JP2014003133A - Manufacturing method of substrate for power module - Google Patents

Manufacturing method of substrate for power module Download PDF

Info

Publication number
JP2014003133A
JP2014003133A JP2012136975A JP2012136975A JP2014003133A JP 2014003133 A JP2014003133 A JP 2014003133A JP 2012136975 A JP2012136975 A JP 2012136975A JP 2012136975 A JP2012136975 A JP 2012136975A JP 2014003133 A JP2014003133 A JP 2014003133A
Authority
JP
Japan
Prior art keywords
substrate
power module
cooling
metal plate
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012136975A
Other languages
Japanese (ja)
Inventor
Shinsuke Aoki
慎介 青木
Hirokazu Kato
浩和 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012136975A priority Critical patent/JP2014003133A/en
Publication of JP2014003133A publication Critical patent/JP2014003133A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for a power module which achieves small warpage and enables easy manufacturing.SOLUTION: A manufacturing method of a substrate for a power module includes: a joining step where a circuit layer metal plate 12 is laminated on one surface of a ceramic substrate 11 in a thickness direction with a brazing material disposed therebetween and a heat radiation layer metal plate 13, which is thicker than the circuit layer metal plate 12, is laminated on the other surface of the ceramic substrate 11 in the thickness direction with a brazing material disposed therebetween to form a substrate lamination body 40 and the ceramic substrate 11 and the respective metal plates 12, 13 are brazed by heating the substrate lamination body 40 while pressurizing the substrate lamination body 40 in the lamination direction to form a joined body 40a; and a cooling step where the joined body 40 is cooled to a temperature lower than a normal temperature in the pressurized state.

Description

本発明は、大電流、大電圧を制御する半導体装置に用いられるパワーモジュール用基板の製造方法及びパワーモジュール用基板に関する。   The present invention relates to a method for manufacturing a power module substrate used in a semiconductor device that controls a large current and a large voltage, and a power module substrate.

従来のパワーモジュールとして、セラミックス基板の一方の面に、アルミニウム等からなる回路層が積層され、この回路層の上に半導体チップ等の電子部品がはんだ付けされるとともに、セラミックス基板の他方の面にアルミニウム等からなる放熱層が形成され、この放熱層にヒートシンクが接合された構成のものが知られている。   As a conventional power module, a circuit layer made of aluminum or the like is laminated on one surface of a ceramic substrate, and an electronic component such as a semiconductor chip is soldered on the circuit layer, and on the other surface of the ceramic substrate. A structure in which a heat dissipation layer made of aluminum or the like is formed and a heat sink is joined to the heat dissipation layer is known.

この種のパワーモジュールにおいては、電子部品から発生する熱がヒートシンクによって放散される。従来、パワーモジュールにおいては回路層及び放熱層とも同じ板材で形成されるのが一般的であったが、近年では、放熱層の熱伸縮によってセラミックス基板に生じる熱応力を緩和するために、放熱層を肉厚に形成して緩衝機能を持たせることが検討されている。   In this type of power module, heat generated from the electronic components is dissipated by the heat sink. Conventionally, in a power module, the circuit layer and the heat dissipation layer are generally formed of the same plate material. However, in recent years, in order to relieve the thermal stress generated in the ceramic substrate due to the thermal expansion and contraction of the heat dissipation layer, the heat dissipation layer It has been studied to form a thick wall with a buffer function.

しかし、回路層と放熱層とで、板材の厚さや形状が異なる場合、ろう付けのための加熱処理を経由することにより、薄肉側(回路層側)を凸とする反りが生じる。この場合、ヒートシンクへの取り付けが阻害される。
そこで、特許文献1には、セラミックス基板と金属層との接合体(パワーモジュール用基板)を−20℃以下(−80℃〜−20℃)の雰囲気に接触させてうねり矯正を行うことが提案されている。また、特許文献2には、接合体を−70℃よりさらに低温の−110℃以下で冷却処理することで、反り量をより緩和できることが記載されている。
However, when the thickness and shape of the plate material are different between the circuit layer and the heat dissipation layer, a warp with the thin side (circuit layer side) being convex occurs through the heat treatment for brazing. In this case, attachment to the heat sink is hindered.
Therefore, Patent Document 1 proposes that undulation correction is performed by bringing a joined body (substrate for a power module) of a ceramic substrate and a metal layer into contact with an atmosphere of −20 ° C. or lower (−80 ° C. to −20 ° C.). Has been. Patent Document 2 describes that the amount of warpage can be further relaxed by cooling the bonded body at a temperature lower than -70 ° C and lower than -110 ° C.

特許第3419620号公報Japanese Patent No. 3419620 特許第3922538号公報Japanese Patent No. 3922538

特許文献1及び2に記載のように、セラミックス基板と金属層との接合後に冷却処理を施すことでパワーモジュール用基板の反り量を緩和できるが、取扱性向上のためにさらなる改善が求められている。   As described in Patent Documents 1 and 2, the amount of warpage of the power module substrate can be reduced by performing a cooling process after joining the ceramic substrate and the metal layer, but further improvements are required to improve handling. Yes.

本発明は、このような事情に鑑みてなされたもので、反り量が小さく、製造が容易なパワーモジュール用基板を提供することを目的とする。   This invention is made | formed in view of such a situation, and it aims at providing the board | substrate for power modules with a small curvature amount and easy manufacture.

本発明のパワーモジュール用基板の製造方法は、セラミックス基板の一方の面に、ろう材を介在させて回路層用金属板を厚さ方向に積層し、前記セラミックス基板の他方の面に、該回路層用金属板よりも厚い放熱層用金属板をろう材を介在させて厚さ方向に積層してなる基板積層体を形成し、該基板積層体をその積層方向に加圧した状態で加熱することにより、前記セラミックス基板と各金属板とをろう付けして接合体を形成する接合工程と、前記加圧した状態で前記接合体を常温よりも低い温度にまで冷却する冷却工程とを備える。   The method for manufacturing a power module substrate according to the present invention includes laminating a brazing material on one surface of a ceramic substrate in the thickness direction, and forming the circuit on the other surface of the ceramic substrate. A substrate laminate is formed by laminating a heat dissipation layer metal plate thicker than the layer metal plate in the thickness direction with a brazing material interposed therebetween, and the substrate laminate is heated in a state of being pressurized in the lamination direction. By this, the joining process which brazes the said ceramic substrate and each metal plate and forms a joined body, and the cooling process which cools the said joined body to temperature lower than normal temperature in the said pressurized state are provided.

基板積層体を積層方向に加圧した状態で加熱し、セラミックス基板と各金属板とを接合した後、その接合体を加圧状態で常温よりも低い温度にまで冷却することにより、製造されるパワーモジュール用基板の反り量を小さくでき、ヒートシンクとの接合を容易にして取り扱い性を向上させることができる。   It is manufactured by heating the substrate laminate in a state of being pressurized in the lamination direction, joining the ceramic substrate and each metal plate, and then cooling the joined body to a temperature lower than normal temperature in a pressurized state. The amount of warpage of the power module substrate can be reduced, the joining with the heat sink can be facilitated, and the handleability can be improved.

本発明のパワーモジュール用基板の製造方法において、前記接合工程には、前記基板積層体をその積層方向に加圧する加圧治具が用いられ、前記冷却工程における冷却は、前記加圧治具ごと冷却するとよい。
接合工程で使用した加圧治具ごと冷却することにより、接合工程開始から冷却工程終了まで確実に加圧状態を維持でき、パワーモジュール用基板の反り量を小さくすることができる。また、作業工程を簡略化でき、作業性を向上させることができる。
In the method for manufacturing a power module substrate of the present invention, a pressure jig that pressurizes the substrate laminate in the laminating direction is used in the joining step, and cooling in the cooling step is performed for each pressure jig. Cool.
By cooling the pressure jig used in the joining process, the pressurized state can be reliably maintained from the start of the joining process to the end of the cooling process, and the warpage amount of the power module substrate can be reduced. In addition, the work process can be simplified and workability can be improved.

本発明のパワーモジュール用基板の製造方法において、前記冷却工程は、0℃〜−40℃に冷却するとよい。
冷却温度を−40℃以上に抑えることで、冷却時間及び冷却後に常温まで昇温させる際の昇温時間を短縮することができる。したがって、冷却工程におけるサイクルタイムを短縮でき、作業性を向上させることができる。
In the method for manufacturing a power module substrate of the present invention, the cooling step is preferably cooled to 0 ° C. to −40 ° C.
By suppressing the cooling temperature to −40 ° C. or higher, it is possible to shorten the cooling time and the heating time when the temperature is raised to room temperature after cooling. Therefore, the cycle time in the cooling process can be shortened and workability can be improved.

本発明によれば、セラミックス基板の一方の面及び他方の面に金属板をろう付けすることにより生じる反りを抑え、平面度が高いパワーモジュール用基板を容易に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the curvature which arises by brazing a metal plate to the one surface and the other surface of a ceramic substrate can be suppressed, and a power module substrate with high flatness can be easily manufactured.

本発明に係るパワーモジュール用基板を用いて製造されたパワーモジュールを示す断面図である。It is sectional drawing which shows the power module manufactured using the board | substrate for power modules which concerns on this invention. 本発明の製造方法で用いられる加圧治具の例を示す側面図である。It is a side view which shows the example of the pressurization jig | tool used with the manufacturing method of this invention. 図2に示す加圧治具に設置された基板積層体、カーボン板及びクッションシートを示す側面図である。It is a side view which shows the board | substrate laminated body, the carbon plate, and the cushion sheet which were installed in the pressurization jig | tool shown in FIG. 接合体の平面度と冷却時間との関係を示すグラフである。It is a graph which shows the relationship between the flatness of a conjugate | zygote, and cooling time.

以下、本発明に係るパワーモジュール用基板の製造方法の実施形態について説明する。
図1に示すパワーモジュール100は、パワーモジュール用基板10と、パワーモジュール用基板10の表面に搭載された半導体チップ等の電子部品20と、パワーモジュール用基板10の裏面に接合されたヒートシンク30とから構成されている。
Embodiments of a method for manufacturing a power module substrate according to the present invention will be described below.
A power module 100 shown in FIG. 1 includes a power module substrate 10, an electronic component 20 such as a semiconductor chip mounted on the surface of the power module substrate 10, and a heat sink 30 bonded to the back surface of the power module substrate 10. It is composed of

パワーモジュール用基板10は、セラミックス基板11の一方の面に、回路層用金属板12が厚さ方向に積層され、セラミックス基板11の他方の面に放熱層用金属板13が厚さ方向に積層され、Alよりも低融点のろう材(好ましくはAl‐Si系ろう材)によって接合されてなる。   In the power module substrate 10, the circuit layer metal plate 12 is laminated in the thickness direction on one surface of the ceramic substrate 11, and the heat dissipation layer metal plate 13 is laminated in the thickness direction on the other surface of the ceramic substrate 11. And joined by a brazing material having a melting point lower than that of Al (preferably an Al—Si based brazing material).

セラミックス基板11は、厚さ0.5mm〜1.0mmのAlN,Si,Al,SiC等からなる。
また、回路層用金属板12は、厚さ0.1mm〜1.1mmの純アルミニウム板(好ましくは純度99.99質量%以上の4N‐Al板)からなる。パワーモジュール100においては、回路層用金属板12はエッチング等により所定の回路パターン状に成形されており、その上に電子部品20がはんだ材等によって接合されている。
放熱層用金属板13は、回路層用金属板12よりも厚く、厚さ0.1mm以上5.0mm以下の純アルミニウム板(好ましくは純度99.0質量%以上のAl板)からなる。パワーモジュール100においては、この放熱層用金属板13の表面13aにヒートシンク30がろう付け等によって接合されている。
なお、各金属板12,13には、Al板の他、Cu板を用いることもできる。
The ceramic substrate 11 is made of AlN, Si 3 N 4 , Al 2 O 3 , SiC, or the like having a thickness of 0.5 mm to 1.0 mm.
The circuit layer metal plate 12 is made of a pure aluminum plate (preferably a 4N-Al plate having a purity of 99.99% by mass or more) having a thickness of 0.1 mm to 1.1 mm. In the power module 100, the circuit layer metal plate 12 is formed into a predetermined circuit pattern by etching or the like, and the electronic component 20 is joined thereto by a solder material or the like.
The heat radiation layer metal plate 13 is made of a pure aluminum plate (preferably an Al plate having a purity of 99.0 mass% or more) that is thicker than the circuit layer metal plate 12 and has a thickness of 0.1 mm to 5.0 mm. In the power module 100, the heat sink 30 is joined to the surface 13a of the heat radiating layer metal plate 13 by brazing or the like.
The metal plates 12 and 13 may be Cu plates in addition to Al plates.

本実施形態のパワーモジュール用基板10においては、各部材の厚さは、例えばセラミックス基板11が0.635mm、回路層用金属板12が0.6mm、放熱層用金属板13が1.6mmに設定される。このパワーモジュール用基板10において、(回路層用金属板12の厚さ)/(放熱層用金属板13の厚さ)の比率は、0.04〜0.875に設定される。   In the power module substrate 10 of the present embodiment, the thickness of each member is, for example, 0.635 mm for the ceramic substrate 11, 0.6 mm for the circuit layer metal plate 12, and 1.6 mm for the heat dissipation layer metal plate 13. Is set. In the power module substrate 10, the ratio of (thickness of the circuit layer metal plate 12) / (thickness of the heat dissipation layer metal plate 13) is set to 0.04 to 0.875.

本実施形態に係るパワーモジュール用基板10の製造方法について説明する。
(接合工程)
まず、セラミックス基板11の両面にろう材を介在させて、回路層用金属板12及び放熱層用金属板13を積層して、基板積層体40を形成する(図3参照)。この基板積層体40を、比較的剛性の高いカーボン製板材からなるカーボン板41と、クッション性を有する板状のクッションシート42との間に挟んだ状態とし、図2及び図3に示すように、複数の基板積層体40を加圧治具110によって積層方向に0.34MPa〜0.54MPa(3.5kgf/cm〜5.5kgf/cm)で加圧した状態とする。
この加圧治具110は、ベース板111と、ベース板111の上面の四隅に垂直に取り付けられたガイドポスト112と、これらガイドポスト112の上端部に固定された固定板113と、これらベース板111と固定板113との間で上下移動自在にガイドポスト112に支持された押圧板114と、固定板113と押圧板114との間に設けられて押圧板114を下方に付勢するばね等の付勢手段115とを備え、ベース板111と押圧板114との間に前述の基板積層体40が配設される。
そして、この加圧治具110により基板積層体40を加圧した状態で、加圧治具110ごと加熱炉(図示略)内に設置し、真空雰囲気中で例えば630℃のろう付け温度に加熱することによりセラミックス基板11と両金属板12,13とを接合した接合体40aを製造する。
A method for manufacturing the power module substrate 10 according to the present embodiment will be described.
(Joining process)
First, the substrate layered body 40 is formed by laminating the metal plate for circuit layer 12 and the metal plate for heat dissipation layer 13 with a brazing material interposed between both surfaces of the ceramic substrate 11 (see FIG. 3). As shown in FIGS. 2 and 3, the substrate laminate 40 is sandwiched between a carbon plate 41 made of a carbon plate material having a relatively high rigidity and a plate-like cushion sheet 42 having cushioning properties. The plurality of substrate laminates 40 are pressed by the pressurizing jig 110 at 0.34 MPa to 0.54 MPa (3.5 kgf / cm 2 to 5.5 kgf / cm 2 ) in the stacking direction.
The pressurizing jig 110 includes a base plate 111, guide posts 112 vertically attached to the four corners of the upper surface of the base plate 111, a fixed plate 113 fixed to the upper ends of the guide posts 112, and these base plates 111, a pressing plate 114 supported by a guide post 112 so as to be movable up and down between the fixing plate 113, a spring provided between the fixing plate 113 and the pressing plate 114 and biasing the pressing plate 114 downward The above-mentioned substrate laminate 40 is disposed between the base plate 111 and the pressing plate 114.
Then, in a state where the substrate laminate 40 is pressurized by the pressurizing jig 110, the pressurizing jig 110 and the pressurizing jig 110 are installed in a heating furnace (not shown) and heated to a brazing temperature of, for example, 630 ° C. in a vacuum atmosphere. By doing so, the joined body 40a in which the ceramic substrate 11 and the two metal plates 12 and 13 are joined is manufactured.

(冷却工程)
次に、接合体40aを加圧治具110により厚み方向に加圧された状態のまま加熱炉から取り出し、その加圧を解除することなく加圧治具110ごと冷却器に投入して常温よりも低い温度にまで冷却する。冷却器内に投入された加圧治具110及び接合体40aに、エアークーラーによって乾燥空気(冷風)を吹き付けて冷却が行われる。
この場合、接合体40aを0.34MPa〜0.54MPa(3.5kgf/cm〜5.5kgf/cm)で加圧した状態で、0℃〜−40℃に冷却することが好ましい。例えば、0℃に冷却された冷却器内に加圧治具110ごと投入すると、通常10分程度で接合体40aも雰囲気温度に到達することから、接合体40aをその冷却温度まで冷却するために、冷却器への投入後10分程度放置するとよい。
(Cooling process)
Next, the joined body 40a is taken out from the heating furnace while being pressed in the thickness direction by the pressurizing jig 110, and the pressurizing jig 110 together with the pressurizing jig 110 is put into a cooler without releasing the pressurization. Cool down to a lower temperature. Cooling is performed by blowing dry air (cold air) to the pressurizing jig 110 and the joined body 40a charged in the cooler by an air cooler.
In this case, it is preferable to cool to 0 ° C. to −40 ° C. in a state where the bonded body 40a is pressurized at 0.34 MPa to 0.54 MPa (3.5 kgf / cm 2 to 5.5 kgf / cm 2 ). For example, when the entire pressing jig 110 is put into a cooler cooled to 0 ° C., the joined body 40a also reaches the ambient temperature usually in about 10 minutes, so that the joined body 40a is cooled to the cooling temperature. It is better to leave it for about 10 minutes after being put into the cooler.

加圧治具110により、セラミックス基板11と両金属板12,13とは厚さ方向に加圧され、反りが生じないように拘束されている。一方、冷却により両金属板12,13に熱収縮による応力が発生する。この冷却を進めていくと見かけ上は変化がないように見えるが、応力に抗して加圧されていることから両金属板12,13に塑性変形が生じる。両金属板12,13の塑性変形は、反りとは逆方向の変形であり、その塑性変形領域まで冷却した後に常温まで戻すと、塑性変形が生じた分だけ反りが相殺されて、接合工程後に常温まで自然冷却した場合の反り量と比べて、冷却工程を介した場合の反り量の方が小さくなる。   The ceramic substrate 11 and the two metal plates 12 and 13 are pressed in the thickness direction by the pressing jig 110 and are restrained so as not to warp. On the other hand, a stress due to heat shrinkage is generated in both metal plates 12 and 13 by cooling. As this cooling proceeds, it appears that there is no change in appearance, but because the metal plates 12 and 13 are plastically deformed because they are pressed against the stress. The plastic deformation of both the metal plates 12 and 13 is a deformation in the opposite direction to the warp. When the metal plate 12 and 13 is cooled to the plastic deformation region and returned to room temperature, the warp is offset by the amount of the plastic deformation, and after the joining process. Compared to the amount of warping when naturally cooled to room temperature, the amount of warping when passing through the cooling step is smaller.

このように、基板積層体40を積層方向に加圧した状態で加熱し、セラミックス基板11と各金属板12,13とを接合した後、その接合体40aを加圧状態で常温よりも低い温度にまで冷却することにより、製造されるパワーモジュール用基板10の反り量を小さくできる。したがって、ヒートシンクとの接合を容易にして取り扱い性を向上させることができる。
また、接合体40aを、接合工程で使用した加圧治具110ごと冷却することにより、接合工程開始から冷却工程終了まで確実に加圧状態を維持でき、作業工程を簡略化でき、作業性を向上させることができる。
また、冷却工程において、冷却温度を−40℃以上とすることで、冷却時間及び冷却後に常温まで昇温させる際の昇温時間を短縮することができる。したがって、冷却工程におけるサイクルタイムを短縮でき、作業性を向上させることができる。
As described above, the substrate laminate 40 is heated while being pressed in the stacking direction, and the ceramic substrate 11 and the respective metal plates 12 and 13 are bonded together, and then the bonded body 40a is heated to a temperature lower than normal temperature. The amount of warpage of the power module substrate 10 to be manufactured can be reduced by cooling down to. Therefore, it is possible to facilitate the joining with the heat sink and improve the handleability.
Moreover, by cooling the joined body 40a together with the pressurizing jig 110 used in the joining process, it is possible to reliably maintain the pressurized state from the start of the joining process to the end of the cooling process, simplify the work process, and improve workability. Can be improved.
In the cooling step, by setting the cooling temperature to −40 ° C. or higher, the cooling time and the temperature raising time when raising the temperature to room temperature after cooling can be shortened. Therefore, the cycle time in the cooling process can be shortened and workability can be improved.

ところで、接合工程で使用されるカーボン板41やクッションシート42等は吸湿しやすいため、冷却時や冷却後に常温まで昇温させる際に結露が生じると、その水分を吸湿してしまうことから作業性が低下する。
本実施形態においては、冷却器内では、加圧治具110に乾燥空気を吹き付けることで、接合体40aの冷却を促進するとともに、カーボン板41やクッションシート42への結露の発生を防止できる。また、接合体40aの冷却温度を−40℃以上とすることで、冷却時間及び冷却後に常温まで昇温させる際の昇温時間を短縮できるとともに、冷却器から取り出した際に生じる結露を防止することができる。
By the way, since the carbon plate 41, the cushion sheet 42, etc. used in the joining process are easy to absorb moisture, if dew condensation occurs at the time of cooling or raising the temperature to room temperature after cooling, the moisture is absorbed and workability is increased. Decreases.
In the present embodiment, in the cooler, by blowing dry air to the pressurizing jig 110, cooling of the joined body 40a can be promoted, and condensation on the carbon plate 41 and the cushion sheet 42 can be prevented. In addition, by setting the cooling temperature of the joined body 40a to −40 ° C. or higher, it is possible to shorten the cooling time and the temperature rising time when the temperature is raised to room temperature after cooling, and prevent condensation that occurs when the bonded body 40a is taken out from the cooler. be able to.

次に、上記において説明した本発明に係るパワーモジュール用基板の製造方法において、その効果を確認するために実験を行った。
厚さ0.6mmで26mm×26mm(26mm角)の回路層用金属板12、厚さ1.6mmで28mm×28mm(28mm角)の放熱層用金属板13、厚さ0.635mmで30mm×30mm(30mm角)のセラミックス基板11を準備し、回路層用金属板12とセラミックス基板11との間、及びセラミックス基板11と放熱層用金属板13との間に厚さ15μmのAl‐7.5質量%Siのろう材箔を介在させて積層した基板積層体40について、下記に示す条件で作製したパワーモジュール用基板10の平面度(反り量)を測定した。
Next, an experiment was performed to confirm the effect of the method for manufacturing a power module substrate according to the present invention described above.
26 mm × 26 mm (26 mm square) circuit layer metal plate 12 having a thickness of 0.6 mm, 28 mm × 28 mm (28 mm square) heat radiation layer metal plate 13 having a thickness of 1.6 mm, 30 mm × 0.635 mm thick A 30 mm (30 mm square) ceramic substrate 11 was prepared, and an Al-7.m having a thickness of 15 μm was interposed between the circuit layer metal plate 12 and the ceramic substrate 11 and between the ceramic substrate 11 and the heat dissipation layer metal plate 13. About the board | substrate laminated body 40 laminated | stacked with the brazing material foil of 5 mass% Si interposed, the flatness (warpage amount) of the board | substrate 10 for power modules produced on the conditions shown below was measured.

まず、基板積層体40を加圧治具110により加圧した状態で、加圧治具110ごと加熱炉内に設置し、真空雰囲気中で600℃〜650℃で約1時間加熱することにより、セラミックス基板11と両金属板12,13とをろう付けして接合体40aを作製した(接合工程)。そして、その接合体40aを加圧治具110ごと冷却器に投入し、20分間保持(冷却工程)することにより、パワーモジュール用基板10を作製した。
接合工程では、加圧治具110による加圧を0.34MPa,0.44MPa,0.54MPaに変化させ、加圧条件の異なる3種類の接合体40aを作製した。また、冷却工程では、冷却温度25℃,0℃,−25℃,−50℃に設定された冷却器の中に加圧治具により加圧された状態の各接合体を加圧治具ごと投入し、冷却条件の異なる4種類のパワーモジュール用基板10を作製した。
図4に測定結果を示す。
First, in a state where the substrate laminate 40 is pressurized by the pressure jig 110, the pressure jig 110 and the whole pressure jig 110 are placed in a heating furnace and heated in a vacuum atmosphere at 600 ° C. to 650 ° C. for about 1 hour. The ceramic substrate 11 and the two metal plates 12 and 13 were brazed to produce a joined body 40a (joining step). Then, the joined body 40a was put into the cooler together with the pressurizing jig 110, and held for 20 minutes (cooling step), whereby the power module substrate 10 was produced.
In the joining step, the pressure applied by the pressure jig 110 was changed to 0.34 MPa, 0.44 MPa, and 0.54 MPa, and three types of joined bodies 40a with different pressing conditions were produced. Further, in the cooling process, each joined body in a state of being pressurized by the pressure jig in a cooler set at a cooling temperature of 25 ° C., 0 ° C., −25 ° C., and −50 ° C. Then, four types of power module substrates 10 having different cooling conditions were produced.
FIG. 4 shows the measurement results.

なお、「平面度」は、Mitsutoyo製のQuickScope(三次元測定器)を用いて測定したものであり、放熱層用金属板13の表面の28mm長さ当たりの平面度を示す。また、「平面度」は、パワーモジュール用基板10の回路層側を上に凸状に反りが生じている状態をプラスの値とし、パワーモジュール用基板10板の回路層側を上に凹状に反りが生じている状態をマイナスの値で表示した。   The “flatness” is measured using a QuickScope (three-dimensional measuring instrument) manufactured by Mitsutoyo, and indicates the flatness per 28 mm length of the surface of the heat dissipation layer metal plate 13. The “flatness” is a positive value when the circuit layer side of the power module substrate 10 is convex upward, and the circuit layer side of the power module substrate 10 plate is concave upward. The state where the warp has occurred is displayed as a negative value.

図4に示されるように、基板積層体40を積層方向に加圧した状態で加熱し、セラミックス基板11と各金属板12,13とを接合した後、その接合体40aを加圧状態で冷却することにより、パワーモジュール用基板10の平面度を100μm(絶対値)以下に抑え、平面度が高いパワーモジュール用基板とすることができる。また、5℃以下に冷却することで、平面度をさらに70μm以下に抑えることができる。
また、冷却工程において冷却温度を低く設定する程、平面度を小さくすることができるが、冷却温度−40℃付近を境界として、パワーモジュール用基板の反りの方向が逆転し、回路層側を上に凹状の反りが生じる。このように凹状の反りが生じた場合には、ヒートシンクとの接合時に位置すれが生じ易くなるため、大きな凹状の反りが生じない−40℃以上の冷却温度とすることが好ましい。
As shown in FIG. 4, the substrate laminate 40 is heated while being pressed in the stacking direction, and the ceramic substrate 11 and the metal plates 12 and 13 are bonded together, and then the bonded body 40 a is cooled in a pressurized state. By doing so, the flatness of the power module substrate 10 can be suppressed to 100 μm (absolute value) or less, and a power module substrate with high flatness can be obtained. Further, by cooling to 5 ° C. or lower, the flatness can be further suppressed to 70 μm or lower.
In addition, the lower the cooling temperature is set in the cooling process, the smaller the flatness can be. However, the warping direction of the power module substrate is reversed around the cooling temperature of −40 ° C. and the circuit layer side is raised. A concave warp occurs in the surface. When a concave warp is generated in this way, it is easy to cause displacement at the time of joining with a heat sink. Therefore, it is preferable to set a cooling temperature of −40 ° C. or higher so that a large concave warp does not occur.

以上説明したように、本発明の製造方法によれば、セラミックス基板の両面に金属板をろう付けすることにより生じる反りを抑え、平面度が高いパワーモジュール用基板を容易に製造することができる。   As described above, according to the manufacturing method of the present invention, it is possible to easily manufacture a power module substrate having high flatness while suppressing warpage caused by brazing metal plates on both surfaces of the ceramic substrate.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記実施形態においては、接合体40aを加圧治具110ごと冷却することで、基板積層体40の接合時と接合体40aの冷却時とで加圧力を変化させることなくパワーモジュール用基板10を製造したが、接合時と冷却時とで加圧力を変化させて行うこととしてもよい。
In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.
For example, in the above-described embodiment, by cooling the bonded body 40a together with the pressing jig 110, the power module substrate is not changed between the bonding of the substrate laminate 40 and the cooling of the bonded body 40a. 10 was manufactured, but it may be performed by changing the applied pressure between joining and cooling.

10 パワーモジュール用基板
11 セラミックス基板
12 回路層用金属板
13 放熱層用金属板
13a 表面
20 電子部品
30 ヒートシンク
40 基板積層体
40a 接合体
41 カーボン板
42 クッションシート
100 パワーモジュール
110 加圧治具
111 ベース板
112 ガイドポスト
113 固定板
114 押圧板
115 付勢手段
10 Power Module Substrate 11 Ceramic Substrate 12 Circuit Layer Metal Plate 13 Heat Dissipation Layer Metal Plate 13a Surface 20 Electronic Component 30 Heat Sink 40 Substrate Laminate 40a Bonded Body 41 Carbon Plate 42 Cushion Sheet 100 Power Module 110 Pressure Jig 111 Base Plate 112 Guide post 113 Fixing plate 114 Pressing plate 115 Biasing means

Claims (3)

セラミックス基板の一方の面に、ろう材を介在させて回路層用金属板を厚さ方向に積層し、前記セラミックス基板の他方の面に、該回路層用金属板よりも厚い放熱層用金属板をろう材を介在させて厚さ方向に積層してなる基板積層体を形成し、該基板積層体をその積層方向に加圧した状態で加熱することにより、前記セラミックス基板と各金属板とをろう付けして接合体を形成する接合工程と、前記加圧した状態で前記接合体を常温よりも低い温度にまで冷却する冷却工程とを備えるパワーモジュール用基板の製造方法。   A metal plate for a circuit layer is laminated in the thickness direction with a brazing material interposed on one surface of the ceramic substrate, and a metal plate for a heat dissipation layer that is thicker than the metal plate for circuit layer on the other surface of the ceramic substrate A substrate laminate is formed by laminating a brazing material in the thickness direction, and the substrate laminate is heated in a state of being pressurized in the lamination direction. A power module substrate manufacturing method comprising: a joining step of brazing to form a joined body; and a cooling step of cooling the joined body to a temperature lower than room temperature in the pressurized state. 前記接合工程には、前記基板積層体をその積層方向に加圧する加圧治具が用いられ、前記冷却工程における冷却は、前記加圧治具ごと冷却することを特徴とする請求項1記載のパワーモジュール用基板の製造方法。   The pressurizing jig which pressurizes the substrate layered product in the laminating direction is used for the joining process, and cooling in the cooling process cools the pressurizing jig together. A method for manufacturing a power module substrate. 前記冷却工程は、0℃〜−40℃に冷却することを特徴とする請求項1又は2に記載のパワーモジュール用基板の製造方法。   The said cooling process cools to 0 degreeC--40 degreeC, The manufacturing method of the board | substrate for power modules of Claim 1 or 2 characterized by the above-mentioned.
JP2012136975A 2012-06-18 2012-06-18 Manufacturing method of substrate for power module Pending JP2014003133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136975A JP2014003133A (en) 2012-06-18 2012-06-18 Manufacturing method of substrate for power module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136975A JP2014003133A (en) 2012-06-18 2012-06-18 Manufacturing method of substrate for power module

Publications (1)

Publication Number Publication Date
JP2014003133A true JP2014003133A (en) 2014-01-09

Family

ID=50036042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136975A Pending JP2014003133A (en) 2012-06-18 2012-06-18 Manufacturing method of substrate for power module

Country Status (1)

Country Link
JP (1) JP2014003133A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161640B1 (en) * 2020-03-31 2020-10-05 주식회사 쿨쓰테크놀로지 Manufacturing method of high heat radiation metal PCB

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419620B2 (en) * 1996-03-01 2003-06-23 電気化学工業株式会社 Method for manufacturing ceramic circuit board having metal circuit
JP2005252159A (en) * 2004-03-08 2005-09-15 Ngk Insulators Ltd Method of controlling composite laminate shape, method of manufacturing composite laminate, composite laminate, heat spreader module and method of manufacturing same
JP2006128286A (en) * 2004-10-27 2006-05-18 Kyocera Corp Metal ceramic composite, its bonding method, and heat dissipation substrate using composite
JP3922538B2 (en) * 2002-04-18 2007-05-30 日立金属株式会社 Manufacturing method of ceramic circuit board
JP2008192823A (en) * 2007-02-05 2008-08-21 Mitsubishi Materials Corp Manufacturing apparatus and manufacturing method for circuit board, and cushion sheet used for the manufacturing method
JP2012074612A (en) * 2010-09-29 2012-04-12 Mitsubishi Materials Corp Manufacturing device and manufacturing method of substrate for power module
JP2012074611A (en) * 2010-09-29 2012-04-12 Mitsubishi Materials Corp Manufacturing device and manufacturing method of substrate for power module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3419620B2 (en) * 1996-03-01 2003-06-23 電気化学工業株式会社 Method for manufacturing ceramic circuit board having metal circuit
JP3922538B2 (en) * 2002-04-18 2007-05-30 日立金属株式会社 Manufacturing method of ceramic circuit board
JP2005252159A (en) * 2004-03-08 2005-09-15 Ngk Insulators Ltd Method of controlling composite laminate shape, method of manufacturing composite laminate, composite laminate, heat spreader module and method of manufacturing same
JP2006128286A (en) * 2004-10-27 2006-05-18 Kyocera Corp Metal ceramic composite, its bonding method, and heat dissipation substrate using composite
JP2008192823A (en) * 2007-02-05 2008-08-21 Mitsubishi Materials Corp Manufacturing apparatus and manufacturing method for circuit board, and cushion sheet used for the manufacturing method
JP2012074612A (en) * 2010-09-29 2012-04-12 Mitsubishi Materials Corp Manufacturing device and manufacturing method of substrate for power module
JP2012074611A (en) * 2010-09-29 2012-04-12 Mitsubishi Materials Corp Manufacturing device and manufacturing method of substrate for power module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102161640B1 (en) * 2020-03-31 2020-10-05 주식회사 쿨쓰테크놀로지 Manufacturing method of high heat radiation metal PCB

Similar Documents

Publication Publication Date Title
JP5892281B2 (en) Power module substrate with heat sink and power module
US9837363B2 (en) Power-module substrate unit and power module
JP6137267B2 (en) Power module substrate with heat sink and power module
JP6361532B2 (en) Manufacturing method of power module substrate with heat sink
JP6417834B2 (en) Power module substrate with cooler and method for manufacturing power module substrate with cooler
JP6455056B2 (en) Manufacturing method and pressure device for power module substrate with heat sink
US11908768B2 (en) Method of manufacturing bonded body for insulation circuit substrate board and bonded body for insulation circuit substrate board
JP6375818B2 (en) Manufacturing apparatus and manufacturing method for power module substrate with heat sink
JP6201828B2 (en) Manufacturing method of power module substrate with heat sink
US20200413534A1 (en) Insulated circuit board
JP5987418B2 (en) Manufacturing method of power module substrate with heat sink
JP5786569B2 (en) Power module substrate manufacturing method
JP5947090B2 (en) Insulating substrate manufacturing method
JP4765889B2 (en) Power module substrate manufacturing method and power module substrate manufacturing apparatus
JP2014003133A (en) Manufacturing method of substrate for power module
JP6008544B2 (en) Insulating substrate manufacturing method
JP2010238913A (en) Tool and method for bonding of multilayer structure
JP5853923B2 (en) Power module substrate manufacturing method
JP2018041868A (en) Heat dissipation substrate
JP2013069767A (en) Power module substrate and method of manufacturing the same
JP5949817B2 (en) Power module substrate manufacturing method
JP2016162926A (en) Method of manufacturing joined body of ceramic substrate and aluminum plate
JP2012049437A (en) Substrate for power module and method of manufacturing the same
JP7205214B2 (en) Insulated circuit board with heat sink
JP2010238900A (en) Circuit board connecting tool, and method of manufacturing circuit board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307