JP2013540261A - Rfidタグによる位置決定 - Google Patents

Rfidタグによる位置決定 Download PDF

Info

Publication number
JP2013540261A
JP2013540261A JP2013525177A JP2013525177A JP2013540261A JP 2013540261 A JP2013540261 A JP 2013540261A JP 2013525177 A JP2013525177 A JP 2013525177A JP 2013525177 A JP2013525177 A JP 2013525177A JP 2013540261 A JP2013540261 A JP 2013540261A
Authority
JP
Japan
Prior art keywords
transponder
signal
position indication
indication signal
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013525177A
Other languages
English (en)
Inventor
トレスケン,フォルカー
ハゼナオ,ラスツロ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amedo Smart Tracking Solutions GmbH
Original Assignee
Amedo Smart Tracking Solutions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amedo Smart Tracking Solutions GmbH filed Critical Amedo Smart Tracking Solutions GmbH
Publication of JP2013540261A publication Critical patent/JP2013540261A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0247Determining attitude
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10297Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves arrangements for handling protocols designed for non-contact record carriers such as RFIDs NFCs, e.g. ISO/IEC 14443 and 18092
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Security & Cryptography (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Endoscopes (AREA)

Abstract

発明は、少なくとも1つのトランスポンダー(2,2')により標識された物体(1)の空間位置及び/または方位を決定するための、送信装置(3)により発せられるクエリー信号をトランスポンダー(2,2')が受信し、クエリー信号により作動させられて位置表示信号を発し、位置表示信号が少なくとも1つの受信装置(5)により受信され、位置を決定するために、評価装置(7)により解析される、方法に関する。発明の目的は、実用性に関して、とりわけ位置決定における精度に関して、改善された方法を提供することである。この目的のため、発明にしたがって送信装置(3)がクエリー信号を断続的に発し、受信装置(5)が少なくとも送信装置(3)の送信休止期間中にトランスポンダー(2,2')により発せられる位置表示信号を受信して、受信した位置表示信号から評価装置(7)が位置を決定する。発明はさらに方法を実施するためのシステムに関する。

Description

本発明は少なくとも1つのトランスポンダーによって標識された物体の空間位置及び/または方位を決定するための方法に関し、トランスポンダーは送信装置から発せられたクエリー信号を受信し、クエリー信号によって作動させられて位置表示信号を発し、位置表示信号は少なくとも1つの受信装置によって受信され、位置を決定するために評価装置によって解析される。本発明はさらに位置を決定するためのシステムに関し、システムは、物体に取付け可能な少なくとも1つのトランスポンダーを備え、トランスポンダーによる受信が可能なクエリー信号を発するための送信ユニット、トランスポンダーによって発せられる位置表示信号を受信するための様々な場所に配置された複数の受信装置及び受信された位置表示信号を解析するための評価装置を備える。
医学においては、例えば、様々な診断法及び治療法において応用医用機器の位置の正確な決定が最大の重要事である。この種の機器には、例えば、脈管内カテーテル、ガイドワイア、生検針、最小侵襲性外科手術機器、内視鏡、等があり得る。特に重要なそのようなシステムは、介入放射線医学、脳神経外科学、整形外科学または放射線治療の分野における医用機器の空間位置及び場所を決定するためのシステムでもある。しかし、精確な位置決定システムのための複数の有力なアプリケーションも医学分野の内部には存在しない。
特許文献1は、電磁波の形態にあるクエリー信号を発する送信ユニット及び、少なくとも1つの、医用機器上に配されたRFIDタグの形態にあるトランスポンダーを備える、医用機器の空間位置及び/または方位を決定するためのシステムを開示している。RFIDタグはアンテナ及び、電磁波を受信及び送信するための、アンテナに接続された回路を有し、回路はアンテナを介してクエリー信号により、すなわち、アンテナを介して位置表示信号を電磁波として発するような態様で、作動させることができる。トランスポンダーから発せられる位置表示信号を受信するため、いくつかの受信ユニットが備えられる。該当受信ユニットの場所における位置表示信号の電場強度及び位相から、トランスポンダーの精確な位置に関する結論を引き出すことができる。受信ユニットに連結された評価ユニットが、トランスポンダーから発せられる位置表示信号からトランスポンダーの、したがって医用装置の、空間位置及び/または方位を決定する。
従来技術のシステムでは、実際上、RFIDタグの比較的弱い位置表示信号の評価が、特に受信装置の該当場所における位置表示信号の位相関係に関して、困難であるという問題がある。この理由は、位置表示信号に平行な受信装置が送信装置のクエリー信号も受信することである。クエリー信号は位置表示信号より100dBまでも強い。トランスポンダーの位置表示信号からの送信装置のクエリー信号の分離は十分には、あるいは少なくとも十分には、可能ではないから、位置の決定における十分な精度は達成され得ない。
国際公開第2007/147614A2号パンフレット
上記背景技術に対して、本発明の課題は、RFIDタグの位置決定における、実用性に関して、また何よりも位置決定の精度に関して、改善された方法及びシステムを提供することである。
上記課題は、送信装置がクエリー信号を断続的に発し、受信装置が少なくとも送信装置の送信休止期間中にトランスポンダーによって発せられる位置表示信号を受信し、評価装置が受信した位置表示信号から、数cmまたは数mmまで精確に、あるいは1mm未満までも精確に、位置を決定するような態様の、上述したタイプの方法に基づく本発明により解決される。
本発明による位置決定のための標識として、上に概要を述べた、好ましくは(例えば、いわゆる「ERC世界標準」にしたがう)専用RFIDタグの形態にある、トランスポンダーが実装される。周知のように、RFIDは非接触識別及び追跡のための技術である。RFIDシステムはトランスポンダー及びトランスポンダー識別情報を読み取るための読取装置を備える。この読取装置が本発明の意味における送信装置を構成する。通常、RFIDタグはアンテナを、またアナログ部及びデジタル部を有する集積電子回路も、有する。アタログ部(トランシーバ)は電磁波を受信及び送信するためにはたらく。デジタル回路はトランスポンダー識別データを格納できるデータメモリを有する。さらに複雑なRFIDトランスポンダーでは、回路のデジタル部はノイマンアーキテクチャを有する。読取装置で発生される高周波電磁場が本発明の意味におけるクエリー信号を構成する。クエリー信号はRFIDトランスポンダーのアンテナを介して受信される。アンテナが読取装置の電磁場内におかれると直ぐに、トランスポンダーを作動させる誘導電流がアンテナに生じる。そのようにして作動させられたトランスポンダーは電磁場を介して読取装置からコマンドを受信する。トランスポンダーは読取装置から問われたデータを含む応答信号を発生する。本発明にしたがえば、応答信号はどの標識の空間位置が捕捉されるかに基づく位置表示信号である。
受動型RFIDタグ及び(例えば有効範囲を拡げるための)能動型RFIDタグのいずれも本発明の方法に適する。
本発明は送信装置のクエリー信号が、送信装置とトランスポンダーの間の通信に悪影響を与えずに、短時間(ほぼ100〜500μs)中断され得るという知識を利用する。詳しくは、クエリー信号によって作動させられた後のトランスポンダーは十分なエネルギーを蓄えており、送信装置の送信休止期間中に位置表示信号を発し続けることが明らかになる。本発明にしたがえば、位置表示信号は送信装置の送信休止期間中に受信され、位置を決定するために評価装置によって解析される。すなわち、位置表示信号はクエリー信号による干渉性重畳なしに受信される。したがって、専用RFIDタグを用いれば、mm精度で位置決定を行うことが可能である。
本発明の方法の好ましい実施形態にしたがえば、評価装置による位置決定は受信装置の場所における位置表示信号の位相関係に基づいて達成される。その背景事情は、位置表示信号の電場強度は、例えば環境からの信号反射による、変動を受け得ることである。この理由のため、電場強度に基づく、すなわちトランスポンダーから発せられる位置表示信号の電磁波の振幅に基づく、位置決定は必ずしも十分な精度で実行できるとは限らない。位置表示信号の電磁波の位相関係は、振幅ほどは周囲の干渉性の影響に敏感に応答しない。振幅に基づく粗い位置決定を初めに行い、位相関係を決定することで精度を向上させることも考えられる。位相関係に基づく位置決定により、信号振幅に基づく位置決定より精度を高めることも可能になる。しかし、電磁波の周期性のため、位相関係に基づく位置決定は一意的になり得ない。位相関係から位置に対する明確な結論を引き出し得る範囲内に限定された測定空間を維持することが必要であるかまたは別の手段を追加する必要がある。この点で、信号振幅測定の位相関係測定との組合せが状況を改善し得る。これの代わりとして、またはこれに加えて、正しい位置についての明確な結論を引き出すため、物体の移動中の該当受信装置の場所における位置表示信号のゼロ交差を計数することが可能である。
本発明に適用される受信装置は一般に、対応する受信装置エレクトロニクス(HFネットワーク、増幅器、復調器、等)に接続されたアンテナを有する。本発明の意味において、語句「受信装置の場所」はアンテナの場所と等価である。位置決定に対して重要なことは、アンテナの場所における位置表示信号の電磁波の位相及び/または振幅である。アンテナを関係する受信装置エレクトロニクスから空間的に隔て、アンテナを例えばケーブルを介して受信装置エレクトロニクスに接続することができる。また、いくつかのチャネルを有する受信装置エレクトロニクスにいくつかのアンテナを接続する、変形も考えられる。この場合も、「受信装置の場所」が該当するアンテナの場所を意味することは、本発明の意味で正当である。
本発明の方法の好ましい実施形態において、一意的なトランスポンダーで標識された物体の方位の評価装置による決定は、受信装置の場所における位置表示信号の電磁波の位相関係に基づいて達成される。この手法はトランスポンダーが固有の異方性放射特性を有するという事実を利用する。(座標軸に対して物体の少なくとも1つの特定の軸をとれば、角度によって決定される)空間内の物体の方位は定められた態様で位相関係に影響する。このことは、物体が一意的なトランスポンダーだけで標識されているとしても、方位の決定に利用することができる。
本発明の適切な発展形態にしたがえば、位置表示信号の電磁波が相異なる場所に配置された2つ以上の受信装置によって受信され、受信された位置表示信号から導かれる位相差値が生成されて位置決定のために評価装置に送られる、態様が提供され得る。例えば、2つの異なる位置のそれぞれで受信された位置表示信号から位相差をつくり出すことが可能である。それぞれの受信装置に位相検出器を割り当て、位相差を生成するためにクエリー信号に対する位相関係が常時一定な基準信号を位相検出器に与えることも可能である。絶対位相関係の代わりの位相差の測定は、該当トランスポンダーから発生される位置表示信号の電磁波は定められた絶対位相関係を初めは有していないから、有利である。有益なことには、例えばPLL素子に用いられる位相検出器のような専用/低価格位相検出器を位相差の測定に用いることができる。そのようなPLL素子には受信した信号を増幅するための信号増幅器が既に組み込まれていることが多い。
位相差に基づく位置決定において便宜的に適用される手順は、受信された位置表示信号から導かれる位相差値が基準位相差値(例えば、評価装置に格納された基準位相差値)と比較されるような手順である。おそらくは内挿と組み合わせられている、簡単な比較を、x、yおよびz座標に適切に割り当てられた格納基準位相差値と行うことができる。別形として、位相差値が入力として供給され、位相差値は受信された位置表示信号から生成される、ニューラルネットワークを用いて位置決定を達成することができる。次いで、ニューラルネットワークの出力が空間座標に配置され、この結果、その時点における該当標識の位置が得られる。
複数の所定の位置に対して基準位相差値を取り込む較正測定を前もって行っておくと便宜が良い。これらの基準位相差値は単に、所定の位置の空間座標と合わせて、適切なデータ媒体に格納しておくことができる。同様に、上述したニューラルネットワークを較正測定に基づいて訓練することができる。さらに、較正とは無関係に、所定の基準点について定期的に物体及び/または標識をチェックすることは目的にかなう。これは、定期期間内に座標原点に対する調節を実行するために利用することができる。位置決定において、座標原点のシフトは、必要であれば、単純なベクトル加法によって、更新された完全な再較正を必要とせずに容易に補償することができる。
較正の目的のため、本発明の好ましい実施形態にしたがえば、基準位相差値を記録するため、所定の位置に配置された複数の基準トランスポンダーを設けることができる。これにより、例えば位置決定のための基準位相差値を変化する周囲状況に連続的に適応させるための、連続較正の実行が可能になる。この趣意で、較正測定を定期的周期で反復することができる。
さらに、本発明の方法の位置実施形態において、トランスポンダーから発せられる位置表示信号はパルス形状であることが好ましい。位相検出器の出力は初めに、位置表示信号のパルス周波数より高いサンプリング周波数でデジタル化されると便宜が良い。次いで、位相検出器の出力信号に基づいて適するデジタル信号処理により、受信した位置表示信号から位相差値を導くことができる。信号処理のための適するアルゴリズムにより、雑音信号及びその他の干渉信号を効果的に抑制することができる。本発明に用いられるRFIDタグから発せられる信号はパルス形状である。RFIDタグと読取装置の間のデジタルデータ転送は通常、信号パルスによって達成される。本発明にしたがえば、これは、本明細書に上述したように位置決定に必要な位相差値を高信頼性/低雑音態様で取り込むために利用される。
本発明はさらに位置決定のためのシステムに関し、本システムは、物体に取り付けることができる少なくとも1つのトランスポンダーを備え、トランスポンダーが受信することができるクエリー信号を発する送信装置、トランスポンダーが発する位置表示信号を受信するための、様々な場所に配置された複数の受信装置、及び受信した位置表示信号を解析するための評価装置を備える。上述した課題は、送信装置が断続的にクエリー信号を発するように構成され、少なくとも送信装置の送信休止期間中にトランスポンダーが位置表示信号を発することで解決される。
本システムの好ましい実施形態において、評価装置は、送信装置の送信休止期間中に受信された位置表示信号を解析することによってトランスポンダーの空間位置を決定するように構成される。
本発明のシステムは、位相検出器がそれぞれの受信装置に割り当てられることがさらに好ましく、少なくとも送信装置の送信休止期間中に基準信号が位相検出器に供給され、基準信号はクエリー信号との位相関係が常時一定である。
本発明のシステムは様々な分野に適用することができる。
医学において(例えば、介入放射線医学、脳神経外科学、整形外科学または放射線治療の分野において)、本システムは1つ以上のRFIDタグで標識された医用機器の位置をmm精度で正確に決定するために用いることができる。記録された位置は案内の目的のために適する態様で、例えば、医用画像データ(例えば、X線像、CT像、超音波像またはMR像)に重畳された機器の図により、手術医に見えるスクリーン上に機器を表示することによって、可視化することができる。
さらに、機器分析における、すなわち、少なくとも1つのトランスポンダーで標識された試料の、または試料容器の、位置及び/または方位を決定するための、本発明のシステムの使用が考えられる。一方で、トランスポンダーにより対応する分析測定装置構成内の試料の位置決定が可能になる。他方で、試料をトランスポンダーに基づいて自動的に識別することができる。
さらに、本発明のシステムは、少なくとも1つのトランスポンダーで標識された、コンポーネント、工作物または製造オートマットの位置及び/または方位を決定するための、自動化製造技術における(例えば、自動車工業または航空宇宙技術における)応用に適する。この態様においては、適用製造オートマットを適宜に制御するため、処理されるべき特定の(トランスポンダーで識別可能な)工作物または取り付けられるべきコンポーネントの位置をいつでも決定できる。製造オートマット自体の位置でさえも、すなわち、例えば、製造オートマットに連結された工具またはグラブの、その時点での場所、位置及び方位を、捕捉及びモニタすることができる。さらに、処理または取付けの完了時の品質保証の目的のため、工作物及びコンポーネントのそれぞれの適切な位置をチェックすることができる。
本発明のさらなる応用分野はモーションキャプチャの分野に生じる。この用語は、物体の運動、また例えば人間の運動も、記録し、デジタル運動データを、例えばコンピュータによって解析して格納することができるように、記録されたデータをデジタル化することを可能にするプロセスに関する。記録されたデジタル運動データは、該当物体のコンピュータ生成モデルにそのデータを移すために用いられることが多い。そのような手法は、今日では映画及びコンピュータゲームの作成において日常の作業である。デジタル記録された運動データは、例えば、コンピュータ支援態様で三次元アニメーション化グラフを計算するために用いられる。比較的低コストでアニメーション化コンピュータグラフィックスを生成するため、または民生用娯楽エレクトロニクスのデバイス(例えばコンピュータゲームコンソール)を制御するため、モーションキャプチャにおいて複雑な運動シーケンスをコンピュータで解析することができる。モーションキャプチャにより、調べられている物体の最も異なるタイプの運動、すなわち、回転、並進、また変形も、記録することが可能である。相互に独立に運動を実行できる、例えば人間の場合のように、いくつかの関節を有する本質的に可動の物体の運動を記録することも可能である。モーションキャプチャという総称は、いわゆる「パフォーマンスキャプチャ」手法も包含する。この手法によれば、身体の運動だけでなく顔の表情も、すなわち人の擬態が、記録され、コンピュータ解析され、処理もされる。本発明にしたがえば、モーションキャプチャのために1つ以上のRFIDタグが該当物体に取り付けられ、それぞれの空間位置が記録されて、デジタル化される。
本発明の実施例が図面を用いて以下に略述される。
図1は本発明のシステムのブロック図としての略図を示す。 図2は本発明にしたがって断続的に発せられるクエリー信号の経時変化図を示す。 図3は図1にしたがうシステムにおける位相検出器の内の1つの出力信号を示す。
図1に簡略に示されるシステムは医用機器1,例えば生検針の空間位置及び方位を決定するためにはたらく。医用機器1には、位置決定のための標識としてはたらく専用受動型RFIDタグの形態のトランスポンダー2及び2'が配置される。システムは、RFIDタグ2,2'に対する専用読取装置でもある送信装置3を備える。送信装置3はアンテナ4を介してクエリー信号を発する。クエリー信号の電磁波はトランスポンダー2及び2'によって受信される。この目的のため、トランスポンダー2及び2'には、アンテナが送信装置3の電磁場内に入ると直ぐに誘導電流がつくられ、この誘導電流がトランスポンダー2及び2'を作動させる、アンテナ(図示せず)が装備される。そのようにして作動させられたトランスポンダー2及び2'はクエリー信号に応答して、やはり電磁波の形態の、位置表示信号を発生する。位置表示信号はパルス変調される。よって、トランスポンダー2及び2'は送信装置3から問われたデータ、例えばトランスポンダー2及び2'の該当識別番号を送信する。本発明にしたがえば、トランスポンダー2及び2'から発せられる位置表示信号はトランスポンダー2及び2'の空間位置を決定するため、したがって医用機器1の位置及び方位を決定するために用いられる。本明細書に略述される実施例では、方位決定は2つのトランスポンダー2及び2'の相対位置を解析することによって達成される。
トランスポンダー2及び2'からの位置表示信号は空間内の様々な場所に配置された受信装置5によって受信される。この趣意で、受信装置5には適する受信器アンテナ6が装備される。受信した位置表示信号を解析してトランスポンダー2及び2'の位置を決定するため、評価装置7が備えられる。
本発明にしたがえば、受信装置3はクエリー信号を断続的に発する。この目的を果たすため、評価装置7によって作動され、受信装置3をスイッチング位置に応じてアンテナ4と接続するかまたはアンテナ4から切り離すスイッチング素子8が備えられる。したがって、評価装置7によって制御される態様でのクエリー信号のサンプリングがスイッチング素子8により可能になる。
それぞれの受信装置8は、受信した位置表示信号から導かれる位相差値を生成する位相検出器を備える。位相差制御のため、送信装置3に接続された基準信号線9を介して基準信号がそれぞれの位相検出器に与えられ、基準信号は送信装置3からのクエリー信号に対する位相関係が常時一定である。トランスポンダー2及び2'の空間位置決定は、該当する受信装置5の場所における位置表示信号の電磁波の位相関係に基づいて、評価装置7によって達成される。受信装置5の位相検出器の出力はデジタルモジュール10に接続される。それぞれのデジタルモジュール10は位相差値をデジタル化するアナログ/デジタルコンバータを備える。デジタル位相差値は、デジタルモジュール10が接続されているデータバス11を介して評価装置7に送られる。位置決定のためのさらなる解析が評価装置7でなされる。図1に示されるように、図示されるようなシステムアーキテクチャにより、データバス11を介して評価装置7に連結される受信装置の数はほとんど任意とすることが可能になる。受信装置5は、信頼性が高い位置決定を保証するための要件により規定されるように、空間内でフレキシブルに分散配置することができる。
評価装置7は、本発明では、送信装置3からの送信休止期間中に、すなわち、スイッチング素子8を介する送信装置3とアンテナ4の間の接続が中断されている期間中に受け取られる、位置決定のための位相差値を用いる。このようにすれば、送信装置3からのクエリー信号がトランスポンダー2及び2'からの位置表示信号に基づく位置決定に悪影響を与えないことが保証される。
図2はアンテナ4を介して送信装置3から発せられるクエリー信号を示す。クエリー信号が断続的に発せられていることがわかる。5msまでの期間中、スイッチング素子8は閉じられる。すなわち、この期間中、クエリー信号は妨害なしにアンテナ4を介して送信装置3から発せられる。次いでスイッチング素子が開かれ、よって送信装置8とアンテナ4の間の接続が中断され、中断期間は100μsである。中断期間中にトランスポンダー2及び2'からの位置表示信号が受信装置5によって受信され、位置決定のために評価装置7によって解析される。上で略述したように、本発明は、専用RFIDタグシステムを備える送信装置3(読取装置)からのクエリー信号を短期間、例えばほぼ100〜500μsの間、送信装置3とトランスポンダー2及び2'の間の残りの通信に悪影響を与えずに中断させ得るという知識を利用する。特に送信装置3からのクエリー信号による作動時にトランスポンダー2及び2'が送信機3の送信休止期間中であっても位置表示信号を発し続けるに十分なエネルギーを蓄えているという事実が利用される。したがって、本発明では、クエリー信号による干渉性重畳なしに位置表示信号を受信することができる。
デジタル化位相差値に基づく位置決定において、位相差値が評価装置7に格納されている基準位相差値と評価装置7によって比較される手順が適用される。格納されている基準位相差値との比較により、該当するトランスポンダー2及び2'のx、y及びz座標が決定される。
医用装置1は基準トランスポンダー12によって定められる領域内におかれる。同じく専用RFIDタグである基準トランスポンダー12は所定の位置に配される。図示されるシステムにより、対応する基準位相差値は基準トランスポンダー12の位置表示信号から間断なく導かれる。これにより、位置決定における間断ない後較正が可能になる。
図3は受信装置5(図1を見よ)の位相検出器の内の1つの出力信号を簡略に示す。該当出力信号は強い雑音信号によって煩わされていることがわかる。さらに、トランスポンダー2及び2'がパルス出力信号を発することがわかる。位置表示信号の信号パルスは位相検出器の出力の信号パルスに反映される。トランスポンダー2及び2'からの位置表示信号のパルス放射はトランスポンダー2及び2'と読取装置3の間のデータ転送のためにはたらく。例えば、トランスポンダー2及び2'の識別データが送信される。すなわち、個々のトランスポンダー2及び2'の識別が、また基準トランスポンダー12の識別も、可能である。したがって、トランスポンダー2,2'及び/または12について、個別に位置決定を、評価装置7により達成することができる。本発明にしたがえば、位相差値はデジタル信号処理により高信頼性/低雑音態様で格納される。この趣意で、それぞれの位相検出器の図3に示される出力信号は初めにデジタルモジュール10により、すなわち、位置表示信号のパルス周波数より高いサンプリング信号で、デジタル化される。この手法には、スイッチング素子8が開いている間もアンテナ4を介して放射される、送信装置3からのクエリー信号の弱い残留信号を位相差値形成中に解析して排除することができ、位置決定が残留信号による悪影響または歪を受けることがないという利点がある。
1 医用機器
2,2’ トランスポンサー
3 送信装置
4 アンテナ
5 受信装置
6 受信器アンテナ
7 評価装置
8 スイッチング素子
9 基準信号線
10 デジタルモジュール
11 データバス
12 基準トランスポンダー

Claims (21)

  1. 少なくとも1つのトランスポンダー(2,2')によって標識された物体(1)の空間位置及び/または方位を決定するための、前記トランスポンダー(2,2')が送信装置(3)により発せられるクエリー信号を受信し、前記クエリー信号により作動させられて位置表示信号を発し、前記位置表示信号が少なくとも1つの受信装置(5)により受信され、前記位置を決定するために評価装置(7)により解析される方法において、
    前記送信装置(3)が前記クエリー信号を断続的に発し、前記受信装置(5)が少なくとも前記送信装置(3)の送信休止期間中に前記トランスポンダー(2,2')により発せられる前記位置表示信号を受信して、前記評価装置(7)が前記受信した位置表示信号から前記位置を決定する、
    ことを特徴とする方法。
  2. 前記トランスポンダー(2,2')がアンテナを備えるRFIDタグであり、前記アンテナを介して前記クエリー信号が電磁波の形態で受信され、前記アンテナを介して前記位置表示信号が電磁波の形態で発せられることを特徴とする請求項1に記載の方法。
  3. 前記送信休止期間の持続時間長が500μsまでであることを特徴とする請求項1または2に記載の方法。
  4. 前記評価装置(7)による前記位置決定が、前記受信装置(5)の場所における前記位置表示信号の前記電磁波の位相関係に基づいて達成されることを特徴とする請求項1から3のいずれかに記載の方法。
  5. 前記方位決定が、一意的なトランスポンダーにより標識された物体(1)を用い、前記受信装置(5)の場所における前記位置表示信号の前記電磁波の位相関係に基づいて前記評価装置(7)により達成されることを特徴とする請求項1から4のいずれかに記載の方法。
  6. 前記位置の粗い決定が前記受信装置(5)の場所における前記位置表示信号の前記電磁波の振幅に基づいて初めに達成され、前記位置決定の精度が引き続く前記位相関係の決定により高められることを特徴とする請求項4または5に記載の方法。
  7. 前記位置表示信号の前記電磁波が様々な場所に配置された2つ以上の受信装置(5)により受信され、前記受信された位置表示信号から導かれる少なくとも1つ以上の位相差値(Δφ)が少なくとも1つの位相検出器により生成され、位置決定のため、前記評価装置(7)に与えられることを特徴とする請求項6に記載の方法。
  8. 前記受信装置(5)のそれぞれに位相検出器が割り当てられ、位相差生成のため、前記クエリー信号との位相関係が常時一定な基準信号が前記位相検出器に与えられることを特徴とする請求項7に記載の方法。
  9. 前記トランスポンダー(2,2')から発せられる前記位置表示信号がパルス形状であり、前記位相検出器の出力信号が前記位置表示信号のパルス周波数より高いサンプリング周波数でデジタル化されることを特徴とする請求湖7または8に記載の方法。
  10. 前記位相差値(Δφ)が、デジタル信号処理によりデジタル化された値から決定されることを特徴とする請求項9に記載の方法。
  11. 前記位置決定が、前記受信された位置表示信号から導かれる前記位相差値(Δφ)を前記表示装置に格納された前記基準位相差値と比較することにより達成されることを特徴とする請求項7から10のいずれかに記載の方法。
  12. 所定の位置に配置された複数の基準トランスポンダー(12)について基準位相差値が取り込まれる、較正測定が実行されることを特徴とする請求項11に記載の方法。
  13. 前記較正測定が反復して実行されることを特徴とする請求項12に記載の方法。
  14. 位置決定のためのシステムであって、物体(1)に取付け可能な少なくとも1つのトランスポンダー(2,2')を備え、前記トランスポンダー(2,2')による受信が可能なクエリー信号を発するための送信装置(3)、前記トランスポンダー(2,2')により発せられる位置表示信号を受信するための様々な場所に配置された複数の受信装置(5)、及び前記受信される位置表示信号を解析するための評価装置(7)を備えるシステムにおいて、
    前記送信装置(3)が前記クエリー信号を断続的に発するように構成され、前記トランスポンダー(2,2')が少なくとも前記送信装置(3)の送信休止期間中に前記位置表示信号を発する、
    ことを特徴とするシステム。
  15. 前記評価装置(7)が、前記送信装置(3)の前記送信休止期間中に受信される前記位置表示信号を解析することにより前記トランスポンダー(2,2')の空間位置を決定するように構成されることを特徴とする請求項14に記載のシステム。
  16. 前記受信装置(5)のそれぞれに位相検出器が割り当てられ、前記クエリー信号との位相関係が常時一定な基準信号が少なくとも前記送信装置(3)の前記送信休止期間中に前記位相検出器に与えられることを特徴とする請求項14または15に記載のシステム。
  17. 少なくとも1つのトランスポンダーにより標識された医用機器の位置及び/または方位を決定するための医学における、請求項14から16のいずれかに記載のシステムの使用。
  18. 少なくとも1つのトランスポンダーにより標識された試料の位置及び/または方位を決定するための機器分析における、請求項14から16のいずれかに記載のシステムの使用。
  19. 少なくとも1つのトランスポンダーにより標識された、コンポーネント、工作物または製造オートマットの位置及び/または方位を決定するための自動化製造技術における、請求項14から16のいずれかに記載のシステムの使用。
  20. トランスポンダーにより標識された物体の位置及び/または方位を取り込むための民生娯楽エレクトロニクスにおける使用であり、民生娯楽エレクトロニクスのデバイスが前記取り込まれた前記物体の位置及び/または方位に基づいて制御されることを特徴とする請求項14から16のいずれかに記載のシステムの使用。
  21. 身体がいくつかのスポットにおいてトランスポンダーにより標識されている個人を追跡するための、請求項14から16のいずれかに記載のシステムの使用。
JP2013525177A 2010-08-23 2011-08-22 Rfidタグによる位置決定 Withdrawn JP2013540261A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102010035155A DE102010035155A1 (de) 2010-08-23 2010-08-23 Positionsbestimmung mittels RFID-Tags
DE102010035155.5 2010-08-23
PCT/EP2011/004213 WO2012031685A1 (de) 2010-08-23 2011-08-22 Positionsbestimmung mittels rfid-tags

Publications (1)

Publication Number Publication Date
JP2013540261A true JP2013540261A (ja) 2013-10-31

Family

ID=44674741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013525177A Withdrawn JP2013540261A (ja) 2010-08-23 2011-08-22 Rfidタグによる位置決定

Country Status (6)

Country Link
US (1) US20130257595A1 (ja)
EP (1) EP2609446A1 (ja)
JP (1) JP2013540261A (ja)
CN (1) CN103201646A (ja)
DE (1) DE102010035155A1 (ja)
WO (1) WO2012031685A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090107A1 (ja) * 2015-11-25 2017-06-01 オリンパス株式会社 カプセル内視鏡位置測定装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2875457A2 (en) * 2012-07-19 2015-05-27 Koninklijke Philips N.V. Device sensing in medical applications
CN103904581A (zh) * 2014-04-18 2014-07-02 国家电网公司 一种地下电缆位置判断***
EP2963901A1 (en) * 2014-07-03 2016-01-06 Nxp B.V. Communication portable device and communication method
CN106443580B (zh) * 2015-08-12 2019-07-02 中国人民解放军国防科学技术大学 一种测试方法及***
EP3355782B1 (en) * 2015-10-02 2024-01-24 Elucent Medical, Inc. Signal tag detection systems
DE102016108446A1 (de) 2016-05-06 2017-11-09 Terex Mhps Gmbh System und Verfahren zur Bestimmung der Position eines Transportfahrzeugs sowie Transportfahrzeug
US10656263B2 (en) * 2017-09-14 2020-05-19 Qualcomm Incorporated Extended localization range and assets tracking
WO2022060633A1 (en) * 2020-09-16 2022-03-24 Elucent Medical, Inc. Systems and methods comprising linked localization agents
CN113520517B (zh) * 2021-07-30 2022-10-11 重庆西山科技股份有限公司 具有信息识别功能的变向刀具组件及磨削手术***
DE102021128885B4 (de) 2021-11-05 2024-02-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Robotersystem sowie ein Verfahren zur Bestimmung der Position eines Funktransponders

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7663502B2 (en) * 1992-05-05 2010-02-16 Intelligent Technologies International, Inc. Asset system control arrangement and method
CN2239050Y (zh) * 1995-12-13 1996-10-30 披克(南京)电子技术有限公司 无源、免接触、免操作应答器的阅读器
KR20000049066A (ko) * 1996-10-17 2000-07-25 핀포인트 코포레이션 물품검색 시스템
US6529164B1 (en) * 2000-03-31 2003-03-04 Ge Medical Systems Information Technologies, Inc. Object location monitoring within buildings
CN100338478C (zh) * 2002-08-19 2007-09-19 Q-Track股份有限公司 用于近场电磁测距的***和方法
US6963301B2 (en) * 2002-08-19 2005-11-08 G-Track Corporation System and method for near-field electromagnetic ranging
JP4200866B2 (ja) * 2003-09-25 2008-12-24 ソニー株式会社 通信システム、通信装置および通信方法、記録媒体、並びにプログラム
EP1738295A1 (en) * 2004-03-03 2007-01-03 Caducys L.L.C. Interrogator and interrogation system employing the same
US7670553B2 (en) * 2005-03-24 2010-03-02 Siemens Healthcare Diagnostics Inc. Carousel system for automated chemical or biological analyzers employing linear racks
US8730011B2 (en) * 2005-07-14 2014-05-20 Biosense Webster, Inc. Wireless position transducer with digital signaling
DE102006029122A1 (de) 2006-06-22 2007-12-27 Amedo Gmbh System zur Bestimmung der Position eines medizinischen Instrumentes
KR101434295B1 (ko) * 2008-01-07 2014-09-25 삼성전자주식회사 디스플레이 장치에 표시된 화면의 일부분을 전자장치를통해 gui로 제공하는 방법 및 이를 적용한 전자장치
US20100148931A1 (en) * 2008-12-12 2010-06-17 Ravikanth Srinivasa Pappu Radio devices and communications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090107A1 (ja) * 2015-11-25 2017-06-01 オリンパス株式会社 カプセル内視鏡位置測定装置

Also Published As

Publication number Publication date
WO2012031685A1 (de) 2012-03-15
US20130257595A1 (en) 2013-10-03
EP2609446A1 (de) 2013-07-03
CN103201646A (zh) 2013-07-10
DE102010035155A1 (de) 2012-02-23

Similar Documents

Publication Publication Date Title
JP2013540261A (ja) Rfidタグによる位置決定
DK2227703T3 (en) A method for movement detection
US11116582B2 (en) Apparatus for determining a motion relation
JP6396447B2 (ja) リアルタイムでビームパターンを較正するための超音波画像への形状導入
CN103945772B (zh) 成像探头以及获得位置和/或方向信息的方法
US7834621B2 (en) Electromagnetic tracking employing scalar-magnetometer
US20060025668A1 (en) Operating table with embedded tracking technology
US20100063387A1 (en) Pointing device for medical imaging
US20090082665A1 (en) System and method for tracking medical device
US20100130853A1 (en) System for tracking object
US20060030771A1 (en) System and method for sensor integration
JP5393953B2 (ja) 医用トラッキング・システム向けの共形的コイルアレイ
JP6434006B2 (ja) ハイライトシステム及び判定方法
KR20180070878A (ko) 초음파 프로브의 주석 정보를 제공하는 방법 및 초음파 시스템
US7640121B2 (en) System and method for disambiguating the phase of a field received from a transmitter in an electromagnetic tracking system
US20160345937A1 (en) System and method for imaging using ultrasound
Placidi et al. Review on patents about magnetic localisation systems for in vivo catheterizations
US11762047B2 (en) Determining a position of an object introduced into a body
US20210259658A1 (en) Shape injection into ultrasound image to calibrate beam patterns in real-time
Anderson Investigation of the potential of low cost position tracking using permanent magnets

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104