JP2014004303A - Blood regeneration pump - Google Patents

Blood regeneration pump Download PDF

Info

Publication number
JP2014004303A
JP2014004303A JP2012154044A JP2012154044A JP2014004303A JP 2014004303 A JP2014004303 A JP 2014004303A JP 2012154044 A JP2012154044 A JP 2012154044A JP 2012154044 A JP2012154044 A JP 2012154044A JP 2014004303 A JP2014004303 A JP 2014004303A
Authority
JP
Japan
Prior art keywords
impeller
casing
pump
blood
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012154044A
Other languages
Japanese (ja)
Inventor
Hirosuke Abe
裕輔 阿部
Isao Nemoto
功 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imed Japan
IMED JAPAN Inc
Original Assignee
Imed Japan
IMED JAPAN Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imed Japan, IMED JAPAN Inc filed Critical Imed Japan
Priority to JP2012154044A priority Critical patent/JP2014004303A/en
Publication of JP2014004303A publication Critical patent/JP2014004303A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a blood regeneration pump by a magnetic coupling drive system operated by a single pivot bearing, miniaturizing a percutaneous cardiopulmonary auxiliary device by integrating an oxygenator with a blood pump.SOLUTION: The blood regeneration pump comprises a first casing 4, a second casing 5, an impeller 6, a drive unit 7, a separation plate 51, a channel member 52, outflow ports provided at a first and a second channels of the second casing, inflow ports provided at the first and the second channels, a magnet 62 disposed inside the impeller, the first and the second channels 8a and 8b of the second casing, a drive shaft 71, and a magnet 72 disposed at the drive unit. When the drive shaft 71 is rotated, the magnet 72 disposed at the drive part 7 is rotated, and the impeller 6 is rotated via a magnetic coupling formed of the magnet 72 and the magnet 62 disposed inside the impeller 6. With the rotation of the impeller 6, blood inside the impeller is moved outward by centrifugal force, circulates in the channel and returns to the impeller 6 again.

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、血液用として好適な新しい構造の再生ポンプに関する。  The present invention relates to a regenerative pump having a new structure suitable for blood.

経皮的心肺補助装置は、心臓と肺の機能が著しく低下もしくは停止した場合に、心肺機能が回復するまでの間、一定期間心肺機能を補助して生命を維持する装置である。経皮的心肺補助装置は、心臓に代わる血液ポンプとガス交換を行う人工肺で構成され、大腿静脈から抜き出した血液をガス交換し、大腿動脈から体内に戻すことが行われる。  A percutaneous cardiopulmonary assist device is a device that supports a cardiopulmonary function for a certain period of time and maintains its life until the cardiopulmonary function recovers when the function of the heart and lungs is significantly reduced or stopped. The percutaneous cardiopulmonary assist device is composed of a blood pump that replaces the heart and an artificial lung that performs gas exchange. The percutaneous cardiopulmonary assist device gas exchanges blood extracted from the femoral vein and returns it to the body from the femoral artery.

経皮的心肺補助装置における課題として、小型化の問題や耐久性の問題がある。一般的に経皮的心肺補助装置では、血液ポンプとして遠心ポンプが使用されている。遠心ポンプは、その原理上、流出ポートが周方向に開口する。たとえば特許文献1に記載の遠心ポンプでは、軸方向に流入ポートが、周方向に流出ポートが記載されている。従って、人工肺の流入ポートと血液ポンプの流出ポートの位置関係が合わないため、それぞれのポートをつなぐ血液回路が必要となり、人工肺に血液ポンプを組み込んで一体化し小型化することが困難である。  Problems in the percutaneous cardiopulmonary assist device include a problem of miniaturization and a problem of durability. In general, a percutaneous cardiopulmonary assist device uses a centrifugal pump as a blood pump. In the centrifugal pump, the outflow port opens in the circumferential direction in principle. For example, in the centrifugal pump described in Patent Document 1, an inflow port is described in the axial direction and an outflow port is described in the circumferential direction. Therefore, since the positional relationship between the inflow port of the oxygenator and the outflow port of the blood pump does not match, a blood circuit that connects each port is necessary, and it is difficult to integrate and miniaturize the oxygenator by incorporating the blood pump into the oxygenator. .

人工肺と血液ポンプを一体化し小型化するためには、血液ポンプの流出ポートが軸方向に開口していることが望ましい。人工肺と血液ポンプを一体化して小型化を図る方法として、特許文献2には、波動ポンプ(揺動式容積移動形連続流血液ポンプ)を用いる方法が、また特許文献3には、再生ポンプ(コアリング付羽根車式再生ポンプ)を用いる方法が記載されている。いずれのポンプも、原理的に軸方向に流出ポートを持つため、人工肺と血液ポンプの一体化が容易である。しかし、特許文献2に記載の波動ポンプでは、ポンプ室をシールする膜の耐久性に難があり実用化に至っていない。また、特許文献3に記載の再生ポンプでは、軸に偏心的なトルクがかかるために軸受けが摩耗し、同様に耐久性に難があるため実用化に至っていない。
特開2007−222670号公報 特開2004−154425号公報 特開2011−206069号公報
In order to integrate the artificial lung and the blood pump for miniaturization, it is desirable that the outflow port of the blood pump is opened in the axial direction. As a method for reducing the size by integrating an artificial lung and a blood pump, Patent Document 2 discloses a method using a wave pump (oscillating displacement volume continuous flow blood pump), and Patent Document 3 discloses a regeneration pump. A method using an impeller-type regenerative pump with a coring is described. Since any pump has an outflow port in the axial direction in principle, the artificial lung and the blood pump can be easily integrated. However, the wave pump described in Patent Document 2 has difficulty in durability of the membrane that seals the pump chamber, and has not been put into practical use. Further, in the regenerative pump described in Patent Document 3, since eccentric torque is applied to the shaft, the bearing is worn, and similarly, the durability is difficult.
JP 2007-222670 A JP 2004-154425 A JP 2011-206069 A

本発明は、従来の血液ポンプにおけるこうした問題点を解消し、再生ポンプを人工肺と一体化できる高耐久性血液ポンプとして好適なものとすることを目的とする。  An object of the present invention is to eliminate such problems in the conventional blood pump and to make it suitable as a highly durable blood pump capable of integrating a regenerative pump with an artificial lung.

本発明は、
(イ)円周状の流路を有する第1のケーシングと、中心から点対称となる半周に満たない2つの不完全な円周状の流路を有する第2のケーシングによりポンプ室を形成する。
(ロ)羽根車を第1のケーシング内に設置する。
(ハ)羽根車の羽根部分に対面する分離板を第2のケーシングに設ける。
(ニ)第2のケーシングのそれぞれの流路に、流入ポートと流出ポートを設ける。
(ホ)羽根車の片面の中心位置に設けられたピボット状の軸端部と、第1のケーシングの中心位置に設けられた受け部により羽根車の軸受を構成する。
(ヘ)羽根車の軸端部付近に羽根車の両面を貫通する複数個の孔を設ける。
(ト)羽根車の内部に配置された磁石と、駆動手段側に配置された磁石とで構成される磁気継手を介して羽根車を駆動する。
以上のごとく構成された再生ポンプである。
The present invention
(A) A pump chamber is formed by a first casing having a circumferential flow path and a second casing having two incomplete circumferential flow paths less than a half circumference that is point-symmetric from the center. .
(B) The impeller is installed in the first casing.
(C) A separation plate facing the blade portion of the impeller is provided in the second casing.
(D) An inflow port and an outflow port are provided in each flow path of the second casing.
(E) A bearing of the impeller is constituted by a pivot-shaped shaft end portion provided at the center position of one surface of the impeller and a receiving portion provided at the center position of the first casing.
(F) A plurality of holes penetrating both surfaces of the impeller are provided near the shaft end of the impeller.
(G) The impeller is driven through a magnetic coupling composed of a magnet arranged inside the impeller and a magnet arranged on the driving means side.
This is a regeneration pump configured as described above.

本発明によれば、流出ポートを軸方向に開口できるために、人工肺と血液ポンプを一体化することが可能となる。また、第2のケーシングの2つの流路は点対象となっているために、ポンプ内の圧分布は軸を中心として点対称に釣り合う。従って、軸に偏心的なトルクがかからないため、軸受けの摩耗を防止できる。さらに、軸受けを単一のピボット軸受けとすることにより、摩耗部分が最小限となり、かつ、羽根車の上下にピボット軸受けを設ける一般的な方法と比較して、ピボット部における溶血(赤血球破壊)が半減する。ピボット部における溶血は摩擦による発熱で発生するが(これ以外にも羽根車の高回転によるシアストレスでも発生する)、軸端部付近に設けた羽根車の両面を貫通する複数個の孔を通じて羽根車の下面から上面に血液が流れ、これにより軸端部が血液で冷却されることにより、ピボット部の摩擦による発熱を防止でき、よってピボット部における溶血を最小限にできる。  According to the present invention, since the outflow port can be opened in the axial direction, the artificial lung and the blood pump can be integrated. Moreover, since the two flow paths of the second casing are point targets, the pressure distribution in the pump is balanced point-symmetrically about the axis. Therefore, since eccentric torque is not applied to the shaft, the wear of the bearing can be prevented. Further, by using a single pivot bearing as the bearing, the wear portion is minimized, and hemolysis (red blood cell destruction) in the pivot portion is reduced compared to a general method in which pivot bearings are provided above and below the impeller. Cut in half. Hemolysis in the pivot part is generated by heat generated by friction (other than this, it is also generated by shear stress due to high rotation of the impeller), but the blades pass through a plurality of holes penetrating both sides of the impeller provided near the shaft end part. Blood flows from the lower surface to the upper surface of the vehicle, and the shaft end is cooled by the blood, so that heat generation due to friction of the pivot portion can be prevented, and hemolysis in the pivot portion can be minimized.

第2のケーシングに設けられた分離板は無くてもポンプ作用を発揮するが、分離板が無い場合には、羽根車と第2のケーシングの第1の流路と第2の流路の間の仕切りの部分における羽根車と第2のケーシングとの間隙を最小限にして、ポンプ内のシャントを防止しなくてはならない。しかし、単一のピボット軸受けでは、羽根車にピボットを支点とした若干の傾斜が生じ、第2のケーシングの仕切りの部分において羽根車が第2のケーシングに接触し、摩擦による溶血が発生する可能性がある。羽根車が第2のケーシングに接触しないようにするためには、羽根車と第2のケーシングの仕切りの部分における羽根車と第2のケーシングとの間隙を大きくしなければならないが、この間隙を大きくするとポンプ内のシャントが増大して性能が低下する。本発明では、第2のケーシングに羽根車に向き合う分離板を設けたため、大きなポンプ内シャントが発生する間隙が無くなり、かつ分離板と羽根車との間に羽根車の若干の傾斜を許容する間隙ができるため、羽根車の若干の傾斜による羽根車の第2のケーシングへの接触が防止できる。なお、羽根車は、磁気継手を介して駆動されるために、ポンプ内は完全に外部と遮蔽され、よって細菌感染等の心配がない。  Even if there is no separation plate provided in the second casing, the pump action is exhibited. However, when there is no separation plate, there is no separation plate between the first flow path and the second flow path of the impeller and the second casing. The gap between the impeller and the second casing in the partition portion must be minimized to prevent shunting in the pump. However, with a single pivot bearing, the impeller is slightly inclined with the pivot as a fulcrum, and the impeller contacts the second casing at the partition portion of the second casing, and hemolysis due to friction may occur. There is sex. In order to prevent the impeller from coming into contact with the second casing, the gap between the impeller and the second casing in the partition between the impeller and the second casing must be increased. If it is increased, the shunt in the pump is increased and the performance is lowered. In the present invention, since the separation plate facing the impeller is provided in the second casing, there is no gap in which a large pump shunt is generated, and the gap that allows a slight inclination of the impeller between the separation plate and the impeller. Therefore, contact of the impeller with the second casing due to slight inclination of the impeller can be prevented. Since the impeller is driven via a magnetic coupling, the inside of the pump is completely shielded from the outside, so there is no concern about bacterial infection or the like.

本発明の基本構成は4つの要素からなる。1つは、再生ポンプの原理を使用したことにより、低回転で高揚程がとれるという再生ポンプの特性により、遠心ポンプで問題となる高回転に伴う溶血という問題点を解決できること、2つめは、一般的に再生ポンプではポンプ内に圧の不均衡が発生するため軸に偏心的なトルクがかかるが、第2のケーシングの流路を点対称に2つに分けることによりポンプ内の圧力分布を点対称にバランスさせて軸に偏心的なトルクがかからないようにしたこと、3つめは軸受けを単一のピボット軸受けとすることにより摩耗部分を最小限としたこと、4つめは羽根車のピボットを支点とした若干の傾斜に伴うポンプ内部のシャントを低減させるために、第2のケーシングに羽根車に向き合う分離板を設けたことである。  The basic configuration of the present invention consists of four elements. First, the use of the principle of the regenerative pump can solve the problem of hemolysis associated with high rotation, which is a problem with centrifugal pumps, due to the characteristics of the regenerative pump that can take a high head at low rotation. In general, a regenerative pump generates an unbalanced pressure in the pump, so that an eccentric torque is applied to the shaft. By dividing the flow path of the second casing into two symmetrical points, the pressure distribution in the pump is reduced. Balanced point-symmetrically so that eccentric torque is not applied to the shaft. Third, the wear portion was minimized by making the bearing a single pivot bearing. Fourth, the pivot of the impeller was reduced. In order to reduce the shunt inside the pump accompanying a slight inclination as a fulcrum, a separation plate facing the impeller is provided in the second casing.

本発明の実施例を図面により説明する。図1は実施例の再生ポンプを人工肺と一体化した経皮的心肺補助装置の概略図である。1は人工肺、2は実施例の再生ポンプ、3は実施例の再生ポンプを駆動するモータであり、実施例の再生ポンプを用いると人工肺と血液ポンプを一体化し小型化できる。11は血液の出口、12は血液の入り口であり、それぞれ大腿動脈、大腿静脈に接続される。13は酸素の入り口、14は酸素の出口であり、人工肺に酸素を供給する。なお、モータは脱着式となっているが、図示は省略した。  Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view of a percutaneous cardiopulmonary assist device in which the regeneration pump of the embodiment is integrated with an oxygenator. 1 is an artificial lung, 2 is a regenerative pump of the embodiment, 3 is a motor for driving the regenerative pump of the embodiment, and when the regenerative pump of the embodiment is used, the artificial lung and the blood pump can be integrated and miniaturized. Reference numeral 11 denotes a blood outlet, and reference numeral 12 denotes a blood inlet, which are connected to the femoral artery and the femoral vein, respectively. Reference numeral 13 denotes an oxygen inlet, and reference numeral 14 denotes an oxygen outlet, which supplies oxygen to the oxygenator. Although the motor is detachable, the illustration is omitted.

図2は実施例の再生ポンプの断面図、図3はこれを分解して示す断面図、図4はこれを分解して示す斜視図、図5はこれを流出ポートの部分で切った断面図、図6はこれを流入ポートの部分で切った断面図、図7はこれを第2のケーシングの仕切りの部分で切った断面図、図8は第2のケーシングをさらに分解して示す斜視図で、4は第1のケーシング、5は第2のケーシング、6は羽根車、7は駆動部、41は軸の受け部、51は分離板、52は流路部材、53aは第2のケーシングの第1の流路に設けられた流出ポート、53bは第2のケーシングの第2の流路に設けられた流出ポート、54aは第2のケーシングの第1の流路に設けられた流入ポート、54bは第2のケーシングの第2の流路に設けられた流入ポート、55は第2のケーシングの仕切りの部分、61は羽根車の軸端部、62は羽根車の内部に配置された磁石、63は羽根車の軸端部付近に設けられた貫通孔、8aは第2のケーシングの第1の流路、8bは第2のケーシングの第2の流路、71は駆動軸、72は駆動部に配置された磁石である。  2 is a cross-sectional view of the regenerative pump of the embodiment, FIG. 3 is a cross-sectional view showing the regenerated pump, FIG. 4 is an exploded perspective view, and FIG. 5 is a cross-sectional view taken along the outflow port. FIG. 6 is a cross-sectional view of the inflow port section, FIG. 7 is a cross-sectional view of the second casing partition section, and FIG. 8 is an exploded perspective view of the second casing. 4 is a first casing, 5 is a second casing, 6 is an impeller, 7 is a drive unit, 41 is a shaft receiving portion, 51 is a separation plate, 52 is a flow path member, and 53a is a second casing. The outflow port provided in the first flow path, 53b is the outflow port provided in the second flow path of the second casing, and 54a is the inflow port provided in the first flow path of the second casing. 54b is an inflow port provided in the second flow path of the second casing, and 55 is a second casing. The partitioning part of the thing, 61 is the shaft end of the impeller, 62 is a magnet disposed inside the impeller, 63 is a through hole provided near the shaft end of the impeller, and 8a is the second casing. 1st flow path, 8b is the 2nd flow path of the 2nd casing, 71 is a drive shaft, 72 is a magnet arrange | positioned at the drive part.

図9はポンプ原理を示す断面図で、駆動軸71を73のごとく回転させると、駆動部7に配置された磁石72が回転し、同磁石72と羽根車6の内部に配置された磁石62とで形成される磁気継ぎ手を介して羽根車6が回転する。羽根車6の回転に伴い、羽根車内の血液が遠心力で外方向へ移動し、流路の中を81のごとく循環し、再び羽根車6に戻ってくる。羽根車6に戻ってきた血液は、羽根車6により遠心力でさらに加速され流速が増す。このように、血液は流路の中を81のごとく循環する度に加速され続け、ポンプ作用を発揮する。  FIG. 9 is a cross-sectional view showing the pump principle. When the drive shaft 71 is rotated as indicated by 73, the magnet 72 arranged in the drive unit 7 rotates, and the magnet 72 and the magnet 62 arranged inside the impeller 6 are rotated. The impeller 6 rotates through a magnetic joint formed by As the impeller 6 rotates, blood in the impeller moves outward by centrifugal force, circulates in the flow path as indicated by 81, and returns to the impeller 6 again. The blood returning to the impeller 6 is further accelerated by the centrifugal force by the impeller 6 and the flow velocity is increased. In this way, blood continues to be accelerated every time it circulates in the flow path like 81, and exhibits a pumping action.

本実施例の再生ポンプは、ポンプ全体の直径を100mmとして設計した。羽根車6の直径は70mmで、長さ10mm、高さ4mm、厚さ1mmの羽根が20枚内蔵されている。流路は高さ4mmと一様とした。羽根車6と第1のケーシング4との隙間は、羽根部分の周方向のみ0.5mmとし、それ以外の部分は1mmとした。また、分離板51と羽根車6との間隔も1mmとした。第1のケーシング4、第2のケーシング5、羽根車6および駆動部7は、いずれもアクリル樹脂を用いて製作した。駆動軸71は真鍮で製作した。磁気継手に使用する磁石62および72は、直径10mm、厚さ5mmのネオジウム磁石を、羽根車側および駆動部側ともにそれぞれ16個ずつ使用した。ピボット軸受けの軸端部は、直径3mmの人工ルビーを用い、また受け部はジュランコン樹脂を用いて製作した。  The regeneration pump of this example was designed with the entire pump diameter of 100 mm. The impeller 6 has a diameter of 70 mm, and contains 20 blades having a length of 10 mm, a height of 4 mm, and a thickness of 1 mm. The flow path was uniform with a height of 4 mm. The gap between the impeller 6 and the first casing 4 was set to 0.5 mm only in the circumferential direction of the blade portion, and other portions were set to 1 mm. The distance between the separation plate 51 and the impeller 6 was also 1 mm. The first casing 4, the second casing 5, the impeller 6, and the drive unit 7 were all manufactured using acrylic resin. The drive shaft 71 was made of brass. As the magnets 62 and 72 used for the magnetic coupling, 16 neodymium magnets having a diameter of 10 mm and a thickness of 5 mm were used on each of the impeller side and the drive unit side. The shaft end portion of the pivot bearing was made of an artificial ruby having a diameter of 3 mm, and the receiving portion was made of durancon resin.

ポンプ特性はドノバン型モック回路を用いて測定した。回路の容量は約4Lである。流体には食塩水を用いた。流量は、電磁流量計(日本光電製FT−160T)を用いて計測した。揚程は、圧力トランスデューサ(日本光電製DX−300)を、流入流出両ポートの近傍に取り付け、その差圧をもって計測した。図10に本実施例のポンプ特性を示す。本実施例の再生ポンプは、人工肺と組み合わせるときに必要な血液ポンプの性能である揚程350mmHgおよび流量毎分5リットルの条件を、毎分約2300回転の回転数で実現しているため、十分に実用的な性能を持つポンプであることが実証された。  The pump characteristics were measured using a Donovan mock circuit. The capacity of the circuit is about 4L. Saline was used as the fluid. The flow rate was measured using an electromagnetic flow meter (manufactured by Nihon Kohden FT-160T). The lift was measured by attaching a pressure transducer (Nihon Kohden DX-300) in the vicinity of both the inflow and outflow ports and measuring the differential pressure. FIG. 10 shows the pump characteristics of this example. The regenerative pump of the present embodiment realizes the conditions of a lifting height of 350 mmHg and a flow rate of 5 liters per minute, which are the performance of a blood pump required when combined with an artificial lung, at a rotational speed of about 2300 revolutions per minute. It was proved to be a pump with practical performance.

実施例の再生ポンプを人工肺と一体化した経皮的心肺補助装置の概略図。1 is a schematic view of a percutaneous cardiopulmonary assist device in which a regeneration pump of an embodiment is integrated with an artificial lung. 実施例の再生ポンプの断面図。Sectional drawing of the regeneration pump of an Example. 実施例の再生ポンプを分解して示す断面図。Sectional drawing which decomposes | disassembles and shows the regeneration pump of an Example. 実施例の再生ポンプを分解して示す斜視図。The perspective view which decomposes | disassembles and shows the regeneration pump of an Example. 実施例の再生ポンプを流出ポートの部分で切った断面図。Sectional drawing which cut | disconnected the regeneration pump of the Example in the part of the outflow port. 実施例の再生ポンプを流入ポートの部分で切った断面図。Sectional drawing which cut the regeneration pump of an Example in the part of the inflow port. 実施例の再生ポンプを第2のケーシングの仕切りの部分で切った断面図。Sectional drawing which cut the regeneration pump of an Example in the part of the partition of the 2nd casing. 実施例の再生ポンプの第2のケーシングをさらに分解して示す斜視図。The perspective view which further decomposes | disassembles and shows the 2nd casing of the regeneration pump of an Example. 実施例の再生ポンプの原理を示す断面図。Sectional drawing which shows the principle of the regeneration pump of an Example. 実施例の再生ポンプのポンプ特性。The pump characteristic of the regeneration pump of an Example.

1 人工肺
2 実施例の再生ポンプ
3 実施例の再生ポンプを駆動するモータ
4 第1のケーシング
5 第2のケーシング
6 羽根車
7 駆動部
8a 第2のケーシングの第1の流路
8b 第2のケーシングの第2の流路
11 血液の出口
12 血液の入り口
13 酸素の入り口
14 酸素の出口
41 軸の受け部
51 分離板
52 流路部材
53a 第2のケーシングの第1の流路に設けられた流出ポート
53b 第2のケーシングの第2の流路に設けられた流出ポート
54a 第2のケーシングの第1の流路に設けられた流入ポート
54b 第2のケーシングの第2の流路に設けられた流入ポート
55 第2のケーシングの仕切りの部分
61 羽根車の軸端部
62 羽根車の内部に配置された磁石
63 羽根車の軸端部付近に設けられた貫通孔
71 駆動軸
72 駆動部に配置された磁石
73 駆動軸の回転
81 血液が流路の中を循環する様子
DESCRIPTION OF SYMBOLS 1 Artificial lung 2 Regenerative pump of Example 3 Motor 4 which drives Regenerative pump of Example 4 1st casing 5 2nd casing 6 Impeller 7 Drive part 8a 1st flow path 8b of 2nd casing 2nd Second flow path 11 of casing 11 Blood outlet 12 Blood inlet 13 Oxygen inlet 14 Oxygen outlet 41 Shaft receiving portion 51 Separation plate 52 Channel member 53a Provided in the first channel of the second casing Outflow port 53b Outflow port 54a provided in the second flow path of the second casing Inflow port 54b provided in the first flow path of the second casing Provided in the second flow path of the second casing Inlet port 55 Partition portion 61 of second casing 61 Shaft end 62 of impeller Magnet 63 disposed inside impeller Through hole 71 provided near shaft end of impeller Drive shaft 72 Drive portion Arrangement How to rotation of the magnet 73 the drive shaft 81 blood circulates through the flow path

Claims (1)

(イ)円周状の流路を有する第1のケーシングと、中心から点対称となる半周に満たない2つの不完全な円周状の流路を有する第2のケーシングによりポンプ室を形成する。
(ロ)羽根車を第1のケーシング内に設置する。
(ハ)羽根車の羽根部分に対面する分離板を第2のケーシングに設ける。
(ニ)第2のケーシングのそれぞれの流路に、流入ポートと流出ポートを設ける。
(ホ)羽根車の片面の中心位置に設けられたピボット状の軸端部と、第1のケーシングの中心位置に設けられた受け部により羽根車の軸受を構成する。
(ヘ)羽根車の軸端部付近に羽根車の両面を貫通する複数個の孔を設ける。
(ト)羽根車の内部に配置された磁石と、駆動手段側に配置された磁石とで構成される磁気継手を介して羽根車を駆動する。
以上のごとく構成された血液用再生ポンプ。
(A) A pump chamber is formed by a first casing having a circumferential flow path and a second casing having two incomplete circumferential flow paths less than a half circumference that is point-symmetric from the center. .
(B) The impeller is installed in the first casing.
(C) A separation plate facing the blade portion of the impeller is provided in the second casing.
(D) An inflow port and an outflow port are provided in each flow path of the second casing.
(E) A bearing of the impeller is constituted by a pivot-shaped shaft end portion provided at the center position of one surface of the impeller and a receiving portion provided at the center position of the first casing.
(F) A plurality of holes penetrating both surfaces of the impeller are provided near the shaft end of the impeller.
(G) The impeller is driven through a magnetic coupling composed of a magnet arranged inside the impeller and a magnet arranged on the driving means side.
A blood regeneration pump constructed as described above.
JP2012154044A 2012-06-21 2012-06-21 Blood regeneration pump Pending JP2014004303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154044A JP2014004303A (en) 2012-06-21 2012-06-21 Blood regeneration pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012154044A JP2014004303A (en) 2012-06-21 2012-06-21 Blood regeneration pump

Publications (1)

Publication Number Publication Date
JP2014004303A true JP2014004303A (en) 2014-01-16

Family

ID=50102612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154044A Pending JP2014004303A (en) 2012-06-21 2012-06-21 Blood regeneration pump

Country Status (1)

Country Link
JP (1) JP2014004303A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11368081B2 (en) 2018-01-24 2022-06-21 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11754075B2 (en) 2018-07-10 2023-09-12 Kardion Gmbh Impeller for an implantable, vascular support system
US11944805B2 (en) 2020-01-31 2024-04-02 Kardion Gmbh Pump for delivering a fluid and method of manufacturing a pump
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US12005248B2 (en) 2018-05-16 2024-06-11 Kardion Gmbh Rotor bearing system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11185677B2 (en) 2017-06-07 2021-11-30 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11717670B2 (en) 2017-06-07 2023-08-08 Shifamed Holdings, LLP Intravascular fluid movement devices, systems, and methods of use
US11511103B2 (en) 2017-11-13 2022-11-29 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
US11368081B2 (en) 2018-01-24 2022-06-21 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
US11804767B2 (en) 2018-01-24 2023-10-31 Kardion Gmbh Magnetic coupling element with a magnetic bearing function
US10722631B2 (en) 2018-02-01 2020-07-28 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US11229784B2 (en) 2018-02-01 2022-01-25 Shifamed Holdings, Llc Intravascular blood pumps and methods of use and manufacture
US12005248B2 (en) 2018-05-16 2024-06-11 Kardion Gmbh Rotor bearing system
US11754075B2 (en) 2018-07-10 2023-09-12 Kardion Gmbh Impeller for an implantable, vascular support system
US11964145B2 (en) 2019-07-12 2024-04-23 Shifamed Holdings, Llc Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof
US11944805B2 (en) 2020-01-31 2024-04-02 Kardion Gmbh Pump for delivering a fluid and method of manufacturing a pump

Similar Documents

Publication Publication Date Title
JP2014004303A (en) Blood regeneration pump
US20210205600A1 (en) Bearingless Implantable Blood Pump
Mendler et al. Seal‐less centrifugal blood pump with magnetically suspended rotor: rot‐a‐flot
US20050135942A1 (en) Streamlined unobstructed one-pass axial-flow pump
WO2014000753A1 (en) Centrifugal blood pump apparatus
JP5456491B2 (en) Double suction pump
CN206681995U (en) Two-stage Double absorption midle-opening centrifugal pump
JP2005030215A (en) Small gear pump
JP6674802B2 (en) Centrifugal blood pump
CN112972886B (en) Single-slider volumetric blood pump
WO2021143526A1 (en) Mini-type pump
US20090238709A1 (en) Magnetic vane ejection for a rotary vane air motor
JP3729889B2 (en) Magnetic bearing pump
JP2009074470A (en) Pump
JP2014020322A (en) Multistage regenerative pump
CN221181386U (en) Rotor, driving device and blood pump
WO2010013355A1 (en) Blood pump
JP4340182B2 (en) Blood pump device
CN109882410A (en) A kind of blade electronics aspiration pump
CN217029322U (en) Multi-stage middle-open pump bearing cooling structure
WO2023236011A1 (en) Side channel pump
JP2600404B2 (en) Refrigerant pump
CN216842236U (en) Multistage split pump baffle sealing ring structure
JP2015132251A (en) Sequential flow type centrifugal pump
US20230381489A1 (en) Implantable centrifugal cardiac assist pump having permanent magnets embedded in impeller