JP2014001782A - Driving force generator - Google Patents

Driving force generator Download PDF

Info

Publication number
JP2014001782A
JP2014001782A JP2012136880A JP2012136880A JP2014001782A JP 2014001782 A JP2014001782 A JP 2014001782A JP 2012136880 A JP2012136880 A JP 2012136880A JP 2012136880 A JP2012136880 A JP 2012136880A JP 2014001782 A JP2014001782 A JP 2014001782A
Authority
JP
Japan
Prior art keywords
cam
linear motion
motion member
driving force
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012136880A
Other languages
Japanese (ja)
Inventor
Yuji Tsuzuki
悠史 都築
Akira Sano
亮 佐野
Satoshi Ishigaki
聡 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012136880A priority Critical patent/JP2014001782A/en
Publication of JP2014001782A publication Critical patent/JP2014001782A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a linear motion member 6 from rattling in a driving force generator for rectilinearly driving the linear motion member by rotation of a cam 8.SOLUTION: A driving force generator includes a coil spring for biasing a linear motion member 6 to bring the member into abutment with a cam 8. This causes the linear motion member 6 to be biased by the coil spring and then to come into abutment with the cam 8 from itself in a positive manner. Accordingly, the linear motion member 6 can be prevented from rattling. An abutment position vector ε is not perpendicular to a tangent line δ of a cam profile 37, is non-parallel to a normal ζ, and makes an angle θ between the vector and the normal ζ, in the whole range of a movable rotation angle of the cam 8. As a result, the force of the abutment of the linear motion member 6 can act on the cam 8 as torque, and the coil spring 9 can be thereby used as a restoration means.

Description

本発明は、所定の駆動対象を駆動するための駆動力を発生する駆動力発生装置に関するものであり、例えば、内燃機関の排気ガスを吸気側に還流するEGR装置に好適に利用することができるものである。   The present invention relates to a driving force generating device that generates a driving force for driving a predetermined driving object, and can be suitably used for, for example, an EGR device that recirculates exhaust gas of an internal combustion engine to an intake side. Is.

従来から、特許文献1に示すように、モータの出力によりカムを回転駆動するとともにカムの回転により直動部材を直進駆動する駆動力発生装置が公知である。そして、特許文献1によれば、直動部材の先端に弁体が設けられて所定の流路に収容され、駆動力発生装置は、直動部材を直進駆動して弁体により流路を開放する。   Conventionally, as shown in Patent Document 1, a driving force generator is known in which a cam is rotationally driven by the output of a motor and a linear motion member is linearly driven by the rotation of the cam. According to Patent Document 1, a valve body is provided at the tip of the linear motion member and is accommodated in a predetermined flow path, and the driving force generator drives the linear motion member straightly to open the flow path by the valve body. To do.

ところで、特許文献1によれば、弁体および直動部材を閉弁側に付勢する付勢手段は、カムを回転付勢するトーションスプリングである。そして、特許文献1の付勢手段は、カムを直動部材に当接させ、カムを介して直動部材を閉弁側に直進駆動する。このため、直動部材は、自身から積極的にカムに当接しないので、宙に浮いた状態になりやすく、振動等によりガタつきやすい。そして、このような直動部材のガタつきは、特に開弁状態で顕著になる。   By the way, according to Patent Document 1, the urging means for urging the valve body and the linear motion member toward the valve closing side is a torsion spring that urges the cam to rotate. And the urging | biasing means of patent document 1 makes a cam contact | abut to a linear motion member, and drives a linear motion member straightly to a valve closing side via a cam. For this reason, since the linear motion member does not positively contact the cam from itself, the linear motion member tends to float in the air and is likely to be loose due to vibration or the like. Such backlash of the linear motion member is particularly noticeable when the valve is open.

特表2009−516134号公報Special table 2009-516134 gazette

本発明は、上記の問題点を解決するためになされたものであり、その目的は、カムの回転により直動部材を直進駆動する駆動力発生装置において、直動部材のガタつきを抑制することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to suppress rattling of the linear motion member in a driving force generator that linearly drives the linear motion member by rotating the cam. It is in.

第1発明の駆動力発生装置は、直進駆動される直動部材と、直動部材を直進駆動するための駆動力を発生する駆動源と、駆動源が発生する駆動力により回転駆動されて直動部材を直進駆動するカムと、直動部材を駆動源による直進方向とは逆方向に付勢してカムに当接させる付勢手段とを備える。また、カムの可動回転角の範囲では、カムと直動部材との当接点におけるカムプロフィールの接線と、当接点とカムの回転中心とを結ぶ線分とは直交しない。   The driving force generator according to the first aspect of the present invention includes a linear member that is linearly driven, a driving source that generates a driving force for linearly driving the linear member, and a rotational force that is rotationally driven by the driving force generated by the driving source. A cam that linearly drives the moving member, and an urging unit that urges the linearly moving member in a direction opposite to the linearly moving direction by the drive source to contact the cam. Further, in the range of the movable rotation angle of the cam, the tangent line of the cam profile at the contact point between the cam and the linear motion member is not orthogonal to the line segment connecting the contact point and the cam rotation center.

これにより、付勢手段は、駆動源による直進方向とは逆方向に直動部材を付勢するので、直動部材は、自身から積極的にカムに当接する。このため、直動部材のガタつきを抑制することができる。   As a result, the urging means urges the linear movement member in a direction opposite to the linear movement direction by the drive source, so that the linear movement member positively contacts the cam from itself. For this reason, the play of the linear motion member can be suppressed.

また、直動部材がカムに積極的に当接する場合、当接点におけるカムプロフィールの接線と、当接点とカムの回転中心とを結ぶ線分とが直交すると、当接点におけるカムプロフィールの法線と、当接点とカムの回転中心とを結ぶ線分とが重なる。このため、直動部材がカムに当接して及ぼす力(以下、直動部材の当接力と呼ぶことがある。)は、カムに対しトルクとして作用することができず、カムを回転させることができない。この結果、付勢手段を、駆動源による駆動の結果実現している状態を元の状態に復元する復元手段として利用することができない。   In addition, when the linear motion member positively contacts the cam, the cam profile tangent at the contact point and the line segment connecting the contact point and the cam rotation center are orthogonal to each other. The line segment connecting the contact point and the rotation center of the cam overlaps. For this reason, the force that the linear motion member abuts on the cam (hereinafter sometimes referred to as the abutment force of the linear motion member) cannot act as a torque on the cam, and the cam can be rotated. Can not. As a result, the urging means cannot be used as a restoring means for restoring the state realized as a result of driving by the driving source to the original state.

そこで、当接点におけるカムプロフィールの接線と、当接点とカムの回転中心とを結ぶ線分とが直交しないように、カムプロフィール等の仕様を設定する。これにより、直動部材の当接力をトルクとしてカムに作用させ、カムを回転させることができる。このため、付勢手段を復元手段として利用することができる。   Therefore, the specifications of the cam profile and the like are set so that the tangent line of the cam profile at the contact point and the line segment connecting the contact point and the cam rotation center are not orthogonal to each other. Thereby, the contact force of the linear motion member can be applied to the cam as a torque, and the cam can be rotated. For this reason, an urging means can be utilized as a restoring means.

また、第1発明に従属する第2発明の駆動力発生装置によれば、直動部材の直進軸とカムの回転軸とは、非平行であってかつ交差しないねじれの位置にある。
これにより、当接点におけるカムプロフィールの接線と、当接点とカムの回転中心とを結ぶ線分とが直交しない状態を、構造的に容易に設定することができる。このため、付勢手段の復元手段としての利用を、構造的に容易に実現することができる(以下、カムの回転中心を始点とし、当接点を終点とするベクトルを当接位置ベクトルと呼ぶことがある。)。
Further, according to the driving force generator of the second invention that is dependent on the first invention, the rectilinear axis of the linear motion member and the rotational axis of the cam are in non-parallel and do not intersect with each other.
Thereby, a state where the tangent line of the cam profile at the contact point and the line segment connecting the contact point and the rotation center of the cam are not orthogonal to each other can be easily set structurally. Therefore, the use of the biasing means as the restoring means can be easily realized structurally (hereinafter, a vector having the cam rotation center as the start point and the contact point as the end point is referred to as a contact position vector). There is.)

さらに、第2発明に従属する第3発明の駆動力発生装置によれば、直動部材の直進軸を含みかつカムの回転軸に平行な基準面、および、直動部材がカムに当接して及ぼす力(直動部材の当接力)のベクトルである当接力ベクトルを想定し、さらに、当接力ベクトルの始点を当接点に一致させた状態を想定する。このとき、当接力ベクトルは、カムの可動回転角の範囲において、基準面を挟んでカムの回転軸の反対側に存在し、かつ、当接力ベクトルの終点は、当接力ベクトルの始点よりも基準面から遠い。   Further, according to the driving force generator of the third invention that is subordinate to the second invention, the reference surface that includes the linear axis of the linear motion member and is parallel to the rotational axis of the cam, and the linear motion member is in contact with the cam. Assume a contact force vector that is a vector of applied force (contact force of the linear motion member), and further assume a state in which the starting point of the contact force vector coincides with the contact point. At this time, the abutment force vector is present on the opposite side of the cam rotation axis across the reference plane in the range of the cam movable rotation angle, and the end point of the abutment force vector is the reference point relative to the start point of the abutment force vector. Far from the surface.

これにより、当接力ベクトルと当接位置ベクトルとの間に形成される角度を大きく設定したり、直動部材の当接力の強さ(当接力ベクトルの大きさ)を大きく設定したりすることができる。このため、直動部材からカムに作用するトルクを高めることができる。   Thereby, the angle formed between the contact force vector and the contact position vector can be set large, or the strength of the contact force of the linear motion member (the size of the contact force vector) can be set large. it can. For this reason, the torque which acts on a cam from a linear motion member can be raised.

駆動力発生装置の内部を示す平面図である(実施例)。It is a top view which shows the inside of a driving force generator (Example). 図1のII−II断面図である(実施例)。It is II-II sectional drawing of FIG. 1 (Example). カム、直動部材およびコイルスプリングの斜視図である(実施例)。It is a perspective view of a cam, a linear motion member, and a coil spring (Example). (a)はEGR装置の開弁状態を示す説明図であり、(b)はEGR装置の閉弁状態を示す説明図である(実施例)。(A) is explanatory drawing which shows the valve opening state of an EGR apparatus, (b) is explanatory drawing which shows the valve closing state of an EGR apparatus (Example). 駆動力発生装置の要部を示す部分平面図である(実施例)。It is a fragmentary top view which shows the principal part of a driving force generator (Example). 駆動力発生装置の特徴を説明する説明図である(実施例)。It is explanatory drawing explaining the characteristic of a driving force generator (Example). 駆動力発生装置の特徴を説明する説明図である(変形例)。It is explanatory drawing explaining the characteristic of a driving force generator (modification).

実施形態の駆動力発生装置を実施例に基づき説明する。   The driving force generator of the embodiment will be described based on examples.

〔実施例の構成〕
実施例の駆動力発生装置1の構成を、図1〜図6を用いて説明する。
駆動力発生装置1は、所定の駆動対象を駆動するための駆動力を発生するものであり、例えば、内燃機関(図示せず)の排気ガスを吸気側に還流するEGR装置2に組み入れられ、排気ガスの環流路3を開閉する弁体4を駆動するために利用される。
[Configuration of Example]
The structure of the driving force generator 1 of an Example is demonstrated using FIGS.
The driving force generator 1 generates a driving force for driving a predetermined driving object, and is incorporated in, for example, an EGR device 2 that recirculates exhaust gas of an internal combustion engine (not shown) to the intake side. This is used to drive the valve body 4 that opens and closes the exhaust gas circulation passage 3.

駆動力発生装置1は、直進駆動される直動部材6と、直動部材6を直進駆動するための駆動力を発生する駆動源としての電動モータ7と、電動モータ7が発生する駆動力により回転駆動されて直動部材6を直進駆動するカム8と、直動部材6を電動モータ7による直進方向とは逆方向に付勢してカム8に当接させる付勢手段としてのコイルスプリング9とを備える。   The driving force generator 1 includes a linear motion member 6 that is linearly driven, an electric motor 7 that generates a driving force for linearly driving the linear motion member 6, and a driving force generated by the electric motor 7. A cam 8 that is driven to rotate and linearly drives the linear motion member 6, and a coil spring 9 that urges the linear motion member 6 in a direction opposite to the linear motion direction by the electric motor 7 and abuts against the cam 8. With.

直動部材6は、一つの方向に長い軸部材11を主体とするものであり、軸部材11の軸方向一端に弁体4が設けられている。軸部材11は、環流路3の一部を形成する流路形成部材12にメタル軸受13を介して軸方向に直進自在に支持され、弁体4は、流路形成部材12に形成された環流路3に収容されている。   The linear motion member 6 is mainly composed of a shaft member 11 that is long in one direction, and a valve body 4 is provided at one axial end of the shaft member 11. The shaft member 11 is supported by a flow path forming member 12 that forms a part of the circular flow path 3 so as to be linearly movable in the axial direction via a metal bearing 13, and the valve body 4 is a circular flow formed in the flow path forming member 12. It is accommodated in the road 3.

そして、弁体4は、流路形成部材12に設けられた着座シート14に着座することで環流路3を閉鎖し、軸部材11とともに軸方向一方側に移動して着座シート14から離座することで環流路3を開放する。
なお、メタル軸受13の軸方向一方側には、環流路3の気密性を保つオイルシール15、軸部材11に付着したデポジットを掻き落す掻き落しパイプ16が配置されている。
Then, the valve body 4 closes the annular flow path 3 by sitting on a seating sheet 14 provided on the flow path forming member 12, moves to one side in the axial direction together with the shaft member 11, and separates from the seating sheet 14. This opens the annular flow path 3.
Note that an oil seal 15 that maintains the airtightness of the annular flow path 3 and a scraping pipe 16 that scrapes off deposits attached to the shaft member 11 are disposed on one side of the metal bearing 13 in the axial direction.

軸部材11の軸方向他端には、軸方向一方側に窪むスリット18が設けられ、スリット18には、ピン19により円柱状のローラ20が回転自在に支持されて収容されている。また、ピン19の軸心(つまり、ローラ20の回転軸)は直動部材6の直進軸αと直交する。   A slit 18 that is recessed on one axial side is provided at the other axial end of the shaft member 11, and a cylindrical roller 20 is rotatably supported and accommodated in the slit 18 by a pin 19. Further, the axis of the pin 19 (that is, the rotation axis of the roller 20) is orthogonal to the rectilinear axis α of the linear motion member 6.

電動モータ7は、例えば、周知の直流電動機であり、電動モータ7が発生するトルクは、減速機22により増幅されてカム8に伝達される。
減速機22は、電動モータ7の出力軸に装着されたピニオンギヤ23、カム8と同軸に一体化された出力ギヤ24、ならびに、ピニオンギヤ23と噛み合う大径歯車および出力ギヤ24と噛み合う小径歯車が同軸に設けられた中間ギヤ25とを有する周知構造である。
The electric motor 7 is, for example, a known DC motor, and the torque generated by the electric motor 7 is amplified by the speed reducer 22 and transmitted to the cam 8.
The reduction gear 22 has a pinion gear 23 mounted on the output shaft of the electric motor 7, an output gear 24 that is coaxially integrated with the cam 8, a large-diameter gear that meshes with the pinion gear 23, and a small-diameter gear that meshes with the output gear 24. This is a well-known structure having an intermediate gear 25 provided on the front side.

ここで、直動部材6の軸方向他端寄りの部分、電動モータ7、カム8、および減速機22は、駆動力発生装置1のハウジング27に収容され、カム8および出力ギヤ24の回転軸βをなす軸部材28は、ボールベアリング29を介してハウジング27に回転自在に支持されている。また、ハウジング27と流路形成部材12とは、ボルトおよびナット等の周知の締結具(図示せず。)により一体化されている。   Here, the portion of the linear motion member 6 near the other end in the axial direction, the electric motor 7, the cam 8, and the speed reducer 22 are accommodated in the housing 27 of the driving force generator 1, and the rotation shafts of the cam 8 and the output gear 24. The shaft member 28 forming β is rotatably supported by the housing 27 via a ball bearing 29. The housing 27 and the flow path forming member 12 are integrated by a known fastener (not shown) such as a bolt and a nut.

また、カム8や減速機22等の収容空間31は、カム8および出力ギヤ24の回転角を検出するためのホールIC32を具備するセンサカバー33により閉じられている。ここで、ホールIC32は、軸部材28に装着されて回転する永久磁石34とともに周知の回転角センサ35を構成するものであり、回転角センサ35は、カム8、出力ギヤ24および軸部材28の一体物の回転角に応じた信号を発生する。   The accommodating space 31 such as the cam 8 or the speed reducer 22 is closed by a sensor cover 33 having a Hall IC 32 for detecting the rotation angle of the cam 8 and the output gear 24. Here, the Hall IC 32 constitutes a known rotation angle sensor 35 together with a permanent magnet 34 that is mounted on the shaft member 28 and rotates. The rotation angle sensor 35 includes the cam 8, the output gear 24, and the shaft member 28. A signal corresponding to the rotation angle of the integral object is generated.

カム8は、電動モータ7から減速機22を介して伝わるトルクにより、例えば、図示反時計方向(左回り)に、回転軸βの周囲に回転駆動される。このとき、ローラ20の周縁とカムプロフィール37とが互いに当接し合って、直動部材6とカム8との当接点38が形成されている。ここで、ローラ20は、カム8に対して滑ることなく、回転しながら移動して当接点38を形成する。そして、当接点38を介して、カム8のトルクが直動部材6の推力に変換され、この推力により直動部材6が軸方向一方側に直進駆動されて環流路3が開かれる。   The cam 8 is driven to rotate around the rotary shaft β, for example, counterclockwise in the figure (counterclockwise) by torque transmitted from the electric motor 7 via the speed reducer 22. At this time, the peripheral edge of the roller 20 and the cam profile 37 are in contact with each other to form a contact point 38 between the linear motion member 6 and the cam 8. Here, the roller 20 moves while rotating without sliding with respect to the cam 8 to form the contact point 38. Then, the torque of the cam 8 is converted into the thrust of the linear motion member 6 via the contact point 38, and the linear motion member 6 is linearly driven to one side in the axial direction by this thrust to open the annular flow path 3.

コイルスプリング9は、周知の圧縮コイルであり、一端を流路形成部材12により支持され、他端を軸部材11に係止される傘状部材39により支持され、軸部材11と同軸となるようにセットされている。これにより、コイルスプリング9は、直動部材6を軸方向他方側に(つまり、電動モータ7から伝わるトルクによる直進方向とは逆方向に)付勢してローラ20の周縁をカムプロフィール37に当接させる。このため、ローラ20は、直動部材6を介しコイルスプリング9により付勢されて積極的にカム8に当接し、当接点38が確実に形成される。   The coil spring 9 is a well-known compression coil, and is supported at one end by a flow path forming member 12 and supported at the other end by an umbrella-shaped member 39 locked to the shaft member 11 so as to be coaxial with the shaft member 11. Is set. As a result, the coil spring 9 biases the linear motion member 6 toward the other side in the axial direction (that is, in the direction opposite to the linear travel direction due to the torque transmitted from the electric motor 7), and the peripheral edge of the roller 20 is applied to the cam profile 37. Make contact. For this reason, the roller 20 is urged by the coil spring 9 via the linear motion member 6 and positively contacts the cam 8 so that the contact point 38 is reliably formed.

ここで、カム8の回転中心γを、当接点38から回転軸βに降ろした垂線の足として定義すると、カム8の可動回転角の全範囲において、当接点38におけるカムプロフィール37の接線δと、当接点38と回転中心γとを結ぶ線分とは直交しない。すなわち、回転中心γから当接点38に向かうベクトル(回転中心γを始点とし、当接点38を終点とするベクトル)を当接位置ベクトルεと定義すれば、当接位置ベクトルεと、当接点38におけるカムプロフィール37の法線ζとは非平行であって角度θ(ただし、θはπの整数倍以外の角度である)を形成する。   Here, when the rotation center γ of the cam 8 is defined as a leg of a perpendicular line descending from the contact point 38 to the rotation axis β, the tangent δ of the cam profile 37 at the contact point 38 in the entire range of the movable rotation angle of the cam 8. The line segment connecting the contact point 38 and the rotation center γ is not orthogonal. That is, if a vector from the rotation center γ toward the contact point 38 (a vector having the rotation center γ as the start point and the contact point 38 as the end point) is defined as the contact position vector ε, the contact position vector ε and the contact point 38 are defined. Is not parallel to the normal ζ of the cam profile 37 and forms an angle θ (where θ is an angle other than an integral multiple of π).

また、直動部材6がカム8に当接して及ぼす力(直動部材6の当接力)のベクトルを当接力ベクトルηと定義すれば、当接力ベクトルηの方向は、当接点38におけるカムプロフィール37の法線ζと平行である。このため、当接位置ベクトルεと当接力ベクトルηとは非平行であって角度θを形成する。また、当接力によりカム8に作用するトルクは、当接力ベクトルηの大きさ、当接位置ベクトルεの大きさ、および角度θの正弦(sinθ)の3つを掛け合わせたものになる。   If the vector of the force exerted by the linear motion member 6 contacting the cam 8 (the contact force of the linear motion member 6) is defined as the contact force vector η, the direction of the contact force vector η is the cam profile at the contact point 38. It is parallel to 37 normal ζ. For this reason, the contact position vector ε and the contact force vector η are not parallel and form an angle θ. The torque acting on the cam 8 by the abutting force is obtained by multiplying the magnitude of the abutting force vector η, the magnitude of the abutting position vector ε, and the sine of the angle θ (sin θ).

また、直進軸αと回転軸βとは、非平行であってかつ交差しないねじれの位置にある。つまり、直進軸αは、回転軸βとは非平行であって回転軸βからオフセットしている。
さらに、直進軸αを含みかつ回転軸βに平行な面を基準面κと定義し、当接力ベクトルηの始点を当接点38に一致させた状態を想定する。このとき、当接力ベクトルηは、カム8の可動回転角の全範囲において、基準面κを挟んで回転軸βの反対側に存在し、かつ、当接力ベクトルηの終点は、当接力ベクトルηの始点(当接点38)よりも基準面κから遠い。
Further, the rectilinear axis α and the rotation axis β are in a non-parallel and twisted position that does not intersect. That is, the rectilinear axis α is not parallel to the rotation axis β and is offset from the rotation axis β.
Further, it is assumed that a plane including the straight axis α and parallel to the rotation axis β is defined as a reference plane κ, and the starting point of the abutting force vector η coincides with the abutting point 38. At this time, the contact force vector η exists on the opposite side of the rotation axis β across the reference plane κ in the entire range of the movable rotation angle of the cam 8, and the end point of the contact force vector η is the contact force vector η Is farther from the reference plane κ than the starting point (contact point 38).

〔実施例の効果〕
実施例の駆動力発生装置1は、直動部材6を電動モータ7による直進方向とは逆方向に付勢してカム8に当接させるコイルスプリング9を備える。そして、カム8の可動回転角の全範囲において、当接位置ベクトルεは、カムプロフィール37の接線δと直交せず、法線ζとは非平行であって法線ζとの間に角度θを形成する。
これにより、直動部材6は、コイルスプリング9により付勢されて自身から積極的にカム8に当接する。このため、直動部材6のガタつきを抑制することができる。
[Effects of Examples]
The driving force generator 1 according to the embodiment includes a coil spring 9 that urges the linear motion member 6 in a direction opposite to the linear movement direction by the electric motor 7 to contact the cam 8. In the entire range of the movable rotation angle of the cam 8, the contact position vector ε is not orthogonal to the tangent line δ of the cam profile 37, is not parallel to the normal line ζ, and is at an angle θ between the normal line ζ. Form.
Thus, the linear motion member 6 is urged by the coil spring 9 and positively contacts the cam 8 from itself. For this reason, the play of the linear motion member 6 can be suppressed.

また、直動部材6をカム8に積極的に当接させる場合、接線δと当接位置ベクトルεとが直交すると、当接位置ベクトルεと当接力ベクトルηとが平行になり、当接力はカム8に対しトルクとして作用することができなくなる。この結果、電動モータ7のトルクにより実現している環流路3の開放状態を閉鎖状態に復元する復元手段として、コイルスプリング9を利用することができない。   Further, when the linear motion member 6 is positively brought into contact with the cam 8, if the tangent δ and the contact position vector ε are orthogonal, the contact position vector ε and the contact force vector η are parallel, and the contact force is The cam 8 cannot act as a torque. As a result, the coil spring 9 cannot be used as a restoring means for restoring the open state of the annular flow path 3 realized by the torque of the electric motor 7 to the closed state.

そこで、接線δと当接位置ベクトルεとが直交しないように、カムプロフィール37等の仕様を設定する。これにより、当接位置ベクトルεと当接力ベクトルηとを非平行として、当接位置ベクトルεと当接力ベクトルηとの間に角度θを形成する。   Therefore, the specifications of the cam profile 37 and the like are set so that the tangent δ and the contact position vector ε are not orthogonal. Thereby, the contact position vector ε and the contact force vector η are made non-parallel, and an angle θ is formed between the contact position vector ε and the contact force vector η.

これにより、直動部材6の当接力を電動モータ7によるトルクとは逆回転方向のトルクとしてカム8に作用させることができる(つまり、直動部材6の当接力を、図示時計方向(右回り)に回転させるトルクとしてカム8に作用させることができる。)。このため、コイルスプリング9を復元手段として利用することができ、コイルスプリング9の付勢力により環流路3を閉じることができる。   As a result, the abutting force of the linear motion member 6 can be applied to the cam 8 as a torque in the direction opposite to the torque by the electric motor 7 (that is, the abutting force of the linear motion member 6 is clockwise (shown clockwise) in the figure. ) Can be applied to the cam 8 as a torque to be rotated.). For this reason, the coil spring 9 can be used as a restoring means, and the annular flow path 3 can be closed by the urging force of the coil spring 9.

また、直進軸αと回転軸βとは、非平行であってかつ交差しないねじれの位置にある。
これにより、当接位置ベクトルεと当接力ベクトルηとが非平行となる状態を、構造的に容易に設定することができる。このため、コイルスプリング9の復元手段としての利用を構造的に容易に実現することができる。
Further, the rectilinear axis α and the rotation axis β are in a non-parallel and twisted position that does not intersect.
Thereby, the state where the contact position vector ε and the contact force vector η are non-parallel can be easily set structurally. For this reason, the use of the coil spring 9 as a restoring means can be easily realized structurally.

さらに、当接力ベクトルηの始点を当接点38に一致させると、当接力ベクトルηは、カム8の可動回転角の全範囲において、基準面κを挟んで回転軸βの反対側に存在し、かつ、当接力ベクトルηの終点は、当接力ベクトルηの始点(当接点38)よりも基準面κから遠くなる。
これにより、角度θを大きく設定したり、直動部材6の当接力の強さ(当接力ベクトルηの大きさ)を大きく設定したりすることができる。このため、直動部材6からカム8に作用するトルクを高めることができる。
Furthermore, when the starting point of the contact force vector η coincides with the contact point 38, the contact force vector η exists on the opposite side of the rotation axis β across the reference plane κ in the entire range of the movable rotation angle of the cam 8. In addition, the end point of the contact force vector η is farther from the reference plane κ than the start point (contact point 38) of the contact force vector η.
Thereby, the angle θ can be set large, or the strength of the contact force of the linear motion member 6 (the magnitude of the contact force vector η) can be set large. For this reason, the torque which acts on the cam 8 from the linear motion member 6 can be raised.

ここで、コイルスプリング9の付勢力の強さをfspで表記すれば(図6参照。)、当接力の強さ(当接力ベクトルηの大きさ)は、直進軸αと法線ζとの間に形成される角度φを利用すると、fsp/cosφで表される。つまり、当接力の強さは、コイルスプリング9の付勢力の強さを1/cosφ倍に増幅したものになる。   Here, if the strength of the urging force of the coil spring 9 is expressed by fsp (see FIG. 6), the strength of the abutting force (the magnitude of the abutting force vector η) is calculated between the linear axis α and the normal ζ. When the angle φ formed between them is used, it is expressed by fsp / cos φ. That is, the strength of the abutting force is obtained by amplifying the strength of the urging force of the coil spring 9 by 1 / cosφ.

そこで、基準面κを挟んで回転軸βの反対側に当接力ベクトルηが存在するように、かつ、当接力ベクトルηの終点を当接力ベクトルηの始点(当接点38)よりも基準面κから遠くに位置するように、カムプロフィール37等の仕様を設定する。これにより、角度φはゼロよりも大きくなり、1/cosφは1よりも大きくなるので、コイルスプリング9の付勢力は確実に増幅され、当接力の強さはコイルスプリング9の付勢力の強さよりも強くなる。   Therefore, the contact force vector η exists on the opposite side of the rotation axis β across the reference surface κ, and the end point of the contact force vector η is set to be more than the reference surface κ than the starting point of the contact force vector η (contact point 38). The specifications of the cam profile 37 and the like are set so as to be located far from the camera. As a result, the angle φ becomes larger than zero and 1 / cos φ becomes larger than 1, so that the biasing force of the coil spring 9 is surely amplified, and the strength of the contact force is larger than the strength of the biasing force of the coil spring 9. Also become stronger.

以上により、基準面κを挟んで回転軸βの反対側に当接力ベクトルηを存在させ、かつ、当接力ベクトルηの終点を当接力ベクトルηの始点(当接点38)よりも基準面κから遠くに配置することで、直動部材6の当接力の強さ(当接力ベクトルηの大きさ)を大きく設定することができる。   As described above, the abutting force vector η exists on the opposite side of the rotation axis β across the reference surface κ, and the end point of the abutting force vector η is closer to the reference surface κ than the starting point of the abutting force vector η (the abutting point 38). By disposing it far away, the strength of the abutting force of the linear motion member 6 (the magnitude of the abutting force vector η) can be set large.

〔変形例〕
駆動力発生装置1の態様は、実施例に限定されず種々の変形例を考えることができる。
例えば、実施例の駆動力発生装置1によれば、当接力ベクトルηの始点を当接点38に一致させたとき、基準面κを挟んで回転軸βの反対側に当接力ベクトルηが存在し、かつ、当接力ベクトルηの終点は当接力ベクトルηの始点(当接点38)よりも基準面κから遠くに存在したが、当接力ベクトルηが基準面κ上に存在するようにカムプロフィール37等の仕様を設定してもよい(図7参照。)。
[Modification]
The mode of the driving force generator 1 is not limited to the embodiment, and various modifications can be considered.
For example, according to the driving force generator 1 of the embodiment, when the starting point of the contact force vector η is made coincident with the contact point 38, the contact force vector η exists on the opposite side of the rotation axis β across the reference plane κ. The end point of the contact force vector η exists farther from the reference plane κ than the starting point (contact point 38) of the contact force vector η, but the cam profile 37 so that the contact force vector η exists on the reference surface κ. Etc. may be set (see FIG. 7).

この場合、角度φがゼロになることから、コイルスプリング9の付勢力は増幅されず、当接力の強さはコイルスプリング9の付勢力の強さと同等になるので、当接力によりカム8に作用するトルクは、実施例よりも小さくなる。しかし、直進軸αと回転軸βとは、非平行であってかつ交差しないねじれの位置にあるので、当接位置ベクトルεと当接力ベクトルηとが非平行となる状態を構造的に容易に設定することができる。このため、コイルスプリング9の復元手段としての利用を構造的に容易に実現することができる。   In this case, since the angle φ is zero, the urging force of the coil spring 9 is not amplified, and the strength of the abutting force is equal to the strength of the urging force of the coil spring 9, so that the abutting force acts on the cam 8. The torque to be reduced is smaller than in the embodiment. However, since the rectilinear axis α and the rotation axis β are in a non-parallel and non-crossing twisted position, it is structurally easy to make the contact position vector ε and the contact force vector η non-parallel. Can be set. For this reason, the use of the coil spring 9 as a restoring means can be easily realized structurally.

また、直進軸αと回転軸βとが交差する構成でも、接線δと当接位置ベクトルεとが直交しないように、カムプロフィール37等の仕様を設定することで、コイルスプリング9を復元手段として利用してもよい。
さらに、実施例の駆動力発生装置1はEGR装置2に組み入れられていたが、例えば、内燃機関に吸入される吸入空気の流量を増減するスロットル装置に駆動力発生装置1を組み入れてもよく、内燃機関の吸排気とは係わらない装置に駆動力発生装置1を組み入れてもよい。
Further, even in a configuration in which the linear axis α and the rotation axis β intersect, the coil spring 9 is used as a restoring means by setting the specifications of the cam profile 37 and the like so that the tangent line δ and the contact position vector ε do not intersect at right angles. May be used.
Furthermore, although the driving force generator 1 of the embodiment is incorporated in the EGR device 2, for example, the driving force generator 1 may be incorporated in a throttle device that increases or decreases the flow rate of intake air sucked into the internal combustion engine. The driving force generator 1 may be incorporated into a device that is not related to intake and exhaust of the internal combustion engine.

1 駆動力発生装置 6 直動部材 7 電動モータ(駆動源) 8 カム 9 コイルスプリング(付勢手段) 37 カムプロフィール 38 当接点
γ 回転中心 δ 接線
DESCRIPTION OF SYMBOLS 1 Driving force generator 6 Linear motion member 7 Electric motor (drive source) 8 Cam 9 Coil spring (biasing means) 37 Cam profile 38 Current contact γ Rotation center δ Tangent

Claims (5)

直進駆動される直動部材(6)と、
この直動部材(6)を直進駆動するための駆動力を発生する駆動源(7)と、
この駆動源(7)が発生する駆動力により回転駆動されて前記直動部材(6)を直進駆動するカム(8)と、
この直動部材(6)を前記駆動源(7)による直進方向とは逆方向に付勢して前記カム(8)に当接させる付勢手段(9)とを備え、
前記カム(8)の可動回転角の範囲では、前記カム(8)と前記直動部材(6)との当接点(38)におけるカムプロフィール(37)の接線(δ)と、前記当接点(38)と前記カム(8)の回転中心(γ)とを結ぶ線分とは直交しないことを特徴とする駆動力発生装置(1)。
A linear motion member (6) that is linearly driven;
A drive source (7) for generating a drive force for driving the linear motion member (6) in a straight line;
A cam (8) that is rotationally driven by the driving force generated by the drive source (7) to drive the linear member (6) in a straight line;
Urging means (9) for urging the linearly moving member (6) in a direction opposite to the linearly moving direction by the drive source (7) and contacting the cam (8);
In the range of the movable rotation angle of the cam (8), the tangent (δ) of the cam profile (37) at the contact point (38) between the cam (8) and the linear motion member (6) and the contact point ( 38) and a line segment connecting the rotation center (γ) of the cam (8) is not orthogonal to the driving force generator (1).
請求項1に記載の駆動力発生装置(1)において、
前記直動部材(6)の直進軸(α)と前記カム(8)の回転軸(β)とは、非平行であってかつ交差しないねじれの位置にあることを特徴とする駆動力発生装置(1)。
In the driving force generator (1) according to claim 1,
The linear motion member (6) has a rectilinear axis (α) and a rotational axis (β) of the cam (8) which are non-parallel and in a twisted position where they do not intersect with each other. (1).
請求項2に記載の駆動力発生装置(1)において、
前記直動部材(6)の直進軸(α)を含みかつ前記カム(8)の回転軸(β)に平行な基準面(κ)、および、前記直動部材(6)が前記カム(8)に当接して及ぼす力のベクトルである当接力ベクトル(η)を想定し、さらに、前記当接力ベクトル(η)の始点を前記当接点(38)に一致させたときに、
前記当接力ベクトル(η)は、前記カム(8)の可動回転角の範囲において、前記基準面(κ)を挟んで前記カム(8)の回転軸(β)の反対側に存在し、かつ、前記当接力ベクトル(η)の終点は、前記当接力ベクトル(η)の始点よりも前記基準面(κ)から遠いことを特徴とする駆動力発生装置(1)。
In the driving force generator (1) according to claim 2,
A reference plane (κ) that includes the rectilinear axis (α) of the linear motion member (6) and is parallel to the rotational axis (β) of the cam (8), and the linear motion member (6) includes the cam (8). ), A force vector (η) that is a force vector exerted on contact, and when the start point of the contact force vector (η) is made coincident with the contact point (38),
The contact force vector (η) exists on the opposite side of the rotation axis (β) of the cam (8) across the reference surface (κ) in the range of the movable rotation angle of the cam (8), and The driving force generator (1) is characterized in that the end point of the contact force vector (η) is farther from the reference plane (κ) than the start point of the contact force vector (η).
請求項1ないし請求項3の内のいずれか1つに記載の駆動力発生装置(1)において、
前記直動部材(6)の先端には所定の流路(3)を開閉する弁体(4)が設けられ、
前記カム(8)は、前記流路(3)を開く方向に前記直動部材(6)を直進駆動し、
前記付勢手段(9)は、前記流路(3)を閉じる方向に前記直動部材(6)を付勢することを特徴とする駆動力発生装置(1)。
In the driving force generator (1) according to any one of claims 1 to 3,
A valve body (4) for opening and closing a predetermined flow path (3) is provided at the tip of the linear motion member (6),
The cam (8) linearly drives the linear motion member (6) in a direction to open the flow path (3),
The driving force generator (1), wherein the biasing means (9) biases the linear motion member (6) in a direction to close the flow path (3).
請求項4に記載の駆動力発生装置(1)において、
前記流路(3)には、内燃機関の排気側から吸気側に還流される排気ガスが流れることを特徴とする駆動力発生装置(1)。
In the driving force generator (1) according to claim 4,
The driving force generator (1), wherein exhaust gas recirculated from the exhaust side of the internal combustion engine to the intake side flows through the flow path (3).
JP2012136880A 2012-06-18 2012-06-18 Driving force generator Pending JP2014001782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136880A JP2014001782A (en) 2012-06-18 2012-06-18 Driving force generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136880A JP2014001782A (en) 2012-06-18 2012-06-18 Driving force generator

Publications (1)

Publication Number Publication Date
JP2014001782A true JP2014001782A (en) 2014-01-09

Family

ID=50035148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136880A Pending JP2014001782A (en) 2012-06-18 2012-06-18 Driving force generator

Country Status (1)

Country Link
JP (1) JP2014001782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500162B2 (en) 2012-08-02 2016-11-22 Denso Corporation Valve apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500162B2 (en) 2012-08-02 2016-11-22 Denso Corporation Valve apparatus

Similar Documents

Publication Publication Date Title
JP5772790B2 (en) Valve device
JP5673602B2 (en) Valve device
JP6675959B2 (en) Throttle device and method of manufacturing the same
JP5924247B2 (en) Valve device
JP2009162073A (en) Electronic throttle device for internal combustion engine
JP2012041887A (en) Electronic throttle
JP2013143808A (en) Electric actuator
JP6859233B2 (en) Double eccentric valve
JP2014001782A (en) Driving force generator
JP5590075B2 (en) Engine vortex generator
JP2012219903A (en) Valve device
JP5447266B2 (en) Electric actuator
JP5664599B2 (en) Valve device
JP2017522513A (en) Fluid circulation valve, particularly for automobiles, with a stopper washer and method for manufacturing such a valve
JP4831085B2 (en) Electronic throttle device for internal combustion engines
JP2013044313A (en) Electronic throttle
JP5850076B2 (en) Valve device
JP5429080B2 (en) Throttle device
JP2007064314A (en) Actuator and assembling method of actuator
JPWO2019030856A1 (en) Automotive actuator
JP5991293B2 (en) Valve device
JP2014005814A (en) Valve device
JP6673747B2 (en) Double eccentric valve and method of manufacturing the same
JP2016151209A (en) Electronic throttle
CN106471234B (en) Fluid circulation valve