JP2014005704A - Foundation lower base-isolation sliding bearing structure - Google Patents

Foundation lower base-isolation sliding bearing structure Download PDF

Info

Publication number
JP2014005704A
JP2014005704A JP2012143762A JP2012143762A JP2014005704A JP 2014005704 A JP2014005704 A JP 2014005704A JP 2012143762 A JP2012143762 A JP 2012143762A JP 2012143762 A JP2012143762 A JP 2012143762A JP 2014005704 A JP2014005704 A JP 2014005704A
Authority
JP
Japan
Prior art keywords
sliding
foamed resin
base
layers
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012143762A
Other languages
Japanese (ja)
Other versions
JP6042115B2 (en
Inventor
Kenji Manako
健二 真名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2012143762A priority Critical patent/JP6042115B2/en
Publication of JP2014005704A publication Critical patent/JP2014005704A/en
Application granted granted Critical
Publication of JP6042115B2 publication Critical patent/JP6042115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foundation lower base-isolation sliding bearing structure which easily causes sliding by reducing a friction coefficient of a sliding surface while hardly causing heat accumulation of friction heat generated by sliding.SOLUTION: In the foundation lower base-isolation sliding bearing structure, a concrete foundation 3 of a building is supported on a ground 2 through two layers of foamed resin plates 5 and 6, and horizontal shaking caused by earthquakes brings about the slip between the two layers of foamed resin plates 5 and 6 so as to apply the base isolation to the building. Recesses and protrusions 7 and 8 are formed on one surface of at least one foamed resin plate 5 of the two layers of foamed resin plates 5 and 6. This increases surface pressure of sliding surfaces 5a and 6a so as to reduce the friction coefficient of the sliding surfaces 5a and 6a while the friction heat generated on the sliding surfaces 5a and 6a is easily discharged to the outside.

Description

この発明は、地震時に基礎下に滑りを生じさせて建物を免震する基礎下免震滑り支承構造に関する。   The present invention relates to a foundation-isolated base-isolation sliding bearing structure that causes a building to undergo base-isolation by causing a slip beneath the base during an earthquake.

上記基礎下免震滑り支承構造に関して幾つかの提案が行われている(例えば特許文献1,2,3)。   Several proposals have been made regarding the above-mentioned foundation-isolated base sliding structure (for example, Patent Documents 1, 2, and 3).

特許文献1は、建物のコンクリート基礎を発泡樹脂板を介して地盤基礎上に支承すると共に、前記発泡樹脂板と地盤との間に、重ね合わせ状態にした上下の滑りシートを設けることで、地震による横揺れによって上下の滑りシート間に滑りを生じて、建物が免震されるようにした提案である。   In Patent Document 1, a concrete foundation of a building is supported on a ground foundation via a foamed resin plate, and an upper and lower sliding sheet in an overlapped state is provided between the foamed resin plate and the ground. This is a proposal to make the building seismically isolated by sliding between the upper and lower sliding seats due to rolling by the

特許文献2は、建物のコンクリート基礎を2層の発泡樹脂板を介して地盤基礎上に支承すると共に、前記2層の発泡樹脂板間に重ね合わせ状態にした上下の滑りシートを設けることで、地震による横揺れによって上下の滑りシート間に滑りを生じて、建物が免震されるようにした提案である。   Patent document 2 supports a concrete foundation of a building on a ground foundation via two layers of foamed resin plates, and provides upper and lower sliding sheets that are overlapped between the two layers of foamed resin plates. This is a proposal to make the building seismic isolation by sliding between the upper and lower sliding seats due to the rolling due to the earthquake.

特許文献3は、建物のコンクリート基礎を2層の発泡樹脂板を介して地盤上に支承すると共に、前記2層の発泡樹脂板間に滑りシートを設けることで、地震による横揺れによって発泡樹脂板と滑りシート間または2枚の滑りシート間に滑りを生じて、建物が免震されるようにしつつ、発泡樹脂板と滑りシート間または2枚の滑りシート間の滑りによって発生する摩擦熱で滑り面が温度上昇することを抑制する提案である。   In Patent Document 3, a concrete foundation of a building is supported on the ground through two layers of foamed resin plates, and a sliding sheet is provided between the two layers of foamed resin plates, so that the foamed resin plates are rolled by an earthquake. The sliding between the sliding sheet and the two sliding sheets causes the building to be isolated, and the sliding is caused by the frictional heat generated by the sliding between the foam resin plate and the sliding sheet or between the two sliding sheets. This is a proposal to suppress the temperature rise of the surface.

特許4929363号公報Japanese Patent No. 4929363 特許4929374号公報Japanese Patent No. 4929374 特許4929406号公報Japanese Patent No. 4929406

上記従来の基礎下免震滑り支承構造は、いずれも滑りシートまたは発泡樹脂板からなる一対の滑り部材の各滑り面が、面全体で建物の荷重を支持している。そのため、荷重の大きさを一定とした場合、滑り面の面圧が低い。2つの物体が高面圧で接する場合、低面圧で接する場合と異なり、一般に面圧が高いほど摩擦係数が低減するため、滑り面の面圧が低いと、摩擦係数が大きくなり、滑りが生じ難くなる。   In each of the conventional base-isolated base-isolation sliding bearing structures, each sliding surface of a pair of sliding members made of a sliding sheet or a foamed resin plate supports the load of the building over the entire surface. For this reason, the surface pressure of the sliding surface is low when the magnitude of the load is constant. When two objects are in contact with each other at a high surface pressure, unlike the case in which they are in contact with each other at a low surface pressure, the coefficient of friction generally decreases as the surface pressure increases. Therefore, if the surface pressure of the sliding surface is low, the friction coefficient increases and slipping occurs. It becomes difficult to occur.

また、一対の滑り部材の滑り面同士が全面密着していると、滑りによって発生した摩擦熱が外部に放出されにくく、熱篭りが生じ易い。熱篭りが生じると、滑り面の温度が上昇して、摩擦係数が変動することにより、安定した滑りが実現できない可能性がある。   In addition, when the sliding surfaces of the pair of sliding members are in close contact with each other, the frictional heat generated by the sliding is not easily released to the outside, and heat is likely to occur. When heat is generated, the temperature of the sliding surface rises and the friction coefficient fluctuates, so that stable sliding may not be realized.

この発明の目的は、滑り面の摩擦係数を小さくして滑りを生じ易くすると共に、滑りによって発生した摩擦熱の熱篭りが生じ難い基礎下免震滑り支承構造を提供することである。   An object of the present invention is to provide a foundation-isolated base-isolation sliding bearing structure in which a friction coefficient of a sliding surface is reduced to easily cause slipping, and heat generated by frictional heat generated by slipping is hardly generated.

この発明の基礎下免震滑り支承構造は、建物のコンクリート基礎を2層の発泡樹脂板を介して地盤上に支承し、地震による横揺れによって前記2層の発泡樹脂板間に滑りを生じて、建物が免震されるようになされている構造であって、前記2層の発泡樹脂板のうち少なくとも一方の発泡樹脂板の片面に凹凸を設けたことを特徴とする。   The seismic isolation sliding support structure under the foundation of the present invention supports a concrete foundation of a building on the ground via two layers of foamed resin plates, and causes a slip between the two layers of foamed resin plates due to rolling due to an earthquake. The structure is such that the building is subjected to seismic isolation, wherein at least one of the two layers of foamed resin plates is provided with unevenness on one side thereof.

2層の発泡樹脂板のうち少なくとも一方の発泡樹脂板の片面に凹凸を設けたことによって、2層の発泡樹脂板の各対向面等からなる滑り面における建物の荷重を支持する面積が狭くなる。凹凸のある面が滑り面である場合は勿論、凹凸のある面が滑り面と反対側の面である場合も、発泡樹脂板の弾性により、滑り面のうち建物の荷重を実質的に支持する面積は、滑り面の全体の面積である見かけの面積よりも狭くなる。2つの物体が高面圧で接する場合、低面圧で接する場合と異なり、一般に面圧が高いほど摩擦係数が低減するため、滑り面における建物の荷重を支持する面積が狭くなると、滑り面の面圧が高くなり、滑り面の摩擦係数が小さくなる。それにより、地震による横揺れに対して滑りが生じ易くなり、免震効果が高い。凹凸の大きさ、ピッチ等を変えることで、面圧の調整が可能である。   By providing irregularities on one surface of at least one of the two layers of foamed resin plates, the area for supporting the building load on the sliding surface composed of the opposing surfaces of the two layers of foamed resin plates is reduced. . Of course, when the uneven surface is a sliding surface, even when the uneven surface is the surface opposite to the sliding surface, the load of the building is substantially supported by the elasticity of the foamed resin plate. The area is smaller than the apparent area which is the entire area of the sliding surface. When two objects contact at high surface pressure, unlike the case of contact at low surface pressure, the coefficient of friction generally decreases as the surface pressure increases. The surface pressure increases and the friction coefficient of the sliding surface decreases. As a result, slipping easily occurs due to the rolling due to the earthquake, and the seismic isolation effect is high. The surface pressure can be adjusted by changing the size and pitch of the unevenness.

また、この構造では、コンクリート基礎と地盤との間に2層の発泡樹脂板が介在するので、地震による横揺れによって建物の耐力壁が水平力を受けると、力の伝達過程において、2層の発泡樹脂板の鉛直方向におけるバネ作用、すなわち弾性変形およびその弾性復元作用によって、2層の発泡樹脂板間の面圧のバラツキが緩和され、滑り面における抵抗力が一定化されて、免震時に建物が回転運動してしまうのを効果的に抑制することができる。加えて、2層の発泡樹脂板の鉛直方向のバネ作用によって、地震や日常の環境振動による横揺れも緩和することができる。   In addition, in this structure, two layers of foamed resin plates are interposed between the concrete foundation and the ground, so if the building's load-bearing wall receives a horizontal force due to rolling due to an earthquake, two layers of layers will be generated in the force transmission process. The spring action in the vertical direction of the foamed resin plate, that is, elastic deformation and its elastic restoring action alleviate the variation in surface pressure between the two layers of foamed resin plates, and the resistance force on the sliding surface is made constant. It is possible to effectively suppress the building from rotating. In addition, rolls caused by earthquakes and daily environmental vibrations can be mitigated by the vertical spring action of the two-layered foam resin plates.

前記凹凸は、例えば、前記2層の発泡樹脂板の各対向面のうちいずれか一方の対向面に設ければ良い。
これにより、滑り面における2層の発泡樹脂板間の接触面積が小さくなって、建物の荷重を支持する面積が狭くなり、滑り面の面圧を高くすることができる。また、滑り面と空気との接触面積が増えるため、滑り面で発生した摩擦熱を効果的に外部へ放出することができ、滑り面の温度上昇を抑制できる。
What is necessary is just to provide the said unevenness | corrugation in any one opposing surface among each opposing surfaces of the said 2 layer foamed resin board, for example.
Thereby, the contact area between the two-layered foam resin plates on the sliding surface is reduced, the area for supporting the load of the building is reduced, and the surface pressure of the sliding surface can be increased. Further, since the contact area between the sliding surface and the air increases, the frictional heat generated on the sliding surface can be effectively released to the outside, and the temperature increase of the sliding surface can be suppressed.

上記構成において、前記2層の発泡樹脂板のうち前記凹凸が設けられていない方の発泡樹脂板の対向面に滑り材を一体に設けても良い。滑り材は、シート状のものであっても、板状のものであっても良い。
この場合、滑り材の表面およびこの滑り材に対向する発泡樹脂板の凹凸が設けられた対向面が、地震による横揺れに対する滑り面となり、建物が免震される。滑り材として、摩擦係数が小さい材質のものを用いることにより、地震時の滑りが促進される。
The said structure WHEREIN: You may provide a sliding material integrally in the opposing surface of the foamed resin board in which the said unevenness | corrugation is not provided among the said 2 layers of foamed resin boards. The sliding material may be a sheet or plate.
In this case, the surface of the sliding material and the opposing surface provided with the unevenness of the foamed resin plate facing the sliding material become a sliding surface against the roll due to the earthquake, and the building is seismically isolated. By using a material having a small friction coefficient as a sliding material, sliding during an earthquake is promoted.

また、前記凹凸が設けられた発泡樹脂板の対向面に、前記発泡樹脂板よりも硬質の滑り板を一体に設けても良い。
この場合、滑り板の表面および滑り板が設けられていない発泡樹脂板の対向面が、地震による横揺れに対する滑り面となり、建物が免震される。発泡樹脂板よりも硬質の滑り板によって滑り面を形成しているので、滑り面に皺ができることがなくなり、安定した滑り面を確保することができる。
Moreover, you may integrally provide the sliding board harder than the said foamed resin board in the opposing surface of the foamed resin board provided with the said unevenness | corrugation.
In this case, the surface of the sliding plate and the facing surface of the foamed resin plate on which no sliding plate is provided become a sliding surface against the roll due to the earthquake, and the building is seismically isolated. Since the sliding surface is formed by a sliding plate that is harder than the foamed resin plate, wrinkles are not formed on the sliding surface, and a stable sliding surface can be secured.

前記凹凸は、前記2層の発泡樹脂板のうちの地盤側の発泡樹脂板の地盤に接する面に設けても良い。
この場合、2層の発泡樹脂板の各滑り面が全面で接する。しかし、下の発泡樹脂板の地盤に接する面に凹凸が設けられていることにより、その凹凸の影響が滑り面に現れて、滑り面のうち建物の荷重を実質的に支持する面積は、滑り面の見かけの面積よりも狭くなって、滑り面の面圧が高くなる。つまり、滑り面の見かけの面積を変えずに、滑り面の面圧を変えられる。この滑り面の面圧は、凹凸の大きさ、ピッチ等を変えることで、調整が可能である。
You may provide the said unevenness | corrugation in the surface which touches the ground of the foamed resin board of the ground side among the said 2 layers of foamed resin boards.
In this case, the sliding surfaces of the two-layer foamed resin plates are in contact with each other. However, because the surface of the lower foamed resin plate that touches the ground is uneven, the effect of the unevenness appears on the sliding surface, and the area of the sliding surface that substantially supports the building load is slippery. It becomes narrower than the apparent area of the surface, and the surface pressure of the sliding surface increases. That is, the surface pressure of the sliding surface can be changed without changing the apparent area of the sliding surface. The surface pressure of the sliding surface can be adjusted by changing the size and pitch of the unevenness.

前記2層の発泡樹脂板のうち少なくとも一方の発泡樹脂板の片面に設けられる凹凸は、例えば、前記片面に一方端から他方端へ延びる溝を設けて、溝の部分を凹部とし、溝以外の部分を凸部としたものとすると良い。
このような溝によって凹凸にすると、凹凸の加工が容易である。また、発泡樹脂板の滑り面に凹凸が設けられる場合、溝の両端が発泡樹脂板の端面に開口しているため、滑り面で発生した摩擦熱をより一層効果的に外部へ放出することができる。
Concavities and convexities provided on one surface of at least one of the two layers of foamed resin plates include, for example, a groove extending from one end to the other end on the one surface, the groove portion being a recess, and other than the grooves It is preferable to make the portion convex.
If the grooves are uneven, it is easy to process the unevenness. Further, when the sliding surface of the foamed resin plate is provided with unevenness, since both ends of the groove are open to the end surface of the foamed resin plate, the frictional heat generated on the sliding surface can be more effectively released to the outside. it can.

この発明の基礎下免震滑り支承構造は、建物のコンクリート基礎を2層の発泡樹脂板を介して地盤上に支承し、地震による横揺れによって前記2層の発泡樹脂板間に滑りを生じて、建物が免震されるようになされている構造であって、前記2層の発泡樹脂板のうち少なくとも一方の発泡樹脂板の片面に凹凸を設けたため、滑り面の摩擦係数を小さくして滑りを生じ易くすると共に、滑りによって発生した摩擦熱が外部に放出され易くできる。   The seismic isolation sliding support structure under the foundation of the present invention supports a concrete foundation of a building on the ground via two layers of foamed resin plates, and causes a slip between the two layers of foamed resin plates due to rolling due to an earthquake. The structure is such that the building is seismically isolated, and at least one of the two layers of foamed resin plates is provided with irregularities on one side, so that the sliding coefficient of the sliding surface is reduced and the sliding is reduced. And frictional heat generated by sliding can be easily released to the outside.

この発明の基礎下免震滑り支承構造が適用された建物の基礎部の一例の斜視図である。It is a perspective view of an example of the foundation part of the building to which the foundation under-isolation sliding bearing structure of this invention was applied. この発明の一実施形態にかかる基礎下免震滑り支承構造の分解図である。It is an exploded view of the foundation base seismic isolation sliding support structure concerning one Embodiment of this invention. 同基礎下免震滑り支承構造の滑り支承部の分解斜視図である。It is a disassembled perspective view of the sliding bearing part of the base seismic isolation sliding bearing structure. (A)は滑り支承部における滑り面の異なる形状を示す図、(B)はさらに異なる形状を示す部分図である。(A) is a figure which shows the shape from which the sliding surface in a sliding bearing part differs, (B) is a fragmentary figure which shows a further different shape. 滑り面のさらに異なる形状を示す図である。It is a figure which shows the further different shape of a sliding surface. 滑り面のさらに異なる形状を示す図である。It is a figure which shows the further different shape of a sliding surface. この発明の異なる実施形態にかかる基礎下免震滑り支承構造の分解図である。It is an exploded view of the foundation bottom seismic isolation sliding bearing structure concerning different embodiment of this invention. 同基礎下免震滑り支承構造の滑り支承部の一部の分解斜視図である。It is a disassembled perspective view of a part of the sliding bearing part of the base seismic isolation sliding bearing structure. この発明のさらに異なる実施形態にかかる基礎下免震滑り支承構造の分解図である。It is an exploded view of the foundation base seismic isolation sliding bearing structure concerning further different embodiment of this invention.

この発明の実施形態を図面と共に説明する。図1は、この発明の基礎下免震滑り支承構造が適用された建物の基礎部の一例の斜視図である。この建物の基礎部は、地盤(図示せず)に設置した地盤基礎1の上に、複数箇所に配置した滑り支承部2を介して建物のコンクリート基礎3が支持されている。   An embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of an example of a foundation portion of a building to which the under-base seismic isolation sliding bearing structure of the present invention is applied. As for the foundation part of this building, the concrete foundation 3 of the building is supported on the ground foundation 1 installed in the ground (not shown) through the sliding support part 2 arrange | positioned in multiple places.

図2は、この発明の第1の実施形態にかかる基礎下免震滑り支承構造を示す。この基礎下免震滑り支承構造は、前記滑り支承部2が、発泡ポリプロピレンや発泡ポリスチレン等からなる上下2層の発泡樹脂板5,6で構成されている。上下の発泡樹脂板5,6は、例えば図3に示すように、平面形状が正方形の板状である。上の発泡樹脂板5の下面は、全体にわたり縦横の溝が複数条ずつ平行に設けられて凹凸に形成されている。つまり、溝の部分が凹部7であり、溝以外の部分が凸部8となる。この例の場合、凸部8の側面8aは、下面に対して垂直である。下の発泡樹脂板6の上面は平坦面である。このように溝によって発泡樹脂板5の下面を凹凸にすると、凹凸の加工が容易である。上の発泡樹脂板5とコンクリート基礎3、および下の発泡樹脂板6の地盤基礎1は、互いに固定されていてもよく、固定されていなくてもよい。   FIG. 2 shows a foundation-isolated base-isolation sliding bearing structure according to the first embodiment of the present invention. In this base-isolated base-isolation sliding bearing structure, the sliding bearing portion 2 is composed of two upper and lower foamed resin plates 5 and 6 made of foamed polypropylene or foamed polystyrene. As shown in FIG. 3, for example, the upper and lower foamed resin plates 5 and 6 have a square plate shape. The lower surface of the upper foamed resin plate 5 has a plurality of vertical and horizontal grooves formed in parallel over the entire surface so as to be uneven. That is, the groove portion is the concave portion 7, and the portion other than the groove is the convex portion 8. In the case of this example, the side surface 8a of the convex portion 8 is perpendicular to the lower surface. The upper surface of the lower foamed resin plate 6 is a flat surface. If the lower surface of the foamed resin plate 5 is made uneven by the grooves in this way, the unevenness can be easily processed. The upper foamed resin plate 5 and the concrete foundation 3 and the lower foundation plate 1 of the foamed resin plate 6 may or may not be fixed to each other.

この基礎下免震滑り支承構造は、上の発泡樹脂板5の下面および下の発泡樹脂板6の上面が滑り面5a,6aとなっており、地震による横揺れによって各滑り面5a,6a間に滑りを生じて、建物が免震される。上の発泡樹脂板5の滑り面5aに凹凸が設けられているため、実質的に建物の荷重を支持する箇所は滑り面5aの凸部8であり、2層の発泡樹脂板5,6の各滑り面5a,6aにおける建物の荷重を支持する面積が、滑り面5a,6a全体の外周を囲む範囲の面積よりも狭くなっている。そのため、凹凸が無い場合と比べて、滑り面5a,6aの面圧が高い。2つの物体が高面圧で接する場合、低面圧で接する場合と異なり、一般に面圧が高いほど摩擦係数が低減するため、滑り面5a,6aの面圧が高いと、摩擦係数が小さくなり、滑りが生じ易い。滑り面5a,6aの面圧は、凹凸の大きさ、ピッチ等を変えることで調整が可能である。   In this base-isolated base-isolation sliding bearing structure, the lower surface of the upper foamed resin plate 5 and the upper surface of the lower foamed resin plate 6 are the slide surfaces 5a, 6a. The building slips and the building is isolated. Since the sliding surface 5a of the upper foamed resin plate 5 is provided with irregularities, the portion that substantially supports the load of the building is the convex portion 8 of the sliding surface 5a. The area for supporting the building load on each of the sliding surfaces 5a and 6a is narrower than the area surrounding the outer periphery of the sliding surfaces 5a and 6a. Therefore, the surface pressure of the sliding surfaces 5a and 6a is higher than that when there is no unevenness. When two objects are in contact with each other at a high surface pressure, unlike the case in which they are in contact with each other at a low surface pressure, the friction coefficient generally decreases as the surface pressure increases. Therefore, if the surface pressure of the sliding surfaces 5a and 6a is high, the friction coefficient decreases. Sliding easily occurs. The surface pressure of the sliding surfaces 5a and 6a can be adjusted by changing the size of the unevenness, the pitch, and the like.

また、この基礎下免震滑り支承構造のように、滑り面5a,6aの少なくともどちらに凹凸が設けられていると、滑り面5a,6aと空気との接触面積が増えるため、滑り面5a,6aで発生した摩擦熱が効果的に外部へ放出される。特にこの実施形態の場合は、凹凸が溝によって形成され、溝の両端が発泡樹脂板5の端面に開口しているため、放熱がより一層効果的に行われる。それにより、熱篭りを防いで、滑り面5a,6aの温度上昇が抑制されることで、摩擦係数の変動が少なくなり、安定した滑りを実現できる。   Further, as in this base-isolated base-isolation sliding bearing structure, when at least one of the sliding surfaces 5a, 6a is provided with irregularities, the contact area between the sliding surfaces 5a, 6a and the air increases. The frictional heat generated in 6a is effectively released to the outside. In particular, in the case of this embodiment, the unevenness is formed by grooves, and both ends of the grooves are open to the end surface of the foamed resin plate 5, so that heat radiation is performed more effectively. As a result, the heat rise is prevented and the temperature rise of the sliding surfaces 5a and 6a is suppressed, so that the fluctuation of the friction coefficient is reduced, and stable sliding can be realized.

滑り面5aの凹凸パターンは、上記実施形態のように、凸部8の側面8aが滑り面5aに対して垂直であってもよいが、図4(A)のように、凸部8の側面8aを凸部8が先細りとなるように傾斜させてもよく、あるいは図4(B)のように、凸部8の側面8aの先端角部に平面または曲面からなる面取り8aaを施してもよい。凸部8を図4(A),(B)のような形状とすると、各滑り面5a,6a間の滑りがスムーズに行われる。   The concave / convex pattern of the sliding surface 5a may be such that the side surface 8a of the convex portion 8 is perpendicular to the sliding surface 5a as in the above embodiment, but the side surface of the convex portion 8 is as shown in FIG. 8a may be inclined so that the convex portion 8 is tapered, or a chamfer 8aa made of a flat surface or a curved surface may be applied to the tip corner portion of the side surface 8a of the convex portion 8 as shown in FIG. . If the convex part 8 is made into the shape as FIG. 4 (A) and (B), the sliding between each sliding surface 5a, 6a will be performed smoothly.

また、図5のように、外周部に配置された凸部8A以外は滑り面5aの中央に凸部8Bを配置した凹凸パターンとしてもよい。この場合も、2層の発泡樹脂板5,6の各滑り面5a,6aにおける建物の荷重を支持する面積が、滑り面5a,6a全体の面積よりも狭くなり、滑り面5a,6aの面圧を高くできる。さらに、場合によっては、図6のように、片方の発泡樹脂板5を小さくすることによって、滑り面5a,6aの面圧を高くしてもよい。   Moreover, as shown in FIG. 5, it is good also as an uneven | corrugated pattern which has arrange | positioned the convex part 8B in the center of the sliding surface 5a other than the convex part 8A arrange | positioned at an outer peripheral part. Also in this case, the area supporting the building load on the sliding surfaces 5a, 6a of the two-layer foamed resin plates 5, 6 is smaller than the entire area of the sliding surfaces 5a, 6a, and the surfaces of the sliding surfaces 5a, 6a The pressure can be increased. Further, depending on the case, the surface pressure of the sliding surfaces 5a and 6a may be increased by reducing one of the foamed resin plates 5 as shown in FIG.

2層の発泡樹脂板5,6のうち凹凸が設けられていない方の発泡樹脂板6の対向面に滑り材(図示せず)を一体に設けても良い。滑り材は、シート状のものであっても、鋼板等の板状のものであっても良い。例えば、発泡樹脂板5,6よりも硬質の滑り材を接着剤等により一体に貼り合わせる。この場合、滑り材の表面、および発泡樹脂板5の対向面すなわち凹凸が設けられた下面が、地震による横揺れに対する滑り面5aとなり、建物が免震される。滑り材として、摩擦係数が小さい材質のものを用いることにより、地震時の滑りが促進される。   A sliding material (not shown) may be integrally provided on the opposing surface of the foamed resin plate 6 that is not provided with the unevenness among the two layers of the foamed resin plates 5 and 6. The sliding material may be a sheet or a plate such as a steel plate. For example, a sliding material harder than the foamed resin plates 5 and 6 is integrally bonded with an adhesive or the like. In this case, the surface of the sliding material and the opposite surface of the foamed resin plate 5, that is, the lower surface provided with the unevenness, become the sliding surface 5a against the roll due to the earthquake, and the building is seismically isolated. By using a material having a small friction coefficient as a sliding material, sliding during an earthquake is promoted.

図7は、この発明の第2の実施形態にかかる基礎下免震滑り支承構造を示す。この基礎下免震滑り支承構造の滑り支承部2は、上下2層の発泡樹脂板5,6のうち、下の発泡樹脂板6の上面が凹凸に形成されている。すなわち、図8に示すように、下の発泡樹脂板6の上面に全体にわたり縦横の溝が複数条ずつ平行に設けられ、溝の部分が凹部7となり、溝以外の部分が凸部8となっている。そして、この凹凸に形成された発泡樹脂板6の上面に、発泡樹脂板5,6よりも硬質の滑り板10が接着剤等により一体に貼り合わされている。滑り板10は、例えば鋼板である。上の発樹脂板5の下面は平坦面である。   FIG. 7 shows an under-base seismic isolation sliding support structure according to a second embodiment of the present invention. In the sliding support portion 2 of the base-isolated base-isolation sliding support structure, the upper surface of the lower foamed resin plate 6 among the upper and lower two layers of the foamed resin plates 5 and 6 is formed to be uneven. That is, as shown in FIG. 8, a plurality of vertical and horizontal grooves are provided in parallel on the entire upper surface of the lower foamed resin plate 6, the groove portions become the concave portions 7, and the portions other than the grooves become the convex portions 8. ing. Then, a sliding plate 10 that is harder than the foamed resin plates 5 and 6 is integrally bonded to the upper surface of the foamed resin plate 6 formed in the unevenness with an adhesive or the like. The sliding plate 10 is, for example, a steel plate. The lower surface of the upper resin plate 5 is a flat surface.

この基礎下免震滑り支承構造の場合、上の発泡樹脂板5の下面および滑り板10の上面がそれぞれ滑り面5a,10aとなり、地震による横揺れによって各滑り面5a,10a間に滑りを生じて、建物が免震される。滑り板10の滑り面10aの背面側に凹凸を設けたことにより、各滑り面5a,10aの面圧が凸部8の反対側の位置する箇所で高くなり、前記実施形態と同様に、摩擦係数が小さくなり、滑りが生じ易い。また、滑り板10の滑り面10aの背面側に凹凸を設けたことにより、滑り面5a,10aの温度上昇が抑制される。   In the case of this base-isolated sliding bearing structure, the lower surface of the upper foamed resin plate 5 and the upper surface of the sliding plate 10 become the sliding surfaces 5a and 10a, respectively, and slip occurs between the sliding surfaces 5a and 10a due to the rolling due to the earthquake. The building is seismically isolated. By providing unevenness on the back side of the sliding surface 10a of the sliding plate 10, the surface pressure of each sliding surface 5a, 10a becomes higher at the position on the opposite side of the convex portion 8, and as in the above embodiment, friction is caused. The coefficient is small and slippage is likely to occur. In addition, by providing unevenness on the back side of the sliding surface 10a of the sliding plate 10, the temperature rise of the sliding surfaces 5a, 10a is suppressed.

図9は、この発明の第3の実施形態にかかる基礎下免震滑り支承構造を示す。この基礎下免震滑り支承構造の滑り支承部2は、上下2層の発泡樹脂板5,6のうち、下の発泡樹脂板6の下面が凹凸に形成されている。例えば、下の発泡樹脂板6の下面に全面にわたり縦横の溝を複数条ずつ平行に設けて、溝の部分を凹部7とし、溝以外の部分を凸部8としている。下の発泡樹脂板6の上面は平坦面である。また、上の発泡樹脂板5は、上下両面とも平坦面である。   FIG. 9 shows a base-isolated seismic sliding bearing structure according to a third embodiment of the present invention. In the sliding support portion 2 of this foundation lower seismic isolation sliding support structure, the lower surface of the lower foamed resin plate 6 among the upper and lower two layers of foamed resin plates 5 and 6 is formed to be uneven. For example, a plurality of vertical and horizontal grooves are provided in parallel on the entire lower surface of the lower foamed resin plate 6 so that the groove portions are the recesses 7 and the portions other than the grooves are the protrusions 8. The upper surface of the lower foamed resin plate 6 is a flat surface. Moreover, the upper foamed resin board 5 is a flat surface on both upper and lower surfaces.

この基礎下免震滑り支承構造の場合、上の発泡樹脂板5の下面および下の発泡樹脂板6の上面がそれぞれ滑り面5a,6aとなり、地震による横揺れによって各滑り面5a,6a間に滑りを生じて、建物が免震される。各滑り面5a,6aは全面で接しているが、下の発泡樹脂板6の下面に凹凸を設けたことにより、その凹凸の影響が滑り面6aに現れて、滑り面5a,6aのうち建物の荷重を実質的に支持する面積は、滑り面5a,6aの全体の面積である見かけの面積よりも狭くなっている。そのため、滑り面5a,6aの面圧が高く、摩擦係数が小さくなって、滑りが生じ易い。滑り面5a,6aの面圧は、凹凸の大きさ、ピッチ等を変えることで、調整が可能である。なお、この基礎下免震滑り支承構造は、滑り面5a,6aの温度上昇の抑制効果は期待できない。   In the case of this base-isolated sliding support structure, the lower surface of the upper foamed resin plate 5 and the upper surface of the lower foamed resin plate 6 become the sliding surfaces 5a and 6a, respectively. A building slips and the building is isolated. Each sliding surface 5a, 6a is in contact with the entire surface, but by providing unevenness on the lower surface of the lower foamed resin plate 6, the effect of the unevenness appears on the sliding surface 6a, and the building of the sliding surfaces 5a, 6a The area that substantially supports the load is smaller than the apparent area that is the entire area of the sliding surfaces 5a and 6a. Therefore, the surface pressure of the sliding surfaces 5a and 6a is high, the friction coefficient is small, and slipping is likely to occur. The surface pressure of the sliding surfaces 5a and 6a can be adjusted by changing the size and pitch of the unevenness. In addition, this foundation-isolated base-isolation sliding bearing structure cannot expect the suppression effect of the temperature rise of the sliding surfaces 5a and 6a.

発泡樹脂板5,6のいずれかの片面に設けられる凹凸は、上記各実施形態に示されているものに限定されない。例えば、凸部の平面形状は、円形等の長方形以外の形状であってもよい。また、凹部または凸部またはその両方の断面形状が曲線状、すなわち凹部の深さと凸部の高さが連続的に変化する形状であってもよい。さらに、上記各実施形態とは逆に、発泡樹脂板5,6の凹凸が設けられる面の全面にわたって凸部が繋がって配置され、凹部は凸部の間に分散して配置されていてもよい。ただし、この凹部と凸部の配置であると、滑り面に凹凸を設けた場合の摩擦熱の放熱性はあまり良くない。   The irregularities provided on one side of the foamed resin plates 5 and 6 are not limited to those shown in the above embodiments. For example, the planar shape of the convex portion may be a shape other than a rectangle such as a circle. Further, the cross-sectional shape of the concave portion or the convex portion or both may be a curved shape, that is, a shape in which the depth of the concave portion and the height of the convex portion continuously change. Furthermore, conversely to the above embodiments, the convex portions may be arranged over the entire surface of the foamed resin plates 5 and 6 where the irregularities are provided, and the concave portions may be distributed between the convex portions. . However, the arrangement of the concave and convex portions is not so good in heat dissipation of frictional heat when the sliding surface is provided with irregularities.

1…地盤基礎
3…コンクリート基礎
5…上の発泡樹脂板
5a…滑り面
6…下の発泡樹脂板
6a…滑り面
7…凹部
8…凸部
10…滑り板
10a…滑り面
DESCRIPTION OF SYMBOLS 1 ... Ground foundation 3 ... Concrete foundation 5 ... Upper foamed resin board 5a ... Sliding surface 6 ... Lower foamed resin board 6a ... Sliding surface 7 ... Concavity 8 ... Convex part 10 ... Sliding board 10a ... Sliding surface

Claims (6)

建物のコンクリート基礎を2層の発泡樹脂板を介して地盤上に支承し、地震による横揺れによって前記2層の発泡樹脂板間に滑りを生じて、建物が免震されるようになされている基礎下免震滑り支承構造であって、前記2層の発泡樹脂板のうち少なくとも一方の発泡樹脂板の片面に凹凸を設けたことを特徴とする基礎下免震滑り支承構造。   The concrete foundation of the building is supported on the ground via two layers of foamed resin plates, and the building is made to be isolated from the earthquake by rolling between the two layers of foamed resin plates due to the rolling due to the earthquake. An under-base seismic isolation sliding bearing structure, wherein an unevenness is provided on one surface of at least one of the two layers of foamed resin plates. 請求項1において、前記2層の発泡樹脂板の各対向面のうちいずれか一方の対向面に凹凸を設けた基礎下免震滑り支承構造。   The base-isolated seismic isolation sliding support structure according to claim 1, wherein unevenness is provided on any one of the opposing surfaces of the two-layer foamed resin plates. 請求項2において、前記2層の発泡樹脂板のうち前記凹凸が設けられていない方の発泡樹脂板の対向面に滑り材を一体に設けた基礎下免震滑り支承構造。   The base-isolated seismic isolation sliding support structure according to claim 2, wherein a sliding material is integrally provided on an opposing surface of the foamed resin plate that is not provided with the unevenness among the two layers of foamed resin plates. 請求項2において、前記凹凸が設けられた発泡樹脂板の対向面に、前記発泡樹脂板よりも硬質の滑り板を一体に設けた基礎下免震滑り支承構造。   3. The base-isolated base-isolated sliding bearing structure according to claim 2, wherein a sliding plate harder than the foamed resin plate is integrally provided on the opposing surface of the foamed resin plate provided with the unevenness. 請求項1において、前記2層の発泡樹脂板のうちの地盤側の発泡樹脂板の地盤に接する面に凹凸を設けた基礎下免震滑り支承構造。   2. The base-isolated base-isolation sliding bearing structure according to claim 1, wherein an unevenness is provided on a surface of the two-layer foamed resin plate that contacts the ground of the ground-side foamed resin plate. 請求項1ないし請求項5のいずれか1項において、前記2層の発泡樹脂板のうち少なくとも一方の発泡樹脂板の片面に設けられる凹凸は、前記片面に一方端から他方端へ延びる溝を設けて、溝の部分を凹部とし、溝以外の部分を凸部としたものである基礎下免震滑り支承構造。   6. The unevenness provided on one surface of at least one of the two layers of foamed resin plates according to any one of claims 1 to 5, wherein a groove extending from one end to the other end is provided on the one surface. In addition, the base-isolated base-isolation sliding bearing structure in which the groove part is a concave part and the part other than the groove is a convex part.
JP2012143762A 2012-06-27 2012-06-27 Base-isolated sliding bearing structure Active JP6042115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143762A JP6042115B2 (en) 2012-06-27 2012-06-27 Base-isolated sliding bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143762A JP6042115B2 (en) 2012-06-27 2012-06-27 Base-isolated sliding bearing structure

Publications (2)

Publication Number Publication Date
JP2014005704A true JP2014005704A (en) 2014-01-16
JP6042115B2 JP6042115B2 (en) 2016-12-14

Family

ID=50103663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143762A Active JP6042115B2 (en) 2012-06-27 2012-06-27 Base-isolated sliding bearing structure

Country Status (1)

Country Link
JP (1) JP6042115B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108678481A (en) * 2018-05-07 2018-10-19 温州宇泰建设工程有限公司 A kind of Aseismic Steel Structures residential housing
JP2019007185A (en) * 2017-06-22 2019-01-17 日本ピラー工業株式会社 Bearing device
JP2019007186A (en) * 2017-06-22 2019-01-17 日本ピラー工業株式会社 Bearing device
JP2019194397A (en) * 2018-05-01 2019-11-07 日本ピラー工業株式会社 Bearing device
JP2020058718A (en) * 2018-10-12 2020-04-16 武志 菊地 Seismic isolation base unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074138A (en) * 1998-09-02 2000-03-07 Toyo Tire & Rubber Co Ltd Slide type base isolation device for lightweight structure
JP2002098189A (en) * 2000-09-22 2002-04-05 Ntn Corp Sliding type vibration isolation apparatus
JP2008101451A (en) * 2006-09-19 2008-05-01 Biikku Kk Aseismic structure and method for building
JP4929406B1 (en) * 2011-02-28 2012-05-09 大和ハウス工業株式会社 Base-isolated structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000074138A (en) * 1998-09-02 2000-03-07 Toyo Tire & Rubber Co Ltd Slide type base isolation device for lightweight structure
JP2002098189A (en) * 2000-09-22 2002-04-05 Ntn Corp Sliding type vibration isolation apparatus
JP2008101451A (en) * 2006-09-19 2008-05-01 Biikku Kk Aseismic structure and method for building
JP4929406B1 (en) * 2011-02-28 2012-05-09 大和ハウス工業株式会社 Base-isolated structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007185A (en) * 2017-06-22 2019-01-17 日本ピラー工業株式会社 Bearing device
JP2019007186A (en) * 2017-06-22 2019-01-17 日本ピラー工業株式会社 Bearing device
JP2019194397A (en) * 2018-05-01 2019-11-07 日本ピラー工業株式会社 Bearing device
JP7040994B2 (en) 2018-05-01 2022-03-23 日本ピラー工業株式会社 Bearing device
CN108678481A (en) * 2018-05-07 2018-10-19 温州宇泰建设工程有限公司 A kind of Aseismic Steel Structures residential housing
JP2020058718A (en) * 2018-10-12 2020-04-16 武志 菊地 Seismic isolation base unit
JP7145378B2 (en) 2018-10-12 2022-10-03 武志 菊地 Seismic isolation unit

Also Published As

Publication number Publication date
JP6042115B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6042115B2 (en) Base-isolated sliding bearing structure
TWI644004B (en) Sliding support structure
JP3194542B2 (en) Vibration damping device
JP5967440B2 (en) Slip isolation mechanism
JP2019035493A (en) Slide bearing device
JP3129330U (en) Support cushion
JP4929406B1 (en) Base-isolated structure
JP5693920B2 (en) Base-isolated structure
JP2013046743A (en) Base isolation method and base isolation plate
JP6087605B2 (en) Seismic isolation structure
EP4349200A3 (en) Shock-absorbing material
JP6845761B2 (en) Sliding material unit and sliding bearing structure
JP2000120776A (en) Floating preventing device in base isolating device for structure
JP4929374B2 (en) Base-isolated structure
JP6709609B2 (en) Seismic isolation mechanism
JPH11210826A (en) Base isolation slide support
JPH09184542A (en) Base isolation device
JP4489097B2 (en) Seismic isolation device
JP2012021638A (en) Base isolation device
JPH11336201A (en) Bearing device
JP2003328588A (en) Double rolling support body with plurality of spherical bodies, base isolation device comprising excessive displacement suppressing mechanism and base isolation structure formed by combination with another hydraulic system or laminated rubber device
JP5988433B2 (en) Floor panel with heater function
JP7042642B2 (en) Seismic isolation mechanism
JP7286347B2 (en) Bearing mechanism and anti-vibration floor structure
JP3790901B2 (en) Seismic isolation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161109

R150 Certificate of patent or registration of utility model

Ref document number: 6042115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250