JP2014001814A - Speed reduction mechanism and motor rotational force transmission device including the same - Google Patents

Speed reduction mechanism and motor rotational force transmission device including the same Download PDF

Info

Publication number
JP2014001814A
JP2014001814A JP2012138084A JP2012138084A JP2014001814A JP 2014001814 A JP2014001814 A JP 2014001814A JP 2012138084 A JP2012138084 A JP 2012138084A JP 2012138084 A JP2012138084 A JP 2012138084A JP 2014001814 A JP2014001814 A JP 2014001814A
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
inner ring
axis
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012138084A
Other languages
Japanese (ja)
Inventor
Kazutaka Matsukawa
一孝 松川
Keita Nomura
啓太 野村
Kunihiko Suzuki
邦彦 鈴木
Hiroshi Takuno
博 宅野
Yasushi Kadota
康 門田
Ken Yamamoto
健 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012138084A priority Critical patent/JP2014001814A/en
Priority to EP12194963.0A priority patent/EP2602509B1/en
Priority to US13/692,130 priority patent/US8721484B2/en
Priority to CN2012105131876A priority patent/CN103133607A/en
Publication of JP2014001814A publication Critical patent/JP2014001814A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/641

Landscapes

  • Retarders (AREA)
  • General Details Of Gearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a speed reduction mechanism capable of reducing cost and extending the life of a bearing, and to provide a motor rotational force transmission device including the same.SOLUTION: In a reduction gear transmission mechanism 5, a plurality of output members 53 is configured so that a dimension obtained by adding up a fitting gap formed between an outer peripheral surface of the output member and a needle roller bearing 55, a fitting gap formed between the needle roller bearing 55 and each inner peripheral surface of a plurality of pin insertion holes 50b and a radially inner gap of the needle roller bearing 55 is smaller than a dimension obtained by adding up a fitting gap formed between a ball bearing 54 and an outer peripheral surface of an eccentric part 42a, a fitting gap formed between the ball bearing 54 and an inner peripheral surface of a center hole 50a, and a radially inner gap of the ball bearing 54. The output members are arranged in a position so as to be subjected to the elastic force exerted by an elastic member 59 in a radial direction from a differential case 30.

Description

本発明は、例えば駆動源として電動モータを有する電気自動車に用いて好適な減速機構及びこれを備えたモータ回転力伝達装置に関する。   The present invention relates to a speed reduction mechanism suitable for use in, for example, an electric vehicle having an electric motor as a drive source, and a motor rotational force transmission device including the same.

従来のモータ回転力伝達装置には、モータ回転力を発生させる電動モータ、及びこの電動モータのモータ回転力を減速して駆動力を差動機構に伝達する減速伝達機構を備え、自動車に搭載されたものがある(例えば特許文献1参照)。   A conventional motor rotational force transmission device includes an electric motor that generates a motor rotational force, and a deceleration transmission mechanism that decelerates the motor rotational force of the electric motor and transmits a driving force to a differential mechanism. (See, for example, Patent Document 1).

電動モータは、車載バッテリの電力によって回転するモータ軸を有し、減速伝達機構の軸線上に配置されている。モータ軸の外周面には、その軸線に所定の偏心量をもって偏心する軸線を中心軸線とする偏心部が一体に設けられている。   The electric motor has a motor shaft that is rotated by the electric power of the in-vehicle battery, and is disposed on the axis of the deceleration transmission mechanism. On the outer peripheral surface of the motor shaft, an eccentric portion having a central axis that is an axis that is eccentric with a predetermined amount of eccentricity is integrally provided.

減速伝達機構は、その軸線の周囲に位置する一対の減速伝達部、及び一対の減速伝達部を収容するハウジングを有し、電動モータと差動機構(デフケース)との間に介在して配置され、かつモータ軸及びデフケースに連結されている。一方の減速伝達部はモータ軸に、また他方の減速伝達部はデフケースにそれぞれ連結されている。   The deceleration transmission mechanism has a pair of deceleration transmission units located around the axis thereof and a housing that houses the pair of deceleration transmission units, and is disposed between the electric motor and the differential mechanism (difference case). And connected to the motor shaft and the differential case. One deceleration transmission unit is coupled to the motor shaft, and the other deceleration transmission unit is coupled to the differential case.

以上の構成により、電動モータのモータ軸が車載バッテリの電力によって回転し、これに伴いモータ回転力が電動モータから減速伝達機構を介して差動機構に伝達され、この差動機構で左右の車輪に配分される。   With the above configuration, the motor shaft of the electric motor is rotated by the electric power of the vehicle-mounted battery, and accordingly, the motor rotational force is transmitted from the electric motor to the differential mechanism via the speed reduction transmission mechanism. To be distributed.

ところで、この種のモータ回転力伝達装置の減速伝達部は、電動モータのモータ軸の回転によって公転運動を行う円板状の一対の公転部材、これら公転部材に自転力を付与する複数の外ピン、及びこれら外ピンの内側で公転部材の自転力を差動機構に回転力として出力する複数の内ピンを有している。   By the way, the deceleration transmission part of this type of motor rotational force transmission device includes a pair of disk-shaped revolving members that revolve by rotating the motor shaft of the electric motor, and a plurality of outer pins that impart a revolving force to these revolving members. And a plurality of inner pins for outputting the rotational force of the revolving member as a rotational force to the differential mechanism inside the outer pins.

一対の公転部材は、その中心軸線方向に開口する中心孔、及びこの中心孔の中心軸線の回りに等間隔をもって並列する複数のピン挿通孔を有し、モータ軸の偏心部に軸受(カム側の軸受)を介して回転可能に支持されている。   The pair of revolving members have a central hole that opens in the direction of the central axis, and a plurality of pin insertion holes that are arranged at equal intervals around the central axis of the central hole. Through a bearing).

複数の外ピンは、モータ軸の軸線回りに等間隔をもって配置され、かつ減速伝達機構のハウジングに取り付けられている。   The plurality of outer pins are arranged at equal intervals around the axis of the motor shaft and are attached to the housing of the speed reduction transmission mechanism.

複数の内ピンは、公転部材における複数のピン挿通孔を挿通し、モータ軸の軸線回りに等間隔をもって配置され、かつデフケースに取り付けられている。複数の内ピンには、一対の公転部材における複数のピン挿通孔の内周面との間の接触抵抗を低減するための軸受(ピン側の軸受)が取り付けられている。   The plurality of inner pins are inserted through a plurality of pin insertion holes in the revolving member, arranged at equal intervals around the axis of the motor shaft, and attached to the differential case. A bearing (pin side bearing) for reducing contact resistance between the inner peripheral surfaces of the plurality of pin insertion holes in the pair of revolution members is attached to the plurality of inner pins.

特開2007−218407号公報JP 2007-218407 A

特許文献1に示すモータ回転力伝達装置においては、複数の外ピンを用意する必要があるばかりか、公転部材の外周部を複雑な形状にする必要があり、不経済である。   In the motor rotational force transmission device shown in Patent Document 1, it is not only necessary to prepare a plurality of outer pins, but the outer peripheral portion of the revolving member needs to have a complicated shape, which is uneconomical.

そこで、公転部材を外歯歯車とするとともに、公転部材に自転力を付与するための自転力付与部材を内歯歯車とし、この内歯歯車の歯数を外歯歯車の歯数よりも大きい歯数として上記した不経済を解消することが考えられる。   Therefore, the revolution member is an external gear, and the rotation force imparting member for imparting a rotation force to the revolution member is an internal gear, and the number of teeth of the internal gear is larger than the number of teeth of the external gear. It is conceivable to eliminate the above-mentioned uneconomical as a number.

しかし、このような外歯歯車と内歯歯車とによる減速機を自動車のモータ回転力伝達装置に用いると、公転部材である外歯歯車の公転速度が比較的高くなるため、出力時に公転部材からカム側の軸受に遠心力による荷重が加わる。この結果、カム側の軸受として耐久性の高い軸受を用いる必要が生じ、コストが嵩んでしまう。また、カム側の軸受に遠心力による荷重が加わることは、カム側の軸受の寿命が低下するという問題も生じてしまう。   However, when such a reduction gear composed of external gears and internal gears is used in a motor torque transmission device of an automobile, the revolution speed of the external gear, which is a revolution member, becomes relatively high. A load due to centrifugal force is applied to the bearing on the cam side. As a result, it is necessary to use a highly durable bearing as the cam-side bearing, which increases costs. Further, when a load due to centrifugal force is applied to the cam-side bearing, there is a problem that the life of the cam-side bearing is reduced.

従って、本発明の目的は、コストの低廉化及び軸受の高寿命化を図ることができる減速機構及びこれを備えたモータ回転力伝達装置を提供することにある。   Accordingly, an object of the present invention is to provide a speed reduction mechanism capable of reducing the cost and extending the life of a bearing, and a motor torque transmission device including the speed reduction mechanism.

本発明は、上記目的を達成するために、(1)〜(9)の減速機構及びこれを備えたモータ回転力伝達装置を提供する。   In order to achieve the above object, the present invention provides a speed reduction mechanism (1) to (9) and a motor torque transmission device including the speed reduction mechanism.

(1)第1の軸線の回りに回転し、前記第1の軸線から偏心する第2の軸線を中心軸線とする偏心部を有する回転軸と、前記回転軸の外周囲に配置され、第3の軸線を中心軸線とする中心孔、及び前記第3の軸線の回りに等間隔をもって並列する複数の貫通孔を有するとともに、前記中心孔の内周面と前記偏心部の外周面との間に第1の軸受を介在させた外歯歯車からなる入力部材と、前記入力部材に噛合し、前記外歯歯車の歯数よりも大きい歯数をもつ内歯歯車からなる自転力付与部材と、前記自転力付与部材によって前記入力部材に付与された自転力を受けて出力対象にその回転力として出力し、第2の軸受を外周囲に有して前記複数の貫通孔をそれぞれ挿通する複数の出力部材とを備え、前記複数の出力部材は、その外周面と前記第2の軸受との間に形成されるはめあいすきま、前記第2の軸受と前記複数の貫通孔の内周面との間に形成されるはめあいすきま、及び前記第2の軸受のラジアル内部すきまを合計した寸法S´が前記第1の軸受と前記偏心部の外周面との間に形成されるはめあいすきま、前記第1の軸受と前記中心孔の内周面との間に形成されるはめあいすきま、及び前記第1の軸受のラジアル内部すきまを合計した寸法Sよりも小さくなり、かつ前記出力対象側から径方向に弾性部材による弾性力を受ける位置に配置されている減速機構。 (1) A rotary shaft that rotates around the first axis and has an eccentric portion having a second axis that is eccentric from the first axis as a central axis, and an outer periphery of the rotary shaft; And a plurality of through holes arranged in parallel at equal intervals around the third axis, and between the inner peripheral surface of the central hole and the outer peripheral surface of the eccentric part. An input member composed of an external gear with a first bearing interposed therein, a rotation force applying member meshed with the input member and composed of an internal gear having a number of teeth larger than the number of teeth of the external gear, A plurality of outputs that receive the rotation force applied to the input member by the rotation force application member and output the rotation force to the output object, and have the second bearing on the outer periphery and pass through the plurality of through holes, respectively. A plurality of output members, the outer peripheral surface and the second output member. The total dimension of the fit clearance formed between the bearing, the fit clearance formed between the second bearing and the inner peripheral surfaces of the plurality of through holes, and the radial internal clearance of the second bearing. S 'is a fit clearance formed between the first bearing and the outer peripheral surface of the eccentric portion, a fit clearance formed between the first bearing and the inner peripheral surface of the center hole, and the A reduction mechanism that is smaller than a total dimension S of radial internal clearances of the first bearing and that is disposed at a position that receives an elastic force from an elastic member in a radial direction from the output target side.

(2)上記(1)に記載の減速機構において、前記複数の出力部材は、それぞれが前記入力部材を介して対向する前記出力対象の構成要素としての一対の鍔部を挿通し、前記一対の鍔部との間に前記弾性部材を介在させる位置に配置されている。 (2) In the speed reduction mechanism according to (1), the plurality of output members are inserted through a pair of flanges as components of the output target, which are opposed to each other via the input member, and the pair of output members It arrange | positions in the position which interposes the said elastic member between a collar part.

(3)上記(1)又は(2)に記載の減速機構において、前記第1の軸受は、前記偏心部の外周囲に配置された内輪、前記内輪の外周囲に配置された外輪、及び前記外輪と前記内輪との間に介在して配置された転動体を有し、前記内輪の内径から前記偏心部の外径を減算した寸法をDとするとともに、前記中心孔の内径から前記外輪の外径を減算した寸法をdとし、かつ前記第1の軸受におけるラジアル内部すきまの運転すきまをtとすると、前記寸法SがS=D+d+t,S=d+t,S=D+t及びS=tのいずれかに設定されている。 (3) In the speed reduction mechanism according to (1) or (2), the first bearing includes an inner ring disposed around an outer periphery of the eccentric portion, an outer ring disposed around an outer periphery of the inner ring, and the A rolling element disposed between an outer ring and the inner ring; a dimension obtained by subtracting an outer diameter of the eccentric portion from an inner diameter of the inner ring; The dimension S is any of S = D + d + t, S = d + t, S = D + t and S = t, where d is the dimension obtained by subtracting the outer diameter and t is the operating clearance of the radial internal clearance in the first bearing. Is set to

(4)上記(1)又は(2)に記載の減速機構において、前記第1の軸受は、前記偏心部の外周面に形成された内輪軌道面を含むとともに、前記内輪軌道面の外周囲に配置された外輪、及び前記外輪と前記内輪軌道面との間に介在して配置された転動体を有し、前記中心孔の内径から前記外輪の外径を減算した寸法をdとするとともに、前記第1の軸受におけるラジアル内部すきまの運転すきまをtとすると、前記寸法SがS=d+t又はS=tに設定されている。 (4) In the speed reduction mechanism according to (1) or (2), the first bearing includes an inner ring raceway surface formed on an outer peripheral surface of the eccentric portion, and is disposed on an outer periphery of the inner ring raceway surface. The outer ring disposed, and a rolling element disposed between the outer ring and the inner ring raceway surface, and a dimension obtained by subtracting the outer diameter of the outer ring from the inner diameter of the center hole, When the operating clearance of the radial internal clearance in the first bearing is t, the dimension S is set to S = d + t or S = t.

(5)上記(1)又は(2)に記載の減速機構において、前記第1の軸受は、前記中心孔の内周面に形成された外輪軌道面を含むとともに、前記外輪軌道面の内周囲に配置された内輪、及び前記内輪と前記外輪軌道面との間に介在して配置された転動体を有し、前記内輪の内径から前記偏心部の外径を減算した寸法をDとするとともに、前記第1の軸受におけるラジアル内部すきまの運転すきまをtとすると、前記寸法SがS=D+t又はS=tに設定されている。 (5) In the reduction mechanism according to (1) or (2), the first bearing includes an outer ring raceway surface formed on an inner circumferential surface of the center hole, and an inner periphery of the outer ring raceway surface. And D is a dimension obtained by subtracting the outer diameter of the eccentric portion from the inner diameter of the inner ring, and an inner ring disposed on the inner ring, and rolling elements disposed between the inner ring and the outer ring raceway surface. When the operating clearance of the radial internal clearance in the first bearing is t, the dimension S is set to S = D + t or S = t.

(6)上記(1)又は(2)に記載の減速機構において、前記第1の軸受は、前記偏心部の外周面に形成された内輪軌道面、及び前記中心孔の内周面に形成された外輪軌道面を含むとともに、前記外輪軌道面と前記内輪軌道面との間に介在して配置された転動体を有し、前記第1の軸受におけるラジアル内部すきまの運転すきまをtとすると、前記寸法SがS=tに設定されている。 (6) In the reduction mechanism according to (1) or (2), the first bearing is formed on an inner ring raceway surface formed on an outer peripheral surface of the eccentric portion and an inner peripheral surface of the center hole. An outer ring raceway surface, and a rolling element disposed between the outer ring raceway surface and the inner ring raceway surface, where t is the operating clearance of the radial internal clearance in the first bearing, The dimension S is set to S = t.

(7)上記(1)又は(2)に記載の減速機構において、前記第2の軸受は、前記出力部材の外周面に形成された内輪軌道面を含むとともに、前記内輪軌道面の外周囲に配置された外輪、及び前記外輪と前記内輪軌道面との間に介在して配置された転動体を有し、前記外輪の外周面と前記複数の貫通孔の内周面との間に形成されるはめあいすきまをSとするとともに、前記第2の軸受におけるラジアル内部すきまの運転すきまをSとすると、前記寸法S´がS´=S+S又はS´=Sに設定されている。 (7) In the speed reduction mechanism according to (1) or (2), the second bearing includes an inner ring raceway surface formed on an outer peripheral surface of the output member, and is disposed around an outer periphery of the inner ring raceway surface. An outer ring disposed, and a rolling element disposed between the outer ring and the inner ring raceway surface, and formed between an outer peripheral surface of the outer ring and inner peripheral surfaces of the plurality of through holes. the Ruhame Ai gap with the S 1, the when the operating clearance of the radial internal clearance in the second bearing and S 2, the dimensions S'is set to S'= S 1 + S 2 or S'= S 2 Yes.

(8)上記(1)又は(2)に記載の減速機構において、前記第2の軸受は、前記出力部材の外周囲に配置された内輪、前記内輪の外周囲に配置された外輪、及び前記外輪と前記内輪との間に介在して配置された転動体を有し、前記出力部材の外周面と前記内輪の内周面との間に形成されるはめあいすきまをSとするとともに、前記外輪の外周面と前記複数の貫通孔の内周面との間に形成されるはめあいすきまをSとし、かつ前記第2の軸受におけるラジアル内部すきまの運転すきまをSとすると、前記寸法S´がS´=S+S+S,S´=S+S,S´=S+S又はS´=Sに設定されている。 (8) In the speed reduction mechanism according to (1) or (2), the second bearing includes an inner ring disposed on an outer periphery of the output member, an outer ring disposed on an outer periphery of the inner ring, and the The rolling element is disposed between an outer ring and the inner ring, and a fitting clearance formed between the outer peripheral surface of the output member and the inner peripheral surface of the inner ring is S 0, and When the fitting Aisukima formed between the inner circumferential surface of the outer peripheral surface and the plurality of through-holes of the outer ring and S 1, and the operating clearance of the radial internal clearance in the second bearing and S 2, the dimension S 'Is set to S ′ = S 0 + S 1 + S 2 , S ′ = S 0 + S 2 , S ′ = S 1 + S 2 or S ′ = S 2 .

(9)モータ回転力を発生させる電動モータと、前記電動モータの前記モータ回転力を減速して駆動力を出力する減速機構とを備えたモータ回転力伝達装置において、前記減速機構は、上記(1)乃至(8)のいずれかに記載の減速機構であるモータ回転力伝達装置。 (9) In a motor rotational force transmission device comprising: an electric motor that generates a motor rotational force; and a speed reduction mechanism that decelerates the motor rotational force of the electric motor and outputs a driving force. 1) A motor torque transmission device, which is the speed reduction mechanism according to any one of (8).

本発明によると、コストの低廉化及び軸受の高寿命化を図ることができる。   According to the present invention, the cost can be reduced and the life of the bearing can be extended.

本発明の第1の実施の形態に係るモータ回転力伝達装置が搭載された車両の概略を説明するために示す平面図。The top view shown in order to demonstrate the outline of the vehicle carrying the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置を説明するために示す断面図。Sectional drawing shown in order to demonstrate the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置の減速機構を説明するために模式化して示す断面図。FIG. 3 is a cross-sectional view schematically showing the speed reduction mechanism of the motor torque transmission device according to the first embodiment of the present invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の要部を模式化して示す断面図。Sectional drawing which shows typically the principal part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の支持状態と出力部材に対する第2の軸受の取付状態とを示す断面図。Sectional drawing which shows the support state of the input member with respect to the eccentric part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention, and the attachment state of the 2nd bearing with respect to an output member. (a)及び(b)は、本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の出力部材に対する入力部材の動作状態を簡略化して示す断面図。(a)は入力部材の初期位置を、また(b)は入力部材の移動位置をそれぞれ示す。(A) And (b) is sectional drawing which simplifies and shows the operation state of the input member with respect to the output member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. (A) shows the initial position of the input member, and (b) shows the movement position of the input member. (a)及び(b)は、本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の出力部材に対する第2の軸受の外輪の動作状態を簡略化して示す断面図。(a)は外輪の初期位置を、また(b)は外輪の移動位置をそれぞれ示す。(A) And (b) is sectional drawing which simplifies and shows the operation state of the outer ring of the 2nd bearing with respect to the output member of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. (A) shows the initial position of the outer ring, and (b) shows the movement position of the outer ring. (a)及び(b)は、本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の動作状態を簡略化して示す断面図。(a)は入力部材の初期位置を、また(b)は入力部材の移動位置をそれぞれ示す。(A) And (b) is sectional drawing which simplifies and shows the operation state of the input member with respect to the eccentric part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention. (A) shows the initial position of the input member, and (b) shows the movement position of the input member. (a)及び(b)は、本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構に用いる弾性部材を示す斜視図とその取付状態を示す断面図。(a)は断面図を、また(b)は斜視図をそれぞれ示す。(A) And (b) is a perspective view which shows the elastic member used for the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 1st Embodiment of this invention, and sectional drawing which shows the attachment state. (A) shows a sectional view, and (b) shows a perspective view. 本発明の第2の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の支持状態と出力部材に対する第2の軸受の取付状態とを簡略化して示す断面図。Sectional drawing which simplifies and shows the support state of the input member with respect to the eccentric part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 2nd Embodiment of this invention, and the attachment state of the 2nd bearing with respect to an output member. 本発明の第3の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の支持状態と出力部材に対する第2の軸受の取付状態とを簡略化して示す断面図。Sectional drawing which simplifies and shows the support state of the input member with respect to the eccentric part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 3rd Embodiment of this invention, and the attachment state of the 2nd bearing with respect to an output member. 本発明の第4の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の支持状態と出力部材に対する第2の軸受の取付状態とを簡略化して示す断面図。Sectional drawing which simplifies and shows the support state of the input member with respect to the eccentric part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on the 4th Embodiment of this invention, and the attachment state of the 2nd bearing with respect to an output member. 本発明の第1の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の支持状態と出力部材に対する第2の軸受の取付状態とを簡略化してその変形例(1)を示す断面図。In the motor rotational force transmission apparatus according to the first embodiment of the present invention, the support state of the input member with respect to the eccentric portion of the speed reduction mechanism and the mounting state of the second bearing with respect to the output member are simplified and modified example (1). FIG. 本発明の第2の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の支持状態と出力部材に対する第2の軸受の取付状態とを簡略化してその変形例(2)を示す断面図。Modified example (2) in which the support state of the input member with respect to the eccentric portion of the speed reduction mechanism and the attachment state of the second bearing with respect to the output member are simplified in the motor torque transmission device according to the second embodiment of the present invention. FIG. 本発明の第3の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の支持状態と出力部材に対する第2の軸受の取付状態とを簡略化してその変形例(3)を示す断面図。Modified example (3) in which the support state of the input member relative to the eccentric portion of the speed reduction mechanism and the attachment state of the second bearing relative to the output member are simplified in the motor torque transmission device according to the third embodiment of the present invention. FIG. 本発明の第4の実施の形態に係るモータ回転力伝達装置における減速機構の偏心部に対する入力部材の支持状態と出力部材に対する第2の軸受の取付状態とを簡略化してその変形例(4)を示す断面図。Modified example (4) in which the support state of the input member with respect to the eccentric portion of the speed reduction mechanism and the attachment state of the second bearing with respect to the output member are simplified in the motor torque transmission device according to the fourth embodiment of the present invention. FIG. 本発明の各実施の形態に係るモータ回転力伝達装置における減速機構の要部の変形例を模式化して示す断面図。Sectional drawing which shows typically the modification of the principal part of the deceleration mechanism in the motor rotational force transmission apparatus which concerns on each embodiment of this invention.

[第1の実施の形態]
以下、本発明の第1の実施の形態に係るモータ回転力伝達装置につき、図面を参照して詳細に説明する。
[First embodiment]
Hereinafter, a motor torque transmission device according to a first embodiment of the present invention will be described in detail with reference to the drawings.

図1は四輪駆動車の概略を示す。図1に示すように、四輪駆動車101は、駆動源をエンジンとする前輪側の動力系、及び駆動源を電動モータとする後輪側の動力系が用いられ、モータ回転力伝達装置1,エンジン102,トランスアクスル103,一対の前輪104及び一対の後輪105を備えている。   FIG. 1 schematically shows a four-wheel drive vehicle. As shown in FIG. 1, a four-wheel drive vehicle 101 uses a front-wheel-side power system that uses a drive source as an engine, and a rear-wheel-side power system that uses a drive source as an electric motor. , An engine 102, a transaxle 103, a pair of front wheels 104, and a pair of rear wheels 105.

モータ回転力伝達装置1は、四輪駆動車101における後輪側の動力系に配置され、かつ四輪駆動車101の車体(図示せず)に取り付けられている。   The motor torque transmission device 1 is disposed in a power system on the rear wheel side of the four-wheel drive vehicle 101 and is attached to a vehicle body (not shown) of the four-wheel drive vehicle 101.

そして、モータ回転力伝達装置1は、電動モータ4(後述)のモータ回転力に基づく駆動力を一対の後輪105に伝達し得るように構成されている。これにより、電動モータ4のモータ回転力が減速伝達機構5及びリヤディファレンシャル3(共に後述)を介してリヤアクスルシャフト106(一対の後輪105)に出力され、一対の後輪105が駆動される。モータ回転力伝達装置1等の詳細については後述する。   The motor rotational force transmission device 1 is configured to transmit a driving force based on the motor rotational force of the electric motor 4 (described later) to the pair of rear wheels 105. As a result, the motor rotational force of the electric motor 4 is output to the rear axle shaft 106 (a pair of rear wheels 105) via the deceleration transmission mechanism 5 and the rear differential 3 (both described later), and the pair of rear wheels 105 are driven. Details of the motor rotational force transmission device 1 and the like will be described later.

エンジン102は、四輪駆動車101における前輪側の動力系に配置されている。これにより、エンジン102の駆動力がトランスアクスル103を介してフロントアクスルシャフト107(一対の前輪104)に出力され、一対の前輪104が駆動される。   The engine 102 is disposed in the power system on the front wheel side of the four-wheel drive vehicle 101. As a result, the driving force of the engine 102 is output to the front axle shaft 107 (a pair of front wheels 104) via the transaxle 103, and the pair of front wheels 104 are driven.

(モータ回転力伝達装置1の全体構成)
図2はモータ回転力伝達装置の全体を示す。図2に示すように、モータ回転力伝達装置1は、リヤアクスルシャフト106(図1に示す)の軸線(第1の軸線としての回転軸線O)を中心軸線とするハウジング2と、一対の後輪105(図1に示す)に駆動力を配分する駆動力伝達対象としてのリヤディファレンシャル3と、リヤディファレンシャル3を作動させるためのモータ回転力を発生させる電動モータ4と、電動モータ4のモータ回転力を減速して駆動力をリヤディファレンシャル3に伝達する減速伝達機構5とから大略構成されている。
(Whole structure of the motor torque transmission device 1)
FIG. 2 shows the entire motor torque transmission device. As shown in FIG. 2, the motor rotational force transmission device 1 includes a housing 2 having a central axis that is an axis of the rear axle shaft 106 (shown in FIG. 1) (rotational axis O 1 as the first axis), and a pair of rear The rear differential 3 as a driving force transmission target for distributing the driving force to the wheels 105 (shown in FIG. 1), the electric motor 4 for generating the motor rotational force for operating the rear differential 3, and the motor rotation of the electric motor 4 It is generally composed of a deceleration transmission mechanism 5 that decelerates the force and transmits the driving force to the rear differential 3.

(ハウジング2の構成)
ハウジング2は、後述する自転力付与部材52の他、リヤディファレンシャル3を収容する第1のハウジングエレメント20、電動モータ4を収容する第2のハウジングエレメント21、及び第2のハウジングエレメント21の片側開口部(第1のハウジングエレメント20側の開口部とは反対側の開口部)を閉塞する第3のハウジングエレメント22を有し、車体に配置されている。
(Configuration of housing 2)
The housing 2 includes a rotation force applying member 52 to be described later, a first housing element 20 that houses the rear differential 3, a second housing element 21 that houses the electric motor 4, and a one-side opening of the second housing element 21. And a third housing element 22 that closes a portion (an opening on the side opposite to the opening on the first housing element 20 side).

第1のハウジングエレメント20は、ハウジング2の一方側(図2では左側)に配置され、全体が第2のハウジングエレメント21側に開口する段状の有底円筒部材によって形成されている。第1のハウジングエレメント20の底部には、リヤアクスルシャフト106(図1に示す)を挿通させるシャフト挿通孔20aが設けられている。第1のハウジングエレメント20の開口端面には、第2のハウジングエレメント21側に突出する円環状の凸部23が一体に設けられている。凸部23の外周面は、第1のハウジングエレメント20の最大外径よりも小さい外径をもち、かつ回転軸線Oを中心軸線とする円周面で形成されている。第1のハウジングエレメント20の内周面は、リヤアクスルシャフト106の外周面との間にシャフト挿通孔20aを封止するシール部材24が介在して配置されている。 The first housing element 20 is disposed on one side of the housing 2 (left side in FIG. 2), and is entirely formed by a stepped bottomed cylindrical member that opens to the second housing element 21 side. A shaft insertion hole 20 a through which the rear axle shaft 106 (shown in FIG. 1) is inserted is provided at the bottom of the first housing element 20. On the opening end surface of the first housing element 20, an annular convex portion 23 that protrudes toward the second housing element 21 is integrally provided. The outer peripheral surface of the convex portion 23 is formed by a circumferential surface having an outer diameter smaller than the maximum outer diameter of the first housing element 20 and having the rotation axis O 1 as a central axis. The inner peripheral surface of the first housing element 20 is disposed between the outer peripheral surface of the rear axle shaft 106 and a seal member 24 that seals the shaft insertion hole 20a.

第2のハウジングエレメント21は、ハウジング2の軸線方向中間部に配置され、全体が回転軸線Oの両方向に開口する無底円筒部材によって形成されている。第2のハウジングエレメント21の片側開口部(第1のハウジングエレメント20側の開口部)には、電動モータ4と減速伝達機構5との間に介在する段状の内フランジ21aが一体に設けられている。内フランジ21aの内周面には、レース取付用の円環部材25が取り付けられている。第2のハウジングエレメント21の片側開口端面(第1のハウジングエレメント20側の開口端面)には、第1のハウジングエレメント20側に突出する円環状の凸部27が一体に設けられている。凸部27の外周面は、第2のハウジングエレメント21の最大外径よりも小さく、かつ凸部23の外径と略同一の外径をもち、回転軸線Oを中心軸線とする円周面で形成されている。 The second housing element 21 is disposed at an intermediate portion in the axial direction of the housing 2, and is entirely formed of a bottomless cylindrical member that opens in both directions of the rotation axis O 1 . A stepped inner flange 21 a interposed between the electric motor 4 and the speed reduction transmission mechanism 5 is integrally provided at one side opening of the second housing element 21 (opening on the first housing element 20 side). ing. An annular member 25 for attaching a race is attached to the inner peripheral surface of the inner flange 21a. An annular convex portion 27 that protrudes toward the first housing element 20 is integrally provided on one side opening end surface of the second housing element 21 (opening end surface on the first housing element 20 side). The outer peripheral surface of the convex portion 27 is smaller than the maximum outer diameter of the second housing element 21 and has an outer diameter substantially the same as the outer diameter of the convex portion 23, and has a rotational axis O 1 as a central axis. It is formed with.

第3のハウジングエレメント22は、ハウジング2の他方側(図2では右側)に配置され、全体が第2のハウジングエレメント21側に開口する段状の有底円筒部材によって形成されている。第3のハウジングエレメント22の底部には、リヤアクスルシャフト106を挿通させるシャフト挿通孔22aが設けられている。シャフト挿通孔22aの内側開口周縁には、電動モータ4側に突出するステータ取付用の円筒部22bが一体に設けられている。第3のハウジングエレメント22の内周面は、リヤアクスルシャフト106の外周面との間にシャフト挿通孔22aを封止するシール部材28が介在して配置されている。   The third housing element 22 is disposed on the other side (the right side in FIG. 2) of the housing 2 and is entirely formed of a stepped bottomed cylindrical member that opens to the second housing element 21 side. A shaft insertion hole 22 a through which the rear axle shaft 106 is inserted is provided at the bottom of the third housing element 22. A cylindrical portion 22b for attaching a stator that protrudes toward the electric motor 4 is integrally provided on the inner opening periphery of the shaft insertion hole 22a. The inner peripheral surface of the third housing element 22 is disposed between the outer peripheral surface of the rear axle shaft 106 and a seal member 28 that seals the shaft insertion hole 22a.

(リヤディファレンシャル3の構成)
リヤディファレンシャル3は、デフケース(出力対象)30,ピニオンギヤシャフト31,一対のピニオンギヤ32及び一対のサイドギヤ33を有するベベルギヤ式の差動機構からなり、モータ回転力伝達装置1の一方側(図2では左側)に配置されている。
(Configuration of rear differential 3)
The rear differential 3 includes a differential mechanism of a bevel gear type having a differential case (output target) 30, a pinion gear shaft 31, a pair of pinion gears 32, and a pair of side gears 33, and is on one side (left side in FIG. 2) of the motor rotational force transmission device 1. ).

これにより、デフケース30の回転力がピニオンギヤシャフト31からピニオンギヤ32を介してサイドギヤ33に配分され、さらにサイドギヤ33からリヤアクスルシャフト106(図1に示す)を介して左右の後輪105(図1に示す)に伝達される。   As a result, the rotational force of the differential case 30 is distributed from the pinion gear shaft 31 to the side gear 33 via the pinion gear 32, and from the side gear 33 to the left and right rear wheels 105 (shown in FIG. 1) via the rear axle shaft 106 (shown in FIG. 1). ).

一方、左右の後輪105間に駆動抵抗差が発生すると、デフケース30の回転力がピニオンギヤ32の自転によって左右の後輪105に差動配分される。   On the other hand, when a driving resistance difference occurs between the left and right rear wheels 105, the rotational force of the differential case 30 is differentially distributed to the left and right rear wheels 105 by the rotation of the pinion gear 32.

デフケース30は、回転軸線(第6の軸線)O(図5に示す)上に配置され、かつ第1のハウジングエレメント20に玉軸受34を介して、また電動モータ4のモータ軸(回転軸)42に玉軸受35を介して回転可能に支持されている。そして、デフケース30は、電動モータ4のモータ回転力に基づく駆動力を減速伝達機構5から受けて回転軸線Oの回りに回転する。 The differential case 30 is disposed on a rotation axis (sixth axis) O 6 (shown in FIG. 5), and is connected to the first housing element 20 via a ball bearing 34 and the motor shaft (rotation shaft) of the electric motor 4. ) 42 is rotatably supported via a ball bearing 35. The differential case 30 receives the driving force based on the motor rotational force of the electric motor 4 from the deceleration transmission mechanism 5 and rotates around the rotation axis O 6 .

デフケース30には、差動機構部(ピニオンギヤシャフト31,ピニオンギヤ32及びサイドギヤ33)を収容する収容空間30a、及び収容空間30aに連通して左右のリヤアクスルシャフト106をそれぞれ挿通させる一対のシャフト挿通孔30bが設けられている。   The differential case 30 includes a housing space 30a that houses the differential mechanism (pinion gear shaft 31, pinion gear 32, and side gear 33), and a pair of shaft insertion holes 30b that communicate with the housing space 30a and through which the left and right rear axle shafts 106 are respectively inserted. Is provided.

また、デフケース30には、減速伝達機構5に対向する円環状のフランジ30cが一体に設けられている。フランジ30cには、回転軸線Oの回りに等間隔をもって並列する丸孔(ねじ孔)からなる複数(本実施の形態では6個)のピン取付孔300cが設けられている。また、フランジ30cには、ピン取付孔300cの内周面及び軸線両方向に開口する複数(本実施の形態では3個)の凹溝301c(図9(a)に示す)が設けられている。複数の凹溝301cは、弾性部材59(後述)を取り付ける取付部として機能し、ピン取付孔300cの円周方向(複数の出力部材53の軸線回り)に等間隔をもって並列する位置に配置されている。 The differential case 30 is integrally provided with an annular flange 30 c that faces the speed reduction transmission mechanism 5. The flange 30c, pin mounting hole 300c of consisting round hole in parallel at equal intervals around the rotation axis O 6 (screw hole) (six in this embodiment) is provided. Further, the flange 30c is provided with a plurality (three in this embodiment) of concave grooves 301c (shown in FIG. 9A) that open in both the inner peripheral surface of the pin mounting hole 300c and the axial direction. The plurality of concave grooves 301c function as an attachment portion for attaching an elastic member 59 (described later), and are arranged at positions arranged in parallel at equal intervals in the circumferential direction of the pin attachment hole 300c (around the axes of the plurality of output members 53). Yes.

ピニオンギヤシャフト31は、デフケース30の収容空間30aで回転軸線Oに直交する軸線L上に配置され、かつ軸線L回りの回転及び軸線L方向の移動がピン36によって規制されている。 The pinion gear shaft 31 is disposed on the axis L perpendicular to the rotation axis O 6 in the accommodation space 30 a of the differential case 30, and rotation around the axis L and movement in the axis L direction are restricted by the pin 36.

一対のピニオンギヤ32は、ピニオンギヤシャフト31に回転可能に支持され、かつデフケース30の収容空間30aに収容されている。   The pair of pinion gears 32 is rotatably supported by the pinion gear shaft 31 and is accommodated in the accommodating space 30 a of the differential case 30.

一対のサイドギヤ33は、左右のリヤアクスルシャフト106(図1に示す)をスプライン嵌合によってそれぞれ連結するシャフト連結孔33aを有し、デフケース30の収容空間30aに収容されている。そして、一対のサイドギヤ33は、そのギヤ軸を一対のピニオンギヤ32のギヤ軸に直交させ、一対のピニオンギヤ32に噛合する。   The pair of side gears 33 have shaft connecting holes 33a for connecting the left and right rear axle shafts 106 (shown in FIG. 1) by spline fitting, and are accommodated in the accommodating space 30a of the differential case 30. The pair of side gears 33 mesh with the pair of pinion gears 32 with their gear shafts orthogonal to the gear shafts of the pair of pinion gears 32.

(電動モータ4の構成)
電動モータ4は、ステータ40,ロータ41及びモータ軸42を有し、モータ回転力伝達装置1の他方側(図2では右側)に配置され、かつ回転軸線O上でリヤディファレンシャル3に減速伝達機構5を介して連結されている。また、電動モータ4は、ステータ40がECU(Electronic Control Unit:図示せず)に接続されている。そして、電動モータ4は、ステータ40がECUから制御信号を入力してリヤディファレンシャル3を作動させるためのモータ回転力をロータ41との間で発生させ、ロータ41をモータ軸42と共に回転させる。
(Configuration of electric motor 4)
Electric motor 4, the stator 40 has a rotor 41 and motor shaft 42 are disposed on the other side of the motor torque transmission device 1 (in Fig. 2 right), and reduction transmission to the rear differential 3 on the rotation axis O 1 They are connected via a mechanism 5. The electric motor 4 has a stator 40 connected to an ECU (Electronic Control Unit: not shown). In the electric motor 4, the stator 40 receives a control signal from the ECU, generates a motor rotational force for operating the rear differential 3, and rotates the rotor 41 together with the motor shaft 42.

ステータ40は、電動モータ4の外周側に配置され、かつ第2のハウジングエレメント21における内フランジ21aに取付ボルト43によって取り付けられている。   The stator 40 is disposed on the outer peripheral side of the electric motor 4 and is attached to the inner flange 21 a of the second housing element 21 by mounting bolts 43.

ロータ41は、電動モータ4の内周側に配置され、かつモータ軸42の外周面に取り付けられている。   The rotor 41 is disposed on the inner peripheral side of the electric motor 4 and is attached to the outer peripheral surface of the motor shaft 42.

モータ軸42は、回転軸線O上に配置され、かつ一方側端部が円環部材25の内周面に玉軸受44及びスリーブ45を介して、また他方側端部が第3のハウジングエレメント22の内周面に玉軸受46を介してそれぞれ回転可能に支持され、全体がリヤアクスルシャフト106(図1に示す)を挿通させる円筒状の軸部材によって形成されている。 The motor shaft 42 is disposed on the rotation axis O 1 , and has one end on the inner peripheral surface of the annular member 25 via a ball bearing 44 and a sleeve 45 and the other end on the third housing element. 22 is rotatably supported via ball bearings 46 on the inner peripheral surface, and the whole is formed by a cylindrical shaft member through which a rear axle shaft 106 (shown in FIG. 1) is inserted.

モータ軸42の一方側端部には、その回転軸線Oから偏心量δをもって偏心する軸線(第2の軸線)Oを中心軸線とする平面円形状の偏心部42a、及び回転軸線Oから偏心量δ(δ=δ=δ)をもって偏心する軸線(第2の軸線)O´を中心軸線とする平面円形状の偏心部42bが一体に設けられている。そして、一方の偏心部42aと他方の偏心部42bとは、回転軸線Oの回りに等間隔(180°)をもって並列する位置に配置されている。すなわち、一方の偏心部42aと他方の偏心部42bとは、軸線Oから回転軸線Oまでの距離と軸線O´から回転軸線Oまでの距離とを等しく、かつ軸線Oと軸線O´との間の回転軸線O回りの距離を等しくするようにモータ軸42の外周囲に配置されている。また、偏心部42aと偏心部42bとは、回転軸線Oの方向に沿って並列する位置に配置されている。 The one side end portion of the motor shaft 42, flat circular eccentric portion 42a having a center axis corresponding to the axis (second axis) O 2 eccentrically with a eccentricity [delta] 1 from the rotation axis O 1, and the rotation axis O eccentricity δ 2 (δ 1 = δ 2 = δ) axis eccentrically with a (second axis) O'2 flat circular eccentric portion 42b having a center axis corresponding to the is provided integrally from 1. Then, the one of the eccentric portion 42a and the other of the eccentric portion 42b, is disposed in a position parallel with a regular intervals (180 °) around the rotation axis O 1. That is, the one eccentric portion 42a and the other of the eccentric portion 42b, equal to the distance from the distance and the axis O'2 from the axis O 2 to the rotation axis O 1 to the rotation axis O 1, and the axis O 2 and the axis The motor shaft 42 is arranged on the outer periphery so that the distance between the O ′ 2 and the rotation axis O 1 is equal. Further, the eccentric portion 42a and the eccentric portion 42b is disposed in a position parallel along the direction of the rotation axis O 1.

モータ軸42の他方側端部には、その外周面と円筒部22bの内周面との間に介在する回転角度検出器としてのレゾルバ47が配置されている。レゾルバ47は、ステータ470及びロータ471を有し、第3のハウジングエレメント22内に収容されている。ステータ470は円筒部22bの内周面に、ロータ471はモータ軸42の外周面にそれぞれ取り付けられている。   At the other end of the motor shaft 42, a resolver 47 is disposed as a rotation angle detector interposed between the outer peripheral surface and the inner peripheral surface of the cylindrical portion 22b. The resolver 47 has a stator 470 and a rotor 471 and is accommodated in the third housing element 22. The stator 470 is attached to the inner peripheral surface of the cylindrical portion 22b, and the rotor 471 is attached to the outer peripheral surface of the motor shaft 42.

(減速伝達機構5の構成)
図3及び図4は減速伝達機構を示す。図5(a)及び(b)は入力部材の支持状態と第2の軸受の取付状態とを示す。図3及び4に示すように、減速伝達機構5は、一対の入力部材50・51,自転力付与部材52及び複数(本実施の形態では6個)の出力部材53を有し、リヤディファレンシャル3と電動モータ4(共に図2に示す)との間に介在して配置されている。そして、減速伝達機構5は、前述したように、電動モータ4のモータ回転力を減速して駆動力をリヤディファレンシャル3に伝達する。
(Configuration of deceleration transmission mechanism 5)
3 and 4 show a deceleration transmission mechanism. 5A and 5B show the support state of the input member and the attachment state of the second bearing. As shown in FIGS. 3 and 4, the speed reduction transmission mechanism 5 includes a pair of input members 50, 51, a rotation force applying member 52, and a plurality (six in this embodiment) of output members 53, and the rear differential 3 And the electric motor 4 (both shown in FIG. 2). As described above, the deceleration transmission mechanism 5 decelerates the motor rotational force of the electric motor 4 and transmits the driving force to the rear differential 3.

一方の入力部材50は、図4に示すように、軸線(第3の軸線)Oを中心軸線とする中心孔50aを有する外歯歯車からなり、他方の入力部材51のリヤディファレンシャル3(図2に示す)側に配置され、かつ中心孔50aの内周面と偏心部42aの外周面との間に第1の軸受としての玉軸受54を介在させてモータ軸42に回転可能に支持されている。そして、一方の入力部材50は、電動モータ4からモータ回転力を受けて偏心量δをもつ矢印m,m(図3に示す)方向の円運動(回転軸線O回りの公転運動)を行う。玉軸受54は、その内外に配置された2つのレースとしての内輪540,外輪541、及び内輪540と外輪541との間で転動する転動体542を有する。内輪540は偏心部42aの外周面に、また外輪541は中心孔50aの内周面にそれぞれモータ軸42の径方向に空隙(隙間)をもって取り付けられている。すなわち、内輪540は偏心部42aの外周面に、また外輪541は中心孔50aの内周面にそれぞれすきまばめによって取り付けられている。なお、図4においては、一方の入力部材50,内輪540,外輪541及び転動体542に遠心力Pが作用した状態を示す。 As shown in FIG. 4, one input member 50 is formed of an external gear having a center hole 50a having an axis (third axis) O 3 as a center axis, and the rear differential 3 (FIG. 2) and a ball bearing 54 as a first bearing is interposed between the inner peripheral surface of the center hole 50a and the outer peripheral surface of the eccentric portion 42a so as to be rotatably supported by the motor shaft 42. ing. One input member 50 receives a motor rotational force from the electric motor 4 and performs a circular motion in the directions of arrows m 1 and m 2 (shown in FIG. 3) having an eccentricity δ (revolving motion about the rotation axis O 1 ). I do. The ball bearing 54 includes an inner ring 540 and an outer ring 541 as two races arranged inside and outside thereof, and a rolling element 542 that rolls between the inner ring 540 and the outer ring 541. The inner ring 540 is attached to the outer peripheral surface of the eccentric portion 42a, and the outer ring 541 is attached to the inner peripheral surface of the center hole 50a with a gap (gap) in the radial direction of the motor shaft 42, respectively. That is, the inner ring 540 is attached to the outer peripheral surface of the eccentric portion 42a, and the outer ring 541 is attached to the inner peripheral surface of the center hole 50a by clearance fitting. In FIG. 4, showing a state where the centrifugal force P 1 is applied to one input member 50, an inner ring 540, outer ring 541 and the rolling elements 542.

一方の入力部材50には、軸線O回りに等間隔をもって並列する複数(本実施の形態では6個)のピン挿通孔(貫通孔)50bが設けられている。ピン挿通孔50bの孔径は、出力部材53の外径に第2の軸受としての針状ころ軸受55の外径を加えた寸法よりも大きい寸法に設定されている。針状ころ軸受55の外径は、玉軸受54の外径よりも小さい寸法に設定されている。一方の入力部材50の外周面には、インボリュート歯形をもつ外歯50cが設けられている。 On one of the input member 50, the pin insertion hole (through hole) 50b of the plurality (six in this embodiment) in parallel at equal intervals in the axial line O 3 about is provided. The hole diameter of the pin insertion hole 50b is set to be larger than the dimension obtained by adding the outer diameter of the needle roller bearing 55 as the second bearing to the outer diameter of the output member 53. The outer diameter of the needle roller bearing 55 is set to be smaller than the outer diameter of the ball bearing 54. On the outer peripheral surface of one input member 50, external teeth 50c having an involute tooth profile are provided.

外歯50cは、その両歯面(入力部材50の円周方向両歯面)が自転力付与部材52における内歯52cの両歯面(自転力付与部材52の円周方向両歯面)に対する公転力付与面及び自転力受面として機能する。外歯50cの歯数Zは例えばZ=195に設定されている。 The external teeth 50c have both tooth surfaces (both circumferential tooth surfaces of the input member 50) with respect to both tooth surfaces of the internal teeth 52c of the rotational force applying member 52 (both circumferential tooth surfaces of the rotating force applying member 52). Functions as a revolving force application surface and a rotation force receiving surface. Number of teeth Z 1 of the external teeth 50c is set to, for example, Z 1 = 195.

他方の入力部材51は、図4に示すように、軸線(第3の軸線)O´を中心軸線とする中心孔51aを有する外歯歯車からなり、一方の入力部材50の電動モータ4(図2に示す)側に配置され、かつ中心孔51aの内周面と偏心部42bの外周面との間に第1の軸受としての玉軸受56を介在させてモータ軸42に回転可能に支持されている。そして、他方の入力部材51は、電動モータ4からモータ回転力を受けて偏心量δをもつ矢印m,m(図3に示す)方向の円運動(回転軸線O回りの公転運動)を行う。玉軸受56は、その内外に配置された2つのレースとしての内輪560,外輪561、及び内輪560と外輪561との間で転動する転動体562を有する。内輪560は偏心部42bの外周面に、また外輪561は中心孔51aの内周面にそれぞれモータ軸42の径方向に空隙(隙間)をもって取り付けられている。すなわち、内輪560は偏心部42bの外周面に、また外輪561は中心孔51aの内周面にそれぞれすきまばめによって取り付けられている。なお、図4においては、他方の入力部材51,内輪560,外輪561及び転動体562に遠心力Pが作用した状態を示す。 As shown in FIG. 4, the other input member 51 includes an external gear having a center hole 51 a having an axis (third axis) O ′ 3 as a center axis, and the electric motor 4 ( (Shown in FIG. 2), and a ball bearing 56 as a first bearing is interposed between the inner peripheral surface of the center hole 51a and the outer peripheral surface of the eccentric portion 42b so as to be rotatably supported by the motor shaft 42. Has been. The other input member 51 receives a motor rotational force from the electric motor 4 and performs a circular motion in the directions of arrows m 1 and m 2 (shown in FIG. 3) having an eccentricity δ (revolving motion around the rotation axis O 1 ). I do. The ball bearing 56 includes an inner ring 560 and an outer ring 561 as two races arranged inside and outside thereof, and a rolling element 562 that rolls between the inner ring 560 and the outer ring 561. The inner ring 560 is attached to the outer peripheral surface of the eccentric portion 42b, and the outer ring 561 is attached to the inner peripheral surface of the center hole 51a with a gap (gap) in the radial direction of the motor shaft 42, respectively. That is, the inner ring 560 is attached to the outer peripheral surface of the eccentric portion 42b, and the outer ring 561 is attached to the inner peripheral surface of the center hole 51a by clearance fitting. In FIG. 4, showing the other of the input member 51, an inner ring 560, a state where the centrifugal force P 2 is applied to the outer ring 561 and the rolling elements 562.

他方の入力部材51には、軸線O´回りに等間隔をもって並列する複数(本実施の形態では6個)のピン挿通孔(貫通孔)51bが設けられている。ピン挿通孔51bの孔径は、出力部材53の外径に第2の軸受としての針状ころ軸受57の外径を加えた寸法よりも大きい寸法に設定されている。針状ころ軸受57の外径は、玉軸受56の外径よりも小さい寸法に設定されている。他方の入力部材51の外周面には、インボリュート歯形をもつ外歯51cが設けられている。 To the other input member 51, the pin insertion hole (through hole) 51b of the plurality (six in this embodiment) in parallel at equal intervals in the axial O'3 about is provided. The hole diameter of the pin insertion hole 51b is set to be larger than the dimension obtained by adding the outer diameter of the needle roller bearing 57 as the second bearing to the outer diameter of the output member 53. The outer diameter of the needle roller bearing 57 is set to be smaller than the outer diameter of the ball bearing 56. An outer tooth 51 c having an involute tooth profile is provided on the outer peripheral surface of the other input member 51.

外歯51cは、その両歯面(入力部材51の円周方向両歯面)が自転力付与部材52における内歯52cの両歯面(自転力付与部材52の円周方向両歯面)に対する公転力付与面及び自転力受面として機能するように構成されている。外歯51cの歯数Zは例えばZ=195に設定されている。 The external teeth 51 c have both tooth surfaces (both circumferential tooth surfaces of the input member 51) with respect to both tooth surfaces of the internal teeth 52 c in the rotational force applying member 52 (both circumferential tooth surfaces of the rotating force applying member 52). It is comprised so that it may function as a revolution force provision surface and a rotation force receiving surface. Number of teeth Z 2 of the external teeth 51c is set to, for example, Z 2 = 195.

自転力付与部材52は、回転軸線Oを中心軸線とする内歯歯車からなり、第1のハウジングエレメント20と第2のハウジングエレメント21との間に介在して配置され、全体が回転軸線Oの両方向に開口してハウジング2の一部を構成する無底円筒部材によって形成されている。そして、自転力付与部材52は、一対の入力部材50,51に噛合し、電動モータ4のモータ回転力を受けて公転する一方の入力部材50に矢印n,n方向の自転力を、また他方の入力部材51に矢印l,l方向の自転力をそれぞれ付与する。 The rotation force imparting member 52 is composed of an internal gear having the rotation axis O 1 as a central axis, and is disposed between the first housing element 20 and the second housing element 21. 1 is formed by a bottomless cylindrical member that opens in both directions and constitutes a part of the housing 2. The rotation force applying member 52 meshes with the pair of input members 50 and 51, and receives the rotation force in the directions of the arrows n 1 and n 2 on one input member 50 that revolves by receiving the motor rotation force of the electric motor 4. Further, rotational forces in the directions of the arrows l 1 and l 2 are applied to the other input member 51, respectively.

自転力付与部材52の内周面には、凸部23の外周面に嵌合する第1の嵌合部52a、及び凸部27の外周面に嵌合する第2の嵌合部52bが回転軸線Oの方向に所定の間隔をもって設けられている。また、自転力付与部材52の内周面には、第1の嵌合部52aと第2の嵌合部52bとの間に介在して一方の入力部材50の外歯50c及び他方の入力部材51の外歯51cに噛合するインボリュート歯形の内歯52cが設けられている。内歯52cの歯数Zは例えばZ=208に設定されている。これにより、減速伝達機構5の減速比αがα=Z/(Z−Z)から算出される。 A first fitting portion 52 a fitted to the outer peripheral surface of the convex portion 23 and a second fitting portion 52 b fitted to the outer peripheral surface of the convex portion 27 rotate on the inner peripheral surface of the rotation force applying member 52. They are provided at a predetermined interval in the direction of the axis O 1 . Further, the external teeth 50c of one input member 50 and the other input member are interposed on the inner peripheral surface of the rotation force applying member 52 between the first fitting portion 52a and the second fitting portion 52b. An involute tooth-shaped inner tooth 52 c that meshes with the outer tooth 51 c of 51 is provided. Number of teeth Z 3 of the internal teeth 52c is set to, for example, Z 3 = 208. Accordingly, the reduction ratio α of the deceleration transmission mechanism 5 is calculated from α = Z 2 / (Z 3 −Z 2 ).

図6(a)及び(b)は第2の軸受のはめあいすきまを示す。図7(a)及び(b)は第2の軸受のラジアル内部すきまの運転すきまを示す。図8(a)及び(b)は第1の軸受のはめあいすきまとラジアル内部すきまの運転すきまを示す。図9(a)及び(b)は弾性部材とその取付状態を示す。図2及び図6〜図8に示すように、複数の出力部材53は、一方側端部にねじ部53aを有するとともに、他方側端部に頭部53bを有するボルトからなり、一方の入力部材50のピン挿通孔50b及び他方の入力部材51のピン挿通孔51bを挿通してデフケース30のピン取付孔300cにねじ部53aが取り付けられている。   6A and 6B show the fitting clearance of the second bearing. FIGS. 7A and 7B show the operating clearance of the radial internal clearance of the second bearing. FIGS. 8 (a) and 8 (b) show the operating clearance of the fitting clearance and radial internal clearance of the first bearing. 9A and 9B show an elastic member and its attached state. As shown in FIGS. 2 and 6 to 8, the plurality of output members 53 include a bolt having a screw portion 53 a at one end and a head 53 b at the other end, and one input member The threaded portion 53a is attached to the pin attachment hole 300c of the differential case 30 through the pin insertion hole 50b of 50 and the pin insertion hole 51b of the other input member 51.

また、複数の出力部材53は、頭部53bと他方の入力部材51との間に介在する円環状のスペーサ58を挿通し、針状ころ軸受55,57の入力部材50,51に対するはめあいすきまS(本実施の形態ではS=0),S及びラジアル内部すきまS(S=w:運転すきま)を合計した寸法S´(図示せず)が玉軸受54,56の入力部材50,51に対するはめあいすきまS,S(共に図示せず)及びラジアル内部すきまS(S=t:運転すきま)を合計した寸法S(S=S+S+S>S+S+S=S´)よりも小さくなる位置に配置されている。これにより、入力部材50,51がその円運動に基づいて生じる遠心力P,Pによる荷重を受けてその方向に移動すると、中心孔50a,51aの内周面が玉軸受54,56を介して偏心部42a,42bの外周面に当接する前にピン挿通孔50b,51bの内周面が針状ころ軸受55,57を介して出力部材53の外周面に当接する。 Further, the plurality of output members 53 are inserted through an annular spacer 58 interposed between the head 53b and the other input member 51, and the fitting clearances S of the needle roller bearings 55 and 57 with respect to the input members 50 and 51 are inserted. 0 (S 0 = 0 in the present embodiment), S 1 and the radial internal clearance S 2 (S 2 = w: operating clearance), the total dimension S ′ (not shown) is the input member of the ball bearings 54, 56. Dimensions S (S = S 3 + S 4 + S 5 > S 0 + S) obtained by adding together the fitting clearances S 3 and S 4 (both not shown) and radial internal clearance S 5 (S 5 = t: operating clearance) for 50 and 51 1 + S 2 = S ′). As a result, when the input members 50 and 51 receive loads due to the centrifugal forces P 1 and P 2 generated based on the circular motion and move in the direction, the inner peripheral surfaces of the center holes 50 a and 51 a cause the ball bearings 54 and 56 to move. The inner peripheral surfaces of the pin insertion holes 50b and 51b contact the outer peripheral surface of the output member 53 via the needle roller bearings 55 and 57 before contacting the outer peripheral surfaces of the eccentric parts 42a and 42b.

はめあいすきまSは、出力部材53の外周面と針状ころ軸受55の内輪の内周面との間に、また出力部材53の外周面と針状ころ軸受57の内輪の内周面との間に形成される。 The fitting clearance S 0 is between the outer peripheral surface of the output member 53 and the inner peripheral surface of the inner ring of the needle roller bearing 55, and between the outer peripheral surface of the output member 53 and the inner peripheral surface of the inner ring of the needle roller bearing 57. Formed between.

はめあいすきまSは、針状ころ軸受55の外輪550の外周面とピン挿通孔50bの内周面との間であって外輪550の外周面がピン挿通孔50bの内周面に、また針状ころ軸受57の外輪570の外周面とピン挿通孔51bの内周面との間であって外輪570の外周面がピン挿通孔51bの内周面にそれぞれ最も近い部位に形成されている。 Clearance S 1 fit in the inner peripheral surface of the outer peripheral surface the pin insertion hole 50b of a space between the inner circumferential surface of the outer peripheral surface and the pin insertion hole 50b of the outer ring 550 of the needle roller bearing 55 the outer race 550, also the needle Between the outer peripheral surface of the outer ring 570 of the tapered roller bearing 57 and the inner peripheral surface of the pin insertion hole 51b, the outer peripheral surface of the outer ring 570 is formed at a position closest to the inner peripheral surface of the pin insertion hole 51b.

はめあいすきまSは、中心孔50aの内周面と玉軸受54の外輪541の外周面との間に、また中心孔51aの内周面と玉軸受56の外輪561の外周面との間に形成されている。 Clearance S 3 fit is between the outer peripheral surface of the outer ring 541 of the inner peripheral surface of the center hole 50a and the ball bearing 54, also between the outer peripheral surface of the outer ring 561 of the inner peripheral surface of the center hole 51a and the ball bearing 56 Is formed.

はめあいすきまSは、玉軸受54の内輪540の内周面と偏心部42aの外周面との間に、また玉軸受56の内輪560の内周面と偏心部42bの外周面との間に形成されている。 Clearance S 4 fit is provided between the inner peripheral surface and the outer peripheral surface of the eccentric portion 42a of the inner race 540 of the ball bearing 54, also between the inner circumferential surface and the outer peripheral surface of the eccentric portion 42b of the inner ring 560 of the ball bearing 56 Is formed.

また、複数の出力部材53は、デフケース30側から径方向に複数(本実施の形態では3個)の弾性部材59(図9に示す)による弾性力を受ける位置に配置されている。そして、複数の出力部材53は、自転力付与部材52によって付与された自転力を一対の入力部材50,51から受けてデフケース30にその回転力として出力するように構成されている。   Further, the plurality of output members 53 are arranged at positions that receive elastic force from a plurality (three in the present embodiment) of elastic members 59 (shown in FIG. 9) in the radial direction from the differential case 30 side. The plurality of output members 53 are configured to receive the rotation force applied by the rotation force applying member 52 from the pair of input members 50 and 51 and output the rotation force to the differential case 30 as the rotation force.

複数の出力部材53の外周面であって、ねじ部53aと頭部53bとの間に介在する部位には、一方の入力部材50におけるピン挿通孔50bの内周面との間の接触抵抗を低減するための針状ころ軸受55が、また他方の入力部材51におけるピン挿通孔51bの内周面との間の接触抵抗を低減するための針状ころ軸受57がそれぞれ取り付けられている。   A contact resistance between the outer peripheral surfaces of the plurality of output members 53 and the inner peripheral surface of the pin insertion hole 50b in one input member 50 is provided at a portion interposed between the screw portion 53a and the head portion 53b. Needle roller bearings 55 for reducing and needle roller bearings 57 for reducing contact resistance with the inner peripheral surface of the pin insertion hole 51b in the other input member 51 are attached.

針状ころ軸受55は、出力部材53の外周面に内輪軌道面を含むとともに、一方の入力部材50における複数のピン挿通孔50bの内周面に接触可能なレース(外輪)550、及びこのレース550の内周面と出力部材53の内輪軌道面との間で転動する針状ころ551を有する。針状ころ軸受57は、出力部材53の外周面に内輪軌道面を含むとともに、他方の入力部材51における複数のピン挿通孔51bの内周面に接触可能なレース(外輪)570、及びこのレース570の内周面と出力部材53の内輪軌道面との間で転動する針状ころ571を有する。   The needle roller bearing 55 includes an inner ring raceway surface on the outer peripheral surface of the output member 53, and a race (outer ring) 550 that can contact the inner peripheral surfaces of the plurality of pin insertion holes 50b in one input member 50, and the race. Needle rollers 551 that roll between the inner peripheral surface of 550 and the inner ring raceway surface of the output member 53 are provided. The needle roller bearing 57 includes a race (outer ring) 570 that includes an inner ring raceway surface on the outer peripheral surface of the output member 53 and that can contact the inner peripheral surfaces of the plurality of pin insertion holes 51b in the other input member 51, and this race. Needle rollers 571 that roll between the inner peripheral surface of 570 and the inner ring raceway surface of the output member 53 are provided.

複数の弾性部材59は、図9(a)に示すように、デフケース30(図2に示す)における凹溝301cの溝底とねじ部53aの外周面との間に介在して配置されている。また、複数の弾性部材59は、図9(b)に示すように、凹溝301cの取付部に対する被取付部としての第1の接触部59a,59bを円周方向両端部に有するとともに、円周方向中間部に弾性力付与部としての第2の接触部59cを有し、全体が例えば鋼製の板ばねからなる略半円筒部材(断面略U字状のばね部材)によって形成されている。そして、複数の弾性部材59は、それぞれが出力部材53におけるねじ部53aの外周面に第2の接触部59cを接触させるとともに、デフケース30(フランジ30c)の凹溝301c内にその両溝壁にそれぞれ第1の接触部59a,59bを接触させて撓んだ状態で取り付けられている。これにより、複数の出力部材53(ねじ部53a)は、それぞれがその外周面とフランジ30cにおけるピン取付孔300cの内周面との間の径方向寸法H(図9(a)に示す)を円周方向に沿って略均一な寸法に確保した状態で配置される。すなわち、複数の出力部材53は、それぞれがデフケース30の回転軸線O(図5に示す)から等しく、かつ回転軸線Oに平行な軸線Oをもってデフケース30(図2に示す)の回転平面内における共通の円周上に配置される。複数の弾性部材59としては、板ばねに代えて重ね板ばねを用いてもよい。 As shown in FIG. 9A, the plurality of elastic members 59 are disposed between the groove bottom of the recessed groove 301c and the outer peripheral surface of the threaded portion 53a in the differential case 30 (shown in FIG. 2). . Further, as shown in FIG. 9 (b), the plurality of elastic members 59 have first contact portions 59a and 59b as attached portions to the attaching portions of the concave grooves 301c at both ends in the circumferential direction. It has the 2nd contact part 59c as an elastic force provision part in the circumferential direction intermediate part, and the whole is formed of the substantially semi-cylindrical member (spring member with a substantially U-shaped cross section) which consists of steel leaf springs, for example. . Each of the plurality of elastic members 59 brings the second contact portion 59c into contact with the outer peripheral surface of the threaded portion 53a of the output member 53, and the groove walls in the groove 301c of the differential case 30 (flange 30c). Each of the first contact portions 59a and 59b is attached in a bent state. As a result, the plurality of output members 53 (screw portions 53a) each have a radial dimension H (shown in FIG. 9A) between the outer peripheral surface and the inner peripheral surface of the pin mounting hole 300c in the flange 30c. It arrange | positions in the state ensured to the substantially uniform dimension along the circumferential direction. That is, each of the plurality of output members 53 is equal to the rotation axis O 6 (shown in FIG. 5) of the differential case 30 and has an axis O 7 parallel to the rotation axis O 6. The rotation plane of the differential case 30 (shown in FIG. 2). Are arranged on a common circumference. As the plurality of elastic members 59, a leaf spring may be used instead of the leaf spring.

ここで、上記したはめあいすきまS+S(本実施の形態ではS=0であるので、S+S=S),第2の軸受(針状ころ軸受55,57)のラジアル内部すきまS及び寸法S(S=S+S+S)につき、一方の入力部材50側と他方の入力部材51側に分けて述べる。 Here, the above-mentioned fitting clearance S 0 + S 1 (S 0 + S 1 = S 1 because S 0 = 0 in the present embodiment), the radial inside of the second bearing (needle roller bearings 55 and 57) The clearance S 2 and the dimension S (S = S 3 + S 4 + S 5 ) will be described separately on one input member 50 side and the other input member 51 side.

一方の入力部材50側において、はめあいすきまSは、図6(a)及び(b)に示すように、出力部材53がその初期位置(図6(a)に示す位置)から軸線(第5の軸線)Oと外輪550の軸線(第4の軸線)Oとを一致させた状態において入力部材50との間で相対移動してピン挿通孔50bの内周面に最も接近する位置(図6(b)に示す位置)までの寸法を2倍した寸法(S=2×(s−s´))に設定されている。初期位置では、軸線Oと軸線Oとを、回転軸線Oと回転軸線Oとを、また軸線Oと軸線Oとをそれぞれ一致させた状態において、出力部材53がピン挿通孔50bの開口面一方側(図6(a)では開口面上側)に配置されている。 In one of the input member 50 side, the gap S 1 fitting, as shown in FIG. 6 (a) and (b), the output member 53 is its initial position (position shown in FIG. 6 (a)) from the axis (5 closest located on the inner peripheral surface of the pin insertion hole 50b relative movement between the axis) O 5 with the axis (fourth axis) O 4 and the input member 50 in the state of being matched outer ring 550 of ( The dimension (S 1 = 2 × (s 1 −s ′ 1 )) that is twice the dimension up to the position shown in FIG. 6B is set. In the initial position, the output member 53 is in a pin insertion hole in a state where the axis O 5 and the axis O 4 are aligned with the rotation axis O 6 and the rotation axis O 1 , and the axis O 2 and the axis O 3 are aligned with each other. 50b is disposed on one side of the opening surface (in FIG. 6A, on the opening surface upper side).

ラジアル内部すきまSは、図7(a)及び(b)に示すように、針状ころ軸受55の外輪550が軸線Oを出力部材53の軸線(第5の軸線)Oに一致させた位置(図7(a)に示す初期位置)から出力部材53にその径方向(第1の方向X)に移動して最も接近する位置(図7(b)に示す移動位置)までの寸法を2倍した寸法(S=2×(s−s´))に設定されている。図5に示すように、外輪550の初期位置から移動位置までの寸法(R−R)を用いると、S=2×(R−R)である。この場合、ラジアル内部すきまSは針状ころ軸受55の運転すきまwとなる。寸法Rは、外輪550の初期位置において、回転軸線Oから外輪550の外周面(軸線Oから最も遠い部位)までの寸法である。寸法Rは、外輪550の移動位置において、軸線Oから外輪550の外周面(回転軸線Oから最も遠い部位)までの寸法である。 As shown in FIGS. 7A and 7B, the radial internal clearance S 2 causes the outer ring 550 of the needle roller bearing 55 to align the axis O 4 with the axis (fifth axis) O 5 of the output member 53. From the position (initial position shown in FIG. 7A) to the output member 53 in the radial direction (first direction X 1 ) and the closest position (movement position shown in FIG. 7B). It is set to a dimension (S 2 = 2 × (s 2 −s ′ 2 )) that is twice the dimension. As shown in FIG. 5, when the dimension (R 1 -R 3 ) from the initial position to the moving position of the outer ring 550 is used, S 2 = 2 × (R 1 -R 3 ). In this case, the radial internal clearance S 2 is the operating clearance w of the needle roller bearing 55. The dimension R 1 is a dimension from the rotation axis O 6 to the outer peripheral surface of the outer ring 550 (a part farthest from the axis O 6 ) at the initial position of the outer ring 550. Dimension R 2, in the movement position of the outer ring 550 is the dimension from the axis O 6 to the outer peripheral surface of the outer ring 550 (the farthest portion from the axis of rotation O 6).

寸法Sは、図8(a)及び(b)に示すように、一方の入力部材50が軸線Oを軸線Oに一致させた位置(図8(a)に示す初期位置)から偏心部42aにその径方向(第2の方向X)に移動して最も接近する位置(図8(b)に示す移動位置)までの寸法を2倍した寸法(S=2×(s−s´))に設定されている。この場合、図5に示すように、内輪540の内径から偏心部42aの外径を減算した寸法をDとするとともに、中心孔50aの内径から外輪541の外径を減算した寸法をdとし、かつ玉軸受54におけるラジアル内部すきまの運転すきまをtとすると、寸法SはS=D+d+tとなる。 As shown in FIGS. 8A and 8B, the dimension S is an eccentric portion from the position where one input member 50 makes the axis O 3 coincide with the axis O 2 (the initial position shown in FIG. 8A). A dimension (S = 2 × (s−s ′) obtained by doubling the dimension up to the position closest to the position 42a in the radial direction (second direction X 2 ) (the movement position shown in FIG. 8B). )) Is set. In this case, as shown in FIG. 5, the dimension obtained by subtracting the outer diameter of the eccentric portion 42a from the inner diameter of the inner ring 540 is D, and the dimension obtained by subtracting the outer diameter of the outer ring 541 from the inner diameter of the center hole 50a is d. When the operation clearance of the radial internal clearance in the ball bearing 54 is t, the dimension S is S = D + d + t.

同様に、他方の入力部材51側において、はめあいすきまSは、図6(a)及び(b)に示すように、出力部材53がその初期位置(図6(a)に示す位置)から軸線Oと外輪570の軸線(第4の軸線)O´とを一致させた状態において入力部材51との間で相対移動してピン挿通孔51bの内周面に最も接近する位置(図6(b)に示す位置)までの寸法を2倍した寸法(S=2×(s−s´))に設定されている。初期位置では、軸線Oと軸線O´とを、回転軸線Oと回転軸線O´とを、また軸線O´と軸線O´とをそれぞれ一致させた状態において、出力部材53がピン挿通孔51bの開口面一方側(図6(a)では開口面上側)に配置されている。 Similarly, the other of the input member 51 side, the gap S 1 fitting the axial line from FIG. 6 (a) and as shown in (b), (the position shown in FIG. 6 (a)) the output member 53 is its initial position In the state where O 5 and the axis (fourth axis) O ′ 4 of the outer ring 570 coincide with each other, the position moves relative to the input member 51 and is closest to the inner peripheral surface of the pin insertion hole 51b (FIG. 6). It is set to a dimension (S 1 = 2 × (s 1 −s ′ 1 )) that is twice the dimension up to the position shown in (b). In the initial position, the output member 53 in a state where the axis O 5 and the axis O ′ 4 coincide with the rotation axis O 6 and the rotation axis O ′ 1 , and the axis O ′ 2 and the axis O ′ 3 coincide with each other. Is arranged on one side of the opening surface of the pin insertion hole 51b (on the upper side of the opening surface in FIG. 6A).

ラジアル内部すきまSは、図7(a)及び(b)に示すように、針状ころ軸受57の外輪570が軸線O´を出力部材53の軸線(第5の軸線)Oに一致させた位置(図7(a)に示す初期位置)から出力部材53にその径方向(第1の方向X)に移動して最も接近する位置(図7(b)に示す移動位置)までの寸法を2倍した寸法(S=2×(s−s´))に設定されている。図5に示すように、外輪570の初期位置から移動位置までの寸法(R−R)を用いると、S=2×(R−R)である。この場合、ラジアル内部すきまSは針状ころ軸受57の運転すきまw´となる。寸法Rは、外輪570の初期位置において、軸線Oから外輪570の外周面(軸線Oから最も遠い部位)までの寸法である。寸法Rは、外輪570の移動位置において、軸線Oから外輪570の外周面(軸線Oから最も遠い部位)までの寸法である。 Radial internal clearance S 2, as shown in FIG. 7 (a) and (b), the axis of the needle roller output member 53 the outer race 570 is the axis O'4 bearing 57 (fifth axis) O 5 to match From the position (initial position shown in FIG. 7A) to the output member 53 in the radial direction (first direction X 1 ) to the closest position (moving position shown in FIG. 7B) Is set to a dimension (S 2 = 2 × (s 2 −s ′ 2 )). As shown in FIG. 5, when the dimension (R 4 −R 2 ) from the initial position to the moving position of the outer ring 570 is used, S 2 = 2 × (R 4 −R 2 ). In this case, the radial internal clearance S 2 is the operating clearance w ′ of the needle roller bearing 57. The dimension R 4 is a dimension from the axis O 6 to the outer peripheral surface of the outer ring 570 (the part farthest from the axis O 6 ) at the initial position of the outer ring 570. Dimension R 2, in the movement position of the outer ring 570 is the dimension from the axis O 6 to the outer peripheral surface of the outer ring 570 (the farthest portion from the axis O 6).

寸法Sは、図8(a)及び(b)に示すように、他方の入力部材51が軸線O´を軸線O´に一致させた位置(図8(a)に示す初期位置)から偏心部42bにその径方向(第2の方向X)に移動して最も接近する位置(図8(b)に示す移動位置)までの寸法を2倍した寸法(S=2×(s−s´))に設定されている。この場合、図5に示すように、内輪560の内径から偏心部42bの外径を減算した寸法をD´とするとともに、中心孔51aの内径から外輪561の外径を減算した寸法をd´とし、かつ玉軸受56におけるラジアル内部すきまの運転すきまをt´とすると、寸法SはS=D´+d´+t´となる。 As shown in FIGS. 8A and 8B, the dimension S is determined from the position where the other input member 51 matches the axis O ′ 3 with the axis O ′ 2 (the initial position shown in FIG. 8A). A dimension (S = 2 × (s−) that doubles the dimension to the position closest to the eccentric part 42b in the radial direction (second direction X 2 ) and the closest position (the movement position shown in FIG. 8B). s')). In this case, as shown in FIG. 5, the dimension obtained by subtracting the outer diameter of the eccentric portion 42b from the inner diameter of the inner ring 560 is D ′, and the dimension obtained by subtracting the outer diameter of the outer ring 561 from the inner diameter of the center hole 51a is d ′. When the operating clearance of the radial internal clearance in the ball bearing 56 is t ′, the dimension S is S = D ′ + d ′ + t ′.

(モータ回転力伝達装置1の動作)
次に、本実施の形態に示すモータ回転力伝達装置の動作につき、図1〜図5を用いて説明する。
図2において、モータ回転力伝達装置1の電動モータ4に電力を供給して電動モータ4を駆動すると、このモータ回転力がモータ軸42を介して減速伝達機構5に付与され、減速伝達機構5が作動する。
(Operation of the motor rotational force transmission device 1)
Next, the operation of the motor torque transmission device shown in the present embodiment will be described with reference to FIGS.
In FIG. 2, when electric power is supplied to the electric motor 4 of the motor rotational force transmission device 1 to drive the electric motor 4, this motor rotational force is applied to the deceleration transmission mechanism 5 via the motor shaft 42, and the deceleration transmission mechanism 5. Operates.

このため、減速伝達機構5において、入力部材50,51が例えば図3に示す矢印m方向に偏心量δをもって円運動を行う。 Therefore, the speed reduction transmission mechanism 5 performs circular motion with a eccentricity δ is the input member 50, 51 in the arrow m 1 direction shown in FIG. 3, for example.

これに伴い、入力部材50が外歯50cを自転力付与部材52の内歯52cに噛合させながら軸線Oの回り(図3に示す矢印n方向)に、また入力部材51が外歯51cを自転力付与部材52の内歯52cに噛合させながら軸線O´の回り(図3に示す矢印l方向)にそれぞれ自転する。この場合、入力部材50,51の自転によってピン挿通孔50bの内周面が針状ころ軸受55のレース550に、またピン挿通孔51bの内周面が針状ころ軸受57のレース570にそれぞれ当接する。 Accordingly, the input member 50 is the axis O 2 while meshing with the internal teeth 52c of the outer teeth 50c rotation force applying member 52 counterclockwise (the arrow n 1 direction shown in FIG. 3), also the input member 51 outer teeth 51c the rotates respectively with the internal teeth 52c while meshing with the axis O'2 around a rotation force applying member 52 (arrow l 1 direction shown in FIG. 3). In this case, due to the rotation of the input members 50 and 51, the inner peripheral surface of the pin insertion hole 50b is in the race 550 of the needle roller bearing 55, and the inner peripheral surface of the pin insertion hole 51b is in the race 570 of the needle roller bearing 57, respectively. Abut.

このため、出力部材53には入力部材50,51の公転運動が伝達されず、入力部材50,51の自転運動のみが伝達され、入力部材50,51から自転力がデフケース30にその回転力として出力される。   For this reason, the revolution movement of the input members 50 and 51 is not transmitted to the output member 53, but only the rotation movement of the input members 50 and 51 is transmitted, and the rotation force from the input members 50 and 51 is applied to the differential case 30 as the rotational force. Is output.

これにより、リヤディファレンシャル3が作動し、電動モータ4のモータ回転力に基づく駆動力が図1におけるリヤアクスルシャフト106に配分され、左右の後輪105に伝達される。   As a result, the rear differential 3 is operated, and the driving force based on the motor rotational force of the electric motor 4 is distributed to the rear axle shaft 106 in FIG. 1 and transmitted to the left and right rear wheels 105.

ここで、モータ回転力伝達装置1においては、動作に伴い入力部材50にその円運動に基づいて遠心力Pが、また入力部材51にその円運動に基づいて遠心力Pがそれぞれ作用する。 Here, in the motor rotational force transmission device 1, the centrifugal force P 1 is applied to the input member 50 based on the circular motion and the centrifugal force P 2 is applied to the input member 51 based on the circular motion. .

これに伴い、入力部材50が遠心力Pの作用方向(例えば図5の下方)に、また入力部材51が遠心力Pの作用方向(例えば図5の上方)にそれぞれ移動する。 Accordingly, the input member 50 in the direction of action of the centrifugal force P 1 (e.g., the lower part of FIG. 5), also the input member 51 respectively move in the direction of action of the centrifugal force P 2 (e.g., upward in FIG. 5).

この場合、図4及び図5に示すように、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、中心孔50aの内周面が玉軸受54を介して偏心部42aの外周面に当接する前にピン挿通孔50bの内周面が針状ころ軸受55を介して出力部材53の外周面に当接する。これにより、一方の入力部材50からの遠心力Pによる荷重を分散させて複数の針状ころ軸受55が受けることになる。このため、一方の入力部材50からの遠心力Pによる荷重が玉軸受54に作用することが抑制される。 In this case, as shown in FIGS. 4 and 5, when one of the input member 50 is under load due to the centrifugal force P 1 generated based on the circular movement to move in that direction, the inner peripheral surface of the center hole 50a is a ball Before contacting the outer peripheral surface of the eccentric portion 42 a via the bearing 54, the inner peripheral surface of the pin insertion hole 50 b contacts the outer peripheral surface of the output member 53 via the needle roller bearing 55. Thereby, the one of the plurality of needle roller bearings 55 by dispersing loads due to centrifugal force P 1 from the input member 50 is subjected. Therefore, load caused by the centrifugal force P 1 from one of the input member 50 is prevented from acting on the ball bearing 54.

同様に、図4及び図5に示すように、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、中心孔51aの内周面が玉軸受56を介して偏心部42bの外周面に当接する前にピン挿通孔51bの内周面が針状ころ軸受57を介して出力部材53の外周面に当接する。これにより、他方の入力部材51からの遠心力Pによる荷重を分散させて複数の針状ころ軸受57が受けることになる。このため、他方の入力部材51からの遠心力Pによる荷重が玉軸受56に作用することが抑制される。 Similarly, as shown in FIGS. 4 and 5, when the other input member 51 receives a load due to the centrifugal force P 2 generated on the basis of the circular motion to move in that direction, the inner peripheral surface of the center hole 51a is a ball Before contacting the outer peripheral surface of the eccentric portion 42 b via the bearing 56, the inner peripheral surface of the pin insertion hole 51 b contacts the outer peripheral surface of the output member 53 via the needle roller bearing 57. Thereby, the dispersing the load due to the centrifugal force P 2 from the other input member 51 a plurality of needle roller bearings 57 is subjected. Therefore, it is prevented that the load caused by the centrifugal force P 2 from the other input member 51 acts on the ball bearing 56.

従って、本実施の形態においては、玉軸受54,56に耐久性の高い軸受を用いることが不要になる。   Therefore, in the present embodiment, it is not necessary to use highly durable bearings for the ball bearings 54 and 56.

なお、上記実施の形態においては、入力部材50,51を矢印m方向に円運動させてモータ回転力伝達装置1を作動させる場合について説明したが、入力部材50,51を矢印m方向に円運動させてもモータ回転力伝達装置1を上記実施の形態と同様に作動させることができる。この場合、入力部材50の自転運動は矢印n方向に、また入力部材51の自転運動は矢印l方向にそれぞれ行われる。 In the above embodiment has described the case where the input member 50, 51 by circular motion of the arrow m 1 direction to actuate the motor torque transmission device 1, the input member 50, 51 in the arrow m 2 Direction Even if it makes a circular motion, the motor rotational force transmission device 1 can be operated in the same manner as in the above embodiment. In this case, the rotation of the input member 50 is performed in the direction of the arrow n 2 , and the rotation of the input member 51 is performed in the direction of the arrow l 2 .

[第1の実施の形態の効果]
以上説明した第1の実施の形態によれば、次に示す効果が得られる。
[Effect of the first embodiment]
According to the first embodiment described above, the following effects can be obtained.

(1)玉軸受54,56に耐久性の高い軸受を用いることが不要になるため、コストの低廉化を図ることができる。 (1) Since it is not necessary to use highly durable bearings for the ball bearings 54 and 56, the cost can be reduced.

(2)玉軸受54,56に遠心力P,Pによる荷重が作用することが抑制され、玉軸受54,56の高寿命化を図ることもできる。 (2) It is possible to prevent the loads caused by the centrifugal forces P 1 and P 2 from acting on the ball bearings 54 and 56, thereby extending the life of the ball bearings 54 and 56.

なお、本実施の形態においては、寸法S´がS´=S+Sに設定されている場合について説明したが、本発明はこれに限定されず、寸法S´をS´=Sとしても差し支えない。 In the present embodiment, the case where the dimension S ′ is set to S ′ = S 1 + S 2 has been described. However, the present invention is not limited to this, and the dimension S ′ is set to S ′ = S 2. There is no problem.

[第2の実施の形態]
次に、本発明の第2の実施の形態に係るモータ回転力伝達装置における減速機構につき、図10を用いて説明する。図10は入力部材の支持状態及び第2の軸受の取付状態を示す。図10において、図5と同一又は同等の機能をもつ部材については同一の符号を付し、詳細な説明は省略する。
[Second Embodiment]
Next, a speed reduction mechanism in a motor torque transmission device according to a second embodiment of the present invention will be described with reference to FIG. FIG. 10 shows the support state of the input member and the attachment state of the second bearing. 10, members having the same or equivalent functions as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.

図10に示すように、本発明の第2の実施の形態に係る減速伝達機構100(一部を示す)は、玉軸受54、56の内輪540,560が偏心部42a,42bの外周面にしまりばめによって、また外輪541,561が中心孔50a,51aの内周面にすきまばめによってそれぞれ取り付けられている点に特徴がある。   As shown in FIG. 10, in the speed reduction transmission mechanism 100 (partially shown) according to the second embodiment of the present invention, the inner rings 540, 560 of the ball bearings 54, 56 are arranged on the outer peripheral surfaces of the eccentric portions 42a, 42b. It is characterized in that the outer rings 541 and 561 are attached to the inner peripheral surfaces of the center holes 50a and 51a by clearance fit, respectively, by interference fit.

このため、一方の入力部材50側において、中心孔50aの内径から外輪541の外径を減算した寸法をdとするとともに、玉軸受54におけるラジアル内部すきまの運転すきまをtとすると、寸法S(図8に示す)がS=d+tに設定されている。   Therefore, on the one input member 50 side, when the dimension obtained by subtracting the outer diameter of the outer ring 541 from the inner diameter of the center hole 50a is d, and the operating clearance of the radial internal clearance in the ball bearing 54 is t, the dimension S ( (Shown in FIG. 8) is set to S = d + t.

また、針状ころ軸受55におけるラジアル内部すきまの運転すきまをwとすると、内部すきまS(図7に示す)がS=wに設定されている。 Further, assuming that the operating clearance of the radial internal clearance in the needle roller bearing 55 is w, the internal clearance S 2 (shown in FIG. 7) is set to S 2 = w.

同様に、他方の入力部材51側において、中心孔51aの内径から外輪561の外径を減算した寸法をd´とするとともに、玉軸受56におけるラジアル内部すきまの運転すきまをt´とすると、寸法SがS=d´+t´に設定されている。   Similarly, on the other input member 51 side, when the dimension obtained by subtracting the outer diameter of the outer ring 561 from the inner diameter of the center hole 51a is d ′, and the operating clearance of the radial internal clearance in the ball bearing 56 is t ′, the dimension S is set to S = d ′ + t ′.

また、針状ころ軸受57におけるラジアル内部すきまの運転すきまをw´とすると、内部すきまSがS=w´に設定されている。 Further, assuming that the operation clearance of the radial internal clearance in the needle roller bearing 57 is w ′, the internal clearance S 2 is set to S 2 = w ′.

このように構成された減速伝達機構100においては、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、一方の入力部材50からの遠心力Pによる荷重を分散させて複数の針状ころ軸受55が受けることになる。 In the speed reduction transmission mechanism 100 configured as described above, when one input member 50 receives a load due to the centrifugal force P 1 generated based on the circular motion and moves in the direction, the centrifugal force from the one input member 50. dispersing the load applied by P 1 so that the plurality of needle roller bearings 55 is subjected.

また、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、他方の入力部材51からの遠心力Pによる荷重を分散させて複数の針状ころ軸受57が受けることになる。 Further, when the other input member 51 receives a load due to the centrifugal force P 2 generated based on the circular motion and moves in the direction, the load due to the centrifugal force P 2 from the other input member 51 is dispersed to thereby disperse a plurality of needles. The tapered roller bearing 57 is received.

従って、本実施の形態においては、第1の実施の形態と同様に、一方の入力部材50からの遠心力Pによる荷重が玉軸受54に、また他方の入力部材51からの遠心力Pによる荷重が玉軸受56にそれぞれ作用することが抑制され、玉軸受54,56に耐久性の高い軸受を用いることが不要になる。 Therefore, in the present embodiment, as in the first embodiment, the load caused by the centrifugal force P 1 from one input member 50 is applied to the ball bearing 54 and the centrifugal force P 2 from the other input member 51. Is prevented from acting on the ball bearings 56, and it is not necessary to use highly durable bearings for the ball bearings 54 and 56.

[第2の実施の形態の効果]
以上説明した第2の実施の形態によれば、第1の実施の形態に示す効果と同様の効果が得られる。
[Effect of the second embodiment]
According to the second embodiment described above, the same effects as those shown in the first embodiment can be obtained.

なお、本実施の形態においては、偏心部42aの外周囲に配置された内輪540、内輪540の外周囲に配置された外輪541、及び外輪541と内輪540との間に介在して配置された転動体542からなる玉軸受54が、また偏心部42bの外周囲に配置された内輪560、内輪560の外周囲に配置された外輪561、及び外輪561と内輪560との間に介在して配置された転動体562からなる玉軸受56がそれぞれ第1の軸受として用いられている場合について説明したが、本発明はこれに限定されず、偏心部の外周面に形成された内輪軌道面を含むとともに、内輪軌道面の外周囲に配置された外輪、及び外輪と内輪軌道面との間に介在して配置された転動体からなる玉軸受を第1の軸受として用いてもよい。この場合、外輪が中心孔の内周面にすきまばめによって取り付けられていると、上記実施の形態に示すように寸法SがS=d+t,d´+t´に設定される。これに対して、外輪が中心孔の内周面にしまりばめによって取り付けられていると、寸法SがS=t,t´に設定される。   In the present embodiment, the inner ring 540 disposed around the outer periphery of the eccentric portion 42a, the outer ring 541 disposed around the outer periphery of the inner ring 540, and the outer ring 541 and the inner ring 540 are disposed. A ball bearing 54 formed of a rolling element 542 is also disposed between an inner ring 560 disposed on the outer periphery of the eccentric portion 42b, an outer ring 561 disposed on the outer periphery of the inner ring 560, and between the outer ring 561 and the inner ring 560. In the above description, the ball bearings 56 made of the rolling elements 562 are used as the first bearings. However, the present invention is not limited to this, and includes an inner ring raceway surface formed on the outer peripheral surface of the eccentric portion. In addition, a ball bearing including an outer ring disposed on the outer periphery of the inner ring raceway surface and a rolling element disposed between the outer ring and the inner ring raceway surface may be used as the first bearing. In this case, when the outer ring is attached to the inner peripheral surface of the center hole by clearance fitting, the dimension S is set to S = d + t, d ′ + t ′ as shown in the above embodiment. On the other hand, when the outer ring is attached to the inner peripheral surface of the center hole by an interference fit, the dimension S is set to S = t, t ′.

また、本実施の形態においては、寸法S´がS´=S+Sに設定されている場合について説明したが、本発明はこれに限定されず、寸法S´をS´=Sとしても差し支えない。 In this embodiment, the case where the dimension S ′ is set to S ′ = S 1 + S 2 has been described. However, the present invention is not limited to this, and the dimension S ′ is set to S ′ = S 2. There is no problem.

[第3の実施の形態]
次に、本発明の第3の実施の形態に係るモータ回転力伝達装置における減速機構につき、図11を用いて説明する。図11は入力部材の支持状態及び第2の軸受の取付状態を示す。図11において、図5と同一又は同等の機能をもつ部材については同一の符号を付し、詳細な説明は省略する。
[Third embodiment]
Next, a reduction mechanism in a motor torque transmission device according to a third embodiment of the present invention will be described with reference to FIG. FIG. 11 shows the support state of the input member and the attachment state of the second bearing. 11, members having the same or equivalent functions as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.

図11に示すように、本発明の第3の実施の形態に係る減速伝達機構200(一部を示す)は、玉軸受54、56の内輪540,560が偏心部42a,42bの外周面にすきまばめによって、また外輪541,561が中心孔50a,51aの内周面にしまりばめによってそれぞれ取り付けられている点に特徴がある。   As shown in FIG. 11, in the speed reduction transmission mechanism 200 (partially shown) according to the third embodiment of the present invention, the inner rings 540, 560 of the ball bearings 54, 56 are arranged on the outer peripheral surfaces of the eccentric portions 42a, 42b. It is characterized in that the outer rings 541 and 561 are attached to the inner peripheral surfaces of the center holes 50a and 51a by interference fit, respectively, by clearance fit.

このため、一方の入力部材50側において、内輪540の内径から偏心部42aの外径を減算した寸法をDとするとともに、玉軸受54におけるラジアル内部すきまの運転すきまをtとすると、寸法S(図8に示す)がS=D+tに設定されている。   Therefore, on the one input member 50 side, when the dimension obtained by subtracting the outer diameter of the eccentric portion 42a from the inner diameter of the inner ring 540 is D, and the operating clearance of the radial internal clearance in the ball bearing 54 is t, the dimension S ( (Shown in FIG. 8) is set to S = D + t.

また、針状ころ受55におけるラジアル内部すきまの運転すきまをwとすると、内部すきまS(図7に示す)がS=wに設定されている。 Further, assuming that the operation clearance of the radial internal clearance in the needle roller receiver 55 is w, the internal clearance S 2 (shown in FIG. 7) is set to S 2 = w.

同様に、他方の入力部材51側において、内輪560の内径から偏心部42bの外径を減算した寸法をD´とするとともに、玉軸受56におけるラジアル内部すきまの運転すきまをt´とすると、寸法SがS=D´+t´に設定されている。   Similarly, on the other input member 51 side, when the dimension obtained by subtracting the outer diameter of the eccentric portion 42b from the inner diameter of the inner ring 560 is D ′ and the operating clearance of the radial internal clearance in the ball bearing 56 is t ′, the dimension S is set to S = D ′ + t ′.

また、針状ころ受57におけるラジアル内部すきまの運転すきまをw´とすると、内部すきまSがS=w´に設定されている。 Further, assuming that the operation clearance of the radial internal clearance in the needle roller receiver 57 is w ′, the internal clearance S 2 is set to S 2 = w ′.

このように構成された減速伝達機構200においては、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、一方の入力部材50からの遠心力Pによる荷重を分散させて複数の針状ころ軸受55が受けることになる。 In the speed reduction transmission mechanism 200 configured as described above, when one input member 50 receives a load due to the centrifugal force P 1 generated based on the circular motion and moves in the direction, the centrifugal force from the one input member 50. dispersing the load applied by P 1 so that the plurality of needle roller bearings 55 is subjected.

また、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、他方の入力部材51からの遠心力Pによる荷重を分散させて複数の針状ころ軸受57が受けることになる。 Further, when the other input member 51 receives a load due to the centrifugal force P 2 generated based on the circular motion and moves in the direction, the load due to the centrifugal force P 2 from the other input member 51 is dispersed to thereby disperse a plurality of needles. The tapered roller bearing 57 is received.

従って、本実施の形態においては、第1の実施の形態と同様に、一方の入力部材50からの遠心力Pによる荷重が玉軸受54に、また他方の入力部材51からの遠心力Pによる荷重が玉軸受56にそれぞれ作用することが抑制され、玉軸受54,56に耐久性の高い軸受を用いることが不要になる。 Therefore, in the present embodiment, as in the first embodiment, the load caused by the centrifugal force P 1 from one input member 50 is applied to the ball bearing 54 and the centrifugal force P 2 from the other input member 51. Is prevented from acting on the ball bearings 56, and it is not necessary to use highly durable bearings for the ball bearings 54 and 56.

[第3の実施の形態の効果]
以上説明した第3の実施の形態によれば、第1の実施の形態に示す効果と同様の効果が得られる。
[Effect of the third embodiment]
According to the third embodiment described above, the same effects as those shown in the first embodiment can be obtained.

なお、本実施の形態においては、偏心部42aの外周囲に配置された内輪540、内輪540の外周囲に配置された外輪541、及び外輪541と内輪540との間に介在して配置された転動体542からなる玉軸受54が、また偏心部42bの外周囲に配置された内輪560、内輪560の外周囲に配置された外輪561、及び外輪561と内輪560との間に介在して配置された転動体562からなる玉軸受56がそれぞれ第1の軸受として用いられている場合について説明したが、本発明はこれに限定されず、中心孔の内周面に形成された外輪軌道面を含むとともに、外輪軌道面の内周囲に配置された内輪、及び内輪と外輪軌道面との間に介在して配置された転動体からなる玉軸受を第1の軸受として用いてもよい。この場合、内輪が偏心部の外周面にすきまばめによって取り付けられていると、上記実施の形態に示すように寸法SがS=D+t,D´+t´に設定される。これに対して、内輪が偏心部の外周面にしまりばめによって取り付けられていると、寸法SがS=t,t´に設定される。   In the present embodiment, the inner ring 540 disposed around the outer periphery of the eccentric portion 42a, the outer ring 541 disposed around the outer periphery of the inner ring 540, and the outer ring 541 and the inner ring 540 are disposed. A ball bearing 54 formed of a rolling element 542 is also disposed between an inner ring 560 disposed on the outer periphery of the eccentric portion 42b, an outer ring 561 disposed on the outer periphery of the inner ring 560, and between the outer ring 561 and the inner ring 560. However, the present invention is not limited to this, and the outer ring raceway surface formed on the inner peripheral surface of the center hole is used. In addition, a ball bearing including an inner ring disposed on the inner periphery of the outer ring raceway surface and a rolling element disposed between the inner ring and the outer ring raceway surface may be used as the first bearing. In this case, when the inner ring is attached to the outer peripheral surface of the eccentric portion by clearance fitting, the dimension S is set to S = D + t, D ′ + t ′ as shown in the above embodiment. On the other hand, when the inner ring is attached to the outer peripheral surface of the eccentric portion by interference fit, the dimension S is set to S = t, t ′.

また、本実施の形態においては、寸法S´がS´=S+Sに設定されている場合について説明したが、本発明はこれに限定されず、寸法S´をS´=Sとしても差し支えない。 In this embodiment, the case where the dimension S ′ is set to S ′ = S 1 + S 2 has been described. However, the present invention is not limited to this, and the dimension S ′ is set to S ′ = S 2. There is no problem.

[第4の実施の形態]
次に、本発明の第4の実施の形態に係るモータ回転力伝達装置における減速機構につき、図12を用いて説明する。図12は入力部材の支持状態及び第2の軸受の取付状態を示す。図12において、図5と同一又は同等の機能をもつ部材については同一の符号を付し、詳細な説明は省略する。
[Fourth embodiment]
Next, a reduction mechanism in a motor torque transmission device according to a fourth embodiment of the present invention will be described with reference to FIG. FIG. 12 shows the support state of the input member and the attachment state of the second bearing. 12, members having the same or equivalent functions as those in FIG. 5 are denoted by the same reference numerals, and detailed description thereof is omitted.

図12に示すように、本発明の第4の実施の形態に係る減速伝達機構300(一部を示す)は、玉軸受54、56の内輪540,560が偏心部42a,42bの外周面に、また外輪541,561が中心孔50a,51aの内周面にそれぞれしまりばめによって取り付けられている点に特徴がある。   As shown in FIG. 12, in the speed reduction transmission mechanism 300 (partially shown) according to the fourth embodiment of the present invention, the inner rings 540, 560 of the ball bearings 54, 56 are arranged on the outer peripheral surfaces of the eccentric portions 42a, 42b. In addition, the outer rings 541 and 561 are characterized in that they are attached to the inner peripheral surfaces of the center holes 50a and 51a by an interference fit, respectively.

このため、一方の入力部材50側において、玉軸受54におけるラジアル内部すきまの運転すきまをtとすると、寸法S(図8に示す)がS=tに設定されている。   For this reason, on one input member 50 side, if the operation clearance of the radial internal clearance in the ball bearing 54 is t, the dimension S (shown in FIG. 8) is set to S = t.

また、針状ころ受55におけるラジアル内部すきまの運転すきまをwとすると、内部すきまS(図7に示す)がS=wに設定されている。 Further, assuming that the operation clearance of the radial internal clearance in the needle roller receiver 55 is w, the internal clearance S 2 (shown in FIG. 7) is set to S 2 = w.

同様に、他方の入力部材51側において、玉軸受56におけるラジアル内部すきまの運転すきまをt´とすると、寸法SがS=t´に設定されている。   Similarly, on the other input member 51 side, when the operation clearance of the radial internal clearance in the ball bearing 56 is t ′, the dimension S is set to S = t ′.

また、針状ころ受57におけるラジアル内部すきまの運転すきまをw´とすると、内部すきまSがS=w´に設定されている。 Further, assuming that the operation clearance of the radial internal clearance in the needle roller receiver 57 is w ′, the internal clearance S 2 is set to S 2 = w ′.

このように構成された減速伝達機構300においては、一方の入力部材50がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、一方の入力部材50からの遠心力Pによる荷重を分散させて複数の針状ころ軸受55が受けることになる。 This in reduction transmission mechanism 300 configured as described above, one of the input member 50 is under load due to the centrifugal force P 1 generated based on the circular movement to move in that direction, the centrifugal force from one input member 50 dispersing the load applied by P 1 so that the plurality of needle roller bearings 55 is subjected.

また、他方の入力部材51がその円運動に基づいて生じる遠心力Pによる荷重を受けてその方向に移動すると、他方の入力部材51からの遠心力Pによる荷重を分散させて複数の針状ころ軸受57が受けることになる。 Further, when the other input member 51 receives a load due to the centrifugal force P 2 generated based on the circular motion and moves in the direction, the load due to the centrifugal force P 2 from the other input member 51 is dispersed to thereby disperse a plurality of needles. The tapered roller bearing 57 is received.

従って、本実施の形態においては、第1の実施の形態と同様に、一方の入力部材50からの遠心力Pによる荷重が玉軸受54に、また他方の入力部材51からの遠心力Pによる荷重が玉軸受56にそれぞれ作用することが抑制され、玉軸受54,56に耐久性の高い軸受を用いることが不要になる。 Therefore, in the present embodiment, as in the first embodiment, the load caused by the centrifugal force P 1 from one input member 50 is applied to the ball bearing 54 and the centrifugal force P 2 from the other input member 51. Is prevented from acting on the ball bearings 56, and it is not necessary to use highly durable bearings for the ball bearings 54 and 56.

[第4の実施の形態の効果]
以上説明した第4の実施の形態によれば、第1の実施の形態に示す効果と同様の効果が得られる。
[Effect of the fourth embodiment]
According to the fourth embodiment described above, the same effects as those shown in the first embodiment can be obtained.

なお、本実施の形態においては、偏心部42aの外周囲に配置された内輪540、内輪540の外周囲に配置された外輪541、及び外輪541と内輪540との間に介在して配置された転動体542からなる玉軸受54が、また偏心部42bの外周囲に配置された内輪560、内輪560の外周囲に配置された外輪561、及び外輪561と内輪560との間に介在して配置された転動体562からなる玉軸受56がそれぞれ第1の軸受として用いられている場合について説明したが、本発明はこれに限定されず、偏心部の外周面に形成された内輪軌道面、及び中心孔の内周面に形成された外輪軌道面を含むとともに、外輪軌道面と内輪軌道面との間に介在して配置された転動体からなる玉軸受を第1の軸受として用いてもよい。   In the present embodiment, the inner ring 540 disposed around the outer periphery of the eccentric portion 42a, the outer ring 541 disposed around the outer periphery of the inner ring 540, and the outer ring 541 and the inner ring 540 are disposed. A ball bearing 54 formed of a rolling element 542 is also disposed between an inner ring 560 disposed on the outer periphery of the eccentric portion 42b, an outer ring 561 disposed on the outer periphery of the inner ring 560, and between the outer ring 561 and the inner ring 560. However, the present invention is not limited to this, and the inner ring raceway surface formed on the outer peripheral surface of the eccentric portion, and A ball bearing that includes an outer ring raceway surface formed on the inner peripheral surface of the center hole and that includes a rolling element disposed between the outer ring raceway surface and the inner ring raceway surface may be used as the first bearing. .

また、本実施の形態においては、寸法S´がS´=S+Sに設定されている場合について説明したが、本発明はこれに限定されず、寸法S´をS´=Sとしても差し支えない。 In this embodiment, the case where the dimension S ′ is set to S ′ = S 1 + S 2 has been described. However, the present invention is not limited to this, and the dimension S ′ is set to S ′ = S 2. There is no problem.

以上、本発明の減速機構及びこれを備えたモータ回転力伝達装置を上記の実施の形態に基づいて説明したが、本発明は上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能であり、例えば次に示すような変形も可能である。   As mentioned above, although the deceleration mechanism of this invention and the motor rotational force transmission apparatus provided with this were demonstrated based on said embodiment, this invention is not limited to said embodiment, It deviates from the summary. The present invention can be carried out in various modes as long as it is not, for example, the following modifications are possible.

(1)上記実施の形態では、軸線Oから回転軸線Oまでの距離と軸線O´から回転軸線Oまでの距離とを等しく、かつ軸線Oと軸線O´との間の回転軸線O回りの距離を等しくするように一方の偏心部42aと他方の偏心部42bとがモータ軸42の外周面に設けられているとともに、電動モータ4のモータ軸42にその軸線(回転軸線O)回りに互いに等間隔(180°)をもって離間する部位で一対の入力部材50,51が配置されている場合について説明したが、本発明はこれに限定されず、入力部材の個数は適宜変更することができる。 (1) In the above embodiment, equal to the distance from the distance and the axis O'2 from the axis O 2 to the rotation axis O 1 to the rotation axis O 1, and between the axis O 2 and the axis O'2 One eccentric portion 42a and the other eccentric portion 42b are provided on the outer peripheral surface of the motor shaft 42 so as to equalize the distances around the rotation axis O, and the axis (rotation axis) of the motor shaft 42 of the electric motor 4 is provided. Although the case where the pair of input members 50 and 51 are arranged at the portions spaced apart at equal intervals (180 °) around O 1 ) has been described, the present invention is not limited to this, and the number of input members is appropriately determined. Can be changed.

すなわち、入力部材がn(n≧3)個の場合には、電動モータ(モータ軸)の軸線に直交する仮想面において、第1の偏心部の軸線,第2の偏心部の軸線,…,第nの偏心部の軸線がモータ軸の軸線回りの一方向に順次配置されているものとすると、各偏心部の軸線からモータ軸の軸線までの距離を等しく、かつ第1の偏心部,第2の偏心部,…,第nの偏心部のうち互いに隣り合う2つの偏心部の軸線とモータ軸の軸線とを結ぶ線分でつくる挟角を360°/nとするように各偏心部がモータ軸の外周囲に配置されるとともに、n個の入力部材がモータ軸にその軸線回りに360°/nの間隔をもって離間する部位で配置される。   That is, when there are n (n ≧ 3) input members, in the virtual plane orthogonal to the axis of the electric motor (motor shaft), the axis of the first eccentric part, the axis of the second eccentric part,. Assuming that the axis of the nth eccentric part is sequentially arranged in one direction around the axis of the motor shaft, the distance from the axis of each eccentric part to the axis of the motor shaft is equal, and the first eccentric part, Each of the eccentric portions is formed so that the included angle formed by a line segment connecting the axes of the two eccentric portions adjacent to each other among the two eccentric portions,..., The n-th eccentric portion and the axis of the motor shaft is 360 ° / n. Arranged on the outer periphery of the motor shaft, n input members are arranged on the motor shaft at portions spaced apart by 360 ° / n around the axis.

例えば、入力部材が3個の場合には、モータ軸の軸線に直交する仮想面において、第1の偏心部の軸線,第2の偏心部の軸線,第3の偏心部の軸線がモータ軸の軸線回りの一方向に順次配置されているものとすると、各偏心部の軸線からモータ軸の軸線までの距離を等しく、かつ第1の偏心部,第2の偏心部,第3の偏心部のうち互いに隣り合う2つの偏心部の軸線とモータ軸の軸線とを結ぶ線分でつくる挟角を120°とするように各偏心部がモータ軸の外周囲に配置されるとともに、3個の入力部材がモータ軸にその軸線回りに120°の間隔をもって離間する部位で配置される。   For example, when there are three input members, the axis of the first eccentric part, the axis of the second eccentric part, and the axis of the third eccentric part are on the motor axis on a virtual plane orthogonal to the axis of the motor shaft. If it is sequentially arranged in one direction around the axis, the distance from the axis of each eccentric part to the axis of the motor shaft is equal, and the first eccentric part, the second eccentric part, and the third eccentric part Each eccentric part is arranged on the outer periphery of the motor shaft so that the included angle formed by the line connecting the axis of two eccentric parts adjacent to each other and the axis of the motor shaft is 120 °, and three inputs The members are arranged on the motor shaft at portions spaced apart by 120 ° around the axis.

(2)上記実施の形態では、第2の軸受としての針状ころ軸受55,57が外輪550,570及び針状ころ551,571からなる場合について説明したが、本発明はこれに限定されず、出力部材の外周囲に配置された内輪、内輪の外周囲に配置された外輪、及び外輪と内輪との間に介在して配置された針状ころからなる針状ころ軸受であってもよい。この場合、寸法S´がS´=S+S+S,S´=S+S,S´=S+S及びS´=Sのいずれかが設定される。 (2) In the above embodiment, the case where the needle roller bearings 55 and 57 as the second bearings are composed of the outer rings 550 and 570 and the needle rollers 551 and 571 has been described, but the present invention is not limited to this. Further, the present invention may be a needle roller bearing comprising an inner ring disposed around the outer periphery of the output member, an outer ring disposed around the outer periphery of the inner ring, and a needle roller disposed between the outer ring and the inner ring. . In this case, the dimension S ′ is set to one of S ′ = S 0 + S 1 + S 2 , S ′ = S 0 + S 2 , S ′ = S 1 + S 2 and S ′ = S 2 .

(3)上記実施の形態では、駆動源としてエンジン102及び電動モータ4を併用した四輪駆動車101に適用する場合について説明したが、本発明はこれに限定されず、電動モータのみを駆動源とした四輪駆動車又は二輪駆動車である電気自動車にも適用することができる。また、本発明は、エンジン,電動モータによる第1の駆動軸と電動モータによる第2の駆動軸とを有する四輪駆動車にも上記実施の形態と同様に適用可能である。 (3) In the above embodiment, the case where the present invention is applied to the four-wheel drive vehicle 101 using both the engine 102 and the electric motor 4 as the drive source has been described. However, the present invention is not limited to this, and only the electric motor is used as the drive source. The present invention can also be applied to an electric vehicle that is a four-wheel drive vehicle or a two-wheel drive vehicle. The present invention can also be applied to a four-wheel drive vehicle having an engine, a first drive shaft by an electric motor, and a second drive shaft by an electric motor, as in the above embodiment.

(4)上記実施の形態では、入力部材50,51の中心孔50a,51aの内周面と偏心部42a,42bの外周面との間にそれぞれ深溝玉軸受である玉軸受54,56を第1の軸受として用い、偏心部42a,42bに対して入力部材50,51が回転可能に支持されている場合について説明したが、本発明はこれに限定されず、深溝玉軸受に代えて深溝玉軸受以外の玉軸受やころ軸受を第1の軸受として用いてもよい。このような玉軸受やころ軸受は、例えばアンギュラ玉軸受,針状ころ軸受,棒状ころ軸受,円筒ころ軸受,円すいころ軸受,自動調心ころ軸受などが挙げられる。また、本発明の第1の軸受としては、転がり軸受に代えて滑り軸受を用いてもよい。 (4) In the above embodiment, the ball bearings 54 and 56, which are deep groove ball bearings, are provided between the inner peripheral surfaces of the center holes 50a and 51a of the input members 50 and 51 and the outer peripheral surfaces of the eccentric portions 42a and 42b, respectively. Although the case where the input members 50 and 51 are rotatably supported with respect to the eccentric portions 42a and 42b has been described, the present invention is not limited to this, and the deep groove ball bearing is used instead of the deep groove ball bearing. A ball bearing or a roller bearing other than the bearing may be used as the first bearing. Examples of such ball bearings and roller bearings include angular contact ball bearings, needle roller bearings, rod roller bearings, cylindrical roller bearings, tapered roller bearings, and self-aligning roller bearings. Moreover, as a 1st bearing of this invention, it may replace with a rolling bearing and may use a sliding bearing.

例えば、図13〜図16に示すように、第1の軸受として針状ころ軸受500(内輪501,外輪502,転動体503)及び針状ころ軸受600(内輪601,外輪602,転動体603)を用いた場合、一方の入力部材50が偏心部42aに針状ころ軸受500を介して、また他方の入力部材51が偏心部42bに針状ころ軸受600を介してそれぞれ回転可能に支持される。この場合、図13は図5に、図14は図10に、図15は図11に、また図16は図12にそれぞれ対応し、上記実施の形態に示す玉軸受54に代えて針状ころ軸受500が一方の入力部材50の中心孔50aの内周面と偏心部42aの外周面との間に、また上記実施の形態に示す玉軸受56に代えて針状ころ軸受600が他方の入力部材51の中心孔51aの内周面と偏心部42bの外周面との間にそれぞれ介在して配置される。   For example, as shown in FIGS. 13 to 16, needle roller bearings 500 (inner ring 501, outer ring 502, rolling element 503) and needle roller bearings 600 (inner ring 601, outer ring 602, rolling element 603) are used as the first bearings. , One input member 50 is rotatably supported by the eccentric portion 42a via the needle roller bearing 500, and the other input member 51 is rotatably supported by the eccentric portion 42b via the needle roller bearing 600. . 13 corresponds to FIG. 5, FIG. 14 corresponds to FIG. 10, FIG. 15 corresponds to FIG. 11, and FIG. 16 corresponds to FIG. 12, and instead of the ball bearing 54 shown in the above embodiment, needle rollers are used. A needle roller bearing 600 is provided between the inner peripheral surface of the center hole 50a of one input member 50 and the outer peripheral surface of the eccentric portion 42a, and the needle roller bearing 600 is replaced with the ball bearing 56 described in the above embodiment. The member 51 is disposed between the inner peripheral surface of the center hole 51a and the outer peripheral surface of the eccentric portion 42b.

(5)上記実施の形態では、複数の出力部材53が一方端部にねじ部53aを有するとともに、他方端部に頭部53bを有するボルトである場合について説明したが、本発明はこれに限定されず、図17(変形例)に示すようにナット60,61をそれぞれ螺合させるねじ部62a,62bを両端部に有するボルトからなる複数の出力部材62であってもよい。 (5) In the above embodiment, the case where the plurality of output members 53 are bolts having the threaded portion 53a at one end and the head 53b at the other end has been described, but the present invention is limited to this. Instead, as shown in FIG. 17 (modified example), a plurality of output members 62 formed of bolts having screw portions 62a and 62b to which nuts 60 and 61 are respectively screwed may be used.

図17において、複数の出力部材62は、ねじ部62a,62bの他に、入力部材50,51を介して対向するデフケース30の構成要素としての一対の鍔部30d,30e(孔部300d,300e)をそれぞれ挿通する軸部62c,62d、これら両軸部62c,62d間に介在する中間部62e、及びこの中間部62eを軸線方向に2分する仕切部62fを有し、全体が段状の丸軸部材によって形成されている。複数の出力部材62(軸部62c・62d,中間部62e,仕切部62f)において、仕切部62fの外径は最大の寸法に、軸部62c,62dの外径は最小の寸法に、また中間部62eの外径は仕切部62eの外径と軸部62c,62dの外径との間の中間寸法にそれぞれ設定されている。そして、複数の出力部材62は、軸部62c,62dの外周面と孔部300d,300eの内周面との間に複数の弾性部材59を介在させ、デフケース30側から径方向に複数の弾性部材59による弾性力を受ける位置に配置されている。鍔部30dは玉軸受35を介して、また鍔部30eは玉軸受63及びスペーサ64を介してそれぞれモータ軸42の外周面に回転可能に支持されている。   In FIG. 17, the plurality of output members 62 include a pair of flange portions 30 d and 30 e (hole portions 300 d and 300 e) as components of the differential case 30 facing each other via the input members 50 and 51, in addition to the screw portions 62 a and 62 b. ), The intermediate portion 62e interposed between the two shaft portions 62c and 62d, and the partition portion 62f that bisects the intermediate portion 62e in the axial direction. It is formed by a round shaft member. In the plurality of output members 62 (shaft parts 62c and 62d, intermediate part 62e, partition part 62f), the outer diameter of the partition part 62f is the largest dimension, the outer diameters of the shaft parts 62c and 62d are the smallest dimension, and the middle part The outer diameter of the part 62e is set to an intermediate dimension between the outer diameter of the partition part 62e and the outer diameters of the shaft parts 62c and 62d. The plurality of output members 62 have a plurality of elastic members 59 interposed between the outer peripheral surfaces of the shaft portions 62c and 62d and the inner peripheral surfaces of the holes 300d and 300e, and a plurality of elastic members 59 in the radial direction from the differential case 30 side. It is arranged at a position to receive the elastic force by the member 59. The collar part 30d is rotatably supported on the outer peripheral surface of the motor shaft 42 via a ball bearing 35, and the collar part 30e is supported via a ball bearing 63 and a spacer 64, respectively.

なお、上記変形例においては、弾性部材59が複数個である場合について説明したが、これら複数の弾性部材59に代えて単一の弾性部材であってもよい。この場合、弾性部材は、弾性力付与部としての波形部を円周方向に沿って有する円筒部材によって形成されている。   In addition, in the said modification, although the case where there were two or more elastic members 59 was demonstrated, it replaced with these several elastic members 59, and a single elastic member may be sufficient. In this case, the elastic member is formed of a cylindrical member having a corrugated portion as an elastic force applying portion along the circumferential direction.

(6)上記実施の形態では、出力部材53の外周面であって、ねじ部53aと頭部53bとの間に介在する部位に、入力部材50のピン挿通孔50bの内周面に接触可能な第2の軸受としての針状ころ軸受55が、また入力部材51のピン挿通孔51bの内周面に接触可能な第2の軸受としての針状ころ軸受57がそれぞれ取り付けられている場合について説明したが、本発明はこれに限定されず、針状ころ軸受に代えて針状ころ軸受以外のころ軸受や玉軸受を用いてもよい。このような玉軸受やころ軸受は、例えば深溝玉軸受,アンギュラ玉軸受,円筒ころ軸受,棒状ころ軸受,円すいころ軸受,自動調心ころ軸受などが挙げられる。また、本発明の第2の軸受としては、転がり軸受に代えて滑り軸受を用いてもよい。 (6) In the above-described embodiment, the outer peripheral surface of the output member 53 can be brought into contact with the inner peripheral surface of the pin insertion hole 50b of the input member 50 at a portion interposed between the screw portion 53a and the head portion 53b. When the needle roller bearing 55 as the second bearing and the needle roller bearing 57 as the second bearing that can contact the inner peripheral surface of the pin insertion hole 51b of the input member 51 are respectively attached. Although demonstrated, this invention is not limited to this, It may replace with a needle roller bearing and may use roller bearings and ball bearings other than a needle roller bearing. Examples of such ball bearings and roller bearings include deep groove ball bearings, angular ball bearings, cylindrical roller bearings, rod roller bearings, tapered roller bearings, and self-aligning roller bearings. Further, as the second bearing of the present invention, a sliding bearing may be used instead of the rolling bearing.

1…モータ回転力伝達装置、2…ハウジング、20…第1のハウジングエレメント、20a…シャフト挿通孔、21…第2のハウジングエレメント、21a…内フランジ、22…第3のハウジングエレメント、22a…シャフト挿通孔、22b…円筒部、23…凸部、24…シール部材、25…円環部材、27…凸部、28…シール部材、3…リヤディファレンシャル、30…デフケース、30a…収容空間、30b…シャフト挿通孔、30c…フランジ、300c…ピン取付孔、301c…凹溝、30d…鍔部、300d…孔部、30e…鍔部、300e…孔部、31…ピニオンギヤシャフト、32…ピニオンギヤ、33…サイドギヤ、33a…シャフト連結孔、34,35…玉軸受、36…ピン、4…電動モータ、40…ステータ、41…ロータ、42…モータ軸、42a,42b…偏心部、43…取付ボルト、44…玉軸受、45…スリーブ、46…玉軸受、47…レゾルバ、470…ステータ、471…ロータ、5…減速伝達機構、50,51…入力部材、50a,51a…中心孔、50b,51b…ピン挿通孔、50c、51c…外歯、52…自転力付与部材、52a…第1の嵌合部、52b…第2の嵌合部、52c…内歯、53…出力部材、53a…ねじ部、53b…頭部、54…玉軸受、540…内輪、541…外輪、542…転動体、55…針状ころ軸受、550…レース(外輪)、551…針状ころ、56…玉軸受、560…内輪、561…外輪、562…転動体、57…針状ころ軸受、570…レース(外輪)、571…針状ころ、58…スペーサ、59…弾性部材、59a,59b…第1の接触部、59c…第2の接触部、60,61…ナット、62…出力部材、62a,62b…ねじ部、62c,62d…軸部、62e…中間部、62f…仕切部、63…玉軸受、64…スペーサ、101…四輪駆動車、102…エンジン、103…トランスアクスル、104…前輪、105…後輪、106…リヤアクスルシャフト、107…フロントアクスルシャフト、100,200,300…減速伝達機構、500…針状ころ軸受、501…内輪、502…外輪、503…転動体、600…針状ころ軸受、601…内輪、602…外輪、603…転動体、O…回転軸線、L,O,O´,O,O´,O,O,O…軸線、O…回転軸線、δ,δ,δ…偏心量、t,t´,w,w´…運転すきま、S,S,S,S…はめあいすきま、S,S…ラジアル内部すきま(運転すきま)、S,S´,D,D´,d,d´,R,R,R,R…寸法、P,P…遠心力、H…径方向寸法 DESCRIPTION OF SYMBOLS 1 ... Motor rotational force transmission apparatus, 2 ... Housing, 20 ... 1st housing element, 20a ... Shaft penetration hole, 21 ... 2nd housing element, 21a ... Inner flange, 22 ... 3rd housing element, 22a ... Shaft Insertion hole, 22b ... cylindrical part, 23 ... convex part, 24 ... seal member, 25 ... annular member, 27 ... convex part, 28 ... seal member, 3 ... rear differential, 30 ... differential case, 30a ... accommodation space, 30b ... Shaft insertion hole, 30c ... flange, 300c ... pin mounting hole, 301c ... concave groove, 30d ... collar, 300d ... hole, 30e ... collar, 300e ... hole, 31 ... pinion gear shaft, 32 ... pinion gear, 33 ... Side gear, 33a ... shaft coupling hole, 34, 35 ... ball bearing, 36 ... pin, 4 ... electric motor, 40 ... stator, 41 Rotor, 42 ... motor shaft, 42a, 42b ... eccentric part, 43 ... mounting bolt, 44 ... ball bearing, 45 ... sleeve, 46 ... ball bearing, 47 ... resolver, 470 ... stator, 471 ... rotor, 5 ... deceleration transmission mechanism 50a, 51 ... input member, 50a, 51a ... center hole, 50b, 51b ... pin insertion hole, 50c, 51c ... external teeth, 52 ... autorotation force applying member, 52a ... first fitting part, 52b ... second Fitting portion, 52c ... inner teeth, 53 ... output member, 53a ... screw portion, 53b ... head, 54 ... ball bearing, 540 ... inner ring, 541 ... outer ring, 542 ... rolling element, 55 ... needle roller bearing, 550 ... Race (outer ring), 551 ... Needle roller, 56 ... Ball bearing, 560 ... Inner ring, 561 ... Outer ring, 562 ... Rolling element, 57 ... Needle roller bearing, 570 ... Race (outer ring), 571 ... Needle roller , 58 ... spacer, 59 ... bullet Members 59a, 59b ... first contact portion, 59c ... second contact portion, 60, 61 ... nut, 62 ... output member, 62a, 62b ... screw portion, 62c, 62d ... shaft portion, 62e ... intermediate portion, 62f ... partitioning part, 63 ... ball bearing, 64 ... spacer, 101 ... four-wheel drive vehicle, 102 ... engine, 103 ... transaxle, 104 ... front wheel, 105 ... rear wheel, 106 ... rear axle shaft, 107 ... front axle shaft, DESCRIPTION OF SYMBOLS 100,200,300 ... Reduction transmission mechanism, 500 ... Needle roller bearing, 501 ... Inner ring, 502 ... Outer ring, 503 ... Rolling body, 600 ... Needle roller bearing, 601 ... Inner ring, 602 ... Outer ring, 603 ... Rolling body, O 1 ... rotation axis, L, O 2 , O ' 2 , O 3 , O' 3 , O 4 , O 5 , O 7 ... axis, O 6 ... rotation axis, δ, δ 1 , δ 2 ... eccentricity, t, t ', w, '... operating clearance, S 0, S 1, S 3, S 4 ... fit clearance, S 2, S 5 ... radial clearance (operating clearance), S, S', D, D', d, d', R 1 , R 2 , R 3 , R 4 ... dimension, P 1 , P 2 ... centrifugal force, H ... radial dimension

Claims (9)

第1の軸線の回りに回転し、前記第1の軸線から偏心する第2の軸線を中心軸線とする偏心部を有する回転軸と、
前記回転軸の外周囲に配置され、第3の軸線を中心軸線とする中心孔、及び前記第3の軸線の回りに等間隔をもって並列する複数の貫通孔を有するとともに、前記中心孔の内周面と前記偏心部の外周面との間に第1の軸受を介在させた外歯歯車からなる入力部材と、
前記入力部材に噛合し、前記外歯歯車の歯数よりも大きい歯数をもつ内歯歯車からなる自転力付与部材と、
前記自転力付与部材によって前記入力部材に付与された自転力を受けて出力対象にその回転力として出力し、第2の軸受を外周囲に有して前記複数の貫通孔をそれぞれ挿通する複数の出力部材とを備え、
前記複数の出力部材は、その外周面と前記第2の軸受との間に形成されるはめあいすきま、前記第2の軸受と前記複数の貫通孔の内周面との間に形成されるはめあいすきま、及び前記第2の軸受のラジアル内部すきまを合計した寸法S´が前記第1の軸受と前記偏心部の外周面との間に形成されるはめあいすきま、前記第1の軸受と前記中心孔の内周面との間に形成されるはめあいすきま、及び前記第1の軸受のラジアル内部すきまを合計した寸法Sよりも小さくなり、かつ前記出力対象側から径方向に弾性部材による弾性力を受ける位置に配置されている
減速機構。
A rotating shaft having an eccentric portion that rotates around a first axis and has a second axis that is eccentric from the first axis as a central axis;
A central hole disposed around the rotation axis and having a third axis as a central axis; and a plurality of through holes arranged in parallel at equal intervals around the third axis; and an inner periphery of the central hole An input member composed of an external gear having a first bearing interposed between the surface and the outer peripheral surface of the eccentric portion;
A rotation force applying member that is engaged with the input member and includes an internal gear having a number of teeth larger than the number of teeth of the external gear;
The rotation force applied to the input member by the rotation force applying member is output as a rotational force to an output target, and a plurality of through holes having a second bearing on the outer periphery and inserted through the plurality of through holes, respectively. An output member,
The plurality of output members are fit clearances formed between the outer peripheral surface thereof and the second bearing, and the fit clearances formed between the second bearing and the inner peripheral surfaces of the plurality of through holes. And a total dimension S ′ of radial internal clearances of the second bearing is a fitting clearance formed between the first bearing and the outer peripheral surface of the eccentric portion, and the first bearing and the center hole Position where the fitting clearance formed between the inner peripheral surface and the radial internal clearance of the first bearing is smaller than the total dimension S and receives the elastic force from the elastic member in the radial direction from the output target side Deceleration mechanism arranged in the.
前記複数の出力部材は、それぞれが前記入力部材を介して対向する前記出力対象の構成要素としての一対の鍔部を挿通し、前記一対の鍔部との間に前記弾性部材を介在させる位置に配置されている請求項1に記載の減速機構。   The plurality of output members are inserted through a pair of flanges as components of the output object that face each other via the input member, and the elastic members are interposed between the pair of flanges. The speed reduction mechanism according to claim 1 arranged. 前記第1の軸受は、前記偏心部の外周囲に配置された内輪、前記内輪の外周囲に配置された外輪、及び前記外輪と前記内輪との間に介在して配置された転動体を有し、
前記内輪の内径から前記偏心部の外径を減算した寸法をDとするとともに、前記中心孔の内径から前記外輪の外径を減算した寸法をdとし、かつ前記第1の軸受におけるラジアル内部すきまの運転すきまをtとすると、前記寸法SがS=D+d+t,S=d+t,S=D+t及びS=tのいずれかに設定されている請求項1又は2に記載の減速機構。
The first bearing has an inner ring disposed on the outer periphery of the eccentric part, an outer ring disposed on the outer periphery of the inner ring, and a rolling element disposed between the outer ring and the inner ring. And
The dimension obtained by subtracting the outer diameter of the eccentric portion from the inner diameter of the inner ring is set as D, the dimension obtained by subtracting the outer diameter of the outer ring from the inner diameter of the center hole is set as d, and the radial internal clearance in the first bearing The speed reduction mechanism according to claim 1, wherein the dimension S is set to any one of S = D + d + t, S = d + t, S = D + t, and S = t, where t is an operation clearance.
前記第1の軸受は、前記偏心部の外周面に形成された内輪軌道面を含むとともに、前記内輪軌道面の外周囲に配置された外輪、及び前記外輪と前記内輪軌道面との間に介在して配置された転動体を有し、
前記中心孔の内径から前記外輪の外径を減算した寸法をdとするとともに、前記第1の軸受におけるラジアル内部すきまの運転すきまをtとすると、前記寸法SがS=d+t又はS=tに設定されている請求項1又は2に記載の減速機構。
The first bearing includes an inner ring raceway surface formed on an outer peripheral surface of the eccentric portion, an outer ring disposed on an outer periphery of the inner ring raceway surface, and interposed between the outer ring and the inner ring raceway surface. Rolling elements arranged as
When the dimension obtained by subtracting the outer diameter of the outer ring from the inner diameter of the center hole is d, and the operating clearance of the radial internal clearance in the first bearing is t, the dimension S becomes S = d + t or S = t. The speed reduction mechanism according to claim 1 or 2, wherein the speed reduction mechanism is set.
前記第1の軸受は、前記中心孔の内周面に形成された外輪軌道面を含むとともに、前記外輪軌道面の内周囲に配置された内輪、及び前記内輪と前記外輪軌道面との間に介在して配置された転動体を有し、
前記内輪の内径から前記偏心部の外径を減算した寸法をDとするとともに、前記第1の軸受におけるラジアル内部すきまの運転すきまをtとすると、前記寸法SがS=D+t又はS=tに設定されている請求項1又は2に記載の減速機構。
The first bearing includes an outer ring raceway surface formed on an inner peripheral surface of the center hole, and an inner ring disposed on an inner periphery of the outer ring raceway surface, and between the inner ring and the outer ring raceway surface. Having rolling elements arranged therebetween,
When the dimension obtained by subtracting the outer diameter of the eccentric portion from the inner diameter of the inner ring is D and the operating clearance of the radial internal clearance in the first bearing is t, the dimension S is S = D + t or S = t. The speed reduction mechanism according to claim 1 or 2, wherein the speed reduction mechanism is set.
前記第1の軸受は、前記偏心部の外周面に形成された内輪軌道面、及び前記中心孔の内周面に形成された外輪軌道面を含むとともに、前記外輪軌道面と前記内輪軌道面との間に介在して配置された転動体を有し、
前記第1の軸受におけるラジアル内部すきまの運転すきまをtとすると、前記寸法SがS=tに設定されている請求項1又は2に記載の減速機構。
The first bearing includes an inner ring raceway surface formed on an outer peripheral surface of the eccentric portion and an outer ring raceway surface formed on an inner peripheral surface of the center hole, and the outer ring raceway surface, the inner ring raceway surface, Rolling elements disposed between
The speed reduction mechanism according to claim 1 or 2, wherein the dimension S is set to S = t, where t is the operating clearance of the radial internal clearance in the first bearing.
前記第2の軸受は、前記出力部材の外周面に形成された内輪軌道面を含むとともに、前記内輪軌道面の外周囲に配置された外輪、及び前記外輪と前記内輪軌道面との間に介在して配置された転動体を有し、
前記外輪の外周面と前記複数の貫通孔の内周面との間に形成されるはめあいすきまをSとするとともに、前記第2の軸受におけるラジアル内部すきまの運転すきまをSとすると、前記寸法S´がS´=S+S又はS´=Sに設定されている請求項1又は2に記載の減速機構。
The second bearing includes an inner ring raceway surface formed on an outer peripheral surface of the output member, and an outer ring disposed on an outer periphery of the inner ring raceway surface, and interposed between the outer ring and the inner ring raceway surface. Rolling elements arranged as
When the fitting clearance formed between the outer peripheral surface of the outer ring and the inner peripheral surfaces of the plurality of through holes is S 1, and the operating clearance of the radial internal clearance in the second bearing is S 2 , reduction mechanism according to claim 1 or 2 dimensional S'is set to S'= S 1 + S 2 or S'= S 2.
前記第2の軸受は、前記出力部材の外周囲に配置された内輪、前記内輪の外周囲に配置された外輪、及び前記外輪と前記内輪との間に介在して配置された転動体を有し、
前記出力部材の外周面と前記内輪の内周面との間に形成されるはめあいすきまをSとするとともに、前記外輪の外周面と前記複数の貫通孔の内周面との間に形成されるはめあいすきまをSとし、かつ前記第2の軸受におけるラジアル内部すきまの運転すきまをSとすると、前記寸法S´がS´=S+S+S,S´=S+S,S´=S+S又はS´=Sに設定されている請求項1又は2に記載の減速機構。
The second bearing has an inner ring disposed on the outer periphery of the output member, an outer ring disposed on the outer periphery of the inner ring, and a rolling element disposed between the outer ring and the inner ring. And
The fit Aisukima formed between the outer peripheral surface and the inner ring of the inner peripheral surface of the output member together with the S 0, is formed between the inner peripheral surface of the outer peripheral surface and the plurality of through-holes of the outer ring When the fitting clearance is S 1 and the operation clearance of the radial internal clearance in the second bearing is S 2 , the dimension S ′ is S ′ = S 0 + S 1 + S 2 , S ′ = S 0 + S 2 , 3. The speed reduction mechanism according to claim 1, wherein S ′ = S 1 + S 2 or S ′ = S 2 is set.
モータ回転力を発生させる電動モータと、
前記電動モータの前記モータ回転力を減速して駆動力を出力する減速機構とを備えたモータ回転力伝達装置において、
前記減速機構は、請求項1乃至8のいずれか1項に記載の減速機構である
モータ回転力伝達装置。
An electric motor for generating motor rotational force;
A motor rotational force transmission device comprising a speed reduction mechanism that decelerates the motor rotational force of the electric motor and outputs a driving force;
The said reduction mechanism is a reduction mechanism of any one of Claims 1 thru | or 8. A motor rotational force transmission apparatus.
JP2012138084A 2011-12-05 2012-06-19 Speed reduction mechanism and motor rotational force transmission device including the same Pending JP2014001814A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012138084A JP2014001814A (en) 2012-06-19 2012-06-19 Speed reduction mechanism and motor rotational force transmission device including the same
EP12194963.0A EP2602509B1 (en) 2011-12-05 2012-11-30 Speed reduction mechanism, and motor torque transmission device including the same
US13/692,130 US8721484B2 (en) 2011-12-05 2012-12-03 Speed reduction mechanism, and motor torque transmission device including the same
CN2012105131876A CN103133607A (en) 2011-12-05 2012-12-04 Speed reduction mechanism, and motor torque transmission device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012138084A JP2014001814A (en) 2012-06-19 2012-06-19 Speed reduction mechanism and motor rotational force transmission device including the same

Publications (1)

Publication Number Publication Date
JP2014001814A true JP2014001814A (en) 2014-01-09

Family

ID=50035176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012138084A Pending JP2014001814A (en) 2011-12-05 2012-06-19 Speed reduction mechanism and motor rotational force transmission device including the same

Country Status (1)

Country Link
JP (1) JP2014001814A (en)

Similar Documents

Publication Publication Date Title
US8734283B2 (en) Speed reduction mechanism, and motor torque transmission device including the same
JP6152680B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP5910378B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP5817247B2 (en) Motor rotational force transmission device
US8721484B2 (en) Speed reduction mechanism, and motor torque transmission device including the same
JP5811335B2 (en) Bearing device, reduction mechanism provided with the same, and motor torque transmission device
JP2013007443A (en) Speed reduction mechanism and motor rotation force transmission device equipped with the same
JP2013117284A (en) Speed reduction mechanism, and motor torque transmission device including the same
JP6003557B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP2014005890A (en) Deceleration mechanism and motor torque transmission device including the same
JP6089514B2 (en) Reducer, motor rotational force transmission device including the same, and four-wheel drive vehicle
JP2013142447A (en) Speed reduction mechanism, and motor torque transmission device including the same
JP2014001814A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP5849783B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP6028386B2 (en) Deceleration mechanism and motor rotational force transmission device having the same
JP2014001813A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014025511A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014005891A (en) Deceleration mechanism and motor torque transmission device including the same
JP2014016019A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014016017A (en) Speed reduction mechanism and motor rotational force transmission device including the same
JP2014005892A (en) Deceleration mechanism and motor torque transmission device including the same