JP2014003021A - Trivalent vanadium ion electrolyte, manufacturing method thereof and vanadium battery - Google Patents

Trivalent vanadium ion electrolyte, manufacturing method thereof and vanadium battery Download PDF

Info

Publication number
JP2014003021A
JP2014003021A JP2013127045A JP2013127045A JP2014003021A JP 2014003021 A JP2014003021 A JP 2014003021A JP 2013127045 A JP2013127045 A JP 2013127045A JP 2013127045 A JP2013127045 A JP 2013127045A JP 2014003021 A JP2014003021 A JP 2014003021A
Authority
JP
Japan
Prior art keywords
vanadium
electrolyte
sulfuric acid
cathode
acid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013127045A
Other languages
Japanese (ja)
Other versions
JP5680145B2 (en
Inventor
Feng Jiao Mao
毛風嬌
Yi Peng
彭毅
Linjiang Yang
楊林江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Publication of JP2014003021A publication Critical patent/JP2014003021A/en
Application granted granted Critical
Publication of JP5680145B2 publication Critical patent/JP5680145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a trivalent vanadium ion electrolyte having high purity and stability, a manufacturing method thereof and a vanadium battery.SOLUTION: The present invention relates to the manufacturing method of the trivalent vanadium ion electrolyte, the trivalent vanadium ion electrolyte obtained by the manufacturing method and the vanadium battery. According to the manufacturing method of the trivalent vanadium ion electrolyte, a sulphuric acid solution containing sulphuric acid vanadyl is used as a cathode electrolyte and a sulphuric acid solution is used as an anode electrolyte. Constant potential electrolysis is performed while making the molar quantity of sulphuric acid in the anode electrolyte equal to that of sulphuric acid vanadyl in the sulphuric acid solution containing sulphuric acid vanadyl, thereby obtaining the trivalent vanadium ion electrolyte haing the molar ratio of trivalent vanadium and total vanadium is larger than 0.98. According to the method provided by the present invention, the trivalent vanadium ion electrolyte haing extremely high purity can be manufactured stably.

Description

本発明は三価バナジウムイオン電解液の製造方法、当該製造方法により得られた三価バナジウムイオン電解液、及びバナジウム電池に関する。   The present invention relates to a method for producing a trivalent vanadium ion electrolyte, a trivalent vanadium ion electrolyte obtained by the production method, and a vanadium battery.

バナジウムレドックスフロー電池は異なる原子価状態のバナジウムイオンの間の相互転化を通じ電気エネルギーの貯蔵と放出を実現し、多くの電気化学的電源の中で同種元素で構成した唯一の電池システムである。バナジウムレドックスフロー電池は不安定な電気エネルギー入力を連続、安全、信頼できる出力に転化し、大規模な風力発電、太陽光発電の過程における重要な蓄積エネルギーの技術的問題を解決することができる。バナジウムレドックスフロー電池は更に既存電力網システムのピーク負荷シェービングにも応用し、電力網の安全性と信頼度を改善することができ、且つ通信システムの非常電源などの分野に広い応用の可能性を有している。バナジウム電池に対する研究はすでに実用化段階に達したが、高濃度バナジウム電解液の安定性、電極材料及びその電気化学的活性とシステム構築の最適化が商業化の運営発展を制約する主要原因の中の一つとなっている。その中でバナジウム電解液の製造はバナジウムレドックスフローエネルギー貯蔵システムの核心である。   The vanadium redox flow battery realizes the storage and release of electric energy through mutual conversion between vanadium ions in different valence states, and is the only battery system composed of the same kind of elements among many electrochemical power sources. Vanadium redox flow batteries convert unstable electrical energy input into continuous, safe and reliable output, and can solve important stored energy technical problems in large-scale wind and solar power generation processes. Vanadium redox flow batteries can also be applied to peak load shaving in existing power grid systems, improving the safety and reliability of power grids, and having a wide range of applications in areas such as emergency power supplies for communication systems. ing. Although research on vanadium batteries has already reached the stage of practical application, the stability of high-concentration vanadium electrolyte, electrode materials and their electrochemical activity, and optimization of system construction are among the main reasons that constrain commercial development. It has become one of the. Among them, the production of vanadium electrolyte is the core of the vanadium redox flow energy storage system.

理論的に言えば、バナジウムレドックスフロー電池の電解液の陽極が四価バナジウムイオン溶液で、陰極が三価バナジウムイオン溶液である。充電する場合、陽極の四価バナジウムイオンが五価バナジウムイオンになり、陰極の三価バナジウムイオンが二価バナジウムイオンになる。しかし、現在の技術では、陽極と陰極の電解液は等しい物質量を持った三価と四価バナジウムイオン混合溶液を多く採用している。その理由は高純度、高い安定性の三価のバナジウムイオン電解液の製造が困難であるためである。   Theoretically speaking, the anode of the electrolyte of the vanadium redox flow battery is a tetravalent vanadium ion solution and the cathode is a trivalent vanadium ion solution. When charging, the tetravalent vanadium ion at the anode becomes pentavalent vanadium ion, and the trivalent vanadium ion at the cathode becomes divalent vanadium ion. However, the current technology employs many mixed solutions of trivalent and tetravalent vanadium ions having the same amount of material for the anode and cathode electrolytes. The reason is that it is difficult to produce a highly pure and highly stable trivalent vanadium ion electrolyte.

現在、バナジウムレドックスフロー電池は主に硫酸バナジルを電池の活性物質として用いている。その製造方法は等量の硫酸バナジルの硫酸溶液をそれぞれバナジウム電池の陽極と陰極に注入し、バナジウム電池の充電条件で充電し、満充電後に陽極の溶液をすべて排除している。このような方法を採用して製造した三価バナジウムイオン電解液の中では、三価バナジウムイオンと全バナジウムとのモル比が0.80ぐらいで、等量の硫酸バナジルの硫酸溶液を陽極に注入し、引き続き充電し、満充電後にその他の二次電池と一様に使用することができる。この方法は陽極の溶液を一回取り替え、再充電することを必要としているので、電池の組み立てと化学工業プロセスを複雑化させ、バナジウム電池の寿命を短縮させ、バナジウム電池の充電条件が制限されるため、また直接的に化成時間を延長させ、それにより生産効率に影響する。   At present, vanadium redox flow batteries mainly use vanadyl sulfate as the active substance of the battery. In the manufacturing method, an equal amount of a vanadyl sulfate sulfuric acid solution is poured into the anode and cathode of a vanadium battery, and charged under the charging conditions of the vanadium battery. Among the trivalent vanadium ion electrolytes manufactured using this method, the molar ratio of trivalent vanadium ions to total vanadium is about 0.80, and an equal amount of vanadium sulfate solution is injected into the anode. Then, it can be continuously charged and used uniformly with other secondary batteries after full charge. This method requires the anode solution to be replaced and recharged once, complicating battery assembly and chemical industry processes, shortening vanadium battery life, and limiting vanadium battery charging conditions. Therefore, the chemical conversion time is directly extended, thereby affecting the production efficiency.

上記以外に、先に硫酸を1:2に希釈して希硫酸を製造し、それにまず、三酸化バナジウムを添加し、次に、五酸化バナジウムを添加し、反応により硫酸バナジル溶液を得る。次いで、Na2SO4、乳化剤OPなど添加剤を添加する。この硫酸バナジル溶液を電解槽の陰極に注入し、硫酸ナトリウムを含有する同じイオン強度の硫酸溶液を電解槽の陽極に注入して電解を行い、四価バナジウムと三価バナジウムがそれぞれ全バナジウム含有量の50%を占めるバナジウム電池用バナジウム電解液を得る。この方法は比較的合理的な方法だと思われていたが、バナジウム電池の発展に伴ない、特に長期にわたりバナジウム電池の構造、材料と性能に関して研究を行っている当業者は、電解液の品質が直接的にバナジウム電池の性能に影響を及ぼし、ひいては、また電解液自身の安定性に影響を及ぼすことを発見した。だから電解液を深く研究すること(例えば電解液の成分と純度に対する研究)はとても重要である。 In addition to the above, dilute sulfuric acid is prepared by first diluting sulfuric acid 1: 2, to which vanadium trioxide is first added, then vanadium pentoxide is added, and a vanadyl sulfate solution is obtained by reaction. Next, additives such as Na 2 SO 4 and emulsifier OP are added. This vanadyl sulfate solution is injected into the cathode of the electrolytic cell, and the sulfuric acid solution containing the same ionic strength containing sodium sulfate is injected into the anode of the electrolytic cell to conduct the electrolysis. The tetravalent vanadium and the trivalent vanadium each contain the total vanadium content. To obtain a vanadium electrolyte solution for vanadium batteries. Although this method was thought to be a relatively reasonable method, with the development of vanadium batteries, those skilled in the art who have been studying the structure, materials and performance of vanadium batteries, especially over the long term, Has been found to directly affect the performance of the vanadium battery and thus also the stability of the electrolyte itself. Therefore, it is very important to study the electrolyte deeply (for example, research on the composition and purity of the electrolyte).

先行技術で、バナジウム電解液をより安定化し、バナジウム電池の寿命を向上させるために、通常バナジウム電池に各種の添加剤を添加している。例えば、特許文献1はバナジウムレドックスフロー電池電解液を開示している。それは硫酸
バナジウム塩、硫酸、水、アルコールと添加剤から構成され、前記添加剤は硫酸ナトリウム、ピロリン酸ナトリウム、ケイフッ化ナトリウム及び過酸化水素中の1種または2種以上である。また、例えば、特許文献2はバナジウムレドックスフロー電池電解液を開示している。それはバナジウム塩、硫酸、添加剤と脱イオン水を含み、また硫酸系に溶解できる金属塩をも含み、これにより充放電過程において電解液の安定性が向上する。その中で、添加剤は硫酸ナトリウム、エタノール、グリセリン、ポリオキシエチレンノニルフェニルエーテル、ピロリン酸ナトリウム、ケイフッ化ナトリウム、尿素と過酸化水素から選択された1種または2種以上である。しかし、添加剤はバナジウム電池の電解液系において有害不純物が増加し、電解液に対する要求が絶えず向上していることに伴ない、現在のバナジウム電池における電解液の品質はバナジウムレドックスフロー電池電解液に対する要求に合致していない。
In the prior art, various additives are usually added to the vanadium battery in order to further stabilize the vanadium electrolyte and improve the life of the vanadium battery. For example, Patent Document 1 discloses a vanadium redox flow battery electrolyte. It is composed of a vanadium sulfate salt, sulfuric acid, water, alcohol and an additive, and the additive is one or more of sodium sulfate, sodium pyrophosphate, sodium silicofluoride and hydrogen peroxide. For example, patent document 2 is disclosing the vanadium redox flow battery electrolyte. It contains vanadium salts, sulfuric acid, additives and deionized water, and also contains metal salts that can be dissolved in sulfuric acid, thereby improving the stability of the electrolyte during the charge and discharge process. Among them, the additive is one or more selected from sodium sulfate, ethanol, glycerin, polyoxyethylene nonylphenyl ether, sodium pyrophosphate, sodium silicofluoride, urea and hydrogen peroxide. However, the quality of the electrolyte in the current vanadium battery is higher than that of the vanadium redox flow battery electrolyte as the harmful impurities increase in the electrolyte system of the vanadium battery and the demand for the electrolyte constantly improves. Does not meet the requirements.

CN1719655A号公報CN1719655A publication CN101635363A号公報CN10165363A publication

本発明は先行技術のバナジウムイオン電解液の純度低下、添加剤の添加によりその安定性を維持する際の欠陥を克服するために、かなり高い純度と安定性を有する三価バナジウムイオン電解液及びその製造方法とバナジウム電池を提供することを目的とする。   The present invention is a trivalent vanadium ion electrolyte having a considerably high purity and stability, and a method for overcoming the drawbacks of maintaining the stability of the vanadium ion electrolyte by reducing the purity of the prior art and adding additives. It aims at providing a manufacturing method and a vanadium battery.

本発明は三価バナジウムイオン電解液の製造方法を提供する。この方法は、硫酸バナジルを含む硫酸溶液を陰極電解液とし、硫酸溶液を陽極電解液として、且つ陽極電解液の中の硫酸のモル量と硫酸バナジルを含む硫酸溶液の中の硫酸バナジルのモル量とが等量で、且つ定電位電解を行い、三価バナジウムと全バナジウムとのモル比が0.98より大きい三価バナジウムイオン電解液を得ることを含む。
本発明は、また上述の方法により得た三価バナジウムイオン電解液を提供する。
さらに、本発明はまたバナジウム電池を提供する。このバナジウム電池は多くの直列電池ユニットを含み、1つの電池ユニットが陽極モジュール、陰極モジュール及びこの陽極モジュールと陰極モジュールの間に位置した隔膜を含み、前記陽極モジュールが陽極電解液を格納したフローフレームとこのフローフレームに取り付けたコレクターと陽極極板を含み、前記陰極モジュールが陰極電解液を格納したフローフレームとこのフローフレームに取り付けたコレクターと陰極極板を含み、その中に、前記陽極電解液が硫酸バナジルを含む硫酸溶液で、前記陰極電解液が上述の三価バナジウムイオン電解液である。
The present invention provides a method for producing a trivalent vanadium ion electrolyte. This method uses a sulfuric acid solution containing vanadyl sulfate as a cathode electrolyte, a sulfuric acid solution as an anode electrolyte, and a molar amount of sulfuric acid in the anode electrolyte and a molar amount of vanadyl sulfate in a sulfuric acid solution containing vanadyl sulfate. And performing equipotential electrolysis to obtain a trivalent vanadium ion electrolyte having a molar ratio of trivalent vanadium to total vanadium greater than 0.98.
The present invention also provides a trivalent vanadium ion electrolyte obtained by the above-described method.
Furthermore, the present invention also provides a vanadium battery. The vanadium battery includes a number of series battery units, one battery unit including an anode module, a cathode module, and a diaphragm positioned between the anode module and the cathode module, and the anode module stores an anode electrolyte. And a collector and an anode plate attached to the flow frame, and the cathode module includes a flow frame storing a cathode electrolyte, and a collector and a cathode plate attached to the flow frame, in which the anode electrolyte is contained. Is a sulfuric acid solution containing vanadyl sulfate, and the cathode electrolyte is the above-described trivalent vanadium ion electrolyte.

本発明は定電位電解の方法により、三価バナジウムイオンを含む電解液を製造し、誤差を低減させ、精度を向上させることができ、それにより高純度の三価バナジウム電池電解液の製造という要求が実現される。定電圧源は安定化電源で、負荷(出力電流)が変動した場合に電圧が変動しないことを補償することができる。定電流源は負荷が変化した場合に、相応の出力電圧を調整し、出力電流が変動しないことを補償することができる。定電流源のスイッチ電源は実際には定電圧源に基づいて、内部が出力回路の上に電流検出抵抗を添加し、電気回路において、この電流検出抵抗(Sampling resistor)の電圧降下(voltage drop)が変動しないように保持し、定電流出力を実現することができる。そのため、発明者は、恐らく定電流電解過程の電流効率がかなり低く、同時にモニタリングデータの誤りが比較的大きいため、定電流電解で純度のかなり高い三価バナジウム電池の電解液が得られないと推測した。本発明の一つの好ましい実施の形態により、電解電圧が1.5〜50Vの条件で電解を行う場合、時間が短縮され、効率が向上し、電解電位がコントロールされ、電流効率を100%という電流最大値に維持させ、それにより電圧効率を向上させることができる。それ以外に、定電位電解のスピードは初期濃度と関係がない。つまり、同じ外部条件で、濃度がそれぞれ0.1Mと10-6Mである物質を同様な程度に電解する場合、同様な時間を必要として、それにより更に精確に電解過程を制御することができる。 The present invention can produce an electrolytic solution containing trivalent vanadium ions by a method of constant potential electrolysis, reduce errors and improve accuracy, thereby demanding the production of high purity trivalent vanadium battery electrolyte Is realized. The constant voltage source is a stabilized power supply and can compensate for the voltage not changing when the load (output current) changes. When the load changes, the constant current source can adjust the corresponding output voltage to compensate that the output current does not fluctuate. The switch power supply of the constant current source is actually based on the constant voltage source, and the inside adds a current detection resistor on the output circuit. In the electric circuit, the voltage drop of the current detection resistor (Sampling resistor) Is maintained so as not to fluctuate, and a constant current output can be realized. Therefore, the inventor presumed that the current efficiency of the constant-current electrolysis process is considerably low, and at the same time, the monitoring data error is relatively large, so that the electrolyte of a trivalent vanadium battery having a considerably high purity cannot be obtained by constant-current electrolysis. did. According to one preferred embodiment of the present invention, when electrolysis is performed under an electrolysis voltage of 1.5 to 50 V, the time is shortened, the efficiency is improved, the electrolysis potential is controlled, and the current efficiency is 100%. The maximum value can be maintained, thereby improving the voltage efficiency. Other than that, the speed of constant potential electrolysis is not related to the initial concentration. That is, in the same external conditions if the concentration is electrolysis extent similar materials that are 0.1M and 10 -6 M, respectively, require similar time, thereby to control the further precise electrolysis process .

もっと重要なのは、本発明の発明者は、硫酸バナジルを含む硫酸溶液を陰極液とし、硫酸溶液を陽極液として、且つ陽極液の中の硫酸のモル量と硫酸バナジルを含む硫酸溶液の中の硫酸バナジルのモル量とが等量で、且つ定電位電解を行う場合、純度が比較的高く、性能が比較的安定した三価バナジウムイオン電解液を製造することができることを発見した。三価バナジウムイオン電解液を製造する過程で、既存の硫酸バナジル溶液の代わりに硫酸溶液を陽極として、一方、システムの中にその他いかなる不純物を取り入れないだけではなく、また電解効率も向上した。一方、バナジウムの浪費を防止し、電解液製造のコストが低減した。それ以外に、既存の電解槽の槽枠板材質は、通常、有機ガラス或いはポリ塩化ビニールで、本発明の発明者は深く研究することにより、定電位電解の過程で酸素発生と水素放出の現象が存在し、ひいてはまた硫黄酸化物も生成し、有機ガラス或いはポリ塩化ビニール材質を利用した槽枠板は安定な電解に役立たないだけではなく、その上、新しい不純物を取り入れ、得られた三価バナジウムイオン電解液の純度が著しく低下することを発見した。本発明の別の好ましい実施の形態により、前記三価バナジウムイオン電解液が本発明に提供された電解槽の中で定電位電解を行う場合、重量平均分子量が300〜500万のポリエチレン製の槽枠板は電解の過程で影響を及ぼす不純物を取り入れないだけではなく、その上電解の過程が長期にわたり安定に維持され、純度のかなり高い三価バナジウムイオン電解液を得ることができる。本発明の別の好ましい実施の形態により、前記電解槽の電極板がプラチナ製の板で、且つ電極板間の距離が3cmより小さくない場合、電解の過程でかなり低い槽電圧を維持することができ、特に高純度、高安定性の三価バナジウムイオン電解液の製造に役立つ。   More importantly, the inventor of the present invention uses the sulfuric acid solution containing vanadyl sulfate as the catholyte, the sulfuric acid solution as the anolyte, and the molar amount of sulfuric acid in the anolyte and the sulfuric acid in the sulfuric acid solution containing vanadyl sulfate. It has been found that when the molar amount of vanadyl is equal, and a constant potential electrolysis is performed, a trivalent vanadium ion electrolyte solution having relatively high purity and relatively stable performance can be produced. In the process of manufacturing the trivalent vanadium ion electrolyte, the sulfuric acid solution was used as the anode instead of the existing vanadyl sulfate solution, while not only introducing any other impurities into the system, but also the electrolytic efficiency was improved. On the other hand, waste of vanadium was prevented, and the cost of manufacturing the electrolyte was reduced. In addition, the material of the frame of the existing electrolytic cell is usually organic glass or polyvinyl chloride, and the inventors of the present invention have studied deeply, and the phenomenon of oxygen generation and hydrogen release during the process of constant potential electrolysis. In addition to the generation of sulfur oxides, tank frame plates made of organic glass or polyvinyl chloride are not only useful for stable electrolysis, but they also incorporate new impurities and the resulting trivalent It has been found that the purity of the vanadium ion electrolyte is significantly reduced. According to another preferred embodiment of the present invention, when the trivalent vanadium ion electrolyte performs constant potential electrolysis in the electrolytic cell provided in the present invention, a polyethylene tank having a weight average molecular weight of 3 to 5 million The frame plate not only does not take in impurities that affect the electrolysis process, but also the electrolysis process is stably maintained over a long period of time, and a highly pure trivalent vanadium ion electrolyte can be obtained. According to another preferred embodiment of the present invention, if the electrode plates of the electrolytic cell are made of platinum and the distance between the electrode plates is not less than 3 cm, a considerably low cell voltage can be maintained during the electrolysis process. In particular, it is useful for the production of a highly pure and highly stable trivalent vanadium ion electrolyte.

更に、前記三価バナジウムイオン電解液をバナジウム電池に用いる時に、本発明の方法で得られた三価バナジウムイオン電解液はかなり高い純度を有しているため、三価バナジウムイオン電解液及びバナジウム電池材料と隔膜に対する不純物の影響を著しく低減させることができる。もっと重要なのは、純度のかなり高い三価バナジウムイオン電解液により三価バナジウムイオンが過飽和、晶析しないことを実現させるため、たとえいかなる添加剤を添加しなくても、バナジウム電池性能の安定を維持することができる。   Furthermore, when the trivalent vanadium ion electrolyte is used in a vanadium battery, the trivalent vanadium ion electrolyte obtained by the method of the present invention has a considerably high purity. Therefore, the trivalent vanadium ion electrolyte and the vanadium battery are used. The influence of impurities on the material and the diaphragm can be significantly reduced. More importantly, the highly pure trivalent vanadium ion electrolyte ensures that the trivalent vanadium ions are not supersaturated and crystallized, so that the stability of the vanadium battery performance is maintained even if no additives are added. be able to.

図1は三価バナジウムイオン電解液の製造過程で使用した電解槽の作動状態説明図である。FIG. 1 is an explanatory view of the operating state of the electrolytic cell used in the process of manufacturing the trivalent vanadium ion electrolyte.

本発明のその他の特徴と利点は以下発明を実施するための形態部分に詳しく説明する。   Other features and advantages of the present invention are described in detail in the Detailed Description section below.

以下、図面を用いて本発明を実施するための形態について詳しい説明を行う。ここで説明した本発明を実施するための形態は当発明の説明と解釈に用いるだけで、決して本発明の制限に用いないことを理解すべきである。
本発明の前記三価バナジウムイオン電解液の製造方法は、硫酸バナジルを含む硫酸溶液を陰極電解液とし、硫酸溶液を陽極電解液として、且つ陽極電解液の中の硫酸のモル量と硫酸バナジルを含む硫酸溶液の中の硫酸バナジルのモル量とが等量で、且つ定電位電解を行い、三価バナジウムと全バナジウムとのモル比が0.98より大きい三価バナジウムイオン電解液を得ることを含む。その中で、前記全バナジウムが三価バナジウムイオン電解液の中の各種原子価状態のバナジウムイオンの総計である。
本発明により、前記三価バナジウムイオン電解液の中の全バナジウムのモル濃度MTVを広い範囲で選択して変動させることができ、好ましくは、前記全バナジウムのモル濃度MTVが1〜3モル/リットルまでで、さらに好ましくは1〜2モル/リットルである、このように更に電解を容易に行うだけではなく、三価バナジウムイオン電解液の濃度が高すぎ、飽和状態に達し、晶析しやすい問題を防止することができる。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. It should be understood that the forms for carrying out the invention described herein are only used for explaining and interpreting the present invention and are not used for limiting the present invention.
In the method for producing the trivalent vanadium ion electrolyte of the present invention, a sulfuric acid solution containing vanadyl sulfate is used as a cathode electrolyte, a sulfuric acid solution is used as an anode electrolyte, and a molar amount of sulfuric acid in the anode electrolyte and vanadyl sulfate are used. The molar amount of vanadyl sulfate in the sulfuric acid solution to be contained is equal, and constant potential electrolysis is performed to obtain a trivalent vanadium ion electrolytic solution in which the molar ratio of trivalent vanadium to total vanadium is greater than 0.98. Including. Among them, the total vanadium is the total of vanadium ions in various valence states in the trivalent vanadium ion electrolyte.
According to the present invention, the molar concentration M TV of all vanadium in the trivalent vanadium ion electrolyte can be selected and varied in a wide range. Preferably, the molar concentration M TV of all vanadium is 1 to 3 mol. / Liter, and more preferably 1 to 2 mol / liter. In addition to performing the electrolysis more easily in this way, the concentration of the trivalent vanadium ion electrolyte solution is too high and reaches saturation and crystallizes. Easy problems can be prevented.

本発明は前記硫酸バナジルの硫酸溶液の中の硫酸バナジルと硫酸の含有量については特に限定しないが、より安定的に電解し、且つ純度のかなり高い三価バナジウムイオン電解液を得るために、好ましくは、前記硫酸バナジルと硫酸のモル比が1:1.5〜1:3で、さらに好ましくは1:1.5〜1:2である。前記硫酸バナジルの硫酸溶液が当分野の技術者により周知された方法で製造することができ、例えば、純度が98重量%以上である硫酸バナジル結晶を硫酸溶液に直接的に溶解することで得られ、また五酸化バナジウム、三酸化バナジウムと硫酸溶液を反応させることで得られ、或いは五酸化バナジウム、還元剤と硫酸溶液を反応させることで得られる。その中で、前記硫酸溶液はいずれも硫酸の水溶液を意味する。
その中で、五酸化バナジウム、三酸化バナジウムと硫酸溶液を反応させることで前記硫酸バナジルの硫酸溶液を製造する場合、反応式は次の通りである:
25+V23+4H2SO4=4VOSO4+4H2
In the present invention, the contents of vanadyl sulfate and sulfuric acid in the sulfuric acid solution of vanadyl sulfate are not particularly limited. However, in order to obtain a trivalent vanadium ion electrolytic solution that is more stable and has a considerably high purity, it is preferable. Has a molar ratio of vanadyl sulfate to sulfuric acid of 1: 1.5 to 1: 3, more preferably 1: 1.5 to 1: 2. The sulfuric acid solution of vanadyl sulfate can be prepared by a method well known by those skilled in the art. For example, it can be obtained by directly dissolving vanadyl sulfate crystals having a purity of 98% by weight or more in a sulfuric acid solution. In addition, it is obtained by reacting vanadium pentoxide, vanadium trioxide and a sulfuric acid solution, or obtained by reacting vanadium pentoxide, a reducing agent and a sulfuric acid solution. Among them, the sulfuric acid solution means an aqueous solution of sulfuric acid.
Among them, when a vanadium pentoxide, vanadium trioxide and a sulfuric acid solution are reacted to produce a sulfuric acid solution of the vanadyl sulfate, the reaction formula is as follows:
V 2 O 5 + V 2 O 3 + 4H 2 SO 4 = 4VOSO 4 + 4H 2 O

反応条件は次の通りである。硫酸バナジルの硫酸溶液は五酸化バナジウムと三酸化バナジウムを硫酸溶液の中に溶解して反応させた後に得られ、好ましくは、その中で五酸化バナジウムと三酸化バナジウムのモル数は等しい。前記反応の温度の選択できる範囲は広く、硫酸バナジルの硫酸溶液が得られる。しかし更により良く反応させるために、好ましくは、前記反応の温度は70〜90℃である。前記硫酸溶液の使用量はかなり広い範囲で選択して変動させることができ、例えば、前記硫酸溶液の中の硫酸と全バナジウム材料使用量のモル比が2.5:1〜4:1である。それ以外に、前記硫酸バナジルの硫酸溶液が、五酸化バナジウムと三酸化バナジウムの混合物を焙焼し、且つ得た焙焼生成物を硫酸溶液の中に溶解することで得てもよく、その中で、焙焼温度は300〜500℃でもよく、焙焼時間が1.5〜2時間でもよく、焙焼生成物を溶解させるための硫酸溶液の使用量はかなり広い範囲で選択して変動させることができ、例えば、焙焼生成物を溶解させるための硫酸溶液の中の硫酸と全バナジウム材料使用量のモル比が2.5:1〜4:1でもよい。   The reaction conditions are as follows. A sulfuric acid solution of vanadyl sulfate is obtained after reacting vanadium pentoxide and vanadium trioxide by dissolving them in a sulfuric acid solution. Preferably, the molar number of vanadium pentoxide and vanadium trioxide is equal. The reaction temperature can be selected from a wide range, and a vanadyl sulfate sulfuric acid solution can be obtained. However, in order to make the reaction even better, preferably the temperature of the reaction is 70-90 ° C. The amount of the sulfuric acid solution used can be selected and varied in a fairly wide range, for example, the molar ratio of sulfuric acid to the total vanadium material used in the sulfuric acid solution is 2.5: 1 to 4: 1. . In addition, the sulfuric acid solution of vanadyl sulfate may be obtained by roasting a mixture of vanadium pentoxide and vanadium trioxide and dissolving the obtained roasted product in a sulfuric acid solution. The roasting temperature may be 300 to 500 ° C., the roasting time may be 1.5 to 2 hours, and the amount of sulfuric acid solution used to dissolve the roasted product is selected and varied within a fairly wide range. For example, the molar ratio of sulfuric acid in the sulfuric acid solution for dissolving the roasted product to the total amount of vanadium material used may be 2.5: 1 to 4: 1.

五酸化バナジウム、還元剤(蓚酸)と硫酸溶液を反応させることで前記硫酸バナジルの硫酸溶液を製造する場合、反応式は次の通りである:
25+H2SO4=(VO2)2SO4+H2
(VO2)2SO4+H224+H2SO4=2VOSO4+2CO2↑+2H2
反応条件は次の通りである。硫酸溶液存在下、五酸化バナジウムを原料として、40〜80℃の加熱条件で蓚酸(その他還元剤で取り替えてもよく、例えばSO2と硫黄元素など)を添加し還元を行い、或いは硫酸溶液の中で直接電解・濾過を行うことで硫酸バナジルの硫酸溶液が得られる。好ましくは、硫酸溶液の中で五酸化バナジウムと還元剤のモル量が等しく、前記硫酸溶液の使用量はかなり広い範囲で選択して変動させることができる。例えば、前記硫酸溶液の中の硫酸と五酸化バナジウムの使用量のモル比は5:1〜8:1である。前記五酸化バナジウムの純度は98〜100重量%で、好ましくは99.5〜100重量%である。
本発明において、陽極電解液の硫酸溶液は通常、ほとんど硫酸バナジルを含まない硫酸溶液で、例えば、元素で計算するとV:S(モル比)≦0.001の硫酸水溶液。好ましくは、硫酸溶液の中の硫酸濃度は10〜25重量%である。
When the vanadium pentoxide, the reducing agent (oxalic acid) and the sulfuric acid solution are reacted to produce the vanadyl sulfate sulfuric acid solution, the reaction formula is as follows:
V 2 O 5 + H 2 SO 4 = (VO 2 ) 2 SO 4 + H 2 O
(VO 2 ) 2 SO 4 + H 2 C 2 O 4 + H 2 SO 4 = 2VOSO 4 + 2CO 2 ↑ + 2H 2 O
The reaction conditions are as follows. In the presence of a sulfuric acid solution, using vanadium pentoxide as a raw material, oxalic acid (which may be replaced with other reducing agents, such as SO 2 and sulfur element) is added under heating conditions of 40 to 80 ° C. The solution of vanadyl sulfate in sulfuric acid can be obtained by direct electrolysis and filtration. Preferably, the molar amounts of vanadium pentoxide and the reducing agent are equal in the sulfuric acid solution, and the amount of the sulfuric acid solution used can be selected and varied within a fairly wide range. For example, the molar ratio of the amount of sulfuric acid and vanadium pentoxide used in the sulfuric acid solution is 5: 1 to 8: 1. The purity of the vanadium pentoxide is 98 to 100% by weight, preferably 99.5 to 100% by weight.
In the present invention, the sulfuric acid solution of the anolyte is usually a sulfuric acid solution containing almost no vanadyl sulfate, for example, an aqueous sulfuric acid solution of V: S (molar ratio) ≦ 0.001 when calculated by elements. Preferably, the sulfuric acid concentration in the sulfuric acid solution is 10 to 25% by weight.

本発明においては、定電位電解の条件は特に限定されず、三価バナジウムと全バナジウムのモル比が0.98より大きい三価バナジウムイオン電解液を得るだけでもよい。好ましくは、前記定電位電解の条件は、電解電圧が1.5〜50Vで、電解温度が20〜60℃で、電解時間が0.5〜5時間であることを含む。さらに好ましくは、前記電解電圧が1.5〜10Vで、電解温度が20〜40℃で、電解時間が0.5〜3時間である。
本発明において、定電位電解は電圧の不変な条件で行う電解である。前記電圧不変は特に絶対的な不変のことではなく、電圧変動の範囲がより小さいことを意味し、例えば電圧変動が≦±0.05Vであることを理解すべきである。
本発明により、空気中の酸素が電解の過程で影響することがあるため、より安定的に電解し、且つ得られた三価バナジウムイオン電解液の純度を向上させるために、好ましくは、前記電解を不活性ガス雰囲気で行う。前記不活性ガスが窒素と元素周期表のゼログループの気体から選択された1種または2種以上で、好ましくはアルゴンである。
本発明により、前記電解の終点は当分野の技術者により周知された方法で測定することで確認することができる。例えば、溶液の電気量値と電位値の測定で電解終点をおおざっぱに判断・制御することができ、電解が完成した後にイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、電解液の中の三価バナジウムイオンの濃度が得られる。
In the present invention, the conditions for constant potential electrolysis are not particularly limited, and it is sufficient to obtain a trivalent vanadium ion electrolyte having a molar ratio of trivalent vanadium to total vanadium greater than 0.98. Preferably, the conditions for the constant potential electrolysis include an electrolysis voltage of 1.5 to 50 V, an electrolysis temperature of 20 to 60 ° C., and an electrolysis time of 0.5 to 5 hours. More preferably, the electrolysis voltage is 1.5 to 10 V, the electrolysis temperature is 20 to 40 ° C., and the electrolysis time is 0.5 to 3 hours.
In the present invention, constant potential electrolysis is electrolysis performed under conditions where the voltage is not changed. It should be understood that the voltage invariance is not an absolute invariance and means that the range of voltage fluctuation is smaller, for example, voltage fluctuation is ≦ ± 0.05V.
According to the present invention, since oxygen in the air may affect the electrolysis process, the electrolysis is preferably performed in order to more stably perform electrolysis and to improve the purity of the obtained trivalent vanadium ion electrolyte. In an inert gas atmosphere. The inert gas is one or more selected from nitrogen and zero group gas of the periodic table, and is preferably argon.
According to the present invention, the end point of the electrolysis can be confirmed by measuring by a method well known by those skilled in the art. For example, the end point of electrolysis can be roughly determined and controlled by measuring the electric quantity value and the potential value of the solution. After the electrolysis is completed, ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis are performed. The concentration of trivalent vanadium ions in the electrolyte is obtained.

本発明により、三価バナジウムイオンの電解液の製造は既存の各種電解装置によって行うことができ、好ましくは電解槽の中に行う。前記電解槽の構造は既存の電解槽構造と同じ、例えば、前記電解槽が槽枠板、槽枠板で囲んだ陽極槽と陰極槽、陽極槽と陰極槽の間に位置した電気伝導隔膜、及びそれぞれ陽極槽と陰極槽の中に位置し且つ外部電源陽陰極と接続した電極板を含む。前記槽枠板の材質は重量平均分子量が300万より大きいポリエチレンで、好ましくは、重量平均分子量が300万〜500万のポリエチレンで、更に好ましくは、重量平均分子量が350万〜500万のポリエチレンである。前記電極板は例えば、プラチナ電極である。
本発明において、前記電極板は三価バナジウムイオン電解液の製造に用いることができる既存の各種電極板でもよい。例えば、電極板はプラチナ板、改質グラファイト板、チタンマトリックスプラチナ、酸化イリジウム、グラファイトフェルト、炭素棒或いは複合電気伝導プラスチック板から選択された1種または2種以上である。その中で、前記複合電気伝導プラスチック板が重合体(例えばPVC、ナイロン−6、ナイロン−11、低密度ポリエチレン、高密度ポリエチレン、低密度ポリプロピレン、高密度ポリプロピレンなど)と電気伝導物質(例えばカーボンブラック、グラファイト粉、グラファイト繊維など)を混合し且つホットプレス成形で得た板材である。上述のように、プラチナ板を電極板とする時、三価バナジウムイオン電解液の純度をもっと著しく向上することができるため、好ましくは、前記電解板がプラチナ板である。陽極槽と陰極槽中に位置した電極板の間の距離が実際の情況により調整することができ、通常、電極板の間の距離が3cmより小さくなく、好ましくは3cm〜20cmである。このように調整することにより、かなり低い槽電圧を維持することができ、高純度、高安定性の三価バナジウムイオン電解液の製造に役立つ。
本発明において、前記電解槽の電気伝導隔膜は既存の各種電気伝導隔膜でもよく、好ましくは、硫酸バナジルの硫酸溶液の中に電解使用することに適し、イオン選択性が強く、バナジウムイオンが浸透せず、H+移動スピードが速く、表面抵抗が小さく、同時に耐食、抗酸化、寿命が長いフッ素含有ポリオレフィンイオン交換膜を採用し、更に好ましくはパーフルオロスルホン酸イオン交換膜で、これによりかなり高い安定電流効率を長く維持することができ、高純度、高安定性の三価バナジウムイオン電解液の製造に役立つ。
本発明は、また上述の方法により製造した三価バナジウムイオン電解液を提供する。
本発明は、またバナジウム電池を提供する。このバナジウム電池は多くの直列電池ユニットを含み、一つの電池ユニットが陽極モジュール、陰極モジュール及びこの陽極モジュールと陰極モジュールの間に位置した隔膜を含み、前記陽極モジュールが陽極電解液を格納したフローフレームとこのフローフレームに取り付けたコレクターと陽極極板を含む。前記陰極モジュールは陰極電解液を格納したフローフレームとこのフローフレームに取り付けたコレクターと陰極極板を含み、その中で、前記陽極電解液が硫酸バナジルを含む硫酸溶液で、前記陰極電解液が上述の三価バナジウムイオン電解液である。
本発明の改善箇所は前記三価バナジウムイオン電解液をバナジウム電池の陽極電解液とすることで、バナジウム電池の構造及び各構造間の接続関係についてはいずれも先行技術と同じでよく、ここではくどくど説明しない。
本発明の1つの具体的な実施方法により、三価バナジウムイオン電解液は電解槽で製造し、電解の過程は図1に示した通りである。前記槽枠板8の材質は重量平均分子量が300万より大きいポリエチレンであることが好ましい。硫酸バナジルを含む硫酸溶液を陰極槽7に注入し、硫酸バナジルを含む硫酸溶液の中の硫酸バナジルのモル量と等しい硫酸溶液を陽極槽4に注入し、その中で、硫酸バナジルを含む硫酸溶液の中の硫酸バナジルの濃度とその中の硫酸のモル比は1:1.5〜1:3で、好ましくは1:1.5〜1:2である。窒素のような不活性ガスを気体の入り口10から電解槽に取り入れ、撹拌器3の攪拌効果で、両端にいずれもプラチナ電極5を接続した定電圧源1を通じ定電位電解を行い、電解電圧を1.5〜50Vに設定し、電極板の最小距離は3cmである。両端にそれぞれカロメル電極6とプラチナ電極9を接続した電位計2で溶液の電気量値と電位値の測定で電解終点をおおざっぱに判断・制御し、三価バナジウムイオン電解液を得る。イオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析で前記三価バナジウムイオン電解液の物質含有量を分析し、更に三価バナジウムイオンの濃度を得る。この三価バナジウム電解液と硫酸バナジル硫酸溶液をそれぞれバナジウム電池の陰極と陽極に注入し、充電した後に正常に使用することができる。
According to the present invention, the production of an electrolytic solution of trivalent vanadium ions can be performed by various existing electrolysis apparatuses, and is preferably performed in an electrolytic cell. The structure of the electrolytic cell is the same as the existing electrolytic cell structure, for example, the electrolytic cell is a tank frame plate, an anode cell and a cathode cell surrounded by a cell frame plate, an electrically conductive diaphragm positioned between the anode cell and the cathode cell, And an electrode plate positioned in the anode and cathode chambers and connected to the external power source cathode. The material of the tank frame plate is polyethylene having a weight average molecular weight of more than 3 million, preferably polyethylene having a weight average molecular weight of 3 million to 5 million, and more preferably polyethylene having a weight average molecular weight of 3.5 million to 5 million. is there. The electrode plate is, for example, a platinum electrode.
In the present invention, the electrode plate may be any of various existing electrode plates that can be used for producing a trivalent vanadium ion electrolyte. For example, the electrode plate is one or more selected from a platinum plate, a modified graphite plate, a titanium matrix platinum, iridium oxide, a graphite felt, a carbon rod, or a composite electrically conductive plastic plate. Among them, the composite electrically conductive plastic plate is composed of a polymer (eg, PVC, nylon-6, nylon-11, low density polyethylene, high density polyethylene, low density polypropylene, high density polypropylene, etc.) and an electrically conductive material (eg, carbon black). , Graphite powder, graphite fiber, etc.) and obtained by hot press molding. As described above, when the platinum plate is used as the electrode plate, the purity of the trivalent vanadium ion electrolyte can be significantly improved. Therefore, the electrolytic plate is preferably a platinum plate. The distance between the electrode plate located in the anode cell and the cathode cell can be adjusted according to the actual situation. Usually, the distance between the electrode plates is not smaller than 3 cm, preferably 3 cm to 20 cm. By adjusting in this way, a considerably low cell voltage can be maintained, which is useful for producing a highly pure and highly stable trivalent vanadium ion electrolyte.
In the present invention, the electrically conductive diaphragm of the electrolytic cell may be various existing electrically conductive diaphragms, and is preferably suitable for electrolytic use in a sulfuric acid solution of vanadyl sulfate, has high ion selectivity, and is permeable to vanadium ions. Adopting fluorine-containing polyolefin ion exchange membrane with high H + movement speed, low surface resistance, corrosion resistance, antioxidant and long life, more preferably perfluorosulfonic acid ion exchange membrane. The current efficiency can be maintained for a long time, which is useful for producing a highly pure and highly stable trivalent vanadium ion electrolyte.
The present invention also provides a trivalent vanadium ion electrolyte produced by the above-described method.
The present invention also provides a vanadium battery. The vanadium battery includes a number of series battery units. One battery unit includes an anode module, a cathode module, and a diaphragm positioned between the anode module and the cathode module, and the anode module stores an anode electrolyte. And a collector and an anode plate attached to the flow frame. The cathode module includes a flow frame storing a cathode electrolyte, a collector attached to the flow frame, and a cathode plate, in which the anode electrolyte is a sulfuric acid solution containing vanadyl sulfate, and the cathode electrolyte is the above-mentioned This is a trivalent vanadium ion electrolyte.
The improvement point of the present invention is that the trivalent vanadium ion electrolyte is an anode electrolyte of a vanadium battery, and the structure of the vanadium battery and the connection relationship between the structures may be the same as those of the prior art. I do not explain.
According to one specific implementation method of the present invention, the trivalent vanadium ion electrolyte is produced in an electrolytic cell, and the electrolysis process is as shown in FIG. The material of the tank frame plate 8 is preferably polyethylene having a weight average molecular weight of more than 3 million. A sulfuric acid solution containing vanadyl sulfate is injected into the cathode tank 7, and a sulfuric acid solution equal to the molar amount of vanadyl sulfate in the sulfuric acid solution containing vanadyl sulfate is injected into the anode tank 4, in which a sulfuric acid solution containing vanadyl sulfate is contained. The molar ratio of the vanadyl sulfate in the aqueous solution and the molar ratio of the sulfuric acid therein is 1: 1.5 to 1: 3, preferably 1: 1.5 to 1: 2. An inert gas such as nitrogen is introduced into the electrolytic cell from the gas inlet 10, and by the stirring effect of the stirrer 3, constant potential electrolysis is performed through the constant voltage source 1 to which both ends are connected with the platinum electrodes 5, The distance is set to 1.5 to 50 V, and the minimum distance between the electrode plates is 3 cm. A trivalent vanadium ion electrolyte is obtained by roughly judging and controlling the end point of electrolysis by measuring the electric quantity value and the potential value of the solution with an electrometer 2 having calomel electrodes 6 and platinum electrodes 9 connected to both ends, respectively. The substance content of the trivalent vanadium ion electrolyte is analyzed by ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions is further obtained. The trivalent vanadium electrolyte and vanadyl sulfate solution are injected into the cathode and anode of the vanadium battery, respectively, and can be used normally after being charged.

次に実施例を通じ本発明について更に説明を行う。
下記の実施例と比較例では、いずれも図1に示した電解槽で三価バナジウムイオン電解液の製造を行う。
下記の実施例と比較例の中で、理論の電気量は前記硫酸バナジルの硫酸溶液の中の四価バナジウムイオンを三価バナジウムイオンに完全に電解する場合に移動した電子により算出した電気量を意味する。理論電位は五価バナジウムイオンを二価バナジウムイオンに還元する過程で、電位が400mVから150mVまで段階的な急変を呈し、その中で、四価バナジウムイオンから三価バナジウムイオンの電位が200mVに急変し、即ち、前記理論電位は200mVである。充放電計(仏山市藍光科技有限公司から購入する)で測定し電圧効率を得る。
実施例と比較例では、以下の原料等を使用した。
25原料:
25の含有量が99.5重量%で、南京南元化工有限公司から購入した。
23原料:
23の含有量が99.5重量%で、杭州新業化工有限公司から購入した。
2SO4
分析用試薬、比重が1.84g/ミリリットルである。
Next, the present invention will be further described through examples.
In the following examples and comparative examples, the trivalent vanadium ion electrolyte is produced in the electrolytic cell shown in FIG.
In the following examples and comparative examples, the theoretical amount of electricity is the amount of electricity calculated by the transferred electrons when the tetravalent vanadium ions in the sulfuric acid solution of vanadyl sulfate are completely electrolyzed to trivalent vanadium ions. means. The theoretical potential is a process in which pentavalent vanadium ions are reduced to divalent vanadium ions, and the potential changes stepwise from 400 mV to 150 mV. Among them, the potential of tetravalent vanadium ions to trivalent vanadium ions changes rapidly to 200 mV. That is, the theoretical potential is 200 mV. Measure voltage with a charge / discharge meter (purchased from Foshan Indigo Technology Co., Ltd.) to obtain voltage efficiency.
In the examples and comparative examples, the following raw materials were used.
V 2 O 5 raw material:
The content of V 2 O 5 was 99.5% by weight and was purchased from Nanjing Nanyuan Chemical Co., Ltd.
V 2 O 3 raw material:
The V 2 O 3 content was 99.5% by weight and was purchased from Hangzhou New Industrial Chemical Co., Ltd.
H 2 SO 4 :
Analytical reagent, specific gravity 1.84 g / ml.

製造例1
この製造例は本発明により提供される三価バナジウムイオン電解液及びその製造方法の説明である。
電解槽の製作:
重量平均分子量が350万であるポリエチレンを用いて、いずれも170×170×170mmの陽極槽と陰極槽を製作し、且つパーフルオロスルホン酸イオン交換膜(宝応県潤華静電塗装工程有限公司から購入し、グレードがHZ200で、以下同じ)を陽極槽と陰極槽の間に設置して、且つ固定し、次いで、定電圧源の陽極と陰極に接続した2つのプラチナ板をそれぞれ陽極槽と陰極槽の中に設置した。プラチナ板の有効面積は100×100mm2である。
硫酸バナジルを含む硫酸溶液の製造:
まず反応装置に脱イオン水を550ミリリットル注入し、次いで、攪拌条件下、反応装置に濃硫酸を259ミリリットル注入し、温度が80℃に上昇した時点で、62グラムのV23と74.5グラムのV25の混合物を徐々に反応装置に添加して反応を行い、0.5時間反応させた後に脱イオン水で900ミリリットルの一定容積とし、硫酸バナジルを含む硫酸溶液を得て、電解液原料として準備する。計測により、硫酸の濃度は3.6モル/リットルで、全バナジウムの濃度は1.79モル/リットルである。
Production Example 1
This production example is an explanation of the trivalent vanadium ion electrolyte provided by the present invention and its production method.
Production of electrolytic cell:
Using polyethylene with a weight average molecular weight of 3.5 million, both anode and cathode tanks of 170 x 170 x 170 mm were manufactured, and perfluorosulfonic acid ion-exchange membranes (Hoho Prefectural Junhua Electrostatic Coating Process Co., Ltd.) Is installed and fixed between the anode cell and the cathode cell, and then two platinum plates connected to the anode and cathode of the constant voltage source are respectively connected to the anode cell and the cathode cell. Installed in the cathode chamber. The effective area of the platinum plate is 100 × 100 mm 2 .
Production of sulfuric acid solution containing vanadyl sulfate:
First, 550 milliliters of deionized water was injected into the reactor, then 259 milliliters of concentrated sulfuric acid was injected into the reactor under stirring conditions, and when the temperature rose to 80 ° C., 62 grams of V 2 O 3 and 74. A mixture of 5 grams of V 2 O 5 was gradually added to the reactor to react, and after 0.5 hours of reaction, a constant volume of 900 ml was obtained with deionized water to obtain a sulfuric acid solution containing vanadyl sulfate. Prepare as an electrolyte solution raw material. By measurement, the concentration of sulfuric acid is 3.6 mol / liter, and the concentration of total vanadium is 1.79 mol / liter.

硫酸溶液の製造:
反応装置に脱イオン水を200ミリリットル注入し、攪拌条件下、徐々に濃硫酸を85.9ミリリットル注入し、最後に脱イオン水で900ミリリットルの一定容積として準備する。
三価バナジウムイオン電解液の製造:
硫酸バナジルを含む上述の硫酸溶液を900ミリリットル取り、電解槽の陰極槽7に注入し、上述の硫酸溶液を900ミリリットル取り、電解槽の陽極槽4に注入する。定電位の方式で電解を行い、電解槽の中で、電極板の間隔を3cm、電解電圧を3V、電解温度を20℃に設定した。同時に電位計2で電解液の電気量と電位についてオンラインモニタリングを行い、モニタリングの電気量が理論電気量の1.1倍或いはモニタリングの電位が理論電位に達する場合、電解を停止し、この時電解時間が1.5時間である。得られた電解液についてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオンの濃度は1.78モル/リットルで、つまり電解液の中の三価バナジウムと全バナジウムのモル比V(III)/TVは0.996であることを確認した。
Production of sulfuric acid solution:
200 ml of deionized water is poured into the reactor, 85.9 ml of concentrated sulfuric acid is gradually poured under stirring conditions, and finally a constant volume of 900 ml is prepared with deionized water.
Manufacture of trivalent vanadium ion electrolyte:
900 ml of the above sulfuric acid solution containing vanadyl sulfate is taken and poured into the cathode tank 7 of the electrolytic cell, and 900 ml of the above sulfuric acid solution is taken and poured into the anode tank 4 of the electrolytic cell. Electrolysis was carried out by a constant potential method, and in the electrolytic cell, the distance between the electrode plates was set to 3 cm, the electrolysis voltage was set to 3 V, and the electrolysis temperature was set to 20 ° C. At the same time, the electrometer 2 performs online monitoring of the amount of electricity and potential of the electrolyte. When the amount of electricity monitored is 1.1 times the theoretical amount of electricity or when the monitoring potential reaches the theoretical potential, the electrolysis is stopped. The time is 1.5 hours. The obtained electrolyte solution was subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions in the obtained electrolyte solution was 1.78 mol / liter, That is, it was confirmed that the molar ratio V (III) / TV of trivalent vanadium to total vanadium in the electrolytic solution was 0.996.

比較製造例1
この比較製造例は比較用の三価バナジウムイオン電解液及びその製造方法の説明に用いる。
製造例1の方法により前記三価バナジウムイオン電解液の製造を行い、異なったのは、前記電解槽の陽極槽の中の硫酸溶液を硫酸バナジルを含む硫酸溶液に取り替えた。つまり、電解槽の陽極槽と陰極槽の中の電解液が同じである。得られた電解液についてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオンの濃度は1.53モル/リットルで、つまり電解液の中の三価バナジウムと全バナジウムのモル比V(III)/TVは0.859であることを確認した。
Comparative production example 1
This comparative production example is used to explain a trivalent vanadium ion electrolyte for comparison and a method for producing the same.
The trivalent vanadium ion electrolyte was produced by the method of Production Example 1, and the difference was that the sulfuric acid solution in the anode tank of the electrolytic cell was replaced with a sulfuric acid solution containing vanadyl sulfate. That is, the electrolytic solution in the anode tank and the cathode tank of the electrolytic cell is the same. The obtained electrolyte solution is subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions in the obtained electrolyte solution is 1.53 mol / liter, That is, it was confirmed that the molar ratio V (III) / TV of trivalent vanadium to total vanadium in the electrolytic solution was 0.859.

比較製造例2
この比較製造例は比較用の三価バナジウムイオン電解液及びその製造方法の説明に用いる。
比較製造例1の方法により前記三価バナジウムイオン電解液の製造を行い、異なったのは、定電流の方法で電解を行い、且つ制御電流が3Aである。得られた電解液についてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオン濃度と四価バナジウムイオン濃度の比は1:1で、つまり電解液の中の三価バナジウムと全バナジウムのモル比V(III)/TVは0.5であることを確認した。
Comparative production example 2
This comparative production example is used to explain a trivalent vanadium ion electrolyte for comparison and a method for producing the same.
The trivalent vanadium ion electrolyte solution was produced by the method of Comparative Production Example 1, and the difference was that electrolysis was performed by a constant current method and the control current was 3A. The obtained electrolyte solution is subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the ratio of trivalent vanadium ion concentration to tetravalent vanadium ion concentration in the obtained electrolyte solution is 1. 1, that is, the molar ratio V (III) / TV of trivalent vanadium to total vanadium in the electrolytic solution was confirmed to be 0.5.

製造例2
この製造例は本発明により提供される三価バナジウムイオン電解液及びその製造方法の説明である。
電解槽の製作:
重量平均分子量が400万であるポリエチレンを用いて、いずれも170×170×170mmの陽極槽と陰極槽を製作し、且つパーフルオロスルホン酸イオン交換膜を陽極槽と陰極槽の間に設置して、且つ固定し、次いで、定電圧源の陽極と陰極に接続した2つのプラチナ板をそれぞれ陽極槽と陰極槽の中に設置した。プラチナ板の有効面積は100×100mm2である。
硫酸バナジルを含む硫酸溶液の製造:
まず反応装置に脱イオン水を600ミリリットル注入し、次いで、攪拌条件下、反応装置に濃硫酸を288ミリリットル注入し、温度が80℃に上昇した時点で、75グラムのV2O3と83.2グラムのV2O5の混合物を徐々に反応装置に添加し反応を行い、0.5時間反応させた後、脱イオン水で900ミリリットルの一定容積とした硫酸バナジルを含む硫酸溶液を得て、電解液原料として準備する。計測により、硫酸の濃度は4.0モル/リットルで、全バナジウムの濃度は2.0モル/リットルである。
硫酸溶液の製造:
反応装置に脱イオン水を400ミリリットル注入し、攪拌条件下、徐々に濃硫酸を95.9ミリリットル注入し、最後に脱イオン水で900ミリリットルの一定容積として準備する。
三価バナジウムイオン電解液の製造:
硫酸バナジルを含む上述の硫酸溶液を900ミリリットル取り、電解槽の陰極槽7に注入し、上述の硫酸溶液を900ミリリットル取り、電解槽の陽極槽4に注入し;定電位の方式で電解を行い、電解槽の中で、電極板の間隔を3cm、電解電圧を3.5V、電解温度を30℃に設定した。同時に電位計2で電解液の電気量と電位ついてオンラインモニタリングを行い、モニタリングの電気量が理論電気量の1.1倍或いはモニタリングの電位が理論電位に達する場合、電解を停止し、この時電解時間が2.5時間である。得られた電解液ついてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオンの濃度は2.0モル/リットルで、つまり電解液の中の三価バナジウムと全バナジウムのモル比V(III)/TVは1である。
Production Example 2
This production example is an explanation of the trivalent vanadium ion electrolyte provided by the present invention and its production method.
Production of electrolytic cell:
Using polyethylene having a weight average molecular weight of 4 million, both an anode tank and a cathode tank of 170 × 170 × 170 mm were manufactured, and a perfluorosulfonic acid ion exchange membrane was installed between the anode tank and the cathode tank. And two platinum plates connected to the anode and cathode of a constant voltage source were then placed in the anode and cathode chambers, respectively. The effective area of the platinum plate is 100 × 100 mm 2 .
Production of sulfuric acid solution containing vanadyl sulfate:
First, 600 milliliters of deionized water was injected into the reactor, then 288 milliliters of concentrated sulfuric acid was injected into the reactor under stirring conditions, and when the temperature rose to 80 ° C., 75 grams of V 2 O 3 and 83.2 grams of The mixture of V2O5 is gradually added to the reactor and reacted. After reacting for 0.5 hours, a sulfuric acid solution containing vanadyl sulfate made up to a constant volume of 900 ml with deionized water is obtained and prepared as an electrolyte raw material To do. By measurement, the concentration of sulfuric acid is 4.0 mol / liter, and the concentration of total vanadium is 2.0 mol / liter.
Production of sulfuric acid solution:
400 ml of deionized water is poured into the reactor, 95.9 ml of concentrated sulfuric acid is gradually poured under stirring conditions, and finally a constant volume of 900 ml is prepared with deionized water.
Manufacture of trivalent vanadium ion electrolyte:
900 ml of the above-mentioned sulfuric acid solution containing vanadyl sulfate is taken and poured into the cathode tank 7 of the electrolytic cell, and 900 ml of the above-mentioned sulfuric acid solution is taken and poured into the anode tank 4 of the electrolytic cell; In the electrolytic cell, the distance between the electrode plates was set to 3 cm, the electrolysis voltage was set to 3.5 V, and the electrolysis temperature was set to 30 ° C. At the same time, the electrometer 2 performs online monitoring of the amount of electricity and potential of the electrolyte. When the amount of electricity monitored is 1.1 times the theoretical amount of electricity or when the monitoring potential reaches the theoretical potential, the electrolysis is stopped. The time is 2.5 hours. The obtained electrolyte solution was subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions in the obtained electrolyte solution was 2.0 mol / liter, That is, the molar ratio V (III) / TV of trivalent vanadium to total vanadium in the electrolytic solution is 1.

製造例3
この製造例は本発明により提供される三価バナジウムイオン電解液及びその製造方法の説明である。
電解槽の製作:
重量平均分子量が400万であるポリエチレンを用いて、いずれも170×170×170mmの陽極槽と陰極槽を製作し、且つパーフルオロスルホン酸イオン交換膜を陽極槽と陰極槽の間に設置して、且つ固定し、次いで、定電圧源の陽極と陰極に接続した2つのプラチナ板をそれぞれ陽極槽と陰極槽の中に設置した。プラチナ板の有効面積は100×100mm2である。
硫酸バナジルを含む硫酸溶液の製造:
まず反応装置に脱イオン水を600ミリリットル注入し、次いで、攪拌条件下、反応装置に濃硫酸を269ミリリットル注入し、温度が80℃に上昇した時点で、61.7グラムのV23と74グラムのV25の混合物を徐々に反応装置に添加し反応を行い、0.5時間反応した後、脱イオン水で900ミリリットルの一定容積とした硫酸バナジルを含む硫酸溶液を得て、電解液原料として準備する。計測により、硫酸の濃度は3.83モル/リットルで、全バナジウムの濃度は1.78モル/リットルである。
硫酸溶液の製造:反応装置に脱イオン水を200ミリリットル注入し、攪拌条件下、徐々に濃硫酸を85.4ミリリットル注入し、最後に脱イオン水で900ミリリットルの一定容積として準備する。
三価バナジウムイオン電解液の製造:硫酸バナジルを含む上述の硫酸溶液を900ミリリットル取り、電解槽の陰極槽7に注入し、上述の硫酸溶液を900ミリリットル取り、電解槽の陽極槽4に注入する。定電位の方式で電解を行い、電解槽の中で電極板の間隔を10cm、電解電圧を5V、電解温度を40℃に設定した。同時に電位計2で電解液の電気量と電位ついてオンラインモニタリングを行い、モニタリングの電気量が理論電気量の1.1倍或いはモニタリングの電位が理論電位に達する場合、電解を停止し、この時電解時間が1.5時間である。得られた電解液ついてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオンの濃度は1.76モル/リットルで、つまり電解液の中の三価バナジウムと全バナジウムのモル比V(III)/TVは0.989である。
Production Example 3
This production example is an explanation of the trivalent vanadium ion electrolyte provided by the present invention and its production method.
Production of electrolytic cell:
Using polyethylene having a weight average molecular weight of 4 million, both an anode tank and a cathode tank of 170 × 170 × 170 mm were manufactured, and a perfluorosulfonic acid ion exchange membrane was installed between the anode tank and the cathode tank. And two platinum plates connected to the anode and cathode of a constant voltage source were then placed in the anode and cathode chambers, respectively. The effective area of the platinum plate is 100 × 100 mm 2 .
Production of sulfuric acid solution containing vanadyl sulfate:
First, 600 ml of deionized water was poured into the reactor, and then 269 ml of concentrated sulfuric acid was poured into the reactor under stirring conditions. When the temperature rose to 80 ° C., 61.7 grams of V 2 O 3 and A mixture of 74 grams of V 2 O 5 was gradually added to the reactor to react, and after reacting for 0.5 hour, a sulfuric acid solution containing vanadyl sulfate made up to a constant volume of 900 ml with deionized water was obtained, Prepare as electrolyte material. By measurement, the concentration of sulfuric acid is 3.83 mol / liter, and the concentration of total vanadium is 1.78 mol / liter.
Production of sulfuric acid solution: 200 ml of deionized water is poured into the reactor, 85.4 ml of concentrated sulfuric acid is gradually poured under stirring conditions, and finally a constant volume of 900 ml is prepared with deionized water.
Manufacture of trivalent vanadium ion electrolyte solution: 900 ml of the above-mentioned sulfuric acid solution containing vanadyl sulfate is taken and poured into the cathode tank 7 of the electrolytic cell, and 900 ml of the above-mentioned sulfuric acid solution is taken and poured into the anode tank 4 of the electrolytic cell. . Electrolysis was performed by a constant potential method, and the distance between the electrode plates in the electrolytic cell was set to 10 cm, the electrolysis voltage was set to 5 V, and the electrolysis temperature was set to 40 ° C. At the same time, the electrometer 2 performs online monitoring of the amount of electricity and potential of the electrolyte. When the amount of electricity monitored is 1.1 times the theoretical amount of electricity or when the monitoring potential reaches the theoretical potential, the electrolysis is stopped. The time is 1.5 hours. The obtained electrolyte solution was subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions in the obtained electrolyte solution was 1.76 mol / liter, That is, the molar ratio V (III) / TV of trivalent vanadium to total vanadium in the electrolytic solution is 0.989.

製造例4
この製造例は本発明により提供される三価バナジウムイオン電解液及びその製造方法の説明である。
電解槽の製作:
重量平均分子量が400万であるポリエチレンを用いて、いずれも170×170×170mmの陽極槽と陰極槽を製作し、且つパーフルオロスルホン酸イオン交換膜を陽極槽と陰極槽の間に設置して、且つ固定し、次いで、定電圧源の陽極と陰極に接続した2つの炭素棒電極板〔固定炭素含有量が98%以上で、灰分<0.001、抵抗率(mΩ・cm)≦4、耐折強さ(MPa)≧32、浸潤率(%)≧8.5、気孔率(%)20〜25、充填率(%)≧85〕をそれぞれ陽極槽と陰極槽の中に設置した。炭素棒電極板の有効面積は100×100mm2である。
硫酸バナジルを含む硫酸溶液の製造:
まず反応装置に脱イオン水を600ミリリットル注入し、それから攪拌条件下、反応装置に濃硫酸を298.6ミリリットル注入し、温度が80℃に上昇した時点で、84グラムのV23と100グラムのV25の混合物を徐々に反応装置に添加し反応を行い、0.5時間反応させた後、脱イオン水で900ミリリットルの一定容積とした硫酸バナジルを含む硫酸溶液を得て、電解液原料として準備する。計測により、硫酸の濃度は3.7モル/リットルで、全バナジウムの濃度は2.4モル/リットルである。
硫酸溶液の製造:
反応装置に脱イオン水を400ミリリットル注入し、攪拌条件下、徐々に濃硫酸を115.6ミリリットル注入し、最後に脱イオン水で900ミリリットルの一定容積として準備する。
三価バナジウムイオン電解液の製造:
硫酸バナジルを含む上述の硫酸溶液を900ミリリットル取り、電解槽の陰極槽7に注入し、上述の硫酸溶液を900ミリリットル取り、電解槽の陽極槽4に注入する。定電位の方式で電解を行い、電解槽の中で、電極板の間隔を3cm、電解電圧を1.5V、電解温度を60℃に設定した。同時に電位計2で電解液の電気量と電位についてオンラインモニタリングを行い、モニタリングの電気量が理論電気量の1.1倍或いはモニタリングの電位が理論電位に達する場合、電解を停止し、この時電解時間が1.1時間である。得られた電解液ついてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオンの濃度は2.4モル/リットルで、つまり電解液の中の三価バナジウムと全バナジウムのモル比V(III)/TVは0.996である。
Production Example 4
This production example is an explanation of the trivalent vanadium ion electrolyte provided by the present invention and its production method.
Production of electrolytic cell:
Using polyethylene having a weight average molecular weight of 4 million, both an anode tank and a cathode tank of 170 × 170 × 170 mm were manufactured, and a perfluorosulfonic acid ion exchange membrane was installed between the anode tank and the cathode tank. And two carbon rod electrode plates connected to the anode and cathode of a constant voltage source (fixed carbon content of 98% or more, ash content <0.001, resistivity (mΩ · cm) ≦ 4, Folding strength (MPa) ≧ 32, infiltration rate (%) ≧ 8.5, porosity (%) 20-25, filling rate (%) ≧ 85] were installed in the anode cell and the cathode cell, respectively. The effective area of the carbon rod electrode plate is 100 × 100 mm 2 .
Production of sulfuric acid solution containing vanadyl sulfate:
First, 600 milliliters of deionized water was poured into the reactor, and then 298.6 milliliters of concentrated sulfuric acid was poured into the reactor under stirring conditions. When the temperature rose to 80 ° C., 84 grams of V 2 O 3 and 100 Gradually add a mixture of V 2 O 5 to the reactor to react, react for 0.5 hours, and then obtain a sulfuric acid solution containing vanadyl sulfate made up to a constant volume of 900 ml with deionized water, Prepare as electrolyte material. By measurement, the concentration of sulfuric acid is 3.7 mol / liter, and the concentration of total vanadium is 2.4 mol / liter.
Production of sulfuric acid solution:
400 ml of deionized water is poured into the reactor, 115.6 ml of concentrated sulfuric acid is gradually poured under stirring conditions, and finally a constant volume of 900 ml is prepared with deionized water.
Manufacture of trivalent vanadium ion electrolyte:
900 ml of the above sulfuric acid solution containing vanadyl sulfate is taken and poured into the cathode tank 7 of the electrolytic cell, and 900 ml of the above sulfuric acid solution is taken and poured into the anode tank 4 of the electrolytic cell. Electrolysis was carried out by a constant potential method, and in the electrolytic cell, the distance between the electrode plates was set to 3 cm, the electrolysis voltage was set to 1.5 V, and the electrolysis temperature was set to 60 ° C. At the same time, the electrometer 2 performs online monitoring of the amount of electricity and potential of the electrolyte. When the amount of electricity monitored is 1.1 times the theoretical amount of electricity or when the monitoring potential reaches the theoretical potential, the electrolysis is stopped. The time is 1.1 hours. The obtained electrolyte solution was subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions in the obtained electrolyte solution was 2.4 mol / liter. That is, the molar ratio V (III) / TV of trivalent vanadium to total vanadium in the electrolytic solution is 0.996.

製造例5
この製造例は本発明により提供される三価バナジウムイオン電解液及びその製造方法の説明である。
電解槽の製作:
重量平均分子量が400万であるポリエチレンを用いて、いずれも170×170×170mmの陽極槽と陰極槽を製作し、且つパーフルオロスルホン酸イオン交換膜を陽極槽と陰極槽の間に設置して、且つ固定し、次いで、定電圧源の陽極と陰極に接続した2つの複合電気伝導プラスチック板(数平均分子量が10万であるポリエチレンとカーボンブラックを重量比1:1で混合しホットプレス成形した板材)をそれぞれ陽極槽と陰極槽の中に設置した。複合電気伝導プラスチック板の有効面積は100×100mm2である。
硫酸バナジルを含む硫酸溶液の製造:
まず反応装置に脱イオン水を600ミリリットル注入し、次いで、攪拌条件下、反応装置に濃硫酸を235ミリリットル注入し、温度が80℃に上昇した時点で、41.2グラムのV23と49.4グラムのV25の混合物を徐々に反応装置に添加し反応を行い、0.5時間反応させた後、脱イオン水で900ミリリットルの一定容積とした硫酸バナジルを含む硫酸溶液を得て、電解液原料として準備する。計測により、硫酸の濃度は3.57モル/リットルで、全バナジウムの濃度は1.2モル/リットルである。
硫酸溶液の製造:
反応装置に脱イオン水を200ミリリットル注入し、攪拌条件下、徐々に濃硫酸を57.6ミリリットル注入し、最後に脱イオン水で900ミリリットルの一定容積として準備する。
三価バナジウムイオン電解液の製造:
硫酸バナジルを含む上述の硫酸溶液を900ミリリットル取り、電解槽の陰極槽7に注入し、上述の硫酸溶液を900ミリリットル取り、電解槽の陽極槽4に注入する。定電位の方式で電解を行い、電解槽の中で、電極板の間隔を20cm、電解電圧を10V、電解温度を40℃に設定した。同時に電位計2で電解液の電気量と電位ついてオンラインモニタリングを行い、モニタリングの電気量が理論電気量の1.1倍或いはモニタリングの電位が理論電位に達する場合、電解を停止し、この時電解時間が0.5時間である。得られた電解液ついてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオンの濃度は1.19モル/リットルで、つまり電解液の中の三価バナジウムと全バナジウムのモル比V(III)/TVは0.992である。
Production Example 5
This production example is an explanation of the trivalent vanadium ion electrolyte provided by the present invention and its production method.
Production of electrolytic cell:
Using polyethylene having a weight average molecular weight of 4 million, both an anode tank and a cathode tank of 170 × 170 × 170 mm were manufactured, and a perfluorosulfonic acid ion exchange membrane was installed between the anode tank and the cathode tank. Then, two composite electrically conductive plastic plates connected to an anode and a cathode of a constant voltage source (polyethylene having a number average molecular weight of 100,000 and carbon black were mixed at a weight ratio of 1: 1 and hot press molded. (Plate material) was installed in the anode tank and the cathode tank, respectively. The effective area of the composite electrically conductive plastic plate is 100 × 100 mm 2 .
Production of sulfuric acid solution containing vanadyl sulfate:
First, 600 ml of deionized water was poured into the reactor, and then 235 ml of concentrated sulfuric acid was poured into the reactor under stirring conditions. When the temperature rose to 80 ° C., 41.2 grams of V 2 O 3 and A mixture of 49.4 grams of V 2 O 5 was gradually added to the reactor, reacted, and allowed to react for 0.5 hour, and then a sulfuric acid solution containing vanadyl sulfate made up to a constant volume of 900 ml with deionized water was added. Obtained and prepared as an electrolyte solution raw material. By measurement, the concentration of sulfuric acid is 3.57 mol / liter, and the concentration of total vanadium is 1.2 mol / liter.
Production of sulfuric acid solution:
200 ml of deionized water is poured into the reactor, 57.6 ml of concentrated sulfuric acid is gradually poured under stirring conditions, and finally a constant volume of 900 ml is prepared with deionized water.
Manufacture of trivalent vanadium ion electrolyte:
900 ml of the above sulfuric acid solution containing vanadyl sulfate is taken and poured into the cathode tank 7 of the electrolytic cell, and 900 ml of the above sulfuric acid solution is taken and poured into the anode tank 4 of the electrolytic cell. Electrolysis was carried out by a constant potential method, and in the electrolytic cell, the distance between the electrode plates was set to 20 cm, the electrolysis voltage was set to 10 V, and the electrolysis temperature was set to 40 ° C. At the same time, the electrometer 2 performs online monitoring of the amount of electricity and potential of the electrolyte. When the amount of electricity monitored is 1.1 times the theoretical amount of electricity or when the monitoring potential reaches the theoretical potential, the electrolysis is stopped. The time is 0.5 hours. The obtained electrolyte solution was subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions in the obtained electrolyte solution was 1.19 mol / liter. That is, the molar ratio V (III) / TV of trivalent vanadium to total vanadium in the electrolytic solution is 0.992.

製造例6
この製造例は本発明により提供される三価バナジウムイオン電解液及びその製造方法の説明である。
製造例1の方法により前記三価バナジウムイオン電解液の製造を行い、異なったのは、電解槽の製作過程で、重量平均分子量が350万であるポリエチレンを重量平均分子量が350万であるポリ塩化ビニールに取り替える。得れれた電解液ついてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオンの濃度は1.73モル/リットルで、つまり電解液の中の三価バナジウムと全バナジウムのモル比V(III)/TVは0.982である。
Production Example 6
This production example is an explanation of the trivalent vanadium ion electrolyte provided by the present invention and its production method.
The trivalent vanadium ion electrolyte solution was produced by the method of Production Example 1, except that polyethylene having a weight average molecular weight of 3,500,000 was converted to polychlorinated salt having a weight average molecular weight of 3,500,000 in the production process of the electrolytic cell. Replace with vinyl. The obtained electrolyte solution was subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions in the obtained electrolyte solution was 1.73 mol / liter, That is, the molar ratio V (III) / TV of trivalent vanadium to total vanadium in the electrolytic solution is 0.982.

製造例7
この製造例は本発明により提供される三価バナジウムイオン電解液及びその製造方法の説明である。
製造例1の方法により前記三価バナジウムイオン電解液の製造を行い、異なったのは、電解の過程で、電極板の間隔が2cmである。得られた電解液ついてイオンクロマトグラフィー分析、ポーラログラム分析、ICP質量分析法とICPスペクトル分析を行い、得られた前記電解液の中の三価バナジウムイオンの濃度は1.71モル/リットルで、つまり電解液の中の三価バナジウムと全部バナジウムのモル比V(III)/TVは0.981である。
Production Example 7
This production example is an explanation of the trivalent vanadium ion electrolyte provided by the present invention and its production method.
The trivalent vanadium ion electrolyte solution was produced by the method of Production Example 1, and the difference was that the distance between the electrode plates was 2 cm during the electrolysis process. The obtained electrolyte solution was subjected to ion chromatography analysis, polarogram analysis, ICP mass spectrometry and ICP spectrum analysis, and the concentration of trivalent vanadium ions in the obtained electrolyte solution was 1.71 mol / liter. That is, the molar ratio V (III) / TV of trivalent vanadium to all vanadium in the electrolytic solution is 0.981.

実施例1
この実施例は本発明により提供されるバナジウム電池及びその製造方法の説明である。
グラファイトフェルトを電池電極(遼陽金谷公司から購入し、厚さが5mmで、抵抗率が1.4×103Ω・cmである)として、グラファイト板(厚さが3mmである)をコレクター材料として、活性化処理した均一陽イオン交換膜(山東天維膜技術有限公司から購入し、型号がDF-120である)を電気伝導隔膜として、重量平均分子量が350万のポリ塩化ビニール(シ博川玉塑料有限公司から購入した)板でフローフレームを作り、且つバナジウムレドックスフロー単電池を製造し、その中に、フローフレームのサイズがいずれも100×100×5mmで、且つそれぞれ陽極モジュールのフローフレームに製造例1により得た三価バナジウムイオン電解液を175ミリリットル注入し、陰極モジュールのフローフレームに製造例1により得た硫酸バナジルを含む硫酸溶液を175ミリリットル注入し、バナジウム電池F1を得る。
上述のバナジウム電池F1について充放電計(BS−9362二次電池試験装置、広州▲捧▼天実業有限公司、以下同じ)を利用し次の通りの条件で充放電テストを行う:4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1.0Vまで放電し、電圧効率が93%である。
Example 1
This example is an illustration of the vanadium battery provided by the present invention and the method of manufacturing the same.
Graphite felt as a battery electrode (purchased from Shenyang Kanaya Ltd., thickness is 5 mm, resistivity is 1.4 × 10 3 Ω · cm), graphite plate (thickness is 3 mm) as collector material , Activated activated uniform cation exchange membrane (Shandong Tian membrane technology Co., Ltd., model number DF-120) as an electrically conductive diaphragm, polyvinyl chloride with a weight average molecular weight of 3.5 million A flow frame is made from a plate (purchased from Jade Plastics Co., Ltd.), and a vanadium redox flow cell is manufactured. The size of the flow frame is 100 × 100 × 5 mm, and each is a flow frame of an anode module. 175 ml of the trivalent vanadium ion electrolyte solution obtained in Production Example 1 was injected into the flow frame of the cathode module according to Production Example 1. And the sulfuric acid solution containing vanadyl sulfate was injected 175 ml to give a vanadium battery F1.
The above-described vanadium battery F1 is subjected to a charge / discharge test under the following conditions using a charge / discharge meter (BS-9362 secondary battery test device, Guangzhou Tianjin Co., Ltd., the same shall apply hereinafter): 4A charge current Then, the cut-off voltage is charged to 1.65 V, and then the cut-off voltage is discharged to 1.0 V with a discharge current of 4 A, and the voltage efficiency is 93%.

比較例1
この比較例は比較用のバナジウム電池と及びその製造方法の説明に用いる。
実施例1の方法によりバナジウム電池の製造を行い、異なったのは、前記三価バナジウムイオン電解液を比較製造例1に得られた三価バナジウムイオン電解液に取り替え、前記硫酸バナジルを含む硫酸溶液が比較製造例1に得られた硫酸バナジルを含む硫酸溶液を採用し、バナジウム電池DF1を得る。
上述のバナジウム電池DF1について充放電計を利用し次の通りの条件で充放電テストを行う:4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1.0Vまで放電し、電圧効率が75%である。
Comparative Example 1
This comparative example is used to describe a vanadium battery for comparison and a manufacturing method thereof.
A vanadium battery was produced by the method of Example 1, except that the trivalent vanadium ion electrolyte was replaced with the trivalent vanadium ion electrolyte obtained in Comparative Production Example 1, and the sulfuric acid solution containing vanadyl sulfate was used. Adopts a sulfuric acid solution containing vanadyl sulfate obtained in Comparative Production Example 1 to obtain a vanadium battery DF1.
The above-described vanadium battery DF1 is subjected to a charge / discharge test using the charge / discharge meter under the following conditions: the charge voltage is 4A, the cut-off voltage is charged to 1.65V, and then the cut-off voltage is 4A. The battery is discharged to 1.0 V and the voltage efficiency is 75%.

比較例2
この比較例は比較用のバナジウム電池と及びその製造方法の説明に用いる。
実施例1の方法によりバナジウム電池の製造を行い、異なったのは、前記三価バナジウムイオン電解液を比較製造例2に得られた三価バナジウムイオン電解液に取り替え、前記硫酸バナジルを含む硫酸溶液が比較製造例2に得られた硫酸バナジルを含む硫酸溶液を採用し、バナジウム電池DF2を得る。
上述のバナジウム電池DF2について充放電計を利用し次の通りの条件で充放電テストを行う:4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1.0Vまで放電し、電圧効率が73%である。
Comparative Example 2
This comparative example is used to describe a vanadium battery for comparison and a manufacturing method thereof.
A vanadium battery was produced by the method of Example 1, and the difference was that the trivalent vanadium ion electrolyte was replaced with the trivalent vanadium ion electrolyte obtained in Comparative Production Example 2, and the sulfuric acid solution containing vanadyl sulfate was used. Adopts a sulfuric acid solution containing vanadyl sulfate obtained in Comparative Production Example 2 to obtain a vanadium battery DF2.
The above-described vanadium battery DF2 is subjected to a charge / discharge test using the charge / discharge meter under the following conditions: the charge voltage is 4A, the cut-off voltage is charged to 1.65V, and then the cut-off voltage is 4A. The battery is discharged to 1.0 V, and the voltage efficiency is 73%.

実施例2
この実施例は本発明により提供されるバナジウム電池及びその製造方法の説明である。
実施例1の方法によりバナジウム電池の製造を行い、異なったのは、前記三価バナジウムイオン電解液を製造例2に得られた三価バナジウムイオン電解液に取り替え、前記硫酸バナジルを含む硫酸溶液が製造例2に得られた硫酸バナジルを含む硫酸溶液を採用し、バナジウム電池F2を得る。
上述のバナジウム電池F2について充放電計を利用し次の通りの条件で充放電テストを行う:4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1.0Vまで放電し、電圧効率が91%である。
Example 2
This example is an illustration of the vanadium battery provided by the present invention and the method of manufacturing the same.
A vanadium battery was produced by the method of Example 1, except that the trivalent vanadium ion electrolyte was replaced with the trivalent vanadium ion electrolyte obtained in Production Example 2, and a sulfuric acid solution containing vanadyl sulfate was obtained. A sulfuric acid solution containing vanadyl sulfate obtained in Production Example 2 is employed to obtain a vanadium battery F2.
A charge / discharge test is performed on the vanadium battery F2 using a charge / discharge meter under the following conditions: a charge current of 4A is charged to a cut-off voltage of 1.65V, and then a cut-off voltage of 4A is discharged. The battery is discharged to 1.0 V, and the voltage efficiency is 91%.

実施例3
この実施例は本発明により提供されるバナジウム電池及びその製造方法の説明である。
実施例1の方法によりバナジウム電池の製造を行い、異なったのは、前記三価バナジウムイオン電解液を製造例3に得られた三価バナジウムイオン電解液に取り替え、前記硫酸バナジルを含む硫酸溶液が製造例3に得られた硫酸バナジルを含む硫酸溶液を採用し、バナジウム電池F3を得る。
上述のバナジウム電池F3について充放電計を利用し次の通りの条件で充放電テストを行う:4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1.0Vまで放電し、電圧効率が90%である。
Example 3
This example is an illustration of the vanadium battery provided by the present invention and the method of manufacturing the same.
A vanadium battery was manufactured by the method of Example 1, and the difference was that the trivalent vanadium ion electrolyte was replaced with the trivalent vanadium ion electrolyte obtained in Preparation Example 3, and a sulfuric acid solution containing vanadyl sulfate was obtained. The vanadium battery F3 is obtained by employing the sulfuric acid solution containing vanadyl sulfate obtained in Production Example 3.
The above-described vanadium battery F3 is charged / discharged using a charge / discharge meter under the following conditions: a 4A charge current is charged to a cut-off voltage of 1.65V, and then a 4A discharge current is applied to the cut-off voltage. The battery is discharged to 1.0 V, and the voltage efficiency is 90%.

実施例4
この実施例は本発明により提供されるバナジウム電池及びその製造方法の説明である。
実施例1の方法によりバナジウム電池の製造を行い、異なったのは、前記三価バナジウムイオン電解液を製造例4に得られた三価バナジウムイオン電解液に取り替え、前記硫酸バナジルを含む硫酸溶液が製造例4に得られた硫酸バナジルを含む硫酸溶液を採用し、バナジウム電池F4を得る。
上述のバナジウム電池F4について充放電計を利用し次の通りの条件で充放電テストを行う:4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1.0Vまで放電し、電圧効率が89%である。
Example 4
This example is an illustration of the vanadium battery provided by the present invention and the method of manufacturing the same.
A vanadium battery was produced by the method of Example 1, except that the trivalent vanadium ion electrolyte was replaced with the trivalent vanadium ion electrolyte obtained in Production Example 4, and a sulfuric acid solution containing vanadyl sulfate was obtained. By using the sulfuric acid solution containing vanadyl sulfate obtained in Production Example 4, a vanadium battery F4 is obtained.
The above-described vanadium battery F4 is subjected to a charge / discharge test using a charge / discharge meter under the following conditions: a charge current of 4A is charged to a cut-off voltage of 1.65V, and then a cut-off voltage of 4A is discharged. The battery is discharged to 1.0 V, and the voltage efficiency is 89%.

実施例5
この実施例は本発明により提供されるバナジウム電池及びその製造方法の説明である。
実施例1の方法によりバナジウム電池の製造を行い、異なったのは、前記三価バナジウムイオン電解液を製造例5に得られた三価バナジウムイオン電解液に取り替え、前記硫酸バナジルを含む硫酸溶液が製造例5に得られた硫酸バナジルを含む硫酸溶液を採用し、バナジウム電池F5を得る。
上述のバナジウム電池F5について充放電計を利用し次の通りの条件で充放電テストを行う:4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1.0Vまで放電し、電圧効率が89%である。
Example 5
This example is an illustration of the vanadium battery provided by the present invention and the method of manufacturing the same.
A vanadium battery was produced by the method of Example 1, except that the trivalent vanadium ion electrolyte was replaced with the trivalent vanadium ion electrolyte obtained in Production Example 5, and a sulfuric acid solution containing vanadyl sulfate was obtained. The vanadium battery F5 is obtained by employing the sulfuric acid solution containing vanadyl sulfate obtained in Production Example 5.
The above-mentioned vanadium battery F5 is charged / discharged using a charge / discharge meter under the following conditions: The charge voltage is 4A, the cut-off voltage is charged to 1.65V, and then the cut-off voltage is 4A. The battery is discharged to 1.0 V, and the voltage efficiency is 89%.

実施例6
この実施例は本発明により提供されるバナジウム電池及びその製造方法の説明である。
実施例1の方法によりバナジウム電池の製造を行い、異なったのは、前記三価バナジウムイオン電解液を製造例6に得られた三価バナジウムイオン電解液に取り替え、前記硫酸バナジルを含む硫酸溶液が製造例6に得られた硫酸バナジルを含む硫酸溶液を採用し、バナジウム電池F6を得る。
上述のバナジウム電池F6について充放電計を利用し次の通りの条件で充放電テストを行う:4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1.0Vまで放電し、電圧効率が85%である。
Example 6
This example is an illustration of the vanadium battery provided by the present invention and the method of manufacturing the same.
A vanadium battery was produced by the method of Example 1, except that the trivalent vanadium ion electrolyte was replaced with the trivalent vanadium ion electrolyte obtained in Production Example 6, and a sulfuric acid solution containing vanadyl sulfate was obtained. The vanadium battery F6 is obtained by employing the sulfuric acid solution containing vanadyl sulfate obtained in Production Example 6.
The above-described vanadium battery F6 is charged / discharged using a charge / discharge meter under the following conditions: The charge voltage is 4A, the cut-off voltage is charged to 1.65V, and then the cut-off voltage is 4A. The battery is discharged to 1.0 V, and the voltage efficiency is 85%.

実施例7
この実施例は本発明により提供されるバナジウム電池及びその製造方法の説明である。
実施例1の方法によりバナジウム電池の製造を行い、異なったのは、前記三価バナジウムイオン電解液を製造例7に得られた三価バナジウムイオン電解液に取り替え、前記硫酸バナジルを含む硫酸溶液が製造例7に得られた硫酸バナジルを含む硫酸溶液を採用し、バナジウム電池F7を得る。
上述のバナジウム電池F7について充放電計を利用し次の通りの条件で充放電テストを行う。4Aの充電電流でカットオフ電圧が1.65Vまで充電し、それから4Aの放電電流でカットオフ電圧が1・0Vまで放電し、電圧効率が84%である。
以上の結果から、本発明により提供される方法により得た三価バナジウムイオン電解液の純度はかなり高く、電圧効率のかなり高いバナジウム電池を得られることを発見した。製造例1と製造例6〜7、実施例1と実施例6〜7の比較から、本発明の好ましい電解槽と極板の間隔を利用し、純度のかなり高い三価バナジウムイオン電解液を得られ、且つ得られたバナジウム電池の電圧効率がもっと高いことを発見した。
Example 7
This example is an illustration of the vanadium battery provided by the present invention and the method of manufacturing the same.
A vanadium battery was manufactured according to the method of Example 1, except that the trivalent vanadium ion electrolyte was replaced with the trivalent vanadium ion electrolyte obtained in Preparation Example 7, and a sulfuric acid solution containing vanadyl sulfate was obtained. By using the sulfuric acid solution containing vanadyl sulfate obtained in Production Example 7, a vanadium battery F7 is obtained.
A charge / discharge test is performed on the vanadium battery F7 using a charge / discharge meter under the following conditions. The cut-off voltage is charged to 1.65 V with a charging current of 4 A, and then the cut-off voltage is discharged to 1.0 V with a discharge current of 4 A, and the voltage efficiency is 84%.
From the above results, it has been found that the purity of the trivalent vanadium ion electrolyte obtained by the method provided by the present invention is quite high, and a vanadium battery with considerably high voltage efficiency can be obtained. From the comparison between Production Example 1 and Production Examples 6-7 and Example 1 and Examples 6-7, a trivalent vanadium ion electrolyte having a considerably high purity is obtained by utilizing the distance between the preferred electrolytic cell and the electrode plate of the present invention. And found that the resulting vanadium battery is more voltage efficient.

以上は詳しく本発明の好ましい実施方法を説明したものであるが、本発明は決して上述の実施方法の具体的な細部に限られなく、本発明の技術構想範囲に、本発明の技術案について簡単な改良をたくさん行うことができ、これらの簡単な改良型がいずれも本発明の保護範囲に属する。
別に説明すべきなのは、上述の具体実施方法に説明したそれぞれ具体的な技術特徴が、矛盾しない状況で、いかなる適当な方式で組合せを行うことができる。必要でない繰り返しを防止するため、本発明は各種の可能な組合せ方式について別に説明しない。
それ以外に、本発明の異なる各種実施方法の間にも任意の組合せを行うことができ、本発明の思想に違反しさえしなければ、それを同様に本発明の開示した内容と見なすべきである。
The above is a detailed description of the preferred implementation method of the present invention. However, the present invention is by no means limited to the specific details of the implementation method described above, and the technical plan of the present invention is simply described within the technical concept of the present invention. Many simple improvements can be made, and all these simple improvements are within the protection scope of the present invention.
It should be noted that each specific technical feature described in the specific implementation method described above can be combined in any suitable manner in a situation where there is no contradiction. In order to prevent unnecessary repetition, the present invention does not separately describe the various possible combination schemes.
In addition, any combination between the various implementations of the present invention can be made and should be regarded as the disclosed content of the present invention as long as it does not violate the idea of the present invention. is there.

1:定電圧源
2:電位計
3:撹拌器
4:陽極槽
5:プラチナ電極
6:カロメル電極
7:陰極槽
8:槽枠板
9:プラチナ電極
10:気体の入り口
1: constant voltage source 2: electrometer 3: stirrer 4: anode tank 5: platinum electrode 6: calomel electrode 7: cathode tank 8: tank frame plate 9: platinum electrode 10: gas inlet

Claims (12)

硫酸バナジルを含む硫酸溶液を陰極電解液とし、硫酸溶液を陽極電解液として、且つ陽極電解液の中の硫酸のモル量と硫酸バナジルを含む硫酸溶液の中の硫酸バナジルのモル量とが等量で、且つ定電位電解を行い、三価バナジウムと全バナジウムのモル比が0.98より大きい三価バナジウムイオン電解液を得ることを特徴とする三価バナジウムイオン電解液の製造方法。   The sulfuric acid solution containing vanadyl sulfate is used as the cathode electrolyte, the sulfuric acid solution is used as the anodic electrolyte, and the molar amount of sulfuric acid in the anodic electrolytic solution is equal to the molar amount of vanadyl sulfate in the sulfuric acid solution containing vanadyl sulfate. A method for producing a trivalent vanadium ion electrolyte, characterized in that a trivalent vanadium ion electrolyte having a molar ratio of trivalent vanadium to total vanadium greater than 0.98 is obtained by performing constant potential electrolysis. 前記三価バナジウムイオン電解液の全バナジウムのモル濃度MTVが1〜3モル/リットルである請求項1に記載の製造方法。 2. The production method according to claim 1, wherein the molar concentration M TV of all vanadium in the trivalent vanadium ion electrolyte is 1 to 3 mol / liter. 前記三価バナジウムイオン電解液の全バナジウムのモル濃度MTVが1〜2モル/リットルである請求項1または2に記載の製造方法。 The process according to claim 1 or 2 molar M TV of the total vanadium in the trivalent vanadium ions electrolyte is 1 to 2 moles / liter. 前記硫酸バナジルを含む硫酸溶液中の硫酸バナジルと硫酸のモル比が1:1.5〜1:3である請求項1〜3のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein a molar ratio of vanadyl sulfate to sulfuric acid in the sulfuric acid solution containing vanadyl sulfate is 1: 1.5 to 1: 3. 前記定電位電解の条件は、電解電圧が1.5〜50Vで、電解温度が20〜60℃で、電解時間が0.5〜5時間である請求項1〜4のいずれか1項に記載の製造方法。   The conditions for the constant potential electrolysis are an electrolysis voltage of 1.5 to 50 V, an electrolysis temperature of 20 to 60 ° C, and an electrolysis time of 0.5 to 5 hours. Manufacturing method. 前記電解電圧が1.5〜10Vで、電解温度が20〜40℃で、電解時間が0.5〜3時間である請求項1〜5のいずれか1項に記載の製造方法。   The method according to claim 1, wherein the electrolysis voltage is 1.5 to 10 V, the electrolysis temperature is 20 to 40 ° C., and the electrolysis time is 0.5 to 3 hours. 前記定電位電解が電解槽の中で行なわれ、前記電解槽が槽枠板、槽枠板で囲んだ陽極槽と陰極槽、陽極槽と陰極槽の間に位置する電気伝導隔膜、及びそれぞれ陽極槽と陰極槽の中に位置する電極板を含み、前記槽枠板の材質が重量平均分子量300万〜500万のポリエチレンである請求項1〜6のいずれか1項に記載の製造方法。   The constant potential electrolysis is performed in an electrolytic cell, and the electrolytic cell is a cell frame plate, an anode cell and a cathode cell surrounded by a cell frame plate, an electrically conductive diaphragm positioned between the anode cell and the cathode cell, and an anode, respectively. The manufacturing method according to any one of claims 1 to 6, comprising an electrode plate located in a tank and a cathode tank, wherein the material of the tank frame plate is polyethylene having a weight average molecular weight of 3 million to 5 million. 前記電極板がプラチナ板、改質グラファイト板、チタンマトリックスプラチナ、酸化イリジウム、グラファイトフェルト、炭素棒或いは複合電気伝導プラスチック板から選択された1種または2種以上であり;前記電極板の間の距離が3〜20cmである請求項7に記載の製造方法。   The electrode plate is one or more selected from platinum plate, modified graphite plate, titanium matrix platinum, iridium oxide, graphite felt, carbon rod or composite electrically conductive plastic plate; the distance between the electrode plates is 3 The manufacturing method according to claim 7, which is ˜20 cm. 前記電気伝導隔膜がフッ素含有ポリオレフィンイオン交換膜である請求項7又は8に記載の製造方法。   The manufacturing method according to claim 7 or 8, wherein the electrically conductive diaphragm is a fluorine-containing polyolefin ion exchange membrane. 前記電気伝導隔膜がパーフルオロスルホン酸イオン交換膜である請求項7又は8に記載の製造方法。   The manufacturing method according to claim 7 or 8, wherein the electrically conductive diaphragm is a perfluorosulfonic acid ion exchange membrane. 請求項1〜10のいずれか1項に記載の方法で製造してなる三価バナジウムイオン電解液。   The trivalent vanadium ion electrolyte solution manufactured by the method of any one of Claims 1-10. 多くの直列電池ユニットを含み、一つの電池ユニットが陽極モジュール、陰極モジュール及びこの陽極モジュールと陰極モジュールの間に位置した隔膜を含み、前記陽極モジュールが陽極電解液を格納したフローフレームとこのフローフレームに取り付けたコレクターと陽極極板を含み、前記陰極モジュールが陰極電解液を格納したフローフレームとこのフローフレームに取り付けたコレクターと陰極極板を含み、前記陽極電解液が硫酸バナジルを含む硫酸溶液で、前記陰極電解液が請求項11に記載の三価バナジウムイオン電解液であることを特徴とするバナジウム電池。   A flow frame including a number of series battery units, one battery unit including an anode module, a cathode module, and a diaphragm positioned between the anode module and the cathode module, the anode module storing an anode electrolyte, and the flow frame The cathode module includes a flow frame in which the cathode electrolyte is stored, and the collector and cathode plate attached to the flow frame. The anode electrolyte is a sulfuric acid solution containing vanadyl sulfate. The vanadium battery, wherein the cathode electrolyte is the trivalent vanadium ion electrolyte according to claim 11.
JP2013127045A 2012-06-18 2013-06-17 Trivalent vanadium ion electrolyte, production method thereof and vanadium battery Active JP5680145B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210200437.0A CN103515641B (en) 2012-06-18 2012-06-18 A kind of trivalent vanadium ion electrolyte and preparation method thereof and a kind of vanadium cell
CN201210200437.0 2012-06-18

Publications (2)

Publication Number Publication Date
JP2014003021A true JP2014003021A (en) 2014-01-09
JP5680145B2 JP5680145B2 (en) 2015-03-04

Family

ID=49897990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127045A Active JP5680145B2 (en) 2012-06-18 2013-06-17 Trivalent vanadium ion electrolyte, production method thereof and vanadium battery

Country Status (2)

Country Link
JP (1) JP5680145B2 (en)
CN (1) CN103515641B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388127A (en) * 2015-10-30 2016-03-09 清华大学深圳研究生院 Online detecting method and system for concentration of all ions of all-vanadium redox flow battery
CN114335644A (en) * 2021-12-23 2022-04-12 大连博融新材料有限公司 Electrolyte crystal dissolving-aid additive, preparation method and application thereof
CN114497665A (en) * 2022-01-17 2022-05-13 武汉科技大学 Method for reducing capacity attenuation of vanadium battery
WO2023101338A1 (en) * 2021-11-30 2023-06-08 롯데케미칼 주식회사 Method for preparing vanadium electrolyte solution

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110858655B (en) * 2018-08-24 2021-08-10 江苏泛宇能源有限公司 Purification method and purification device for electrolyte of flow battery
CN111106374B (en) * 2019-11-28 2021-01-01 浙江浙能技术研究院有限公司 Preparation device and method of high-purity equimolar-concentration trivalent/quadrivalent vanadium electrolyte
CN112225250B (en) * 2020-10-16 2022-05-24 成都先进金属材料产业技术研究院有限公司 Method for self-reduction hydrothermal synthesis of vanadium dioxide nano powder
CN112941540B (en) * 2021-01-28 2024-01-26 湖南钒谷新能源技术有限公司 Vanadium electrolyte production system and production method
CN113087018B (en) * 2021-03-29 2022-07-15 中国科学技术大学 Preparation method of vanadium trioxide nano material rich in vanadium holes
TWI754595B (en) * 2021-06-03 2022-02-01 虹京金屬股份有限公司 Method for manufacturing vanadium electrolyte
CN114142076B (en) * 2021-11-30 2024-04-19 成都先进金属材料产业技术研究院股份有限公司 Method for improving electrochemical activity of vanadium battery electrolyte

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149965A (en) * 1990-10-15 1992-05-22 Agency Of Ind Science & Technol Manufacture of vanadium electrolyte
JPH07211346A (en) * 1994-01-14 1995-08-11 Sumitomo Electric Ind Ltd Manufacture of electrolyte for vanadium redox flow type battery and manufacture of vanadium redox flow type battery
JPH09507950A (en) * 1993-11-17 1997-08-12 ユニサーチ リミテッド Stable electrolytic solution and method of manufacturing the same, method of manufacturing redox battery, and battery containing stable electrolytic solution
US6692862B1 (en) * 2000-03-31 2004-02-17 Squirrel Holdings Ltd. Redox flow battery and method of operating it
JP2004071165A (en) * 2002-08-01 2004-03-04 Nippon Oil Corp Production method for electrolyte for vanadium redox battery
US20040234843A1 (en) * 2001-08-24 2004-11-25 Maria Skyllas-Kazacos Vanadium/polyhalide redox flow battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005583B (en) * 2009-09-01 2013-03-20 比亚迪股份有限公司 Gelled electrolyte of vanadium battery and vanadium battery
CN101692500A (en) * 2009-10-23 2010-04-07 攀钢集团研究院有限公司 Method for preparing all-vanadium ionic liquid flow battery electrolyte and prepared electrolyte
CN102110837A (en) * 2011-01-30 2011-06-29 国网电力科学研究院武汉南瑞有限责任公司 Preparation method of electrolyte for vanadium redox battery (VRB)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04149965A (en) * 1990-10-15 1992-05-22 Agency Of Ind Science & Technol Manufacture of vanadium electrolyte
JPH09507950A (en) * 1993-11-17 1997-08-12 ユニサーチ リミテッド Stable electrolytic solution and method of manufacturing the same, method of manufacturing redox battery, and battery containing stable electrolytic solution
JPH07211346A (en) * 1994-01-14 1995-08-11 Sumitomo Electric Ind Ltd Manufacture of electrolyte for vanadium redox flow type battery and manufacture of vanadium redox flow type battery
US6692862B1 (en) * 2000-03-31 2004-02-17 Squirrel Holdings Ltd. Redox flow battery and method of operating it
US20040234843A1 (en) * 2001-08-24 2004-11-25 Maria Skyllas-Kazacos Vanadium/polyhalide redox flow battery
JP2004071165A (en) * 2002-08-01 2004-03-04 Nippon Oil Corp Production method for electrolyte for vanadium redox battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388127A (en) * 2015-10-30 2016-03-09 清华大学深圳研究生院 Online detecting method and system for concentration of all ions of all-vanadium redox flow battery
WO2023101338A1 (en) * 2021-11-30 2023-06-08 롯데케미칼 주식회사 Method for preparing vanadium electrolyte solution
CN114335644A (en) * 2021-12-23 2022-04-12 大连博融新材料有限公司 Electrolyte crystal dissolving-aid additive, preparation method and application thereof
CN114497665A (en) * 2022-01-17 2022-05-13 武汉科技大学 Method for reducing capacity attenuation of vanadium battery

Also Published As

Publication number Publication date
JP5680145B2 (en) 2015-03-04
CN103515641B (en) 2016-04-13
CN103515641A (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5680145B2 (en) Trivalent vanadium ion electrolyte, production method thereof and vanadium battery
Zhang et al. Effects of operating temperature on the performance of vanadium redox flow batteries
Leung et al. A mixed acid based vanadium–cerium redox flow battery with a zero-gap serpentine architecture
CN102190573B (en) Method for preparing formic acid through electrochemical catalytic reduction of carbon dioxide
US20200259200A1 (en) All-vanadium sulfate acid redox flow battery system
Rudolph et al. On-line controlled state of charge rebalancing in vanadium redox flow battery
CN101572319B (en) Electrolyte for all-vanadium redox flow battery and preparation method thereof, and all-vanadium redox flow battery including the electrolyte
KR101415538B1 (en) MANUFACTURING DEVICE OF ELECTROLYTE SOLUTION FOR VANADIUM REDOX FlOW BATTERY USING ELECTROLYSIS AND MANUFACTURING METHOD OF THE SAME
Huang et al. Influence of Cr 3+ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries
Raghu et al. Electrochemical behaviour of titanium/iridium (IV) oxide: Tantalum pentoxide and graphite for application in vanadium redox flow battery
Karim-Nezhad et al. Electrocatalytic oxidation of methanol and ethanol by carbon ceramic electrode modified with Ni/Al LDH nanoparticles
US20160351937A1 (en) Microbial fuel cell, microbial fuel cell system, and method for using microbial fuel cell
Chen et al. Base–acid hybrid water electrolysis
Muñoz-Perales et al. Investigating the effects of operation variables on all-vanadium redox flow batteries through an advanced unit-cell model
US11050076B1 (en) Flow cell systems, flow cell batteries, and hydrogen production processes
Kim et al. Enhanced VRB electrochemical performance using tungsten as an electrolyte additive
Pichugov et al. Restoring capacity and efficiency of vanadium redox flow battery via controlled adjustment of electrolyte composition by electrolysis cell
KR101506951B1 (en) Manufacturing equipment of electrolyte for redox flow battery and manufacturing method thereof
JP5979551B2 (en) Vanadium redox battery
He et al. Study of the electrochemical performance of VO 2+/VO 2+ redox couple in sulfamic acid for vanadium redox flow battery
KR101514881B1 (en) Method of manufacturing electrolyte for Vanadium secondary battery and apparatus thereof
CN112993361B (en) Preparation method of vanadium electrolyte
Mans et al. The Effect of Electrolyte Composition on the Performance of a Single‐Cell Iron–Chromium Flow Battery
JP2016186853A (en) Vanadium redox battery
WO2016158217A1 (en) Vanadium redox cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5680145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250