密度は、例えばSCR触媒1の温度Tc(触媒温度)や排気の圧力を理想気体の状態方程式に代入して算出する。ここでは、触媒温度Tcは排気温度Texで代用している。なお、排気温度Texに対する触媒温度Tcの関係を示したマップを予め用意しておき、そのマップに基づき排気温度Texから触媒温度Tcを算出しても良い。また、SCR触媒1の前後差圧は無視して、ここではS11で取り込んだ大気圧Paを排気の圧力としている。排気密度を算出した後、S11で取り込んだ排気流量Mf(kg/s)を排気密度(kg/m)で除算して、排気の体積流量(m/s)を算出する。そして、その体積流量(m/s)をSCR触媒1の体積(m)で除算して、空間速度SV(1/s)を算出する。なお、メモリ111には、SCR触媒1の体積が予め記憶されている。 Next, the exhaust flow velocity Vex is calculated (S12). In the present embodiment, the exhaust space velocity SV in the SCR catalyst 1 is calculated as the exhaust flow velocity Vex (S12). Explaining the concept of calculating the exhaust space velocity SV, first, the exhaust density (kg / m 3 ) upstream of the SCR catalyst 1 is calculated. The exhaust density is calculated by, for example, substituting the temperature Tc (catalyst temperature) of the SCR catalyst 1 and the exhaust pressure into the ideal gas equation of state. Here, the exhaust gas temperature Tex is substituted for the catalyst temperature Tc. A map showing the relationship of the catalyst temperature Tc to the exhaust temperature Tex may be prepared in advance, and the catalyst temperature Tc may be calculated from the exhaust temperature Tex based on the map. Further, the differential pressure across the SCR catalyst 1 is ignored, and the atmospheric pressure Pa taken in S11 is used as the exhaust pressure here. After calculating the exhaust density, the exhaust flow rate Mf (kg / s) captured in S11 is divided by the exhaust density (kg / m 3 ) to calculate the exhaust volume flow rate (m 3 / s). Then, the volumetric flow rate (m 3 / s) is divided by the volume (m 3 ) of the SCR catalyst 1 to calculate the space velocity SV (1 / s). In the memory 111, the volume of the SCR catalyst 1 is stored in advance.

以上説明したように、空間速度SVは排気流量Mf、大気圧Pa及び触媒温度Tc(排気温度Tex)と相関がある。そこで、S12では、図3に示すように、排気流量Mf、大気圧Pa及び触媒温度Tcをパラメータとした空間速度SVの算出式SV(Mf、Pa、Tc)をメモリ111に記憶しておく。そして、その算出式SV(Mf、Pa、Tc)に、今回の排気流量Mf、大気圧Pa及び触媒温度Tcを代入して、空間速度SVを算出すれば良い。又は、図4に示すように、触媒温度Tc、排気流量Mf及び大気圧Paに対応する空間速度SVのマップ201をメモリ111に記憶しておき、そのマップ201に基づいて空間速度SVを算出するようにしても良い。なお、図4では、触媒温度Tcごとに、排気流量Mf及び大気圧Paに対する空間速度SVのマップ201を設けた例を示している。   As described above, the space velocity SV is correlated with the exhaust gas flow rate Mf, the atmospheric pressure Pa, and the catalyst temperature Tc (exhaust temperature Tex). Therefore, in S12, as shown in FIG. 3, the calculation formula SV (Mf, Pa, Tc) of the space velocity SV using the exhaust gas flow rate Mf, the atmospheric pressure Pa, and the catalyst temperature Tc as parameters is stored in the memory 111. Then, the space velocity SV may be calculated by substituting the exhaust flow rate Mf, the atmospheric pressure Pa, and the catalyst temperature Tc of this time into the calculation formula SV (Mf, Pa, Tc). Alternatively, as shown in FIG. 4, a map 201 of the space velocity SV corresponding to the catalyst temperature Tc, the exhaust gas flow rate Mf, and the atmospheric pressure Pa is stored in the memory 111, and the space velocity SV is calculated based on the map 201. You may do it. FIG. 4 shows an example in which a map 201 of the space velocity SV with respect to the exhaust gas flow rate Mf and the atmospheric pressure Pa is provided for each catalyst temperature Tc.

図2の説明に戻り、S12の後、現在の触媒温度Tcにおける最大NH3貯蔵量を算出する(S13)。具体的には、図5に示す触媒温度Tcと最大NH3貯蔵量との関係を示したマップ203をメモリ111に記憶しておく。そして、そのマップ203に基づいて今回の最大NH3貯蔵量を算出する。なお、ここでは、S11で取り込んだ排気温度Texを触媒温度Tcに代用し、その排気温度Texに対する最大NH3貯蔵量STmax(Tex)を算出している。   Returning to FIG. 2, after S12, the maximum NH3 storage amount at the current catalyst temperature Tc is calculated (S13). Specifically, a map 203 showing the relationship between the catalyst temperature Tc and the maximum NH 3 storage amount shown in FIG. Based on the map 203, the current maximum NH3 storage amount is calculated. Here, the exhaust temperature Tex taken in S11 is substituted for the catalyst temperature Tc, and the maximum NH3 storage amount STmax (Tex) with respect to the exhaust temperature Tex is calculated.

次いで、SCR触媒1に貯蔵するアンモニアの目標貯蔵量(目標NH3貯蔵量)STtg(Tex)を算出する(S14)。ここで、図6は、目標NH3貯蔵量の算出の考え方を説明するための図であり、詳細には、触媒温度に対する最大NH3貯蔵量のライン203(図5のマップ203と同じ)及び目標NH3貯蔵量のライン204を示している。ある触媒温度T1での最大NH3貯蔵量をSTmax(T1)としたとき、その貯蔵量STmax(T1)自体又は貯蔵量STmax(T1)に近い貯蔵量202を目標NH3貯蔵量に設定したとする。この場合、例えばエンジン101がアイドル状態から加速状態に移行したときのように、触媒温度(排気温度)が急激に上昇したときには、最大NH3貯蔵量が急激に低下する。その結果、最大NH3貯蔵量を超えた分のアンモニアがSCR触媒1から放出されてしまう(NH3スリップ)。   Next, a target storage amount (target NH3 storage amount) STtg (Tex) of ammonia stored in the SCR catalyst 1 is calculated (S14). Here, FIG. 6 is a diagram for explaining the concept of calculation of the target NH3 storage amount. Specifically, the line 203 of the maximum NH3 storage amount with respect to the catalyst temperature (same as the map 203 in FIG. 5) and the target NH3. A storage line 204 is shown. When the maximum NH3 storage amount at a certain catalyst temperature T1 is STmax (T1), it is assumed that the storage amount STmax (T1) itself or the storage amount 202 close to the storage amount STmax (T1) is set as the target NH3 storage amount. In this case, for example, when the catalyst temperature (exhaust temperature) increases abruptly, such as when the engine 101 shifts from the idle state to the acceleration state, the maximum NH3 storage amount rapidly decreases. As a result, ammonia in excess of the maximum NH3 storage amount is released from the SCR catalyst 1 (NH3 slip).

そこで、S14では、触媒温度が急激に上昇したときにもNH3スリップが発生しないように、最大NH3貯蔵量に対してある程度余裕を持った貯蔵量を、目標NH3貯蔵量に設定する。具体的には例えば、目標NH3貯蔵量は、最大NH3貯蔵量の60%〜70%の値に設定する。なお、実際は、最大NH3貯蔵量を超えた分のアンモニアの全部が無駄に放出されるわけではなく、放出されたアンモニアのうちのいくらかはNOxの還元に消費される。その消費される分も見越して設定された触媒温度と目標NH3貯蔵量の関係が、ライン204である。S14では、触媒温度と目標NH3貯蔵量の関係を示したマップ204(ライン)を予めメモリ111に記憶しておき、マップ204から(最大NH3貯蔵量の算出を経ないで)直接目標NH3貯蔵量を算出しても良い。この場合には、S13の処理を省略できる。   Therefore, in S14, the storage amount having a certain margin with respect to the maximum NH3 storage amount is set as the target NH3 storage amount so that NH3 slip does not occur even when the catalyst temperature rapidly increases. Specifically, for example, the target NH3 storage amount is set to a value of 60% to 70% of the maximum NH3 storage amount. Actually, not all of the ammonia exceeding the maximum NH3 storage amount is wasted and some of the released ammonia is consumed for the reduction of NOx. The relationship between the catalyst temperature set in anticipation of the consumed amount and the target NH 3 storage amount is a line 204. In S14, a map 204 (line) showing the relationship between the catalyst temperature and the target NH3 storage amount is stored in the memory 111 in advance, and the target NH3 storage amount is directly calculated from the map 204 (without calculating the maximum NH3 storage amount). May be calculated. In this case, the process of S13 can be omitted.

S14の後、SCR触媒1に現在貯蔵されているアンモニアの貯蔵量を推定NH3貯蔵量STrとして算出する(S15)。具体的には例えば、エンジン101から排出されたNOx排出量を、例えばエンジン回転数及び燃料噴射量に対するNOx排出量のマップに基づき算出する。また、SCR触媒1の上流側及び下流側に設けられたNOxセンサ81、82からの検出値に基づいて、SCR触媒1によるNOx浄化率を算出する。これらNOx排出量、NOx浄化率から、SCR触媒1で浄化されたNOx量(浄化NOx量)を算出する。その浄化NOx量からSCR触媒1で消費されたアンモニアの消費量を算出する。なお、浄化NOx量とアンモニアの消費量とは相関があるので、その相関データを予めメモリ111に記憶しておき、その相関データに基づいてアンモニアの消費量を算出すれば良い。算出したアンモニアの消費量をこれまでの推定NH3貯蔵量から引くことで、現在の推定NH3貯蔵量を算出する。なお、推定NH3貯蔵量STrの推定方法としては、上記の特許文献1(特許第3951774号公報)の方法など従来の各種方法を採用することができる。   After S14, the storage amount of ammonia currently stored in the SCR catalyst 1 is calculated as the estimated NH3 storage amount STr (S15). Specifically, for example, the NOx emission amount discharged from the engine 101 is calculated based on, for example, a map of the NOx emission amount with respect to the engine speed and the fuel injection amount. Further, the NOx purification rate by the SCR catalyst 1 is calculated based on the detected values from the NOx sensors 81 and 82 provided on the upstream side and the downstream side of the SCR catalyst 1. From the NOx emission amount and the NOx purification rate, the NOx amount purified by the SCR catalyst 1 (purified NOx amount) is calculated. The consumption amount of ammonia consumed by the SCR catalyst 1 is calculated from the purified NOx amount. Since the purified NOx amount and the ammonia consumption amount have a correlation, the correlation data may be stored in the memory 111 in advance, and the ammonia consumption amount may be calculated based on the correlation data. The current estimated NH3 storage amount is calculated by subtracting the calculated ammonia consumption from the estimated NH3 storage amount thus far. In addition, as a method for estimating the estimated NH 3 storage amount STr, various conventional methods such as the method described in Patent Document 1 (Japanese Patent No. 3951774) can be employed.

次に、目標NH3貯蔵量STtgと推定NH3貯蔵量STrとの偏差ΔSTを算出する(S16)。つまり、STtg−STr=ΔSTを計算する。次に、S16で算出した偏差ΔSTに基づいて、尿素水添加弁2に添加させる尿素水の添加量(尿素水添加量)Qu(ΔST)を算出する(S17)。なお、NOxの還元として、SCR触媒1に貯蔵されたアンモニアで行われる還元と、尿素水添加弁2から添加された尿素水(アンモニア)により直接行われる還元(以下、直接還元という)とがある。それら2つの還元の比率は触媒温度など各種条件によって変化する。S17では、直接還元で消費される尿素水の量(2つの還元の比率)を考慮して、目標NH3貯蔵量STtgを満足するように尿素水添加量Quを算出する。具体的には、偏差ΔST、触媒温度などの各種条件をパラメータとした尿素水添加量Quの算出式を予めメモリ111に持っておき、その算出式に基づき尿素水添加量Quを算出する。   Next, a deviation ΔST between the target NH3 storage amount STtg and the estimated NH3 storage amount STr is calculated (S16). That is, STtg−STr = ΔST is calculated. Next, based on the deviation ΔST calculated in S16, the urea water addition amount (urea water addition amount) Qu (ΔST) to be added to the urea water addition valve 2 is calculated (S17). Note that the reduction of NOx includes a reduction performed with ammonia stored in the SCR catalyst 1 and a reduction performed directly with urea water (ammonia) added from the urea water addition valve 2 (hereinafter referred to as direct reduction). . The ratio of these two reductions varies depending on various conditions such as the catalyst temperature. In S17, the urea water addition amount Qu is calculated so as to satisfy the target NH3 storage amount STtg in consideration of the amount of urea water consumed by the direct reduction (the ratio of the two reductions). Specifically, a calculation formula for the urea water addition amount Qu using various conditions such as deviation ΔST and catalyst temperature as parameters is stored in the memory 111 in advance, and the urea water addition amount Qu is calculated based on the calculation formula.

次に、S17で算出した尿素水添加量Quの分の尿素水を尿素水添加弁2に添加させるときの、尿素水の添加回数(分割回数)Nを算出する(S18)。具体的には、S12で算出した排気流速Vex(空間速度SV)が低いほど大きい分割回数Nを算出する。より具体的には、例えば図7〜図9に示すように、排気流速Vexに対する分割回数Nのマップ301(図7)、302(図8)、303(図9)を予めメモリ111に記憶しておき、それらマップ301、302、303のいずれかに基づいて分割回数Nを算出する。図7は、閾値Vth以上の排気流速Vexのときには分割回数N=1(添加を分割しないで1回で添加すること)とし、閾値Vth以下の排気流速Vexのときには排気流速Vexが低くなるにしたがって連続的に分割回数Nを大きくしていくマップ301を示している。このマップ301に基づき分割回数Nを算出することで、排気流速に応じたきめ細かい尿素水添加が可能となる。   Next, the number of times of urea water addition (number of divisions) N when adding urea water corresponding to the urea water addition amount Qu calculated in S17 to the urea water addition valve 2 is calculated (S18). Specifically, the lower the exhaust flow velocity Vex (space velocity SV) calculated in S12, the larger the division number N is calculated. More specifically, for example, as shown in FIGS. 7 to 9, maps 301 (FIG. 7), 302 (FIG. 8), and 303 (FIG. 9) of the division number N with respect to the exhaust flow velocity Vex are stored in the memory 111 in advance. In addition, the division number N is calculated based on one of the maps 301, 302, and 303. FIG. 7 shows that when the exhaust flow velocity Vex is equal to or higher than the threshold Vth, the number of divisions is N = 1 (addition is performed once without dividing), and when the exhaust flow velocity Vex is lower than the threshold Vth, the exhaust flow velocity Vex decreases. A map 301 in which the number of divisions N is continuously increased is shown. By calculating the number N of divisions based on this map 301, it is possible to add fine urea water according to the exhaust flow rate.

また、図8は、閾値Vth以上の排気流速Vexのときには分割回数N=1とし、閾値Vth以下の排気流速Vexのときには排気流速Vexが低くなるにしたがって段階的に分割回数Nを大きくしていくマップ302を示している。なお、添加した尿素水が排気管13の壁面に付着しないでSCR触媒1に到達できるのであれば、マップ302の隣り合う2つの分割回数Nの間隔ΔNや、排気流速Vexの間隔ΔVexは適宜に設定することができる。このマップ302に基づき分割回数Nを算出することで、排気流速Vexが変わる度に頻繁に分割回数Nを変更しなくてもすむ。   FIG. 8 shows that the number of divisions N = 1 when the exhaust flow velocity Vex is equal to or higher than the threshold Vth, and the number of divisions N is increased stepwise as the exhaust flow velocity Vex decreases when the exhaust flow velocity Vex is equal to or lower than the threshold Vth. A map 302 is shown. If the added urea water can reach the SCR catalyst 1 without adhering to the wall surface of the exhaust pipe 13, the interval ΔN between two adjacent divisions N of the map 302 and the interval ΔVex of the exhaust flow velocity Vex are appropriately set. Can be set. By calculating the division number N based on the map 302, it is not necessary to frequently change the division number N every time the exhaust flow velocity Vex changes.

また、図9は、排気流速Vexが閾値Vth以上の高いときと、閾値Vth以下の低いときとで択一的に分割回数Nを切り替えるマップ303を示している。マップ303では、排気流速Vexが閾値Vth以上のときには分割回数N=N1(例えばN1=1)、閾値Vth以下のときには分割回数N=N2(N2>N1)となっている。このマップ303に基づき分割回数Nを算出することで、排気流速Vexが高いか低いかを択一的に判定するだけでよいので、分割回数Nの算出処理が簡単になる。   FIG. 9 shows a map 303 that selectively switches the division number N between when the exhaust flow velocity Vex is higher than the threshold value Vth and when it is lower than the threshold value Vth. In the map 303, the division number N = N1 (for example, N1 = 1) when the exhaust flow velocity Vex is equal to or higher than the threshold value Vth, and the division number N = N2 (N2> N1) when the exhaust flow rate Vex is equal to or lower than the threshold value Vth. By calculating the number of divisions N based on this map 303, it is only necessary to alternatively determine whether the exhaust flow velocity Vex is high or low, so that the calculation process of the number of divisions N is simplified.

図2の説明に戻り、S18の後、S17で算出した尿素水添加量Qu(本発明の総添加量に相当)の分の尿素水が排気管13内に添加されるように、尿素水添加弁2を駆動制御する(S19)。これによって、尿素水添加弁2から添加された尿素水がSCR触媒1にてアンモニアに変換され、そのアンモニアがSCR触媒1に貯蔵されていく。そして、SCR触媒1でのアンモニア貯蔵量をS14で算出した目標NH3貯蔵量にできる。また、S19では、分割回数N=1のときには、尿素水添加量Quの分の尿素水を1回で添加し、分割回数N≧2のときには、尿素水添加量Quを分割回数Nで等分して複数回Nに分けて尿素水を添加する。ここで、図10は、排気流速が高いか低いかで、尿素水添加がどのように変わるか、それによってSCR触媒1へのNH3貯蔵量がどのように変わるかを説明する図である。図10(A)は排気流速が高いときを、図10(B)は排気流速が低いときを示している。詳細には、図10は、尿素水添加後のNH3貯蔵量の時間変化を示しており、図10(A)、(B)それぞれには、目標NH3貯蔵量の時間変化21と、実際のNH3貯蔵量(推定NH3貯蔵量)の時間変化22、24とを示している。また、図10(A)、(B)それぞれには、時間tの経過に対する尿素水添加の回数及び1回当たりの添加量をパルス23、25で図示している。パルス23、25の個数が尿素水添加の回数を示しており、パルス23、25の大きさが1回当たりの添加量を示している。なお、図10(A)では、尿素水を1回で添加する例を示している。図10(B)では、尿素水を5回に分けて添加する例を示している。   Returning to the description of FIG. 2, after S18, urea water addition is performed so that the urea water addition amount Qu (corresponding to the total addition amount of the present invention) calculated in S17 is added into the exhaust pipe 13. The valve 2 is driven and controlled (S19). As a result, the urea water added from the urea water addition valve 2 is converted into ammonia by the SCR catalyst 1, and the ammonia is stored in the SCR catalyst 1. Then, the ammonia storage amount in the SCR catalyst 1 can be made the target NH3 storage amount calculated in S14. In S19, when the number of times of division N = 1, urea water corresponding to the amount of added urea water Qu is added once, and when the number of times of division N ≧ 2, the amount of urea water added Qu is equally divided by the number of times of division N. Then, urea water is added in a plurality of N times. Here, FIG. 10 is a diagram for explaining how the urea water addition changes depending on whether the exhaust gas flow rate is high or low, and how the NH3 storage amount in the SCR catalyst 1 changes accordingly. FIG. 10A shows when the exhaust flow rate is high, and FIG. 10B shows when the exhaust flow rate is low. Specifically, FIG. 10 shows the time change of the NH3 storage amount after the urea water addition, and FIGS. 10A and 10B respectively show the time change 21 of the target NH3 storage amount and the actual NH3 amount. Time changes 22 and 24 of the storage amount (estimated NH 3 storage amount) are shown. 10A and 10B respectively show the number of urea water additions and the addition amount per pulse with pulses 23 and 25 over time t. The number of pulses 23 and 25 indicates the number of times of urea water addition, and the magnitude of the pulses 23 and 25 indicates the amount of addition per one time. Note that FIG. 10A shows an example in which urea water is added once. FIG. 10B shows an example in which urea water is added in five portions.

図10(A)に示すように、排気流速が高いときには、図10(B)の排気流速が低いときに比べて添加回数N(図10(A)では1回)が少なく1回当たりの添加量が多いので、推定NH3貯蔵量22を迅速に(短時間で)目標NH3貯蔵量21に近づけることができる。これに対し、図10(B)に示すように、排気流速が低いときには、図10(A)の排気流速が高いときに比べて添加回数N(図10(B)では5回)が多く1回当たりの添加量が少ないので、添加された尿素水が排気管13の壁面に付着してしまうのを防止でき、尿素水をSCR触媒1に効率良く到達させることができる。ただし、図10(B)では、図10(A)に比べて、推定NH3貯蔵量24が目標NH3貯蔵量21に近づくのに時間が掛かっている。なお、S19では、尿素水を複数回に分けて添加するときの添加間隔Δt(図10(B)参照)は例えば分割回数Nにかかわらず一定となっている。S19の後、図2のフローチャートの処理を終了する。   As shown in FIG. 10 (A), when the exhaust gas flow rate is high, the number of additions N (one time in FIG. 10 (A)) is smaller than when the exhaust gas flow rate is low in FIG. 10 (B). Since the amount is large, the estimated NH 3 storage amount 22 can be brought close to the target NH 3 storage amount 21 quickly (in a short time). On the other hand, as shown in FIG. 10 (B), when the exhaust gas flow rate is low, the number of times of addition N (5 times in FIG. 10 (B)) is larger than when the exhaust gas flow rate in FIG. Since the addition amount per rotation is small, it is possible to prevent the added urea water from adhering to the wall surface of the exhaust pipe 13 and to make the urea water reach the SCR catalyst 1 efficiently. However, in FIG. 10B, it takes time for the estimated NH 3 storage amount 24 to approach the target NH 3 storage amount 21 as compared with FIG. 10A. In S19, the addition interval Δt (see FIG. 10B) when urea water is added in a plurality of times is constant regardless of the division number N, for example. After S19, the process of the flowchart of FIG.

以上説明したように、本実施形態では、触媒温度に応じた目標NH3貯蔵量となるように尿素水添加が行われるので、触媒温度が変わったとしてもNOx浄化率が低下するのを防止できるとともに、NH3スリップも防止できる。また、尿素水添加の際に、排気流速が低いときには、尿素水の添加回数を増やして1回当たりの添加量を少なくしているので、排気管壁面に付着する尿素水を抑制できる。その結果、SCR触媒に貯蔵されているアンモニアの貯蔵量(推定NH3貯蔵量)を推定するときの誤差を小さくできるので、高いNOx浄化率を維持することができる。   As described above, in the present embodiment, urea water is added so as to achieve the target NH3 storage amount corresponding to the catalyst temperature, so that it is possible to prevent the NOx purification rate from decreasing even if the catalyst temperature changes. NH3 slip can also be prevented. In addition, when the urea water is added, when the exhaust gas flow rate is low, the urea water added to the exhaust pipe wall surface can be suppressed because the number of urea water additions is increased to reduce the addition amount per time. As a result, an error in estimating the amount of ammonia stored in the SCR catalyst (estimated NH3 storage amount) can be reduced, and a high NOx purification rate can be maintained.

(第2実施形態)
次に、本発明に係る内燃機関の排気浄化装置の第2実施形態を第1実施形態と異なる部分を中心にして説明する。この第2実施形態では、尿素水添加弁による尿素水の添加方法が第1実施形態と異なっており、具体的には、尿素水添加弁をデューティ制御することで、尿素水添加弁に駆動デューティに応じた尿素水添加を行わせている。
(Second Embodiment)
Next, a second embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention will be described with a focus on differences from the first embodiment. In the second embodiment, the urea water addition method using the urea water addition valve is different from that in the first embodiment. Specifically, the urea water addition valve is controlled by duty control so that the urea water addition valve has a drive duty. The urea water addition according to is performed.

本実施形態の排気浄化システムの構成は、図1に示す第1実施形態の構成と同じである。図11は、ECU11が実行する処理のフローチャートを示している。図11において、図2と同じ処理には同一符号を付している。図11では、図2の処理に比べて、S181、S191の処理が異なっている。すなわち、S17の後、尿素水添加弁2を駆動するときの駆動デューティD(添加周期Tに対する駆動時間τ、D=τ/T)を算出する(S181)。具体的には、S12で算出した排気流速Vex(空間速度SV)が低いほど小さい駆動デューティDを算出する。より具体的には、例えば図12に示すように、排気流速Vexに対する駆動デューティDのマップ401を予めメモリ111に記憶しておき、そのマップ401に基づいて駆動デューティDを算出する。図12では、排気流速Vexが低くなるにしたがって連続的に駆動デューティDを小さくしていくマップ401を示している。なお、S181では、第1実施形態の図8、図9と同様に、排気流速Vexが低くなるにしたがって段階的に駆動デューティを小さくしても良いし、排気流速Vexが高いときと低いときとで択一的に駆動デューティを切り替えても良い。   The configuration of the exhaust purification system of this embodiment is the same as that of the first embodiment shown in FIG. FIG. 11 shows a flowchart of processing executed by the ECU 11. In FIG. 11, the same processes as those in FIG. In FIG. 11, the processing of S181 and S191 is different from the processing of FIG. That is, after S17, a drive duty D (drive time τ with respect to the addition period T, D = τ / T) when the urea water addition valve 2 is driven is calculated (S181). Specifically, the smaller the exhaust flow velocity Vex (space velocity SV) calculated in S12, the smaller the drive duty D is calculated. More specifically, for example, as shown in FIG. 12, a map 401 of the drive duty D with respect to the exhaust flow velocity Vex is stored in the memory 111 in advance, and the drive duty D is calculated based on the map 401. FIG. 12 shows a map 401 in which the drive duty D is continuously reduced as the exhaust flow velocity Vex decreases. In S181, as in FIGS. 8 and 9 of the first embodiment, the drive duty may be reduced stepwise as the exhaust flow velocity Vex decreases, and when the exhaust flow velocity Vex is high and low. Alternatively, the drive duty may be switched.

S181の後、S17で算出した尿素水添加量Quの分の尿素水が排気管13内に添加されるように、尿素水添加弁2を駆動制御する(S191)。具体的には、S181で算出した駆動デューティDの駆動パルスを尿素水添加弁2に供給する。ここで、図13は、図10と同様の図であり、尿素水添加後のNH3貯蔵量の時間変化を示している。図13(A)は排気流速が高いときを、図13(B)は排気流速が低いときを示している。また、図13(A)、(B)それぞれには、尿素水添加弁2に供給する駆動パルスのパルス列26、27を図示している。なお、図13(A)のパルス列26における周期T(添加周期)と図13(B)のパルス列27における周期Tは同じである。また、図13(A)の駆動時間τ1よりも図13(B)の駆動時間τ2のほうが小さくなっている。つまり、図13(A)の駆動デューティよりも図13(B)の駆動デューティのほうが小さくなっている。なお、尿素水添加弁2から添加される尿素水の総添加量は、図13(A)と図13(B)とで同じとなっている。   After S181, the urea water addition valve 2 is driven and controlled so that urea water corresponding to the urea water addition amount Qu calculated in S17 is added into the exhaust pipe 13 (S191). Specifically, the drive pulse with the drive duty D calculated in S181 is supplied to the urea water addition valve 2. Here, FIG. 13 is the same diagram as FIG. 10 and shows the time change of the NH 3 storage amount after the addition of urea water. FIG. 13A shows when the exhaust flow rate is high, and FIG. 13B shows when the exhaust flow rate is low. FIGS. 13A and 13B respectively show pulse trains 26 and 27 of drive pulses supplied to the urea water addition valve 2. Note that the period T (addition period) in the pulse train 26 in FIG. 13A and the period T in the pulse train 27 in FIG. 13B are the same. Further, the drive time τ2 in FIG. 13B is shorter than the drive time τ1 in FIG. That is, the drive duty in FIG. 13B is smaller than the drive duty in FIG. Note that the total amount of urea water added from the urea water addition valve 2 is the same in FIG. 13A and FIG.

図13(A)に示すように、排気流速が高いときには、図13(B)の排気流速が低いときに比べて駆動デューティが大きく単位時間当たりの添加量が多くなるので、推定NH3貯蔵量22を迅速に目標NH3貯蔵量21に近づけることができる。これに対し、図13(B)に示すように、排気流速が低いときには、図13(A)の排気流速が高いときに比べて駆動デューティが小さく単位時間当たりの添加量が少なくなるので、添加された尿素水が排気管13の壁面に付着してしまうのを防止でき、尿素水をSCR触媒1に効率良く到達させることができる。ただし、図13(B)では、図13(A)に比べて、推定NH3貯蔵量24が目標NH3貯蔵量21に近づくのに時間が掛かっている。S191の後、図11のフローチャートの処理を終了する。   As shown in FIG. 13A, when the exhaust gas flow rate is high, the drive duty is large and the amount of addition per unit time is larger than when the exhaust gas flow rate is low in FIG. Can be quickly brought close to the target NH 3 storage amount 21. On the other hand, as shown in FIG. 13B, when the exhaust flow rate is low, the drive duty is small and the amount of addition per unit time is smaller than when the exhaust flow rate is high in FIG. The urea water thus made can be prevented from adhering to the wall surface of the exhaust pipe 13, and the urea water can efficiently reach the SCR catalyst 1. However, in FIG. 13B, it takes time for the estimated NH 3 storage amount 24 to approach the target NH 3 storage amount 21 as compared with FIG. 13A. After S191, the process of the flowchart of FIG.

以上説明したように、尿素水添加弁をデューティ制御する場合にも本発明を適用でき、第1実施形態と同様の効果を得ることができる。   As described above, the present invention can be applied to the case where the urea water addition valve is duty-controlled, and the same effect as that of the first embodiment can be obtained.

(第3実施形態)
次に、本発明に係る内燃機関の排気浄化装置の第3実施形態を第1、第2実施形態と異なる部分を中心にして説明する。この第3実施形態では、尿素水添加弁による尿素水の添加方法が第1、第2実施形態と異なっており、具体的には、尿素水添加弁を周期的に駆動する周波数制御をすることで、尿素水添加弁に駆動周期(駆動周波数)に応じた尿素水添加を行わせている。この周波数制御では、駆動周期(駆動周波数)にかかわらず1回の駆動で添加される尿素水の量は一定となっている。
(Third embodiment)
Next, a description will be given of a third embodiment of the exhaust gas purification apparatus for an internal combustion engine according to the present invention, focusing on portions different from the first and second embodiments. In the third embodiment, the urea water addition method using the urea water addition valve is different from those in the first and second embodiments. Specifically, the frequency control for periodically driving the urea water addition valve is performed. Therefore, the urea water addition valve is caused to add urea water according to the driving cycle (driving frequency). In this frequency control, the amount of urea water added by one driving is constant regardless of the driving cycle (driving frequency).

本実施形態の排気浄化システムの構成は、図1に示す第1実施形態の構成と同じである。図14は、ECU11が実行する処理のフローチャートを示している。図11において、図2と同じ処理には同一符号を付している。図14では、図2の処理に比べて、S182、S192の処理が異なっている。すなわち、S17の後、尿素水添加弁2を駆動するときの駆動周期Fを算出する(S182)。具体的には、S12で算出した排気流速Vex(空間速度SV)が低いほど長い駆動周期Fを算出する。駆動周波数(駆動周期Fの逆数)で考えると、排気流速Vex(空間速度SV)が低いほど小さい駆動周波数を算出する。より具体的には、例えば図15に示すように、排気流速Vexに対する駆動周期Fのマップ501を予めメモリ111に記憶しておき、そのマップ501に基づいて駆動周期Fを算出する。図15では、排気流速Vexが低くなるにしたがって連続的に駆動周期Fを長くしていくマップ501を示している。なお、S182では、第1実施形態の図8、図9と同様に、排気流速Vexが低くなるにしたがって段階的に駆動周期を長くしても良いし、排気流速Vexが高いときと低いときとで択一的に駆動周期を切り替えても良い。   The configuration of the exhaust purification system of this embodiment is the same as that of the first embodiment shown in FIG. FIG. 14 shows a flowchart of processing executed by the ECU 11. In FIG. 11, the same processes as those in FIG. In FIG. 14, the processes of S182 and S192 are different from those of FIG. That is, after S17, the driving cycle F when the urea water addition valve 2 is driven is calculated (S182). Specifically, a longer drive cycle F is calculated as the exhaust flow velocity Vex (space velocity SV) calculated in S12 is lower. Considering the drive frequency (reciprocal of the drive cycle F), the lower the exhaust flow velocity Vex (space velocity SV), the smaller the drive frequency is calculated. More specifically, for example, as shown in FIG. 15, a map 501 of the driving cycle F with respect to the exhaust flow velocity Vex is stored in the memory 111 in advance, and the driving cycle F is calculated based on the map 501. FIG. 15 shows a map 501 in which the drive cycle F is continuously increased as the exhaust flow velocity Vex decreases. In S182, as in FIGS. 8 and 9 of the first embodiment, the drive cycle may be increased stepwise as the exhaust flow velocity Vex decreases, and when the exhaust flow velocity Vex is high and low. Alternatively, the driving cycle may be switched.

S182の後、S17で算出した尿素水添加量Quの分の尿素水が排気管13内に添加されるように、尿素水添加弁2を駆動制御する(S192)。具体的には、S182で算出した駆動周期Fの駆動パルスを尿素水添加弁2に供給する。ここで、図16は、図10と同様の図であり、尿素水添加後のNH3貯蔵量の時間変化を示している。図16(A)は排気流速が高いときを、図16(B)は排気流速が低いときを示している。また、図16(A)、(B)それぞれには、尿素水添加弁2に供給する駆動パルスのパルス列28、29を図示している。パルス列28、29における各駆動パルスのパルス幅は一定となっている。つまり、各駆動パルスで添加される尿素水の量は各駆動パルス間で一定となっている。また、図16(A)の駆動周期F1よりも図16(B)の駆動周期F2のほうが長くなっている。   After S182, the urea water addition valve 2 is driven and controlled so that the urea water corresponding to the urea water addition amount Qu calculated in S17 is added into the exhaust pipe 13 (S192). Specifically, the drive pulse of the drive cycle F calculated in S182 is supplied to the urea water addition valve 2. Here, FIG. 16 is the same diagram as FIG. 10, and shows the time change of the NH 3 storage amount after the addition of urea water. FIG. 16A shows when the exhaust flow rate is high, and FIG. 16B shows when the exhaust flow rate is low. 16A and 16B show pulse trains 28 and 29 of drive pulses supplied to the urea water addition valve 2, respectively. The pulse width of each drive pulse in the pulse trains 28 and 29 is constant. That is, the amount of urea water added with each drive pulse is constant between the drive pulses. In addition, the driving cycle F2 in FIG. 16B is longer than the driving cycle F1 in FIG.

図16(A)に示すように、排気流速が高いときには、図16(B)の排気流速が低いときに比べて駆動周期が短いので、推定NH3貯蔵量22を迅速に目標NH3貯蔵量21に近づけることができる。これに対し、図16(B)に示すように、排気流速が低いときには、図16(A)の排気流速が高いときに比べて駆動周期が長く単位時間当たりの添加量が少なくなるので、添加された尿素水が排気管13の壁面に付着してしまうのを防止でき、尿素水をSCR触媒1に効率良く到達させることができる。ただし、図16(B)では、図16(A)に比べて、推定NH3貯蔵量24が目標NH3貯蔵量21に近づくのに時間が掛かっている。S192の後、図14のフローチャートの処理を終了する。   As shown in FIG. 16 (A), when the exhaust gas flow rate is high, the drive cycle is shorter than when the exhaust gas flow rate is low in FIG. 16 (B), so the estimated NH3 storage amount 22 is quickly changed to the target NH3 storage amount 21. You can get closer. On the other hand, as shown in FIG. 16B, when the exhaust flow rate is low, the drive cycle is longer and the addition amount per unit time is smaller than when the exhaust flow rate is high in FIG. The urea water thus made can be prevented from adhering to the wall surface of the exhaust pipe 13, and the urea water can efficiently reach the SCR catalyst 1. However, in FIG. 16B, it takes time for the estimated NH 3 storage amount 24 to approach the target NH 3 storage amount 21 as compared to FIG. 16A. After S192, the process of the flowchart of FIG.

以上説明したように、尿素水添加弁を周波数制御する場合にも本発明を適用でき、第1、第2実施形態と同様の効果を得ることができる。   As described above, the present invention can also be applied when the frequency of the urea water addition valve is controlled, and the same effects as those of the first and second embodiments can be obtained.

なお、本発明の内燃機関の排気浄化装置は上記実施形態に限定されるものではなく、特許請求の範囲の記載を逸脱しない限度で種々の変更が可能である。例えば、上記第2実施形態のデューティ制御と第3実施形態の周波数制御とを併用したシステムにも本発明を適用できる。この場合には例えば、排気流速が低いときには、排気流速が高いときよりも、尿素水添加弁の駆動デューティを小さくするとともに、駆動周期を長くする。また、ガソリンエンジン、特にリーンバーンエンジン用の尿素SCRシステムシステムに本発明を適用しても良い。また、尿素水以外の還元剤(例えば、アンモニア含有の水溶液)を用いる排気浄化システムに本発明を適用しても良い。   The exhaust emission control device for an internal combustion engine of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the claims. For example, the present invention can also be applied to a system using both the duty control of the second embodiment and the frequency control of the third embodiment. In this case, for example, when the exhaust gas flow rate is low, the drive duty of the urea water addition valve is made smaller and the drive cycle is made longer than when the exhaust gas flow rate is high. Further, the present invention may be applied to a urea SCR system system for a gasoline engine, particularly a lean burn engine. Further, the present invention may be applied to an exhaust purification system that uses a reducing agent other than urea water (for example, an aqueous solution containing ammonia).

1 SCR触媒
2 尿素水添加弁
11 ECU
13 排気管
100 排気浄化システム(尿素SCRシステム)
101 ディーゼルエンジン
1 SCR catalyst 2 Urea water addition valve 11 ECU
13 Exhaust pipe 100 Exhaust gas purification system (urea SCR system)
101 diesel engine

Claims (8)

内燃機関(101)の排気管(13)に設けられ、前記排気管に所定の添加剤を添加する添加手段(2)と、
前記排気管の前記添加手段より下流側に設けられ、前記添加手段で添加された添加剤を貯蔵しその添加剤で排気中の所定の有害成分を浄化する触媒(1)とを備えた排気浄化システム(100)に備えられ、
前記添加手段で添加すべき添加剤の添加量を決定する添加量決定手段(S17)と、
その添加量決定手段が決定した添加量である総添加量ぶんの添加剤が前記排気管に添加されるように前記添加手段を制御する添加制御手段(S18、S19、S181、S191、S182、S192)と、
排気流速を算出する流速算出手段(S12)とを備え、
前記添加制御手段は、前記流速算出手段が算出した排気流速が低いほど単位時間当たりの添加剤の添加量が小さくなるように前記添加手段を制御することを特徴とする内燃機関の排気浄化装置(11)。
An adding means (2) provided in the exhaust pipe (13) of the internal combustion engine (101) for adding a predetermined additive to the exhaust pipe;
Exhaust gas purification provided with a catalyst (1) provided downstream of the addition means of the exhaust pipe and storing the additive added by the addition means and purifying predetermined harmful components in the exhaust gas with the additive Provided in the system (100),
An addition amount determining means (S17) for determining an addition amount of the additive to be added by the adding means;
Addition control means (S18, S19, S181, S191, S182, S192) for controlling the addition means so that a total addition amount of additive which is the addition amount determined by the addition amount determination means is added to the exhaust pipe. )When,
A flow rate calculation means (S12) for calculating an exhaust flow rate,
The addition control means controls the addition means so that the addition amount of the additive per unit time becomes smaller as the exhaust flow velocity calculated by the flow velocity calculation means is lower. 11).
前記添加制御手段(S18、S19)は、前記総添加量ぶんの添加剤を1回で又は複数回に分割して前記排気管に添加し、前記排気流速が低いほど前記総添加量ぶんの添加剤の分割回数を大きくすることを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The addition control means (S18, S19) adds the total added amount of additive to the exhaust pipe at one time or divided into a plurality of times, and the lower the exhaust flow rate, the more the added amount of the added amount is added. 2. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the number of times the agent is divided is increased. 前記添加制御手段(S181、S191)は、前記添加手段をデューティ制御することで前記添加手段に前記添加剤の添加を行わせ、前記排気流速が低いほど前記添加手段の駆動デューティを小さくすることを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The addition control means (S181, S191) causes the addition means to add the additive by duty-controlling the addition means, and decreases the drive duty of the addition means as the exhaust gas flow rate decreases. The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the exhaust gas purification apparatus is an internal combustion engine. 前記添加制御手段(S182、S192)は、前記添加手段を周期的に駆動する周波数制御により前記添加手段に前記添加剤の添加を行わせ、前記排気流速が低いほど前記添加手段の駆動周期を長くすることを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The addition control means (S182, S192) causes the addition means to add the additive by frequency control for periodically driving the addition means, and the drive cycle of the addition means is increased as the exhaust flow rate is lower. The exhaust emission control device for an internal combustion engine according to claim 1, wherein: 前記添加量決定手段は、
前記触媒の温度を取得する温度取得手段(S11)と、
その温度取得手段が取得した温度に応じた、前記触媒に貯蔵する前記添加剤の目標量を目標貯蔵量として算出する第1算出手段(S13、S14)と、
前記触媒に現在貯蔵されている前記添加剤の量を推定貯蔵量として算出する第2算出手段(S15)と、
前記第1算出手段が算出した前記目標貯蔵量と前記第2算出手段が算出した前記推定貯蔵量との偏差を算出する第3算出手段(S16)とを含み、その第3算出手段が算出した前記偏差に基づき前記総添加量を決定することを特徴とする請求項1〜4のいずれか1項に記載の内燃機関の排気浄化装置。
The addition amount determining means includes
Temperature acquisition means (S11) for acquiring the temperature of the catalyst;
First calculation means (S13, S14) for calculating a target storage amount of the additive stored in the catalyst according to the temperature acquired by the temperature acquisition means as a target storage amount;
Second calculation means (S15) for calculating the amount of the additive currently stored in the catalyst as an estimated storage amount;
Third calculation means (S16) for calculating a deviation between the target storage amount calculated by the first calculation means and the estimated storage amount calculated by the second calculation means; The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 4, wherein the total addition amount is determined based on the deviation.
前記第1算出手段(S14)は、前記温度で前記触媒に貯蔵できる前記添加剤の最大貯蔵量より小さい貯蔵量を前記目標貯蔵量として算出することを特徴とする請求項5に記載の内燃機関の排気浄化装置。   6. The internal combustion engine according to claim 5, wherein the first calculation means (S14) calculates a storage amount smaller than a maximum storage amount of the additive that can be stored in the catalyst at the temperature as the target storage amount. Exhaust purification equipment. 前記流速算出手段は、前記触媒における排気の空間速度を前記排気流速として算出することを特徴とする請求項1〜6のいずれか1項に記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 6, wherein the flow velocity calculation means calculates an exhaust space velocity of the catalyst as the exhaust gas flow velocity. 前記添加手段は尿素水を前記添加剤として添加し、
前記触媒は、前記添加手段からの尿素水をアンモニアに変換してそのアンモニアを貯蔵し、貯蔵したアンモニアで排気中のNOxを還元するNOx選択還元触媒であることを特徴とする請求項1〜7のいずれか1項に記載の内燃機関の排気浄化装置。
The adding means adds urea water as the additive,
The catalyst is a NOx selective reduction catalyst that converts urea water from the adding means into ammonia, stores the ammonia, and reduces NOx in the exhaust with the stored ammonia. The exhaust gas purification apparatus for an internal combustion engine according to any one of the above.
JP2012140010A 2012-06-21 2012-06-21 Exhaust cleaning device of internal combustion engine Pending JP2014005742A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012140010A JP2014005742A (en) 2012-06-21 2012-06-21 Exhaust cleaning device of internal combustion engine
US13/900,693 US20130340412A1 (en) 2012-06-21 2013-05-23 Exhaust purifier of an internal combustion engine
DE102013106205A DE102013106205A1 (en) 2012-06-21 2013-06-14 Exhaust gas purification device for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012140010A JP2014005742A (en) 2012-06-21 2012-06-21 Exhaust cleaning device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2014005742A true JP2014005742A (en) 2014-01-16

Family

ID=49713823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012140010A Pending JP2014005742A (en) 2012-06-21 2012-06-21 Exhaust cleaning device of internal combustion engine

Country Status (3)

Country Link
US (1) US20130340412A1 (en)
JP (1) JP2014005742A (en)
DE (1) DE102013106205A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206279A1 (en) 2015-04-15 2016-10-20 Toyota Jidosha Kabushiki Kaisha EXHAUST GAS CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2016205366A (en) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
CN106837498A (en) * 2016-12-26 2017-06-13 潍柴动力股份有限公司 The estimation of urea crystals amount, crystalline state judge and crystallization removing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104005824B (en) * 2014-05-27 2016-09-07 潍柴动力股份有限公司 A kind of SCR emission control system and method
US9494070B2 (en) * 2014-09-17 2016-11-15 Hyundai Motor Company Method of controlling ammonia amount absorbed in selective catalytic reduction catalyst and exhaust system using the same
US10473013B2 (en) * 2014-09-26 2019-11-12 Cummins Emission Solutions, Inc. Integrative reductant system and method using constant volume injection
US10961889B2 (en) * 2016-07-29 2021-03-30 Cummins Inc. Methods and systems for removing deposits in an aftertreatment system
CN114837781A (en) * 2022-05-25 2022-08-02 潍柴动力股份有限公司 Urea injection method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157188A (en) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp Emission purifying device
JP2008163856A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009293606A (en) * 2008-06-09 2009-12-17 Hino Motors Ltd Control device for exhaust treatment device
JP2009293513A (en) * 2008-06-05 2009-12-17 Nippon Soken Inc Exhaust emission control device for internal combustion engine
JP2010261320A (en) * 2009-04-30 2010-11-18 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3951774B2 (en) 2002-03-29 2007-08-01 三菱ふそうトラック・バス株式会社 NOx purification device for internal combustion engine
US8141340B2 (en) * 2008-04-30 2012-03-27 Cummins Ip, Inc Apparatus, system, and method for determining the degradation of an SCR catalyst

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157188A (en) * 2006-12-26 2008-07-10 Mitsubishi Fuso Truck & Bus Corp Emission purifying device
JP2008163856A (en) * 2006-12-28 2008-07-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2009293513A (en) * 2008-06-05 2009-12-17 Nippon Soken Inc Exhaust emission control device for internal combustion engine
JP2009293606A (en) * 2008-06-09 2009-12-17 Hino Motors Ltd Control device for exhaust treatment device
JP2010261320A (en) * 2009-04-30 2010-11-18 Toyota Motor Corp Exhaust emission control device of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206279A1 (en) 2015-04-15 2016-10-20 Toyota Jidosha Kabushiki Kaisha EXHAUST GAS CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2016205366A (en) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2016205152A (en) * 2015-04-15 2016-12-08 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
US9884293B2 (en) 2015-04-15 2018-02-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
DE102016206279B4 (en) 2015-04-15 2022-12-22 Toyota Jidosha Kabushiki Kaisha EXHAUST GAS PURIFICATION DEVICE FOR INTERNAL ENGINE
CN106837498A (en) * 2016-12-26 2017-06-13 潍柴动力股份有限公司 The estimation of urea crystals amount, crystalline state judge and crystallization removing method

Also Published As

Publication number Publication date
DE102013106205A1 (en) 2013-12-24
US20130340412A1 (en) 2013-12-26

Similar Documents

Publication Publication Date Title
JP2014005742A (en) Exhaust cleaning device of internal combustion engine
JP5482446B2 (en) SCR system
JP4726926B2 (en) Exhaust gas purification device for internal combustion engine
US9546584B2 (en) Multi-stage SCR system
JP4764463B2 (en) Exhaust gas purification control device and exhaust gas purification system for internal combustion engine
JP6016127B2 (en) Exhaust gas purification device for internal combustion engine
JP4978635B2 (en) Control device for exhaust purification system
JP5678475B2 (en) SCR system
GB2448993A (en) A method for removing urea deposits from a catalyst
KR20120095400A (en) Method for determining the state of a reducing agent in a reducing agent tank
CN101994592A (en) Dosing control system and method
US9212587B2 (en) Exhaust throttle control for aftertreatment system thermal management
RU2014131251A (en) METHOD AND DEVICE FOR DETERMINING EFFICIENCY OF INSTALLATION OF CLEANING OF EXHAUST GASES
JP2010031731A (en) Exhaust emission control system of internal-combustion engine
SE539586C2 (en) Exhaust after-treatment system, and method in connection with such a system
US8789358B2 (en) Selective catalytic reduction catalyst ammonia storage control systems and methods
JP6344259B2 (en) Urea addition control device, learning device
US9482133B2 (en) Exhaust emission control system of internal combustion engine
AU2014294733B2 (en) SCR exhaust emission control system and method therefore, for filling the urea reducing agent after returning to the tank
JP2015148224A (en) Exhaust emission control device for internal combustion engine
JP6121974B2 (en) Exhaust gas purification device for internal combustion engine
CN104040153A (en) Optimized management of an scr catalyst by means of the periodic regeneration of a particle filter
JP2014109228A (en) Nozzle clogging detector
JP7021558B2 (en) Addition control device
CN101970818B (en) Exhaust purification system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141030