JP2014004560A - Granular solid acid and method for producing the same - Google Patents

Granular solid acid and method for producing the same Download PDF

Info

Publication number
JP2014004560A
JP2014004560A JP2012143390A JP2012143390A JP2014004560A JP 2014004560 A JP2014004560 A JP 2014004560A JP 2012143390 A JP2012143390 A JP 2012143390A JP 2012143390 A JP2012143390 A JP 2012143390A JP 2014004560 A JP2014004560 A JP 2014004560A
Authority
JP
Japan
Prior art keywords
granular
solid acid
producing
raw material
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012143390A
Other languages
Japanese (ja)
Other versions
JP6018431B2 (en
Inventor
Atsushi Kodama
淳史 児玉
Yohei Matsuoka
洋平 松岡
Hiroshi Yamada
浩史 山田
Tsutomu Kosaka
務 高阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2012143390A priority Critical patent/JP6018431B2/en
Publication of JP2014004560A publication Critical patent/JP2014004560A/en
Application granted granted Critical
Publication of JP6018431B2 publication Critical patent/JP6018431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a granular solid acid capable of maintaining granular shape thereof in a production process independently of a binder, capable of retaining a catalytic activity, and having high design freedom for a granule diameter, and a method for producing the same.SOLUTION: A method for producing a granular solid acid comprises: molding regenerated cellulose derived from viscose to a granular shape to obtain a granular cellulose raw material, as a raw material preparation step; calcining the granular cellulose raw material at 290°C-420°C under an inert atmosphere to obtain a granular carbonized material having granule diameter of 0.075 mm or more, as a carbonization step; and introducing sulfo groups into the granular carbonized material in oleum, as a sulfonation step. The sulfo group content in the granular solid acid is 0.7-2.7 mmol/g. The granular solid acid produced according to the method is also provided.

Description

本発明は、粒状固体酸及びその製造方法に関し、特に、粒状化した炭化物の表面にスルホ基(スルホン酸基)を導入して得た粒状固体酸並びに当該粒状固体酸の製造方法に関する。   The present invention relates to a granular solid acid and a method for producing the same, and more particularly to a granular solid acid obtained by introducing a sulfo group (sulfonic acid group) on the surface of granulated carbide and a method for producing the granular solid acid.

硫酸は高い活性を有し、炭化水素化合物を反応させる際の触媒としても広く利用される。例えば、遊離高級脂肪酸とアルコールとを反応させて、高級脂肪酸エステルを得るエステル化反応の促進、セルロース等の糖鎖から単糖への加水分解反応の促進、その他、炭化水素燃料を合成するアルキル化反応の促進等の用途である。   Sulfuric acid has high activity and is widely used as a catalyst for reacting hydrocarbon compounds. For example, promotion of esterification reaction to obtain higher fatty acid ester by reacting free higher fatty acid with alcohol, promotion of hydrolysis reaction from sugar chain such as cellulose to monosaccharide, and other alkylation to synthesize hydrocarbon fuel It is used for promoting the reaction.

硫酸は触媒として各種の反応促進に寄与した後、中和、洗浄され、その都度消費されていた。硫酸は液体であるため回収が容易ではない。回収処理と新規投入との経費差から、現状は使い捨てが主流である。しかし、使用済みの硫酸の中和、洗浄に加え、環境基準に準拠した排水処理までを考慮すると、この負担は大きい。このことから、触媒として連続使用に耐えうるとともに、反応後の分離、回収に容易なより利便性の高い触媒が求められるようになってきた。   Sulfuric acid contributed to the promotion of various reactions as a catalyst, and was neutralized, washed and consumed each time. Since sulfuric acid is a liquid, it is not easy to recover. Disposal is the mainstream at present due to the cost difference between the collection process and new input. However, considering the neutralization and washing of the used sulfuric acid and the wastewater treatment that complies with environmental standards, this burden is large. This has led to a demand for a more convenient catalyst that can withstand continuous use as a catalyst and that is easy to separate and recover after the reaction.

そのような触媒として固体酸が挙げられる。例えば、硫酸処理を施したジルコニア、PTFEにスルホ基(スルホン酸基)を導入したフッ素樹脂である。前記のジルコニアの場合、単位重量あたりのスルホ基濃度が低いため、触媒活性が低い欠点がある。また、前記のフッ素樹脂に関しては、熱に弱く、適用できる反応種が限られている問題がある。   Such catalysts include solid acids. For example, it is a fluororesin in which a sulfo group (sulfonic acid group) is introduced into sulfuric acid-treated zirconia or PTFE. In the case of the zirconia, since the sulfo group concentration per unit weight is low, there is a drawback that the catalytic activity is low. Further, the fluororesin has a problem that it is weak against heat and applicable reactive species are limited.

そこで、十分な触媒活性と耐熱性も併せ持つ固体酸として、炭素系の固体酸が提案された(特許文献1、特許文献2等参照)。例えば、特許文献1の固体酸は、多環式芳香族炭化水素を濃硫酸中で加熱処理して得ることができる。   Therefore, carbon-based solid acids have been proposed as solid acids having both sufficient catalytic activity and heat resistance (see Patent Document 1, Patent Document 2, etc.). For example, the solid acid of Patent Document 1 can be obtained by heat-treating a polycyclic aromatic hydrocarbon in concentrated sulfuric acid.

さらに、固体酸がその内部に細孔構造による適度な表面積(比表面積)を有していればより吸着が増す。このため、吸着界面における濃度がバルク相における濃度よりも高くなる。このことから、固体酸内部の吸着界面では溶媒中の溶質濃度が固体酸表面と比較して高くなり、細孔構造を有する固体酸の方が反応を加速することができる。   Furthermore, if the solid acid has an appropriate surface area (specific surface area) due to the pore structure therein, the adsorption is further increased. For this reason, the density | concentration in an adsorption interface becomes higher than the density | concentration in a bulk phase. From this, the solute concentration in the solvent is higher at the adsorption interface inside the solid acid than on the surface of the solid acid, and the solid acid having a pore structure can accelerate the reaction.

その後、安価に調達可能なオガ屑(オガコ)等の木質を炭素系原料として使用し、固体酸を製造する方法が提案されている(特許文献3参照)。特許文献3に開示の原料を用いた固体酸は高い触媒活性を有し、量産化に優れた方法であり原価面でも有望視されている。ただし、加工の途中、主にスルホ基を導入するスルホ化の段階で粉末化しやすくなる場合がある。   Thereafter, a method for producing a solid acid by using a woody material such as sawdust that can be procured at low cost as a carbon-based raw material has been proposed (see Patent Document 3). The solid acid using the raw material disclosed in Patent Document 3 has high catalytic activity, is an excellent method for mass production, and is promising in terms of cost. However, in the middle of processing, the powder may be easily pulverized mainly at the sulfonation stage where a sulfo group is introduced.

粉化しやすい固体酸の利便性を高めるため、粒状化が試みられている。例えば、樹脂系バインダーにより粉末固体酸を固めてペレット状にする手法がある。しかし、バインダー自体に触媒活性はないため、バインダーが固体酸表面を被覆することによって本来備わっていた触媒活性が大幅に低下してしまう。さらに、バインダーの材質上、耐薬品性に乏しく工業的な連続使用を想定した耐久性を欠く。   In order to increase the convenience of solid acids that are easily pulverized, granulation has been attempted. For example, there is a method of solidifying a powdered solid acid with a resin binder to form a pellet. However, since the binder itself has no catalytic activity, the inherent catalytic activity is greatly reduced when the binder coats the solid acid surface. Furthermore, the material of the binder lacks chemical resistance and lacks durability assuming continuous industrial use.

このような経緯を踏まえ、発明者らは、炭素系の固体酸の原料について鋭意検討を重ねた結果、製造段階で簡単に粉末化することなく、またバインダー等に依存することなく粒形状を維持可能な原料を見出し、これより固体酸を得る製法に至った。   Based on such circumstances, the inventors have conducted extensive studies on carbon-based solid acid raw materials, and as a result, maintained the grain shape without being easily powdered at the manufacturing stage and without depending on the binder. A possible raw material was found, and from this, a production method for obtaining a solid acid was reached.

特許第4041409号公報Japanese Patent No. 4041409 WO2005/029508WO2005 / 029508 特開2011−11201号公報JP 2011-11201 A

本発明は、上記状況に鑑み提案されたものであり、製造段階でバインダーに依存することなく粒形状を維持可能であり、触媒活性を維持することができ、さらに粒径設計の自由度の高い粒状固体酸並びにその製造方法を提供する。   The present invention has been proposed in view of the above situation, can maintain the particle shape without depending on the binder in the production stage, can maintain the catalytic activity, and has a high degree of freedom in particle size design. A granular solid acid and a method for producing the same are provided.

すなわち、請求項1の発明は、再生セルロースを粒状に形成してなる粒状セルロース原料を得る原料調製工程と、前記粒状セルロース原料を不活性雰囲気下において290〜420℃で焼成して粒状炭化物を得る炭化工程と、前記粒状炭化物にスルホ基を導入するスルホ化工程とを有することを特徴とする粒状固体酸の製造方法に係る。   That is, the invention of claim 1 is a raw material preparation step for obtaining a granular cellulose raw material formed by forming regenerated cellulose in a granular form, and calcining the granular cellulose raw material at 290 to 420 ° C. in an inert atmosphere to obtain a granular carbide. It has a carbonization process and the sulfonation process which introduce | transduces a sulfo group into the said granular carbide, It concerns on the manufacturing method of the granular solid acid characterized by the above-mentioned.

請求項2の発明は、前記再生セルロースがビスコースに由来する請求項1に記載の粒状固体酸の製造方法に係る。   The invention of claim 2 relates to the method for producing a granular solid acid according to claim 1, wherein the regenerated cellulose is derived from viscose.

請求項3の発明は、前記粒状炭化物の粒径が0.075mm以上である請求項1または2に記載の粒状固体酸の製造方法に係る。   Invention of Claim 3 concerns on the manufacturing method of the granular solid acid of Claim 1 or 2 whose particle size of the said granular carbide | carbonized_material is 0.075 mm or more.

請求項4の発明は、前記粒状固体酸における前記スルホ基量が0.7〜2.7mmol/gである請求項1ないし3のいずれか1項に記載の粒状固体酸の製造方法に係る。   Invention of Claim 4 concerns on the manufacturing method of the granular solid acid of any one of Claim 1 thru | or 3 whose said sulfo group amount in the said granular solid acid is 0.7-2.7 mmol / g.

請求項5の発明は、前記スルホ化工程が発煙硫酸中で進行する請求項1ないし4のいずれか1項に記載の粒状固体酸の製造方法に係る。   Invention of Claim 5 concerns on the manufacturing method of the granular solid acid of any one of Claim 1 thru | or 4 in which the said sulfonation process advances in fuming sulfuric acid.

請求項6の発明は、前記粒状炭化物の室温から300℃まで加熱した時点の重量(W1)と300℃から400℃まで加熱した時点の重量(W2)から下記(i)式に基づいて算出した加熱温度300℃から400℃までの間の重量変化率(Rw(%))が1.5ないし18%を満たす請求項1ないし5のいずれか1項に記載の粒状固体酸の製造方法に係る。 The invention of claim 6 is based on the following formula (i) from the weight (W 1 ) of the granular carbide when heated from room temperature to 300 ° C. and the weight (W 2 ) when heated from 300 ° C. to 400 ° C. The method for producing a granular solid acid according to any one of claims 1 to 5, wherein the calculated weight change rate (Rw (%)) between 300 ° C and 400 ° C satisfies 1.5 to 18%. Concerning.

Figure 2014004560
Figure 2014004560

請求項7の発明は、請求項1ないし6のいずれか1項に記載の粒状固体酸の製造方法により製造したことを特徴とする粒状固体酸に係る。   A seventh aspect of the invention relates to a granular solid acid produced by the method for producing a granular solid acid according to any one of the first to sixth aspects.

請求項1の発明に係る粒状固体酸の製造方法によると、再生セルロースを粒状に形成してなる粒状セルロース原料を得る原料調製工程と、前記粒状セルロース原料を不活性雰囲気下において290℃〜420℃で焼成して粒状炭化物を得る炭化工程と、前記粒状炭化物にスルホ基を導入するスルホ化工程とを有するため、製造段階でバインダーに依存することなく粒形状を維持可能であり、触媒活性を維持することができ、さらに粒径設計の自由度の高い粒状固体酸の製造方法を構築することができた。   According to the method for producing a granular solid acid according to the invention of claim 1, a raw material preparation step for obtaining a granular cellulose raw material formed by forming regenerated cellulose into a granular form, and the granular cellulose raw material in an inert atmosphere at 290 ° C. to 420 ° C. Since it has a carbonization process to obtain granular carbides by firing with a sulfonation process to introduce sulfo groups into the granular carbides, it is possible to maintain the particle shape without depending on the binder in the production stage and maintain the catalytic activity In addition, a method for producing a granular solid acid with a high degree of freedom in particle size design could be constructed.

請求項2の発明に係る粒状固体酸の製造方法によると、請求項1の発明において、前記再生セルロースがビスコースに由来するため、再生セルロースを得るための調製は容易であり、量的な調達も可能であり安価となる。   According to the method for producing a granular solid acid according to the invention of claim 2, in the invention of claim 1, since the regenerated cellulose is derived from viscose, preparation for obtaining regenerated cellulose is easy, and quantitative procurement Is also possible and inexpensive.

請求項3の発明に係る粒状固体酸の製造方法によると、請求項1または2の発明において、前記粒状炭化物の粒径が0.075mm以上であるため、粉末物よりも大きい粒径の粒状固体酸を得ることができる。   According to the method for producing a granular solid acid according to the invention of claim 3, in the invention of claim 1 or 2, since the particle size of the granular carbide is 0.075 mm or more, the granular solid having a particle size larger than that of the powdered material. An acid can be obtained.

請求項4の発明に係る粒状固体酸の製造方法によると、請求項1ないし3のいずれかの発明において、前記粒状固体酸における前記スルホ基量が0.7〜2.7mmol/gであるため、単位重量当たり実用的な触媒反応に必要であり、かつ導入可能な最大量なスルホ基量を確保することができる。   According to the method for producing a granular solid acid according to the invention of claim 4, in the invention of any one of claims 1 to 3, the amount of the sulfo group in the particulate solid acid is 0.7 to 2.7 mmol / g. It is necessary for a practical catalytic reaction per unit weight, and the maximum amount of sulfo group that can be introduced can be ensured.

請求項5の発明に係る粒状固体酸の製造方法によると、請求項1ないし4のいずれかの発明において、前記スルホ化工程が発煙硫酸中で進行するため、単位炭化物重量当たりのスルホ基の導入量を多くすることができる。   According to the method for producing a granular solid acid according to the invention of claim 5, in the invention of any one of claims 1 to 4, since the sulfonation step proceeds in fuming sulfuric acid, introduction of sulfo groups per unit carbide weight The amount can be increased.

請求項6の発明に係る粒状固体酸の製造方法によると、請求項1ないし5のいずれかの発明において、前記粒状炭化物の室温から300℃まで加熱した時点の重量(W1)と300℃から400℃まで加熱した時点の重量(W2)から下記(i)式に基づいて算出した加熱温度300℃から400℃までの間の重量変化率(Rw(%))が1.5ないし18%を満たすため、ある特定の温度域における粒状炭化物の重量減少の挙動を把握することにより、その後のスルホ基の付加量、さらには触媒活性性能の推定に役立てることができ、良好な粒状固体酸を製造する上での指標とすることができる。 According to the method for producing a granular solid acid according to the invention of claim 6, in the invention of any one of claims 1 to 5, the weight (W 1 ) of the particulate carbide heated from room temperature to 300 ° C. and from 300 ° C. The weight change rate (Rw (%)) between the heating temperature 300 ° C. and 400 ° C. calculated from the weight (W 2 ) at the time of heating up to 400 ° C. based on the following formula (i) is 1.5 to 18%. Therefore, by grasping the behavior of weight reduction of granular carbide in a specific temperature range, it can be used for estimation of the subsequent addition amount of sulfo group and further the catalytic activity performance. It can be used as an index for manufacturing.

請求項7の発明に係る粒状固体酸によると、請求項1ないし6のいずれか1項に記載の粒状固体酸の製造方法により製造したため、多様な粒径に設計することができ、各種反応用途への対応が容易である。また、バインダーを使用しないため、バインダーに起因する触媒活性の低下や劣化の問題も生じない。   According to the granular solid acid according to the invention of claim 7, since it was produced by the method for producing a granular solid acid according to any one of claims 1 to 6, it can be designed to have various particle sizes and can be used for various reactions. Is easy to deal with. Further, since no binder is used, there is no problem of reduction in catalyst activity or deterioration due to the binder.

本発明の粒状固体酸の製造方法に係る概略工程図である。It is a schematic process drawing concerning the manufacturing method of the granular solid acid of the present invention. 粒状セルロース原料の調製を示す概略工程図である。It is a schematic process drawing which shows preparation of a granular cellulose raw material. 試作例1の粒状炭化物の熱重量変化のグラフである。4 is a graph of thermogravimetric change of granular carbide of Prototype Example 1. 試作例5の粒状炭化物の熱重量変化のグラフである。6 is a graph of thermogravimetric change of granular carbide of Prototype Example 5. 試作例7の粒状炭化物の熱重量変化のグラフである。It is a graph of the thermogravimetric change of the granular carbide of Prototype Example 7. 試作例10の粒状炭化物の熱重量変化のグラフである。10 is a graph of thermogravimetric change of granular carbide of Prototype Example 10. 試作例12の粒状炭化物の熱重量変化のグラフである。It is a graph of the thermogravimetric change of the granular carbide of Prototype Example 12.

本発明に規定する粒状固体酸の製造方法について、図1及び図2の概略工程図とともに順に説明する。はじめに原料となる粒状セルロース原料(M)が準備される。起点となる粒状セルロース原料(M)は、公知手法により精製される再生セルロースから粒状に成形した粒状物である。   The manufacturing method of the granular solid acid prescribed | regulated to this invention is demonstrated in order with the schematic process drawing of FIG.1 and FIG.2. First, a granular cellulose raw material (M) as a raw material is prepared. The starting granular cellulose raw material (M) is a granular product formed into granules from regenerated cellulose purified by a known method.

再生セルロースは、請求項2の発明に規定するように、ビスコース(viscose)からの調製に由来する方法に代表される。ビスコースは現在セロハンや不織布の製造原料として広汎に利用されている。また、製法自体はビスコース法として確立されており、製法も簡便であり、量的に調達容易かつ安価とすることができる。そこで、ビスコースに由来する粒状セルロース原料の調製について、図2の概略工程図を用い説明する。   Regenerated cellulose is represented by a method derived from preparation from viscose, as defined in the invention of claim 2. Viscose is currently widely used as a raw material for cellophane and non-woven fabrics. Moreover, the manufacturing method itself has been established as the viscose method, the manufacturing method is also simple, and can be easily procured and inexpensive in terms of quantity. Therefore, the preparation of the granular cellulose raw material derived from viscose will be described with reference to the schematic process diagram of FIG.

ビスコース法においては、一般に木材、草、綿花、麻等から得たパルプが水酸化ナトリウム等のアルカリ溶液に浸漬されてアルカリセルロースとなる。続いて二硫化炭素の添加により硫化されてセルロースキサンテート(セルロースキサントゲン酸ナトリウム)の粘性液体が調製される。当該粘性液体が、いわゆるビスコースである。そして、ビスコースは希硫酸等の酸性液中に浸漬されることにより脱硫が進み純粋なセルロースに転化する。このため、固体酸の原料はほぼ全量純粋セルロースとなり原料純度は高められる。   In the viscose method, pulp obtained from wood, grass, cotton, hemp or the like is generally immersed in an alkali solution such as sodium hydroxide to become alkali cellulose. Subsequently, it is sulfurized by adding carbon disulfide to prepare a viscous liquid of cellulose xanthate (sodium cellulose xanthate). The viscous liquid is so-called viscose. The viscose is immersed in an acidic solution such as dilute sulfuric acid, so that desulfurization proceeds and the viscose is converted into pure cellulose. For this reason, almost all the solid acid raw material is pure cellulose, and the raw material purity is increased.

ビスコース(V)は、後述する工程への便宜から必要により流動性調整のためアルカリ溶液により希釈される(S1)。続いてビスコース(V)と希硫酸等の酸性液との接触を利用して粒状化(S2)とともにビスコースの凝固・再生(S3)が行われる。   Viscose (V) is diluted with an alkaline solution for fluidity adjustment as necessary for the convenience of the steps described later (S1). Subsequently, using the contact between the viscose (V) and an acidic liquid such as dilute sulfuric acid, granulation (S2) and coagulation / regeneration (S3) of the viscose are performed.

粒状化の方法としては、希硫酸等の酸性液中に希釈されたビスコースを滴下して表面張力により粒状化させる方法である。滴下の場合、比較的簡便な装置により製造できる。あるいは、ビスコースを酸性液中に投入し回転翼等で攪拌することにより、酸性液中に転化した粒状のセルロースを分散させる方法がある。攪拌による場合、装置の大規模化が容易であるため、量産に適する。この他、ビスコースを特には希釈せず、適宜の口径の管やシリンジから押し出しながら適当な大きさに切り分け、酸性液中に投入することも可能である。   The granulation method is a method in which viscose diluted in an acidic liquid such as dilute sulfuric acid is dropped and granulated by surface tension. In the case of dripping, it can be produced by a relatively simple apparatus. Alternatively, there is a method in which granular cellulose converted into the acidic liquid is dispersed by adding viscose into the acidic liquid and stirring with a rotary blade or the like. In the case of stirring, since the scale of the apparatus can be easily increased, it is suitable for mass production. In addition, it is also possible to divide the viscose into an appropriate size while pushing it out from a tube or syringe having an appropriate diameter without diluting it, and throw it into the acidic liquid.

粒状化に続く凝固・再生(S3)では、ビスコースと希硫酸との反応により、セルロースキサンテート(セルロースキサントゲン酸ナトリウム)から二硫化炭素、硫酸ナトリウムが遊離し、最終的に転化してセルロースのみが生じる。このことから把握されるように、粒径が大きくなるほど重量当たりの表面積が減少する。そこで、前記の滴下、攪拌、切り分けのいずれの粒状化手法を採用するかによって凝固・再生の脱硫に必要とする時間が伸縮する。   In the solidification / regeneration (S3) following granulation, carbon disulfide and sodium sulfate are liberated from cellulose xanthate (sodium cellulose xanthate) by the reaction of viscose and dilute sulfuric acid, and finally converted to cellulose alone Occurs. As can be seen from this, the surface area per weight decreases as the particle size increases. Therefore, the time required for desulfurization for coagulation / regeneration expands or contracts depending on which of the above-mentioned granulation methods, namely dripping, stirring, and separation, is used.

凝固・再生の後、酸性液中から転化して得たセルロースは水等による洗浄(S4)、余分な水分の乾燥(S5)が行われる。こうして、転化により生じた再生セルロースから工程中に生じた不純物と水分は除去されて純粋な粒状化した再生セルロースが完成し、粒状セルロース原料(M)が出来上がる。一連のビスコース(V)から粒状セルロース原料(M)を得る工程は、「原料調製工程」に相当する。   After coagulation and regeneration, the cellulose obtained by conversion from the acidic solution is washed with water or the like (S4), and excess moisture is dried (S5). In this way, impurities and moisture generated in the process are removed from the regenerated cellulose produced by the conversion to complete a pure granulated regenerated cellulose, and a granular cellulose raw material (M) is completed. The step of obtaining the granular cellulose raw material (M) from the series of viscose (V) corresponds to a “raw material preparation step”.

図1に戻って、原料調製工程により得た粒状セルロース原料(M)は、窒素ガスや二酸化炭素ガス等の不活性ガスで満たされた不活性雰囲気下において290℃ないし420℃の比較的低温度域で焼成、炭化(S10)される。こうして、再生セルロースに由来する粒状炭化物が得られる(「炭化工程」)。低温度域の焼成となるため、水素をはじめ、一部に他の官能基等を残存させている状態を得ることができる。   Returning to FIG. 1, the granular cellulose raw material (M) obtained by the raw material preparation step is a relatively low temperature of 290 ° C. to 420 ° C. in an inert atmosphere filled with an inert gas such as nitrogen gas or carbon dioxide gas. Baking and carbonization (S10) in the region. Thus, a granular carbide derived from regenerated cellulose is obtained (“carbonization step”). Since the firing is performed in a low temperature range, it is possible to obtain a state in which other functional groups and the like remain in part including hydrogen.

焼成、炭化(S10)において、焼成温度が290℃を下回る温度域では粒状セルロース原料の炭化が十分に進まず、顆粒状の固体酸を得ることができない。逆に焼成温度が420℃を超える温度域の場合、炭化時にグラフェンシート様の構造が多くなることが知られている。そのため、次述のスルホ基の導入に際し置換等の対象となる表面官能基数が少なくなることから、スルホン基の導入が進みにくくなる。   In calcination and carbonization (S10), in the temperature range where the calcination temperature is lower than 290 ° C., the carbonization of the granular cellulose raw material does not proceed sufficiently, and a granular solid acid cannot be obtained. Conversely, it is known that in the temperature range where the firing temperature exceeds 420 ° C., a graphene sheet-like structure increases during carbonization. For this reason, the introduction of the sulfo group is difficult to proceed because the number of surface functional groups to be substituted is reduced when the sulfo group described below is introduced.

このことから、粒状セルロース原料の焼成炭化を促進しつつ、しかも粒形状を維持する必要から290ないし420℃の焼成温度域が適切であり、より好ましくは300ないし400℃の温度域が好適である。なお、後出の実施例からも明らかであるように、粒状セルロース原料の焼成温度は対象とする触媒反応に応じても変動する。そこで、290ないし420℃の温度範囲を充足しながらも、より好適に反応毎に焼成温度を選択することができる。   From this, the firing temperature range of 290 to 420 ° C. is suitable, and the temperature range of 300 to 400 ° C. is more suitable because it is necessary to maintain the particle shape while promoting the firing carbonization of the granular cellulose raw material. . As is clear from the examples described later, the firing temperature of the granular cellulose raw material varies depending on the target catalytic reaction. Thus, the firing temperature can be more suitably selected for each reaction while satisfying the temperature range of 290 to 420 ° C.

焼成、炭化(S10)の炭化工程を経て生じた粒状炭化物については、請求項3の発明に規定するように、粒状炭化物の粒径は0.075mm以上に規定される。当該粒径は、極端に細かな粉末状物を除外するとともに、前記の炭化工程中に摩耗、破損等により細かくなった炭化物も含めた範囲である。そこで、粒径の下限は、好ましくは0.1mm以上、使用時の利便性を鑑み0.1ないし2mm程度が適当である。上限については、前述の粒状化(S2)並びに凝固・再生(S3)が可能な範囲であれば特段限定されない。ただし、ビスコース法において工業的にセルロース転化可能な範囲を勘案すると、概ね10mm程度が上限と考えられる。   As for the granular carbide generated through the carbonization step of calcination and carbonization (S10), the particle size of the granular carbide is specified to be 0.075 mm or more as specified in the invention of claim 3. The particle size is in a range that excludes extremely fine powders and includes carbides that have become fine due to wear, breakage, and the like during the carbonization step. Therefore, the lower limit of the particle size is preferably 0.1 mm or more, and about 0.1 to 2 mm is appropriate in view of convenience during use. The upper limit is not particularly limited as long as the above-described granulation (S2) and solidification / regeneration (S3) are possible. However, considering the industrially convertible cellulose range in the viscose method, the upper limit is considered to be approximately 10 mm.

粒状炭化物は、その粒径いかんにより必要に応じて粉砕される(S20)。例えば、粒径0.075ないし10mmの粒状炭化物はそのまま固体酸として使用することができ粉砕は省略される。なお、必要により粉砕することは自由である。粒径10mmを超える粒状炭化物の場合、形状維持が難しくなることが多いため、予めこの時点で粉砕されることが多い。あるいは、焼成、炭化の段階で破損することがあり、細かくなった破片等も有効に利用するためである。粉砕においては、振動ミル、ハンマーミル、ジェットミル、ジョークラッシャー、ボールミル、石臼等の公知の粉砕装置が使用される。粉砕後、サイクロンや篩により所定の粒径に分級される。   The granular carbide is pulverized as necessary according to its particle size (S20). For example, granular carbide having a particle size of 0.075 to 10 mm can be used as a solid acid as it is, and pulverization is omitted. In addition, it is free to grind if necessary. In the case of granular carbides having a particle size of more than 10 mm, it is often difficult to maintain the shape, so that it is often pulverized in advance at this point. Or it may break at the stage of baking and carbonization, and it is because fine fragments etc. are used effectively. In the pulverization, known pulverization apparatuses such as a vibration mill, a hammer mill, a jet mill, a jaw crusher, a ball mill, and a stone mill are used. After pulverization, it is classified into a predetermined particle size by a cyclone or a sieve.

ここまでの工程により得られた粒状炭化物に対し、スルホ基またはスルホン酸基(−SO2(OH))と称される酸性の官能基を導入するスルホ化(S30)が行われ、スルホ化物が得られる(「スルホ化工程」)。スルホ基の導入は、濃硫酸や発煙硫酸と粒状炭化物との反応により行われる。とりわけ、請求項5の発明に規定するように、スルホ化工程は発煙硫酸中が望ましい。発煙硫酸では三酸化硫黄が濃硫酸に溶けているためよりスルホ化に適し、単位炭化物重量当たりの導入量が多くなる傾向にある。スルホ化のための他の方法は存在するものの、発煙硫酸を使用する方法と比較して専用設備や反応後の成分分離等が容易ではない。このことから、効率、経費面を勘案して発煙硫酸の使用が最も優れている。 Sulfation (S30) which introduces an acidic functional group called a sulfo group or a sulfonic acid group (—SO 2 (OH)) is performed on the granular carbide obtained by the steps so far, and the sulfonated product is obtained. Is obtained ("sulfation step"). The introduction of the sulfo group is carried out by a reaction between concentrated sulfuric acid or fuming sulfuric acid and particulate carbide. In particular, as defined in the invention of claim 5, the sulfonation step is preferably in fuming sulfuric acid. Fuming sulfuric acid is more suitable for sulfonation because sulfur trioxide is dissolved in concentrated sulfuric acid, and the amount introduced per unit carbide weight tends to increase. Although there are other methods for sulfonation, dedicated equipment and component separation after the reaction are not easy compared to methods using fuming sulfuric acid. For this reason, use of fuming sulfuric acid is most excellent in consideration of efficiency and cost.

スルホ化工程により生じた粒状炭化物のスルホ化物は、水や熱水による洗浄(S40)を経ることにより、余分な硫酸等の成分が洗い流される。そして、余分な水分は適宜乾燥される。ここで、サイクロンや篩により所定の粒径に分級して粒径の揃った製品とすることができる。以上一連の工程を経て粒状固体酸(GSA)を得ることができる。   Particulates such as sulfuric acid are washed away from the sulphated product of the particulate carbide generated in the sulphation process by washing with water or hot water (S40). Then, excess water is appropriately dried. Here, a product having a uniform particle size can be obtained by classification into a predetermined particle size using a cyclone or a sieve. Through the above-described series of steps, granular solid acid (GSA) can be obtained.

粒状固体酸に存在するスルホ基量は、粒状固体酸の粒径による表面積の変動からある程度の幅がある。しかし、単位活性炭重量当たりのスルホ基量の多少は触媒反応の高低の指標となり得る。このため、粒状固体酸の性能を評価する上で重視される。そこで、請求項4の発明のとおり、粒状固体酸に存在するスルホ基量は、0.7ないし2.7mmol/gの範囲と考えられる。スルホ基量は元素分析により算出される。   The amount of the sulfo group present in the granular solid acid has a certain range due to the variation in the surface area due to the particle size of the granular solid acid. However, the amount of sulfo groups per unit activated carbon weight can be an indicator of the level of catalytic reaction. For this reason, importance is attached when evaluating the performance of a granular solid acid. Therefore, as described in claim 4, the amount of sulfo group present in the granular solid acid is considered to be in the range of 0.7 to 2.7 mmol / g. The amount of sulfo group is calculated by elemental analysis.

後記の実施例から明らかであるように、粒状固体酸のスルホ基量0.7mmol/g未満では触媒反応性が乏しく実用に向かない。スルホ基量2.7mmol/gは粒状炭化物に導入できる最大量であり、この量以上のスルホ基導入は現状の方法では困難である。よって、前記のとおり単位重量当たりのスルホ基量範囲が導き出される。   As will be apparent from the examples described later, when the amount of the sulfo group of the granular solid acid is less than 0.7 mmol / g, the catalytic reactivity is poor and it is not suitable for practical use. The amount of sulfo group 2.7 mmol / g is the maximum amount that can be introduced into the granular carbide, and it is difficult to introduce a sulfo group exceeding this amount by the current method. Therefore, as described above, the sulfo group amount range per unit weight is derived.

請求項7の発明に規定するように、これまでに図示し詳述してきた製造方法により製造した粒状固体酸は、比較的粒径設計について高い自由度を有する。このため、0.075mmの細かな粒状物から数mmあるいはそれ以上の粒径サイズまでを自在に作り分けることができ、各種反応用途への対応が容易となる。固体酸が粒状物となったことにより、触媒反応後の分離、回収が容易となり使用時の利便性は大きく向上する。   As defined in the invention of claim 7, the granular solid acid produced by the production method shown and described in detail so far has a relatively high degree of freedom in particle size design. For this reason, it is possible to freely make a fine particle having a particle size of 0.075 mm to a particle size of several mm or more, and it is easy to cope with various reaction applications. Since the solid acid becomes a granular material, separation and recovery after the catalytic reaction are facilitated, and convenience in use is greatly improved.

粒状炭化物自体不純物をほとんど含まない炭化物であり成分的に均一であり安定している。しかも、スルホ化された粒状炭化物のみであることから形状維持のためのバインダー等も必要としない。   The granular carbide itself is a carbide containing almost no impurities and is uniform and stable in terms of components. And since it is only the sulfonated granular carbide, the binder etc. for shape maintenance are not required.

背景技術にも記載したとおり、粉末状の固体酸触媒を粒状化するためにバインダーを使用した場合、固体酸自体を被覆してしまい触媒効果が減少してしまう。また、バインダー自体も固体酸の触媒作用で劣化してしまうおそれがある。しかしながら、本発明の粒状固体酸はもともと粒状炭化物のみをスルホ化したため、粒状化のためのバインダーを必要とせず、バインダーの被覆による触媒活性低下の問題は生じない。   As described in the background art, when a binder is used to granulate a powdered solid acid catalyst, the solid acid itself is coated and the catalytic effect is reduced. Further, the binder itself may be deteriorated by the catalytic action of the solid acid. However, since the granular solid acid of the present invention originally sulfonated only the granular carbide, a binder for granulation is not required, and the problem of a decrease in catalyst activity due to the coating of the binder does not occur.

このため、本発明の粒状固体酸は、低活性ゆえに使用量の増加が不可避であった反応系であっても、より少ない使用量で十分な触媒活性を発揮することができる。   For this reason, even if the granular solid acid of the present invention is a reaction system in which an increase in the amount used is inevitable due to its low activity, it can exhibit a sufficient catalytic activity with a smaller amount used.

〔固体酸の試作〕
発明者らは、ビスコース由来の再生セルロースを原料として、以下のとおり固体酸を作成した(試作例1ないし22)。また、ビスコース由来の再生セルロース以外の原料として木材(ベイマツ:米松)から生じたオガコ(大鋸粉)、メチルセルロースからも固体酸を作成した。詳細は、後出の表1ないし4に示す。
[Prototype of solid acid]
The inventors prepared solid acids as follows using regenerated cellulose derived from viscose as a raw material (Prototype Examples 1 to 22). In addition, solid acids were also produced from sawdust (large sawdust) produced from wood (bay pine: Yonematsu) and methylcellulose as raw materials other than regenerated cellulose derived from viscose. Details are shown in Tables 1 to 4 below.

〈粒状セルロース原料の調製〉
パルプを原料に水酸化ナトリウム、二硫化炭素を添加し常法により調製したビスコース(セルロースキサントゲン酸ナトリウム)の水溶液を用意した。このビスコース水溶液は、セルロース分:8.3ないし9.3重量%、総アルカリ分:5.6ないし6.6重量%、水分:84.1ないし86.1重量%の組成であった。
<Preparation of granular cellulose raw material>
An aqueous solution of viscose (sodium cellulose xanthate) prepared by a conventional method by adding sodium hydroxide and carbon disulfide to pulp as a raw material was prepared. This aqueous viscose solution had a composition of cellulose: 8.3 to 9.3% by weight, total alkali: 5.6 to 6.6% by weight, and moisture: 84.1 to 86.1% by weight.

前記のビスコース水溶液1kgに濃度6重量%の水酸化ナトリウム水溶液1kgを添加、混合してビスコース希釈液とした。再生セルロースに転化するための凝固液は、2Nの硫酸10L中に硫酸ナトリウム800gを溶解した希酸液を用意した。内径1mmのチューブを取り付けたチューブポンプ(Core−Parmer社製,品名:Masterflex C/L Tubing Pumps)を用いてビスコース希釈液を凝固液中に滴下した。ビスコース希釈液は凝固液中で粒状の液滴になるとともに凝固してセルロースに転化した。セルロースに転化した粒状物を凝固液から回収した。次に4.5重量%硫化ナトリウムと1重量%水酸化ナトリウムの混合水溶液からなる脱硫液に前記の粒状物を浸して攪拌、回収して水洗を繰り返した。最終的な水洗後、100℃に調温した恒温槽に移し温度変化がなくなるまで乾燥して粒径0.9ないし1.4mmとなる粒状セルロース原料を得た。   1 kg of a 6 wt% sodium hydroxide aqueous solution was added to 1 kg of the above viscose aqueous solution and mixed to prepare a viscose diluted solution. A dilute acid solution prepared by dissolving 800 g of sodium sulfate in 10 L of 2N sulfuric acid was prepared as the coagulation solution for conversion into regenerated cellulose. The viscose diluted solution was dropped into the coagulation liquid using a tube pump (manufactured by Core-Parmer, product name: Masterflex C / L Tubing Pumps) equipped with a tube having an inner diameter of 1 mm. The viscose diluted solution became granular droplets in the coagulation solution and coagulated to convert to cellulose. Particulate matter converted to cellulose was recovered from the coagulation liquid. Next, the granular material was immersed in a desulfurization solution composed of a mixed aqueous solution of 4.5 wt% sodium sulfide and 1 wt% sodium hydroxide, stirred, recovered, and washed with water repeatedly. After the final water washing, it was transferred to a constant temperature bath adjusted to 100 ° C. and dried until the temperature did not change to obtain a granular cellulose raw material having a particle size of 0.9 to 1.4 mm.

大径の粒状物を成形するため、内直径25mm、全長20mmの短管の両端が開口した円筒物を複数用意し、それぞれの開口部を上下にして金属製バット内に並べた。前出のビスコース水溶液を円筒物の上面まで注入して充填した。前出の調整による凝固液を円筒物が完全に浸るまでバット内へ注入してセルロースへ転化させた。セルロースに転化した大径粒状物を凝固液から回収した。次に、前出の調製による脱硫液に前記の大径粒状物を浸して攪拌、回収して水洗を繰り返した。最終的な水洗後、100℃に調温した恒温槽に大径粒状物を移し温度変化がなくなるまで乾燥して粒径10ないし15mmとなる円柱状の粒状セルロース原料を得た。   In order to form a large-diameter granular material, a plurality of cylindrical objects having an inner diameter of 25 mm and an overall length of 20 mm with both ends of a short tube opened were prepared and arranged in a metal bat with each opening up and down. The above-mentioned aqueous viscose solution was poured and filled up to the upper surface of the cylinder. The coagulation liquid prepared as described above was injected into the vat until the cylinder was completely immersed, and converted into cellulose. The large-diameter granular material converted into cellulose was recovered from the coagulation liquid. Next, the large-diameter granular material was immersed in the desulfurization solution prepared above, stirred, recovered, and washed repeatedly with water. After the final washing with water, the large-diameter granular material was transferred to a thermostatic chamber adjusted to 100 ° C. and dried until there was no temperature change to obtain a cylindrical granular cellulose raw material having a particle diameter of 10 to 15 mm.

〈焼成・炭化〉
粒状セルロース原料を金属板上に配しマッフル炉(光洋サーモシステム株式会社製,型式:INH−51N1)を用い、窒素ガスにより不活性雰囲気状態を維持し、表1,2の加熱温度まで昇温して当該温度を60分間維持した。加熱が終了して冷却後、マッフル炉から取り出して粒状炭化物を得た。滴下により転化した粒状炭化物は概ね0.7ないし1mmの粒径であった。細かい粒径の粒状物については、滴下により転化した粒状炭化物を乳鉢で砕き83〜200mesh(粒径0.075〜0.18mm相当)の篩いで篩別した。筒状物を用い大径の粒状セルロース原料から転化して得た円柱状の粒状炭化物は概ね8ないし12mmの粒径であった。粒径3mm、5mmの粒状炭化物は、円柱状の粒状炭化物を適宜乳鉢で砕き篩別して目的の粒径の粒状炭化物を回収した。
<Firing and carbonization>
A granular cellulose raw material is placed on a metal plate and a muffle furnace (manufactured by Koyo Thermo System Co., Ltd., model: INH-51N1) is used to maintain an inert atmosphere with nitrogen gas, and the temperature is raised to the heating temperatures shown in Tables 1 and 2. The temperature was maintained for 60 minutes. After heating was completed and cooled, it was removed from the muffle furnace to obtain granular carbide. The granular carbides converted by the dropping had a particle size of approximately 0.7 to 1 mm. About the granular material of a fine particle size, the granular carbide | carbonized_material converted by dripping was crushed with the mortar, and sieved with the sieve of 83-200 mesh (equivalent particle size 0.075-0.18 mm). The cylindrical granular carbide obtained by converting from a large-diameter granular cellulose raw material using a cylindrical material had a particle size of approximately 8 to 12 mm. As for the granular carbides having a particle size of 3 mm and 5 mm, the columnar granular carbides were appropriately crushed in a mortar and sieved to recover the granular carbides having a target particle size.

〈スルホ化〉
粒状炭化物を10g秤量して500mLの三つ口フラスコ内に投入し、ここに11.3%の発煙硫酸100mLを添加した。80℃の反応温度を維持しながら10時間、攪拌した。その後、蒸留水で繰り返し洗浄した。洗浄後の蒸留水中の硫酸イオンが検出限界以下になるまで洗浄を繰り返し、これを乾燥して粒状固体酸を得た。
<Sulfoation>
10 g of granular carbide was weighed and put into a 500 mL three-necked flask, and 100 mL of 11.3% fuming sulfuric acid was added thereto. The mixture was stirred for 10 hours while maintaining a reaction temperature of 80 ° C. Thereafter, it was repeatedly washed with distilled water. Washing was repeated until the sulfate ion in the distilled water after washing was below the detection limit, and this was dried to obtain a granular solid acid.

〔その他の原料例による固体酸の試作〕
ビスコース由来の再生セルロースをベイマツ(米松)のオガコに変更した。ここで使用したオガコの形状は破砕状とした。オガコを105±5℃に保った乾燥機内で8時間乾燥後、4.7ないし83meshの篩(粒径180ないし4000μmに相当)により篩別し木粉を得た。木粉を坩堝に入れ、マッフル炉を用い窒素ガスにより不活性雰囲気状態を維持し、表3の加熱温度まで昇温して当該温度を60分間維持して炭化物を得た。炭化物に対するスルホ化は粒状固体酸と同様とした。こうして、対照例1ないし5のオガコ由来の固体酸を得た。
[Trial production of solid acid by other raw material examples]
The regenerated cellulose derived from viscose was changed to beech of bay pine (Yonematsu). The shape of the saw used here was crushed. The sawdust was dried in a dryer maintained at 105 ± 5 ° C. for 8 hours, and then sieved with a 4.7 to 83 mesh sieve (corresponding to a particle size of 180 to 4000 μm) to obtain wood flour. Wood powder was put into a crucible, an inert atmosphere state was maintained with nitrogen gas using a muffle furnace, the temperature was raised to the heating temperature shown in Table 3, and the temperature was maintained for 60 minutes to obtain a carbide. The sulfonation for the carbide was the same as that for the particulate solid acid. In this way, solid acids derived from sawdust of Control Examples 1 to 5 were obtained.

また、ビスコース由来の再生セルロースをメチルセルロース粉末(信越化学株式会社製,品名:メトローズSM−4000)に変更した。メチルセルロース粉末を坩堝に入れてマッフル炉を用い窒素ガスにより不活性雰囲気状態を維持し、表4の加熱温度まで昇温して当該温度を60分間維持して炭化物を得た。その後のスルホ化は粒状固体酸と同様とした。こうして、対照例6ないし9のメチルセルロース由来の固体酸を得た。   Moreover, the regenerated cellulose derived from viscose was changed to methylcellulose powder (manufactured by Shin-Etsu Chemical Co., Ltd., product name: Metroles SM-4000). Methyl cellulose powder was put into a crucible and an inert atmosphere state was maintained with nitrogen gas using a muffle furnace. The temperature was raised to the heating temperature shown in Table 4 and maintained at that temperature for 60 minutes to obtain a carbide. Subsequent sulfonation was similar to the particulate solid acid. Thus, methyl cellulose-derived solid acids of Control Examples 6 to 9 were obtained.

〔スルホ基量の測定〕
試作例並びに対照例の固体酸を100℃に加熱して乾燥した。それぞれの炭素系固体酸に含まれる元素組成について、自動燃焼イオンクロマトイオンクロマトグラフ:DIONEX製ICS−1000、燃焼装置:株式会社三菱化学アナリテック製AQF−100、吸収装置:株式会社三菱化学アナリテック製GA−100、送水ユニット:株式会社三菱化学アナリテック製WS−100、燃焼温度1000℃)により分析した。得られた硫黄分(mmol/g)は、スルホ基と等価であるとして、単位重量当たりの固体酸におけるスルホ基量(mmol/g)を求めた。
[Measurement of sulfo group content]
The solid acids of the prototype and the control example were heated to 100 ° C. and dried. Regarding the elemental composition contained in each carbon-based solid acid, automatic combustion ion chromatography ion chromatograph: ICS-1000 manufactured by DIONEX, combustion device: AQF-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd., absorption device: Mitsubishi Chemical Analytech Co., Ltd. GA-100 manufactured, water supply unit: WS-100 manufactured by Mitsubishi Chemical Analytech Co., Ltd., combustion temperature 1000 ° C.). Assuming that the obtained sulfur content (mmol / g) is equivalent to a sulfo group, the amount of sulfo group (mmol / g) in the solid acid per unit weight was determined.

〔触媒活性の測定〕
〈加水分解反応の測定〉
試作例並びに対照例の固体酸を100℃に加熱して乾燥した。サンプル瓶に固体酸0.1gを分取し、セロビオース0.12g、水0.7mLを添加し、90℃の温度を維持しながら1時間反応させた。反応後冷却して水2.3mLを添加しシリンジフィルターにより濾過した。高速液体クロマトグラフィー(HPLC)(株式会社島津製作所製,RID−10A)、カラム(BIO−RAD社製,品名:AminaxHPX−87Hカラム)を使用し、濾過液を当該HPLCに装填し、グルコース等の単糖類のピーク面積比よりセロビオースから分解されて生成した糖類量を求めた。そして、1g固体酸当たりの1時間の反応による分解量(μmol)に換算した(μmol・g-1・h-1)。
[Measurement of catalytic activity]
<Measurement of hydrolysis reaction>
The solid acids of the prototype and the control example were heated to 100 ° C. and dried. 0.1 g of solid acid was collected in a sample bottle, 0.12 g of cellobiose and 0.7 mL of water were added, and the mixture was reacted for 1 hour while maintaining a temperature of 90 ° C. After the reaction, the reaction mixture was cooled, 2.3 mL of water was added, and the mixture was filtered through a syringe filter. Using high performance liquid chromatography (HPLC) (manufactured by Shimadzu Corporation, RID-10A), column (manufactured by BIO-RAD, product name: Aminax HPX-87H column), the filtrate was loaded on the HPLC, and glucose and the like were used. The amount of saccharides produced by decomposition from cellobiose was determined from the peak area ratio of monosaccharides. Then, in terms of the amount of decomposition ([mu] mol) by reaction of 1 hour per 1g solid acid (μmol · g -1 · h -1 ).

〈エステル化反応の測定〉
試作例並びに対照例の固体酸を100℃に加熱して乾燥した。固体酸0.2gをフラスコに分取して150℃で1時間、真空乾燥(0.4Pa以下)した。真空乾燥を終えた固体酸にエタノール58.5mL、酢酸5.742mLを添加し、70℃の温度を維持しながら1時間反応させた。反応後冷却してシリンジフィルターにより濾過した。濾液中に含まれる酢酸エチルの生成量をガスクロマトグラフィー(GC)(株式会社島津製作所製,GC−2014 FID−ガスクロマトグラフィー)、カラム(アジレント・テクノロジー株式会社製,J&W GCカラム DB−WAXキャピラリーカラム)を使用して求めた。そして、1g固体酸当たりの1分間の反応による分解量(mmol)に換算した(mmol・g-1・min-1)。
<Measurement of esterification reaction>
The solid acids of the prototype and the control example were heated to 100 ° C. and dried. The solid acid 0.2g was fractionated into the flask, and vacuum-dried (0.4 Pa or less) at 150 degreeC for 1 hour. After the vacuum drying, 58.5 mL of ethanol and 5.742 mL of acetic acid were added to the solid acid and reacted for 1 hour while maintaining a temperature of 70 ° C. After the reaction, it was cooled and filtered through a syringe filter. The amount of ethyl acetate contained in the filtrate was measured by gas chromatography (GC) (manufactured by Shimadzu Corporation, GC-2014 FID-gas chromatography), column (manufactured by Agilent Technologies, J & W GC column DB-WAX capillary column). ). And it converted into the decomposition amount (mmol) by reaction for 1 minute per 1g solid acid (mmol * g < -1 > * min <-1> ).

〔総合評価〕
前述の評価項目毎の良否、粒状炭化物の形状、粒状固体酸としての取り扱い易さ等を総合的に考慮して、個々の試作例について良否を判定した。各評価項目に優れており極めて優良な試作例を総合評価「A」とした。概ね良好な試作例を総合評価「B」とした。触媒活性を示した試作例を総合評価「C」とした。不可の試作例を総合評価「D」とした。実需要の観点から総合評価AとBが望ましい。
〔Comprehensive evaluation〕
The quality of each prototype was determined by comprehensively considering the quality of each evaluation item, the shape of the granular carbide, the ease of handling as a granular solid acid, and the like. An excellent prototype that is excellent for each evaluation item was designated as a comprehensive evaluation “A”. A generally good prototype was designated as a comprehensive evaluation “B”. A prototype showing catalytic activity was designated as “C”. An unsuccessful prototype was designated as a comprehensive evaluation “D”. Comprehensive evaluations A and B are desirable from the viewpoint of actual demand.

各試作例並びに各対照例について、使用した原料(種類,形状,粒度(mm))、炭化条件(炭化温度(℃),形状,粒度(mm))、触媒評価(形状,粒度(μm),硫黄含有量(重量%),スルホ基量(mmol/g),加水分解反応速度,エステル化反応速度,総合評価の結果は、表1ないし表6となった。なお、5個の試作例について熱重量変化(Rw(%))も付した。   For each prototype and each control example, the raw materials used (type, shape, particle size (mm)), carbonization conditions (carbonization temperature (° C), shape, particle size (mm)), catalyst evaluation (shape, particle size (μm), The results of sulfur content (% by weight), sulfo group amount (mmol / g), hydrolysis reaction rate, esterification reaction rate, and comprehensive evaluation are shown in Tables 1 to 6. In addition, about five prototypes The thermogravimetric change (Rw (%)) was also attached.

Figure 2014004560
Figure 2014004560

Figure 2014004560
Figure 2014004560

Figure 2014004560
Figure 2014004560

Figure 2014004560
Figure 2014004560

Figure 2014004560
Figure 2014004560

Figure 2014004560
Figure 2014004560

同時に、既存のスルホ基担持樹脂のパーフルオロカーボン材料としてDu Pont社製,Nafion(登録商標) NR50(粒状)を選択し、同樹脂材料(参考材料)を用い前述の試作例と同様の触媒評価を行った。加水分解反応速度は96μmol・g-1・h-1、エステル化反応速度は0.4mmol・g-1・min-1であった。 At the same time, Nafion (registered trademark) NR50 (granular) made by Du Pont is selected as the perfluorocarbon material of the existing sulfo group-supporting resin, and the same catalyst evaluation as the above-mentioned prototype example is performed using the resin material (reference material). went. The hydrolysis reaction rate was 96 μmol · g −1 · h −1 , and the esterification reaction rate was 0.4 mmol · g −1 · min −1 .

〈粒状炭化物の熱重量変化〉
粒状セルロース原料に対する焼成、炭化時の温度とスルホ基量との影響を確信した発明者らは、スルホ化される前段階の粒状炭化物にどのような違いが存在するのかについて、熱重量変化(TG:Thermogravimetry)を計測し、重量変化の挙動を調べた。測定機器は、株式会社島津製作所製,品名:熱重量測定装置TGA−50を使用した。
<Thermogravimetric change of granular carbide>
The inventors who were convinced of the influence of the temperature and the amount of sulfo groups during calcination and carbonization on the granular cellulose raw material showed the difference in thermogravimetric change (TG) regarding the difference in the granular carbide before the sulfonation. : Thermogravimetry), and the behavior of weight change was examined. As a measuring instrument, Shimadzu Corporation, product name: Thermogravimetric measuring device TGA-50 was used.

図3ないし図7は熱重量変化のグラフであり、図順に試作例1(炭化温度250℃)、試作例5(炭化温度290℃)、試作例7(炭化温度350℃)、試作例10(炭化温度420℃)、及び試作例12(炭化温度450℃)の粒状炭化物についての熱重量変化の結果である。順番は炭化温度の低い方からの並びである。各グラフ中、右上がりの破線の直線は温度上昇を示し、右下がりの実線の曲線は加熱に伴う粒状炭化物の熱重量の変化を示す。各図の全体傾向のとおり、温度上昇と逆にいずれも重量は減少した。   FIG. 3 to FIG. 7 are graphs of thermogravimetric changes, and in the order shown, prototype example 1 (carbonization temperature 250 ° C.), prototype example 5 (carbonization temperature 290 ° C.), prototype example 7 (carbonization temperature 350 ° C.), prototype example 10 ( It is the result of the thermogravimetric change about the granular carbide | carbonized_material of the trial manufacture example 12 (carbonization temperature 450 degreeC). The order is from the lowest carbonization temperature. In each graph, the straight line with a dashed line rising to the right indicates an increase in temperature, and the curved line with a solid line descending to the right indicates a change in the thermal weight of the granular carbide accompanying heating. As shown in the overall trend of each figure, the weight decreased on the contrary to the temperature rise.

次に、個々のグラフの変化を見た場合、炭化温度の低い試料ほど、低温加熱温度域における重量減少が著しい。この差異は出来上がる固体酸の触媒活性を大きく左右すると考えることができる。そこで、温度と重量変化の動態変化を把握するべく、加熱温度300℃から400℃までの間に、どれほどの重量(相対比)が減少したのか(重量減少率(%))を算出して、指標とした。請求項6の発明に規定し、具体的に、室温から300℃まで加熱した時点の粒状炭化物重量(W1(mg))及び300℃から400℃まで加熱した時点の粒状炭化物重量(W2(mg))から、加熱温度300℃から400℃までの間の重量変化率(Rw(%))を下記の数式(i)のとおり求めた。重量差は絶対値とした。 Next, when the change of each graph is seen, the weight reduction in a low temperature heating temperature range is so remarkable that a sample with a low carbonization temperature. This difference can be considered to greatly influence the catalytic activity of the resulting solid acid. Therefore, in order to grasp the dynamic change of temperature and weight change, calculate how much weight (relative ratio) has decreased between the heating temperature 300 ° C and 400 ° C (weight reduction rate (%)), It was used as an index. Specifically, the weight of granular carbide (W 1 (mg)) when heated from room temperature to 300 ° C. and the weight of granular carbide (W 2 ( mg)), the weight change rate (Rw (%)) between the heating temperature of 300 ° C. and 400 ° C. was determined as the following formula (i). The weight difference was an absolute value.

Figure 2014004560
Figure 2014004560

〔結果,考察〕
〈原料の選択〉
ビスコース由来の再生セルロースから調製した固体酸は、焼成、炭化後であっても均一な炭化物となり、球状物(粒状物)を容易に得ることができた。これに対し、オガコやメチルセルロースの場合、不定形な粉末状となった。試作例の範囲によると、0.075mmから10mmの粒状炭化物までの作り分けが可能である。
[Results and discussion]
<Selection of raw materials>
The solid acid prepared from the regenerated cellulose derived from viscose became a uniform carbide even after calcination and carbonization, and a spherical product (granular material) could be easily obtained. On the other hand, in the case of sawfish or methylcellulose, it became an irregular powder. According to the range of the prototype, it is possible to make a granular carbide from 0.075 mm to 10 mm.

また、単位重量当たりに換算した触媒活性の評価においても、試作例のビスコース由来の再生セルロースから調製した固体酸は、他原料の対照例と比較して良好な結果を示した。例えば、試作例3ないし10,15ないし22、特には試作例3ないし9、15,16,18,19,21,22と、対照例との比較から明らかである。従って、高い触媒活性を発揮し、途中の加工の簡便さ等を勘案すると、再生セルロースを出発原料とすることが望ましく、特にはビスコースに由来する原料がより好適である。また、粒状固体酸はそれぞれの粒径の大小にかかわらず触媒活性を示したことから、粒状固体酸の粒径設計の自由度も極めて高い。   Moreover, also in the evaluation of the catalytic activity converted per unit weight, the solid acid prepared from the viscose-derived regenerated cellulose of the prototype example showed a better result than the control example of other raw materials. For example, it is clear from comparison between the prototype examples 3 to 10, 15 to 22, particularly the prototype examples 3 to 9, 15, 16, 18, 19, 21, 22 and the control example. Therefore, it is desirable to use regenerated cellulose as a starting material in view of high catalytic activity and ease of processing in the middle, and in particular, a raw material derived from viscose is more preferable. In addition, since the granular solid acid exhibits catalytic activity regardless of the size of each particle size, the degree of freedom in designing the particle size of the granular solid acid is extremely high.

〈焼成、炭化温度の範囲〉
粒状セルロース原料に対する焼成、炭化温度について、試作例1ないし5の触媒活性を比較した場合、試作例1,2の炭化温度250℃,260℃ではスルホ化段階で粒状炭化物が分解して固形分を回収することができなかった。試作例3,4の炭化温度270℃,280℃ではスルホ化は可能であるものの形状が崩れて粒状物としては回収することはできなかった。しかし、試作例5の炭化温度290℃の場合、粒状固体酸として回収することができた。この結果から、低温度側の焼成、炭化温度では良好な炭化が困難といえる。そこで、焼成、炭化温度の下限は290℃となる。
<Range of firing and carbonization temperature>
Regarding the firing and carbonization temperatures for the granular cellulose raw materials, when the catalytic activities of Prototype Examples 1 to 5 are compared, at the carbonization temperatures of 250 ° C. and 260 ° C. of Prototype Examples 1 and 2, the granular carbide is decomposed at the sulfonation stage, resulting in solid content. It could not be recovered. At trial production examples 3 and 4, the carbonization temperatures of 270 ° C. and 280 ° C. allowed sulfonation, but the shape collapsed and could not be recovered as granular materials. However, when the carbonization temperature of Prototype Example 5 was 290 ° C., it could be recovered as a granular solid acid. From this result, it can be said that good carbonization is difficult at the low temperature side firing and carbonization temperature. Therefore, the lower limit of the firing and carbonization temperature is 290 ° C.

次に、試作例3ないし11の粒状固体酸と、一般に触媒用途に使用される前出のスルホ基担持樹脂のパーフルオロカーボン材料の触媒活性を比較した場合、試作例10の炭化温度(420℃)までは既存の樹脂固体酸よりも高い触媒活性を示した。しかしながら、試作例11の炭化温度(430℃)からは触媒活性が下回った。この結果から、試作例10と11の炭化温度の境界を踏まえて焼成、炭化温度の上限は420℃と想定することができる。一般に高温度域の焼成、炭化温度では活性炭にグラフェンシート様構造が生成することが知られている。そのため、試作例においても活性炭表面に変化が生じ、スルホ基の導入量が低下したことを示唆する。従って、焼成、炭化温度の上限は420℃、より好ましくは410℃となる。   Next, when the catalytic activity of the particulate solid acid of Prototype Examples 3 to 11 and the perfluorocarbon material of the above-described sulfo group-supported resin generally used for catalyst applications is compared, the carbonization temperature of Prototype Example 10 (420 ° C.) Until then, it showed higher catalytic activity than existing resin solid acids. However, the catalytic activity was lower than the carbonization temperature (430 ° C.) of Prototype Example 11. From this result, it is possible to assume that the upper limit of the firing and carbonization temperature is 420 ° C. based on the boundary between the carbonization temperatures of the prototype examples 10 and 11. In general, it is known that a graphene sheet-like structure is generated in activated carbon at a high temperature range of calcination and carbonization temperature. Therefore, also in the prototype, a change occurred on the activated carbon surface, suggesting that the introduction amount of the sulfo group was reduced. Therefore, the upper limit of the firing and carbonization temperature is 420 ° C., more preferably 410 ° C.

〈スルホ基量の範囲〉
参考材料として開示の既存の樹脂固体酸と同等もしくはそれ以上の触媒活性作用を発揮するスルホ基量を勘案した場合、試作例10,17より、下限については0.7mmol/g以上、好ましくは、1.0mmol/g以上(試作例20)、より好ましくは2.1mmol/g以上(試作例16)が必要といえる。次に、試作例5,6を考慮して2.7mmol/gが上限であると考える。粒状炭化物の比表面積等の物性上の制約を超えてスルホ基を導入することは事実上不可能である。そこで、変動幅を含めても前記の値を上限として考えた。なお、試作例のビスコース由来の再生セルロースから調製した固体酸のいくつかについては、同等のスルホ基導入量であっても、対照例の固体酸よりも触媒活性が高くなっていた。この原因は必ずしも明らかではないものの、再生セルロースの均一な成分と粒状形状を維持したことが一定の効果を与えているといえる。
<Range of sulfo group content>
In consideration of the amount of sulfo group that exhibits a catalytic activity equivalent to or higher than the existing resin solid acid disclosed as a reference material, from prototype examples 10 and 17, the lower limit is 0.7 mmol / g or more, preferably It can be said that 1.0 mmol / g or more (Prototype Example 20), more preferably 2.1 mmol / g or more (Prototype Example 16) is necessary. Next, 2.7 mmol / g is considered to be the upper limit in consideration of prototype examples 5 and 6. It is practically impossible to introduce a sulfo group beyond the physical properties such as the specific surface area of the granular carbide. Therefore, the above value is considered as the upper limit even if the fluctuation range is included. Note that some of the solid acids prepared from the viscose-derived regenerated cellulose of the prototype example had higher catalytic activity than the solid acid of the control example, even with the same amount of introduced sulfo group. Although this cause is not necessarily clear, it can be said that maintaining the uniform component and granular shape of the regenerated cellulose has a certain effect.

〈熱重量変化の挙動〉
図3ないし図7の粒状炭化物の重量変化率は次のとおりであった。W1は室温から300℃まで加熱した時点の重量であり、W2は300℃から400℃まで加熱した時点の重量である。
図3:試作例1 (炭化温度250℃)の重量変化率Rw=54.08%
試作例1 :{W1=17.580mg,W2=8.073mg}
図4:試作例5 (炭化温度290℃)の重量変化率Rw=18.19%
試作例5 :{W1=17.910mg,W2=14.653mg}
図5:試作例7 (炭化温度350℃)の重量変化率Rw= 2.91%
試作例7 :{W1=18.508mg,W2=17.969mg}
図6:試作例10(炭化温度420℃)の重量変化率Rw= 1.56%
試作例10:{W1=18.706mg,W2=18.415mg}
図7:試作例12(炭化温度450℃)の重量変化率Rw= 1.34%
試作例12:{W1=18.508mg,W2=17.969mg}
<Thermogravimetric behavior>
The weight change rates of the granular carbides shown in FIGS. 3 to 7 were as follows. W 1 is the weight when heated from room temperature to 300 ° C., and W 2 is the weight when heated from 300 ° C. to 400 ° C.
Figure 3: Prototype Example 1 (carbonization temperature 250 ° C.) weight change rate Rw = 54.08%
Prototype Example 1: {W 1 = 17.580 mg, W 2 = 8.073 mg}
Fig. 4: Weight change rate Rw of trial example 5 (carbonization temperature 290 ° C) = 18.19%
Prototype example 5: {W 1 = 1.910 mg, W 2 = 14.653 mg}
FIG. 5: Weight change rate Rw = 2.91% of prototype example 7 (carbonization temperature 350 ° C.)
Prototype Example 7: {W 1 = 18.508 mg, W 2 = 17.969 mg}
FIG. 6: Weight change rate Rw = 1.56% of prototype example 10 (carbonization temperature 420 ° C.)
Prototype Example 10: {W 1 = 18.706 mg, W 2 = 18.415 mg}
FIG. 7: Weight change rate Rw = 1.34% of prototype example 12 (carbonization temperature 450 ° C.)
Prototype Example 12: {W 1 = 18.508 mg, W 2 = 17.969 mg}

炭化温度の昇順に並べた図3ないし図7のグラフ及び前掲の重量変化率Rw(%)の傾向から、粒状炭化物を調製する際の炭化温度が低い場合、焼成により完全に炭化しきれていない成分が残留しているため、熱重量変化測定(TG)の加熱により揮発し、大きな重量変化となったと考えることができる。逆に粒状炭化物を調製する際の炭化焼成温度が高い場合、既に焼成により炭化が進行し残留成分は減少しており、熱重量変化測定(TG)の加熱時においても重量変化は少なくなったと考えることができる。   From the graphs of FIGS. 3 to 7 arranged in ascending order of the carbonization temperature and the tendency of the weight change rate Rw (%) described above, when the carbonization temperature when preparing the granular carbide is low, it is not completely carbonized by firing. Since the components remain, it can be considered that the components were volatilized by heating by thermogravimetric change measurement (TG), resulting in a large weight change. Conversely, if the carbonization firing temperature when preparing the granular carbide is high, the carbonization has already progressed due to the firing, and the residual components have decreased, and the weight change is considered to be small even during the thermogravimetric change measurement (TG) heating. be able to.

前述のとおり、スルホ基の導入量、すなわち触媒活性の多少から導き出された炭化温度の範囲(290ないし420℃)に、300℃加熱時点と400℃加熱時点との重量変化率Rw(%)の数値を重ね合わせることができる。すなわち、試作例5(炭化温度290℃)の重量変化率Rw(18.19%)と試作例10(炭化温度420℃)の重量変化率Rw(1.56%)との重量変化率が妥当である。よって、加熱温度300℃から400℃までの間の粒状炭化物の重量変化率Rw(%)は、1.5以上とすることで触媒活性を確保することができ好ましい。さらに、粒状化を考慮すれば1.5ないし18%の範囲が好ましい。重量変化率の傾向からわかるように、ある特定の温度域における粒状炭化物の重量減少の挙動を把握することにより、その後のスルホ基の付加量、さらには触媒活性性能の推定に役立てることができるため、良好な粒状固体酸を製造する上での指標として好適である。   As described above, the weight change rate Rw (%) between the time of heating at 300 ° C. and the time of heating at 400 ° C. is within the range of carbonization temperature (290 to 420 ° C.) derived from the introduction amount of sulfo group, that is, the degree of catalyst activity. Numerical values can be superimposed. That is, the weight change rate Rw (18.19%) of Prototype Example 5 (carbonization temperature 290 ° C.) and the weight change rate Rw (1.56%) of Prototype Example 10 (carbonization temperature 420 ° C.) are reasonable. It is. Therefore, the weight change rate Rw (%) of the granular carbide between the heating temperature of 300 ° C. and 400 ° C. is preferably 1.5 or more, so that the catalyst activity can be secured. Furthermore, if considering granulation, the range of 1.5 to 18% is preferable. As can be seen from the trend of the rate of change in weight, it is possible to estimate the amount of sulfo group addition and further to estimate the catalytic activity performance by grasping the behavior of weight reduction of particulate carbide in a specific temperature range. It is suitable as an index for producing a good granular solid acid.

〈総合評価について〉
総合評価Aの試作例は、粒状の安定した形状の固体酸として作成することができ、また触媒活性も非常に良好である。総合評価Bの試作例は、Aよりは触媒活性等が下がるものの、既存の固体酸より良好である。よって、総合評価AやBの固体酸については十分に使用可能である。総合評価CやDについては性能が不十分もしくは製造不能等であるため、使用に向かない。そこで、総合評価AやBの固体酸を中心に開発することが望ましい。
<About comprehensive evaluation>
The trial example of the comprehensive evaluation A can be prepared as a solid acid having a granular and stable shape, and has a very good catalytic activity. The trial example of the comprehensive evaluation B is better than the existing solid acid although the catalytic activity and the like are lower than those of A. Therefore, it can fully be used about the solid acid of comprehensive evaluation A and B. The comprehensive evaluations C and D are not suitable for use because the performance is insufficient or the manufacture is impossible. Therefore, it is desirable to develop mainly on the solid acids of the comprehensive evaluations A and B.

本発明の粒状固体酸の製造方法は粒状化した固体酸の調製を容易にすることができ、しかも、固体酸としての取り扱いやすさは向上する。このため、従前の硫酸や粉末状固体酸の代替として非常に有望である。   The method for producing a granular solid acid of the present invention can facilitate the preparation of the granulated solid acid, and the ease of handling as a solid acid is improved. For this reason, it is very promising as an alternative to conventional sulfuric acid and powdered solid acid.

Claims (7)

再生セルロースを粒状に形成してなる粒状セルロース原料を得る原料調製工程と、
前記粒状セルロース原料を不活性雰囲気下において290℃〜420℃で焼成して粒状炭化物を得る炭化工程と、
前記粒状炭化物にスルホ基を導入するスルホ化工程とを有する
ことを特徴とする粒状固体酸の製造方法。
A raw material preparation step for obtaining a granular cellulose raw material formed by forming regenerated cellulose in a granular form;
A carbonization step in which the granular cellulose raw material is calcined at 290 ° C. to 420 ° C. in an inert atmosphere to obtain a granular carbide;
And a sulfonation step of introducing a sulfo group into the granular carbide. A method for producing a granular solid acid.
前記再生セルロースがビスコースに由来する請求項1に記載の粒状固体酸の製造方法。   The method for producing a granular solid acid according to claim 1, wherein the regenerated cellulose is derived from viscose. 前記粒状炭化物の粒径が0.075mm以上である請求項1または2に記載の粒状固体酸の製造方法。   The method for producing a granular solid acid according to claim 1 or 2, wherein a particle size of the granular carbide is 0.075 mm or more. 前記粒状固体酸における前記スルホ基量が0.7〜2.7mmol/gである請求項1ないし3のいずれか1項に記載の粒状固体酸の製造方法。   The method for producing a granular solid acid according to any one of claims 1 to 3, wherein the amount of the sulfo group in the granular solid acid is 0.7 to 2.7 mmol / g. 前記スルホ化工程が発煙硫酸中で進行する請求項1ないし4のいずれか1項に記載の粒状固体酸の製造方法。   The method for producing a granular solid acid according to any one of claims 1 to 4, wherein the sulfonation step proceeds in fuming sulfuric acid. 前記粒状炭化物の室温から300℃まで加熱した時点の重量(W1)と300℃から400℃まで加熱した時点の重量(W2)から下記(i)式に基づいて算出した加熱温度300℃から400℃までの間の重量変化率(Rw(%))が1.5ないし18%を満たす請求項1ないし5のいずれか1項に記載の粒状固体酸の製造方法。
Figure 2014004560
From the heating temperature of 300 ° C. calculated based on the following formula (i) from the weight (W 1 ) of the granular carbide when heated from room temperature to 300 ° C. and the weight (W 2 ) when heated from 300 ° C. to 400 ° C. The method for producing a granular solid acid according to any one of claims 1 to 5, wherein a weight change rate (Rw (%)) up to 400 ° C satisfies 1.5 to 18%.
Figure 2014004560
請求項1ないし6のいずれか1項に記載の粒状固体酸の製造方法により製造したことを特徴とする粒状固体酸。   A granular solid acid produced by the method for producing a granular solid acid according to any one of claims 1 to 6.
JP2012143390A 2012-06-26 2012-06-26 Method for producing granular solid acid Expired - Fee Related JP6018431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012143390A JP6018431B2 (en) 2012-06-26 2012-06-26 Method for producing granular solid acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143390A JP6018431B2 (en) 2012-06-26 2012-06-26 Method for producing granular solid acid

Publications (2)

Publication Number Publication Date
JP2014004560A true JP2014004560A (en) 2014-01-16
JP6018431B2 JP6018431B2 (en) 2016-11-02

Family

ID=50102798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143390A Expired - Fee Related JP6018431B2 (en) 2012-06-26 2012-06-26 Method for producing granular solid acid

Country Status (1)

Country Link
JP (1) JP6018431B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172652A (en) * 2015-03-16 2016-09-29 フタムラ化学株式会社 Carbide molded solid acid and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029508A1 (en) * 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof
WO2007029496A1 (en) * 2005-09-07 2007-03-15 Tokyo Institute Of Technology Amorphous carbon with fluoro-type sulfonic acid group introduced thereinto, process for producing the same, and use thereof
WO2008123530A1 (en) * 2007-03-27 2008-10-16 Nippon Oil Corporation Method for production of solid acid catalyst comprising carbonaceous material having sulfonate group, and use of the solid acid catalyst
JP2010215473A (en) * 2009-03-18 2010-09-30 Jx Nippon Oil & Energy Corp Method for producing molded article of sulfonic acid group-containing carbonaceous material and application of the same
JP2011011201A (en) * 2008-09-12 2011-01-20 Kanagawa Acad Of Sci & Technol Carbon-based solid acid and method for producing the same
JP2012102072A (en) * 2010-10-12 2012-05-31 Futamura Chemical Co Ltd Adsorbent for medicine and its production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005029508A1 (en) * 2003-09-16 2005-03-31 The Circle For The Promotion Of Science And Engineering Sulfonated amorphous carbon, process for producing the same and use thereof
WO2007029496A1 (en) * 2005-09-07 2007-03-15 Tokyo Institute Of Technology Amorphous carbon with fluoro-type sulfonic acid group introduced thereinto, process for producing the same, and use thereof
WO2008123530A1 (en) * 2007-03-27 2008-10-16 Nippon Oil Corporation Method for production of solid acid catalyst comprising carbonaceous material having sulfonate group, and use of the solid acid catalyst
JP2011011201A (en) * 2008-09-12 2011-01-20 Kanagawa Acad Of Sci & Technol Carbon-based solid acid and method for producing the same
JP2010215473A (en) * 2009-03-18 2010-09-30 Jx Nippon Oil & Energy Corp Method for producing molded article of sulfonic acid group-containing carbonaceous material and application of the same
JP2012102072A (en) * 2010-10-12 2012-05-31 Futamura Chemical Co Ltd Adsorbent for medicine and its production method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016172652A (en) * 2015-03-16 2016-09-29 フタムラ化学株式会社 Carbide molded solid acid and method for producing the same

Also Published As

Publication number Publication date
JP6018431B2 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
CN101824118B (en) Porous polymer nanoparticles and preparation method thereof
Song et al. Surface characterization studies of walnut-shell biochar catalysts for simultaneously removing of organic sulfur from yellow phosphorus tail gas
JP5528036B2 (en) Carbon-based solid acid and method for producing the same
CN101205066B (en) Macroporous microsphere silica gel preparation thereof
JP6110607B2 (en) Cellulose-based binder molded solid acid production method
CN107469802B (en) Catalyst for producing aromatic hydrocarbon-rich biofuel and preparation method thereof
CN102600893B (en) Carbon-based solid acid catalyst and preparation method thereof
CN104192824A (en) Preparation method of nitrogen-doped ordered mesoporous carbon material
CN105883805B (en) A kind of preparation method of the high-specific surface area carbosphere based on tea seed shell base
CN108014777B (en) Carbon carrier for hydrogenation catalyst, preparation method of carbon carrier, palladium-based supported hydrogenation catalyst and application of palladium-based supported hydrogenation catalyst
CN104445145B (en) A kind of simple method for preparing with hierarchical pore structure porous charcoal
Chen et al. Coke powder improving the performance of desulfurized activated carbon from the cyclic thermal regeneration
JP6018431B2 (en) Method for producing granular solid acid
CN102441407A (en) Catalyst used for vinyl chloride preparation, its preparation method and application
JP6886833B2 (en) Method for producing solid acid derived from wood
EP3047906B1 (en) Method for producing solid acid by molding with a resin binder
CN106540730A (en) A kind of natural gas catalyst manufactured by coal and preparation method thereof
JP6607673B2 (en) Method for producing resin solid acid
JP6466214B2 (en) Method for producing carbide formed solid acid
CN102040464A (en) Method for preparing styrene from crude ethylbenzene by dehydrogenation
CN111517324A (en) Method for preparing activated carbon
CN104043476B (en) A kind of method of modifying of MCM-49 molecular sieve catalyst
KR20120015782A (en) Method of preparing spherical active carbon for adsorptive removal of iodide and hydrogen sulfide and superior active carbon prepared therefrom
CN110876959B (en) Solid carbon sulfonic acid catalyst and preparation method thereof, and tributyl citrate and preparation method thereof
CN109704927B (en) Method for hydrofining and purifying diethylene glycol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160930

R150 Certificate of patent or registration of utility model

Ref document number: 6018431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees