JP2013528349A - 蓄熱装置の制御装置 - Google Patents

蓄熱装置の制御装置 Download PDF

Info

Publication number
JP2013528349A
JP2013528349A JP2013513707A JP2013513707A JP2013528349A JP 2013528349 A JP2013528349 A JP 2013528349A JP 2013513707 A JP2013513707 A JP 2013513707A JP 2013513707 A JP2013513707 A JP 2013513707A JP 2013528349 A JP2013528349 A JP 2013528349A
Authority
JP
Japan
Prior art keywords
control device
heat storage
storage device
signal
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013513707A
Other languages
English (en)
Other versions
JP2013528349A5 (ja
JP5898184B2 (ja
Inventor
マクドナルド アラン
Original Assignee
ベーシック ホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45098459&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013528349(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from GB1009698.0A external-priority patent/GB2481048B/en
Priority claimed from GB1101971.8A external-priority patent/GB2487781B/en
Application filed by ベーシック ホールディングス filed Critical ベーシック ホールディングス
Publication of JP2013528349A publication Critical patent/JP2013528349A/ja
Publication of JP2013528349A5 publication Critical patent/JP2013528349A5/ja
Application granted granted Critical
Publication of JP5898184B2 publication Critical patent/JP5898184B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/1923Control of temperature characterised by the use of electric means characterised by the type of controller using thermal energy, the cost of which varies in function of time
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B1/00Details of electric heating devices
    • H05B1/02Automatic switching arrangements specially adapted to apparatus ; Control of heating devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/10The network having a local or delimited stationary reach
    • H02J2310/12The local stationary network supplying a household or a building
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances
    • Y04S20/244Home appliances the home appliances being or involving heating ventilating and air conditioning [HVAC] units

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Stored Programmes (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
  • Central Heating Systems (AREA)

Abstract

ネットワーク内で蓄熱装置を選択的に起動し、自己の加熱を管理するユーザの要求と、利用可能な負荷とネットワーク上の負荷のバランスを取るというネットワークオペレータの要求とのバランスを取る、制御装置を提供する。

Description

本発明は、配電網および配電網内の負荷管理に関する。より具体的には、本発明は、電力ネットワーク内で提供される蓄熱装置に関し、特に、蓄熱装置の制御装置に関する。本発明の教示の文脈においては、蓄熱装置という用語は、暖房を提供する電気蓄熱ヒータ、および電気素子を用いて加熱される水シリンダを含む。本発明はまた、そのような蓄熱装置の動作を、配電網内で想定される負荷の変動に応答して制御することに関する。
環境保全技術が発展し、風力エネルギおよび波エネルギのような再生可能資源が商用電源の提供に利用されるようになるにつれ、益々多くの電力ネットワークの公共施設で、自己の電力供給を構成する際にかかる資源を使用することを検討している。
これらの再生可能資源には、その持続可能性を含めて多数の利点があるが、ネットワーク供給の構成全体に安定的に寄与できないという欠点がある。例えば、風力発電機は風が吹いているときだけエネルギを提供でき、波エネルギ変換機には電力を提供するための波形パターンが必要である。これらでは双方とも、天気や気候が考慮され、ネットワークの負荷要求に必ずしも適合しないものである。
これらの再生可能エネルギ資源からの供給変動を受けて、ネットワークオペレータは典型的に、電力供給源の構成全体を定義するとき伝統的な電力源も提供する。しかし、一般に、これらの「炭素系(carbon-based)」電力源を即時に起動することはできず、配電網が電力低下せずまたはより危機的な電力の完全喪失とならないことを保証するためにオンラインになるには時間がかかる。どの時点の負荷に対しても十分な電力があることを保証するために、典型的に、利用可能な限度で必要に応じて利用されている再生可能資源から1日に利用できる過渡的な電力を用いて、予測可能な電力供給が常時運用されている。しかし、かかる資源から利用できる電力がネットワークの負荷を超える場合は、ネットワーク施設のオペレータは典型的に、当該予測可能な電力供給の停止よりも風力タービン等の停止を優先させてそのエネルギを廃棄する。この負荷管理のジレンマの結果、再生可能資源から利用可能な電力の全てが利用されているわけではない。
かかる問題に対して様々な解決策が検討されてきた。その解決策には、(発電所からの)生産が消費を超えている間は電力エネルギを蓄え、消費が生産を超えるときにその蓄えを利用する、一般に配電網エネルギ貯蔵(grid energy storage)と呼ばれるものが含まれる。検討されてきた解決策では、電気自動車のバッテリへの電力供給、空気の圧縮、およびフライホイールの利用が検討されている。これらの全ては、負荷変動に対処しそれにより効率を向上させてエネルギ損失を低下させる点で有用であるが、エネルギ格納型主配電網(energy storing mains electricity grid)への変換が必要であり、これは非常に費用がかかる解決策となる。
したがって、かかるネットワーク負荷を管理してネットワーク配電網内の再生可能資源の利用を最適化できることを保証するには問題がある。
以上のおよび他の問題には、本発明の教示に従う蓄熱装置の制御装置により対処する。かかる制御装置は、蓄熱装置を選択的に起動する。当該蓄熱装置は、電力ネットワーク内に分散され、その動作を再生可能資源からの利用できる電力と相互に関連付ける。
以上に基づき、本発明は、請求項1に従う蓄熱装置の制御装置を提供する。有利な諸実施形態は従属請求項にて提供されている。
本発明の以上のおよび他の特徴は、以下の図面を参照すればより良く理解されよう。
本発明の教示に従う配電網ネットワークの一部の概略図である。 本発明の教示に従う制御装置の図である。 湯沸し器において、利用可能なエネルギを取得する値を上昇させた効果をグラフで示した図である。 本発明の教示に従う、例示的な形態の遅延時間計算をグラフで示した図である。 本発明に従う代替的な制御装置のブロック図である。 本発明の教示に従うネットワーク配置構成を示す図である。
以下、添付図面を参照して本発明を説明する。
以下では、本発明の教示に従って提供した例示的な配置構成を説明して、本発明の利益の理解を支援する。かかる配置構成は、提供できる制御装置の種類の例として理解されるであろうが、本発明をどの特定の配置構成にも限定しようとするものではなく、本発明の範囲から逸脱せずに、本明細書で説明したものを修正することができる。
ネットワーク配電網内の負荷管理に関連する問題に対処する際、本発明の発明者は、配電網内の利用可能な電力に適合するように、ネットワーク内で電気蓄熱ヒータや水シリンダのような蓄熱装置へ選択的に電力供給できることに想到した。
蓄熱ヒータは公知であり、一般に、断熱ケーシング内の蓄熱媒体(「煉瓦」)から構成される中心部を含む。加熱素子は煉瓦の中央に配置されて煉瓦を加熱する。一般に、蓄熱ヒータは、電力供給がより安価な時間(「オフピーク」時間)、通常は真夜中に加熱素子が作動するように局所的に制御される。これは通常はヒータの設置時にプログラムされ、加熱素子の起動時刻は、ネットワークオペレータが提供した通知時刻と一致する。
幾つかの電力供給業者からは、1日の間に1つまたは複数のオフピーク期間が定義されることがある。その結果例えば、1日には、その間にオフピーク期間がある2つ以上の比較的短いピーク期間が存在する。オフピーク期間中に、煉瓦が加熱素子によって典型的には約650℃の温度まで加熱され、熱が煉瓦に蓄えられる。断熱により、煉瓦からの熱損失割合が所望のレベルにまで削減されることが保証される。1日の間で、電力がより高価なときは、加熱素子が停止し、熱が蓄熱煉瓦から部屋に放熱されて部屋を暖める。断熱量は、中心部から部屋への熱損失割合に影響する。この加熱方法は、設置するのが比較的簡単かつ安価であり、清潔に使用でき、比較的安価に動作できる点で有利である。しかし、幾つかの欠点がある。
例えば、熱がオフピーク期間中(真夜中)に煉瓦に蓄えられるので、中心部は早朝、通常は大体午前7時に、最高温度に達する。その結果、蓄熱ヒータからの熱出力がこの時間に最大になる。これは理想的ではない。なぜならば、大抵の人は早朝(仕事または学校等に行く準備をして)より活動的であるので、あまり熱は必要でないからである。朝に最大温度に達した後、熱は1日の間に中心部から失われていく。熱出力はほぼ指数関数的に減衰し、その結果、夜までに、すなわち中心部に再び熱が蓄えられる前に、熱出力は極めて低くなりうる。
同様に、浸漬加熱素子を用いて家庭用温水シリンダ内部の水を加熱することが知られている。レジオネラ菌による汚染に関する潜在的な問題に対処するために、かかる水の加熱は設定値、一般には約60℃までであることが望ましい。家庭用水シリンダは一般に150リットルの容量があり、よく断熱されていて、水がシリンダから取り出されない限りかかる熱が必要となるまでシリンダ内に留まることを期待して1日の間の任意の時点に加熱することができる。オフピーク需要を利用して、浸漬ヒータの一部を形成する電気コイルを起動することでオフピーク期間中に上記の加熱を行うことが知られている。
本発明の発明者は、1日の間の設定された所定期間に装置に電力供給するのではなく、高電力供給期間中に風力発電機のような再生可能資源から選択的に電力供給することによって、ネットワーク内での再生可能資源の電力の取得量を最大化できることに想到した。蓄熱ヒータに関連する典型的な発熱量は1日あたり18kW時である。英国にはほぼ8百万個の蓄熱ヒータが存在することを考慮すると、これは任意の24時間において配電網に利用可能な負荷が100MW時であることを示している。
このように装置に選択的に電力供給するために、本発明では、主配電網(mains electricity supply)と蓄熱装置の加熱素子との間でインタフェースするように構成された制御装置を提供する。この制御装置は、加熱素子への電力供給を定義し、結果として、1日の任意の期間に蓄熱装置にかかる負荷を定義する。このように、制御装置は商用電源の電力と加熱素子との間の切替装置またはバルブとして動作する。制御装置は、ネットワークオペレータから受信したネットワーク内の超過電力の利用可能性に対する信号に応答し、この信号を受信すると、加熱素子を起動してその超過負荷の一部を吸収するように構成される。
この蓄熱装置の負荷取得機能は、装置の二次的な機能を表すことは理解されよう。蓄熱装置が蓄熱ヒータまたは水シリンダである例示的な文脈では、必要に応じて暖房または温水を装置のユーザにそれぞれ提供することが主要な機能である。この目的のため、ネットワークオペレータから受信した信号に基づいて利用可能なエネルギをネットワークから取得することは有用であるが、本発明の発明者は、いつ電力を受け取って蓄熱装置の加熱に影響を及ぼすかを記述しても、蓄熱装置がその想定される需要を満たせる適切なエネルギを受け取らなかったという状況にはならないことが重要であることに想到した。この目的のため、蓄熱装置の利用可能な容量を監視して将来の期間にわたる想定される需要を満たして当該容量が少なくともその需要を満たすことを保証するように制御装置を構成することが望ましい。当該容量が、想定される需要に満たないと判定した場合には、加熱素子(複数可)の電力供給を選択的に起動して、ネットワークオペレータから受信した任意の信号をオーバライドして蓄熱装置の主要機能が満たされることを保証するように制御装置を構成してもよい。ネットワーク内で高負荷が想定される将来の期間を突き止め、加熱素子の電力供給がネットワーク内の当該高負荷と同期しないことを保証するように、このオーバライド機能を構成してもよい。
任意の時間サイクル、例えば24時間における所定の時間をネットワーク内の低負荷期間として選択して、ネットワークからの信号受信と無関係にこれらの所定の負荷期間内に加熱素子を何回か選択的に起動するように制御装置をさらに構成してもよい。例えば、従来通り通常ネットワーク負荷が低い0時から7時の間にこれらの蓄熱装置に電力供給することが知られている。本発明の教示の文脈における制御装置を、この所定期間内の時間を選択して加熱素子を選択的に起動し、それにより、任意の時間サイクル、例えば24時間内に加熱素子を最小期間だけ起動し、蓄熱装置が完全に低いレベルまで枯渇することがないことを保証するように構成することもできる。
図1は、本発明の教示に従う例示的なネットワーク配置構成100を示す。主配電網を表しているネットワーク施設提供者110が、必要に応じて配電網内の1つまたは複数のユーザに電力を供給するように構成されている。図1の概略図では、単一のユーザ115が示されているが、このユーザは配電網構造内の複数の電力ユーザを代表するものであることは理解されよう。この例示的な配置構成では、ユーザ115が第1の蓄熱装置130および第2の蓄熱装置140を備える。この例示的な概略図では、第1の蓄熱装置130および第2の蓄熱装置140はそれぞれ蓄熱ヒータおよび水シリンダとして提供されているが、或るユーザがこれらの装置の各々を複数有し、或るユーザが或る特定の種類は有さないことは理解されよう。制御装置120は、装置130、140との間の電力経路に提供され、これらの2つの装置の各々内部の加熱素子への電力供給を制御する。本実施形態では当該2つの装置の各々を制御している1つの制御装置を示したが、各装置がそれ自身の専用制御装置を有してもよいことは理解されよう。
図2は、制御装置120のコンポーネントをより詳細に示す。制御装置は、蓄熱装置が取得するための電力の利用可能性に関してネットワークオペレータから信号を受信するための入力インタフェース200を有する。当該信号を、幾つかの異なる信号タイプのうちの1つで提供してもよい。例えば、当該信号を有線通信プロトコルまたは無線通信プロトコルで提供することができる。有線信号の例には、信号を送信するための主電力線(mains power line)を利用することまたは専用導線を引き込むことが含まれる。無線信号の例には、移動電気通信ネットワーク、無線周波数信号、WiMax(RTM)等に使用されるものが含まれる。これらの信号タイプのうち1つまたは複数を使用することができ、本発明の教示をいずれかの特定の信号送信タイプの例に限定しようとするものではないことは理解されよう。
信号を幾つかの異なる形式のうち任意の1つで提供することができる。例えば、複数のビットを含むデジタル信号を使用してコマンドをネットワークオペレータから制御装置に送信することができる。特定の信号がその制御装置またはその制御装置の種類に適切であると認織するように、制御装置を構成してもよい。複数の制御装置がネットワークオペレータから信号を同時に受信する場合にそのような配置構成を最も有用に使用することができるが、ネットワークオペレータは個々の制御装置を選択的に起動することを望む。特定の信号を認識しそれに作用するように制御装置を最初に構成することによって、複数の信号を並列に送信することができるが、制御装置の各々は当該制御装置宛ての信号に対して適切に動作するはずである。このように、複数の制御装置を類似のグループまたはサブセットにグループ化することができ、各サブセットはネットワークから送信された信号に対して様々に反応するはずである。このように、蓄熱装置の特定のサブセットを同期して起動することによって、ネットワークから取得した負荷を選択的に制御することができる。
蓄熱装置が起動されそれによりネットワークから利用可能な電力を取得することが望ましいことを確認する信号を受信すると、制御装置は、必要に応じておよび下記でさらに論ずるように、当該制御装置に接続された1つまたは複数の蓄熱装置に対して起動するように構成される。この起動が、接続された蓄熱装置の加熱素子を利用可能な電力に選択的に結び付けて当該蓄熱装置にエネルギを供給する切替機構210を介して行われることが望ましい。
第1の構成では、ネットワークオペレータからのコマンド信号を受信してすぐに、加熱素子にエネルギを供給する。しかし、第2の構成では、蓄熱装置の現在状態に応じて選択的にエネルギを供給する。上で論じたように、各蓄熱装置は一般に、装置の容量を定義する設定値を有する。この設定値を超えて加熱すると、過熱により装置が損傷する恐れがある。例えば、蓄熱装置では一般に、加熱素子を任意の24時間において7時間起動し、その他の時間で必要な加熱を提供する必要がある。蓄熱装置が常に加熱されると、蓄熱煉瓦の温度がその規定値を超えるおそれがある。
水シリンダでは、水温が60度(または他の何らかの事前設定値)に達すると、一般にヒータは停止して、水が過度に加熱されないことを保証する。水が家庭の水供給に使用される水加熱環境では、あまりに熱い水を提供することで利用者が火傷しないことを保証することも重要である。
これらの潜在的な危険の双方を念頭に置くと、制御装置は、ネットワークオペレータから信号を受信すると、事前設定値に合致するのにさらに加熱が必要であるか否かを監視するように構成されることが望ましい。加熱が不要である場合、例えば、既に7時間連続的に加熱されているかまたは装置がその最高温度にある場合には、受信したコマンドに関わらず制御装置が加熱素子を起動しないことを選択することができる。リモートで受信した命令をオーバライドするこの制御装置の能力により、装置の安全な動作が保証される。制御装置は、蓄熱装置の電力供給を所定の期間監視するように構成されたプロセッサ220を備える。この監視は、加熱素子の同期した動作を過去の期間にわたって記録すること、または、蓄熱装置の現在の動作パラメータを突き止めて設定値の条件を満たすのにさらに加熱が必要か否かを突き止めること、のうち1つまたはその双方であってもよい。この後者の配置構成では、加熱素子に電力を送信するか否かを判定する時点で双方向信号を介した制御装置による実際の装置の問い合わせを必要としてもよい。別の配置構成では、個々の蓄熱装置に併設されたセンサが、装置の状態を制御装置に定期的に送信してもよい。この状態、例えば温度を制御装置の1つまたは複数のバッファ225にローカルに格納してもよい。バッファは、装置の充電率と温度との間の関係を定義する参照テーブル等のためのデータストアを提供することができる。このように、制御装置が、実際の温度を装置の容量または設定値に対して処理し、装置をフル稼働させるのに必要な充電レベルを定義することができる。
Figure 2013528349
Figure 2013528349
ここで説明した配置構成への修正においては、蓄熱装置の設定値をシフトして、当該装置が当該装置の通常使用に必要な加熱よりさらに加熱を受け取ることができるように制御装置を構成してもよい。かかる配置構成の一例は、湯沸し器の第1の設定値が60℃でありシリンダ内の水が60℃である場合である。第1の設定値の上に第2の設定値、例えば80℃を一時的に設けて、シリンダ内の水を当該温度まで加熱してネットワーク内の負荷を増大させ再生可能資源から利用可能な電力を補償できるように制御装置を構成してもよい。かかる配置構成を、ネットワークからの特定の信号を受信した際に実現してもよいことは理解されよう。図3は、かかる配置構成の一例を示す。当該配置構成により、水温の設定値を20℃上昇させることで1日あたりさらに3.5kWhのエネルギを典型的な150リットルのシリンダに蓄えることができる。
別の例は、蓄熱ヒータの文脈において、設定値が所定の24時間における7時間の加熱の場合であるが、例えば冬の間に装置を利用すると、蓄えられた熱が日中に積極的に供給されるので加熱素子をさらなる時間起動することができる。この構成における制御装置は、蓄熱装置の実際の温度を監視し、時間ではなく設定値温度に達するまでのさらなる加熱時間を可能とするように、最適化されている。
制御装置は、蓄熱装置の主要機能が常に満たされることを保証するように構成されることが望ましい。主要機能は、必要に応じて暖房および家庭用温水を提供することであることを思い出されたい。暖房の例を用いると、日中に熱を提供するために、蓄熱装置を前もって加熱しておくことが重要である。素子の加熱がネットワークオペレータからの信号提供にのみ基づいて予測されるシナリオでは、風が少ない等のとき、ネットワークの容量が蓄熱装置の起動を要求するほどではない可能性がある。かかるシナリオでは、蓄熱装置の起動間隔が、蓄熱装置が暖房として供給するのに十分な熱を保持するために必要な間隔を超える可能性がある。これが生じないことを保証するために、エネルギを提供するための蓄熱装置の現在の容量、および将来の期間の熱に対して想定される要求を監視するように制御装置を構成してもよい。想定される要求が容量を超えるときは、ネットワークから起動を要求する信号を受信していないことと無関係に加熱素子を起動するように制御装置を構成してもよい。
かかる想定負荷がネットワーク内の従来の高負荷期間と重複するかもしれないことは理解されよう。例えば、17時〜19時の時間は、一般に、複数の調理装置が同時に起動される電力ネットワークにおいて高負荷になる時間である。これは、加熱が必要な時間でもある。蓄熱装置が適切に充電されて必要な加熱を提供することを保証するために、制御装置は、将来の負荷および容量を監視し、この予測に基づいて加熱素子の加熱を実行するように構成されてもよい。この予測により、主要機能を満足するための蓄熱装置の加熱がネットワーク内の既に高負荷である期間と重複せず、それによりネットワークの負荷管理を支援することを保証することができる。
複数の蓄熱装置内の加熱素子を起動する信号を受信した際に、これらの複数の蓄熱装置を同時に起動するとネットワーク周波数が一時的に急騰することは理解されよう。これを改善するために、制御装置の各々は、各々の加熱素子を遅延期間の終了後に起動して並列的な起動が行われないことを保証するように構成されてもよい。これを、ランダムな変数、定時等に基づいて計算してもよい。このように複数の装置の開始時間をシフトすることで、ネットワーク・レベルでの負荷管理を支援することができる。
ここまで、加熱素子の起動を、ネットワークから受信した開始信号を制御装置で受信することに関連して説明してきた。かかる信号を受信すると、制御装置は、後続の停止信号をネットワークから1回または複数回受信するまで、装置の容量を表す設定値に到達するまで、または例えば暖房の文脈では室温が所望のレベルに到達するまで、加熱を可能にするように構成される。前述したことを修正において、起動信号は、制御装置の開始終了時刻、または、所定レベルの蓄熱に達するまで装置の加熱が継続されるという要求を伴う開始時刻を含んでもよい。
図4は、制御装置が蓄熱装置を4時間の動作(充電時間)で65%の充電にするという要求を表す信号を16時に受信する、例示的な配置構成を示す。制御装置は装置に問い合わせて、その現在の充電が16時にヒータ中心部における充電全体の割合で55%であると判定する。
充電制御装置は次に、(例えば上の表1で列挙したように)参照テーブルに基づいて遅延開始時刻を計算する。この事例では、充電レベルの差異は10%(65%〜55%)であり、したがってこれは10分間の遅延時間と等しい。制御装置は次に、カウントダウンタイマ(CT)を開始する(このケースでは、4時間)。ヒータは、遅延時間(10分)が経過するまで充電されない。10分間が終了したとき、充電制御装置は室温と室温の設定値を比較する。これは1日の第2期間であるので、室温の設定値はユーザインタフェースの設定値に2℃を加えたものである(これは、午後の時間における上昇を許容するためのものである)。室温が設定温度より0.2℃を超えて低い場合は、ヒータを充電する。次の条件の何れかが真である場合はヒータの充電を停止する。
−室温が設定温度と等しい。
−中心温度が目標温度を超えている。
−充電時間が経過した。
本発明の教示に従う制御装置が、ネットワーク内の蓄熱装置を選択的に起動することで利用可能な負荷とネットワーク上の負荷のバランスを取るというネットワークオペレータの要求と、自己の加熱(暖房または家庭用水供給)を管理するというユーザの要求との間の柔軟なインタフェースを可能とすることは理解されよう。従来は、この関係は、加熱素子を起動できる時点に関する静的な定義により定義されていた。典型的には、当該時点は0時から7時の間のようなネットワーク利用が少ない時間である。本発明の教示によれば、制御装置は、好ましい天気条件に基づいて再生エネルギ源を持ち込むことによりネットワークの容量が増大する1日の期間中において、さらにバランスを取ることを可能とする。追加の容量を補償するために蓄熱装置を迅速に、例えば約10秒以内にオンラインにできるので、これは、ネットワーク内で増大した利用可能電力に対抗するための大容量の高速な資源を表すこととなる。加熱素子の選択的起動がこれらの装置の主要機能の悪化をもたらさないことを保証するために、制御装置には、蓄熱装置に任意の時点で適切に電力供給してその将来の加熱要求を満足することを保証するためのオーバライド機能が提供されている。これを固定の充電回数と組み合わせて行うこともできる。例えば、ネットワーク施設が0時から7時の間の最低限4時間、およびさらに(17時から19時は回避して)9時から24時の間の最大6時間を提供する場合、制御装置は、7時間の設定値までエネルギの利用を最適化し、主要な加熱時間における快適さを保証することができる。
図5ならびに表3および表4を参照すると、本発明に従うネットワークプロバイダまたはネットワークオペレータ110、単一のユーザ515および制御装置520を有する別の例示的なネットワーク配置構成500が説明されている。ネットワーク配置構成500が上述のネットワーク配置構成100と同様であることは理解されよう。図5の概略図では、単一のユーザ515を示しているが、このユーザは配電網構造内の複数の電力ユーザを代表するものであることは理解されよう。ユーザ515は第1の蓄熱装置を備える。この例示的な概略図では、第1の蓄熱装置または機器600は水シリンダである。しかし、上述のように、別の蓄熱装置を代わりに使用してもよく、または、別の蓄熱装置を例えば蓄熱ヒータと組み合わせて使用してもよい。或るユーザがこれらの装置の各々を複数有し、或るユーザが或る特定の種類は有さないことは理解されよう。制御装置520はネットワークと蓄熱装置600との間の電力経路に提供され、装置600ならびに当該装置内部の加熱素子601、602、および603への電力供給を制御する。
上述の制御装置120と同様である制御装置520は、蓄熱装置が取得するための電力の利用可能性に関する信号をネットワークオペレータ110から受け取り、制御信号を家庭用の装置または機器600に提供して必要に応じてその動作を制御するように動作することができる。
制御装置520は幾つかの入力/入力手段を備える。制御装置520は、信号540が提供されるインタフェース530を介してネットワークオペレータから要求側の管理信号を受信するように構成される。制御装置520はさらに、入力/インタフェース560を介して蓄熱装置/水シリンダ内の温度/水温および/または利用可能な容量を監視し、受信するように構成される。制御装置520はさらに、入力/インタフェース550を介して主電源周波数応答および/または周波数応答変動データ/信号を受信し監視するための手段を備えてもよい。
このように、制御装置120と同様に、制御装置520は、ネットワークプロバイダから受信した信号および利用可能な容量の監視に基づいて要求側管理を提供するように動作することができる。さらに、制御装置520はローカルの蓄熱装置(複数可)600の制御により周波数応答を調節してもよい。周波数応答を、ネットワークプロバイダからの信号を考慮して調節してもよい。周波数応答を、他の入力、すなわち、利用可能容量560および周波数応答入力550を考慮して調節してもよい。
実際、制御装置520は、データ/信号をネットワークプロバイダおよび他の入力550、560から受信して、それらを解釈し、それらに優先順位を付け、切替装置570を介して制御信号580を蓄熱装置600に送信するように構成される。制御装置520は、機器600の動作を様々なモードで提供し、蓄熱装置600への電力入力を必要に応じて0から最大負荷まで変化させるための手段を備える。制御装置520は、信号をネットワークプロバイダから受信して当該信号を設定値および電力入力に解釈し、制御信号を装置に出力するように構成される。制御装置520からの信号制御580に基づいて、装置600を必要に応じて0から最大負荷までの電力入力で動作させてもよい。
制御装置520はさらに、蓄熱装置600に対して少なくとも2つの設定値、すなわちデフォルトの/ノミナルの設定値、および最大設定値を定義するための手段を備える。第1のデフォルトの設定またはノミナルの設定では、水シリンダ600は、定常的な内部温度を維持するための「トリクル充電」モードで動作する。内部温度は、機器600が必要ならば快適な加熱または温水を提供でき、これが重要であるが、必要ならば温度を上昇させる(要求する)ための容量を依然として有することを保証するのに十分なほど高温であるように設定される。
このデフォルトのまたはノミナルの設定/設定値により、蓄熱装置の動作が柔軟になり、例えば、ネットワークプロバイダが、再生可能エネルギを余分に生成できると示す場合には、ネットワークプロバイダが設定値および電力入力を増大させるための信号を送信した際の応答が可能となる。反対に、デフォルトのまたはノミナルの設定により、負荷および電力入力の低減が必要であるとネットワークプロバイダからの信号が示す場合の応答も可能となる。このように、制御装置は、ネットワークプロバイダから受信したデータに基づいて蓄熱装置に制御信号を提供するように構成される。制御信号は、電力入力の増大または電力入力の低減を含んでもよい。デフォルトの動作モードまたはトリクル充電の動作モードにより、設定値および電力入力を増大させる信号の場合ならびに設定値および電力入力を低減させる信号の場合に、単一のユーザおよび制御装置から応答することが容易になる。
例示的な実施形態において、信号は、インタフェース530を介してネットワークプロバイダから制御装置520に提供されるが、代替的な配置構成では、制御装置520は、WiFiまたはGSM(登録商標)を介して前述のようにネットワークプロバイダから信号を受信し、当該信号を解釈し、当該信号に優先順位を付け、制御信号を蓄熱装置600に送信するように構成されることがある。
図5の例示的な配置構成では、蓄熱装置、ここでは水シリンダ600は、複数の浸漬素子、このケースでは3つの浸漬素子601、602、および603を備える。複数の浸漬素子は、必要に応じて可変の入力電力をサポートして実現し、高負荷の高速切替および関連するEMCの問題を回避するのに提供される。本実施形態の素子601、602、および603は、2×750ワットおよび1×1500ワットである。次の表3を参照すると、素子601、602、および603に関連付けられた例示的な過剰容量負荷段階(excess capacity loading steps)が提供されている。
Figure 2013528349
システム500およびユーザ515がうまく動作するためには家庭用蓄熱装置600が高度に断熱されていなければならないことは理解されよう。これにより、エネルギを無駄にすることなく、周囲の大気温度に影響を与えることなく、高温で蓄熱することができる。本実施形態では、浸漬素子を別々のユニットとして提供したが、代替的な配置構成ではこれらの浸漬素子を1つのユニットに統合してもよいことは理解されよう。
上述のように、制御装置520はさらに、入力550を介してデータを受信するため、および/または、流入する配電網の電力の周波数および/または周波数変動を監視するための手段を備えてもよい。制御装置520をさらに、周波数変動の検出に応答して蓄熱装置の電力を調節するための出力信号を提供するように構成してもよい。かかる配置構成は、ネットワークにおける周波数調節をサポートするように構成される。当該例示的な配置構成では、切替装置570は、配電網の周波数に比例して電力を切り替えるように動作可能であるトライアック装置として提供される。
従来式の発電機では周波数応答が組み込まれており、これにより配電網の周波数が50Hz+/−0.5Hzに維持されることを保証するが、例えば風力発電機にはかかる周波数応答はない。制御装置520は、エネルギを格納するために使用されている蓄熱装置(複数可)600の電力を調節することによりエネルギネットワーク内の周波数調節をサポートするように構成される。一例において、制御装置520は、配電網の周波数が50Hz+/−0.5Hzから逸脱したとき、切替装置570を介して蓄熱装置600への電力を適切に調節する。制御装置520は、配電網の周波数が50Hz+/−0.5Hzから逸脱したときに蓄熱装置600の負荷が時間とともに徐々に変化するようにプログラムされている。例えば、配電網の周波数が低下すると、蓄熱装置600の負荷は、配電網の不安定性の原因となりうる急速な変化とは対照的に徐々に減少する。
入力550を介して制御装置520に提供された周波数データ/周波数変動データに対する応答は、ネットワークプロバイダからの信号が周波数対電力の曲線の勾配であってもよいという点で動的であってもよい。制御装置530を、様々な勾配を格納しそれに従って応答するように構成してもよい。
制御装置520を、蓄熱装置600における周波数応答機能を維持するように第1の周波数応答調節モードで構成してもよい。このモードでは、蓄熱装置600は、加熱要求がないときは完全には停止しないが、制御装置520により当該装置の静的な熱損失に適合する負荷に切り替えられる。例えば、水シリンダ600は、蓄えられた水温に応じて75ワットから90ワットの範囲の静的な熱損失を有し、したがって、「オフ」の位置が制御装置520により75ワットに維持される。
これは、1つまたは少数のローカルの家庭用蓄熱装置または機器に関しては非常に低い負荷であるようにみえるが、上述のようにローカルの家庭用機器をネットワーク全体のコンテキストで考えると、ネットワーク内の負荷全体を潜在的に何千もの蓄熱装置または家庭用機器と考えることもでき、したがって全体としては、ネットワーク内の有意な周波数応答をもたらすものである。以下の表4を参照すると、例示的な周波数負荷段階が示されている。
Figure 2013528349
制御装置520は、蓄熱装置600の動作電力レベルを第1の電力レベルから第2の電力レベルへ時間とともに複数の段階で設定するように動作する。ここで、各段階は、離散的な電力レベル調整を表す。例えば、配電網の周波数が低下した結果、蓄熱装置600の電力レベルを1Kwから500Wに変更することが望ましい場合は、制御装置520は、時間とともに蓄熱装置600の動作電力レベルを低減させる。ステップ・サイズは、100Wのような任意のノミナルのサイズであってもよく、したがって、1Kwから500Wへの低減では5段階を要するはずである。段階間のタイムラグは任意のノミナルの期間とすることができ、例えば、切替を200msの間隔で行うことができる。
制御装置の様々な機能を様々な実施形態を参照して説明したが、当該様々な機能を単一の制御装置の配置構成において必要に応じてまたは要求に応じて組み合わせてもよいことは理解されよう。制御装置520には幾つかの利点がある。制御装置は、ネットワーク全体およびシステム全体において柔軟性を保つように構成される。蓄熱装置がトリクル充電で動作するノミナルのまたはデフォルトの設定を有することで、システムは、余剰なエネルギがあり電力入力を増大させるべきとネットワークプロバイダが示す場合だけでなく、ネットワークプロバイダからの信号に応答して電力入力を低減させる必要がある場合に、応答を提供する。同様に、システムはネットワーク内の周波数調節をサポートし、システムおよび制御装置は蓄熱装置の動作を通じて装置の静的熱損失に適合する負荷に周波数応答機能を維持するように構成されている。
図6を参照すると、別の例示的なネットワーク配置構成700が提供されている。ネットワーク配置構成700は、ネットワークプロバイダまたはネットワークオペレータ710、ビルディング・ユニット715および制御装置720を備える。ビルディング・ユニット715の電力供給回路は、幾つかの蓄熱装置740を備える。便宜上、当該幾つかの蓄熱装置740のうち1つが示されている。制御装置720は、主電力供給と蓄熱装置740の加熱素子745との間でインタフェースするように構成されている。蓄熱装置内部の少なくとも1つの加熱素子745に対する電力は、蓄熱装置740の持続的な蓄熱が維持されるように制御装置720により制御される。換言すれば、蓄熱装置740の温度が閾値未満に低下するのを防ぎ、少なくとも部分的に充電され続ける。制御装置720はリモートのネットワークオペレータ710から制御信号を受信するためのインタフェース725を備える。プロセッサ730が制御装置720に提供され、制御信号を受信すると複数の電力レベルのうち1つを選択し、選択された電力レベルに関連付けられた充電信号を提供するように構成されている。複数の電力レベルを格納するためのデータ・リポジトリを制御装置720に提供してもよい。充電ユニット735は、プロセッサ730と通信し、充電信号を受信すると少なくとも1つの加熱素子745に選択した電力レベルで主電力供給から供給するように構成される。
制御装置720は、ネットワークプロバイダ710から受信した制御信号に基づいて要求側管理を提供するように動作することができる。さらに、制御装置720は、蓄熱装置740への電力を増大または減少させることにより高速で周波数応答を調節してもよい。蓄熱装置740を少なくとも部分的に充電されるように保つことで、蓄熱が持続的に利用可能であるため、気候条件が突然悪化した場合に蓄熱装置が起動される結果、需要が急騰する可能性が減ることが保証される。装置が持続的に部分的に充電され続けている場合には、装置が完全に空である場合と比較して、装置740に熱を加えるのにあまりエネルギが必要とされないことは理解されよう。また、空の装置740では、オペレータ710は電力需要を低下させることで電力ネットワークの周波数応答を調節することはできない。そこで、装置740を部分的に充電することにより、オペレータ710は電力需要を増大または減少させることにより双方向に周波数応答を調節することができる。
制御装置720がトリクル充電器またはフロート充電器として動作してもよい。制御装置720がトリクル充電器として動作する場合には、充電ユニット735は連続的な電力量を装置740に提供し、その結果、当該装置740は、自動放熱速度(self-discharging heat rate)と同じ割合で熱を蓄える。換言すれば、充電ユニット735は、蓄熱装置の静的熱損失に適合する負荷を提供する。制御装置720がフロート充電器として動作する場合、充電ユニット735は電力を間欠的に装置740へ提供し、それにより、蓄熱装置が事前設定値を超えて加熱されることを防ぐ。充電ユニット735が、蓄熱装置および/または周囲の大気温度を検知してもよい。所定の温度が充電ユニット735により検知されたとき、蓄熱装置740への電力は一時停止する。一配置構成において、充電ユニット735が或る特定の温度を検知したとき、蓄熱装置740への電力供給が再開される。充電ユニット735は、サーモスタットおよび1つまたは複数の切替装置のような電気コンポーネントを備えてもよい。制御装置720が装置740を動作させる電力レベルを、予測された気候条件、リアルタイムな気候条件、過去の気候条件、過去の要求パターン、予測される電力需要、現在の需要または統計情報に関連付けてもよい。気候条件には、温度、風、雨量、湿度、大気圧、および大気粒子数のうち少なくとも1つを含んでもよい。さらに、電力レベルを1年のうち或る特定の時期、例えば月または季節に関連付けてもよい。制御装置720を、ネットワークプロバイダ710から受信した制御信号に基づいて装置740の最大温度を設定するように構成してもよい。これらの制御信号が、気候条件に関するものであってもよい。
制御装置720は、蓄熱装置の温度および/または周囲の大気温度のような、検知した条件を読むように動作可能であってもよい。インタフェース725は、検知した条件をオペレータ710に送信するのを容易にするための、オペレータ710との双方向通信リンクを備えてもよい。オペレータ710は、必要に応じて、オペレータ710が制御装置720に送信する制御信号が制御装置720から受信された検知した条件に少なくとも部分的に基づくものとすることができる。制御装置720が通信サブシステムを備えてもよい。当該通信サブシステムにより、制御装置はネットワークオペレータに問い合わせて制御信号を要求することができる。
制御装置720には幾つかの利点がある。制御装置は、ネットワーク全体およびシステム全体において柔軟性を保つように構成される。装置が少なくとも部分的に充電されるように保って蓄熱装置740に持続的な蓄熱をもたせるよう制御することで、余剰なエネルギがあり電力入力を増大すべきとネットワークプロバイダが示す場合だけでなく、ネットワークプロバイダからの信号に応答して電力入力を低減させる必要がある場合に、応答を提供することができる。同様に、システムはネットワーク内の周波数調節をサポートし、システムおよび制御装置は蓄熱装置の動作を通じて装置の静的熱損失に適合する負荷に周波数応答機能を維持するように構成されている。本発明の教示はまた、配電網負荷管理ツールに関する。当該ツールは、複数の制御装置720を備え、当該制御装置は蓄熱装置740のネットワークの選択的電力供給により蓄熱をもたらすことを可能とする。当該ツールを使用して、蓄熱装置740に対する電力レベルを増大または減少させることで配電網の周波数応答を調節してもよいことは理解されよう。
代替的な配置構成では、ネットワークオペレータ710から制御装置720への制御信号を料金情報に関連付けてもよい。制御装置720が動作740を動作させる電力レベルを、電気料金情報に関連付けてもよい。例えば、単位電力価格が5p未満である場合は、制御装置720は蓄熱容量に空きがある場合に充電するよう装置740に指示する。しかし、単位電力価格が5pを超える場合には、制御装置720は装置740に充電しないよう指示する。制御装置720を、電気料金の変動に反応するようにプログラムすることができる。一例示的な配置構成では、3つの料金レベルが存在してもよい。例えば、5p未満の場合は常に充電し、5pから7pの場合は中心温度が一定レベル未満であるならば充電し、7pを超える場合は決して充電しない、である。このシナリオでは、装置740がオン・モードおよびオフ・モードを有する2状態の装置として動作することができる。制御装置740はまた、電力料金情報を第三者のソースから受信するよう動作可能であってもよい。
制御装置720はまた、蓄熱装置740を複数の動作モードのうち1つに切り替えるように動作可能な切替素子760を備えてもよい。各動作モードは、関連するデフォルトの中心温度を有する。一例示的な配置構成では、蓄熱装置は、第1の動作モード、第2の動作モード、およびスタンバイ動作モードの間で選択的に切替可能である。スタンバイ・モードでは、蓄熱装置740は事実上停止しているが、要求に応じて起動してもよい。第1および第2の動作モードに関連付けられたデフォルトの中心温度を、想定される季節温度を予想して設定してもよい。例えば、第1の動作モードを冬時期に関連付け、蓄熱装置のデフォルトの中心温度を摂氏550℃に設定してもよい。第2の動作モードを春時期に関連付け、蓄熱装置のデフォルトの中心温度をセ氏400℃に設定してもよい。春時期の周囲の大気温度は冬時期より一般に高いはずであり、結果として、春時期での暖房は一般に冬時期よりあまり要求されないはずである。したがって、蓄熱装置740のデフォルトの中心温度を高いデフォルトの温度と低いデフォルトの温度との間で積極的に切り替えることによって、蓄熱装置が低いデフォルトの温度で動作しているときにエネルギを節約することができる。蓄熱装置のデフォルトの中心温度は、蓄熱装置の動作モードを積極的に選択することで切替可能である。当該例示的な配置構成では2つのデフォルトの中心温度を説明したが、任意の所望の数のデフォルトの中心温度/動作モードを提供してもよいことは当業者には理解されよう。例えば、或る特定の環境では、暦年の各月に関連付けられたデフォルトの温度/動作モードを有するのが望ましいかもしれない。切替素子760が、リモートのネットワークオペレータ710からの制御信号に応答して蓄熱装置を所定の動作モードに選択的に切り替えるスマートデバイスとすることができる。あるいは、切替素子を手動で操作してモード間で切り替えることができる。切替素子760およびその動作を図2および図5の制御装置に組み込んでもよい。
本明細書で使用されるとき、「備える」という用語は、規定の機能、整数値、ステップまたはコンポーネントの存在を明示するものであるが、1つまたは複数の他の機能、整数値、ステップ、コンポーネントまたはそれらのグループの存在または追加を除外するものではない。
本発明を幾つかの例示的な配置構成を参照して説明したが、本発明の教示をかかる配置構成に限定しようとするものではなく、本発明の趣旨および範囲から逸脱しない修正が可能であることは理解されよう。このように、本発明は添付の特許請求の範囲に照らして必要と思われる限りにおいてのみ限定されることは理解されよう。

Claims (70)

  1. 蓄熱装置内の少なくとも1つの加熱素子の起動を管理する制御装置であって、
    a)前記蓄熱装置による取得のために配電網内における電力の利用可能性に関する信号をリモートのネットワークオペレータから受信するための、第1のインタフェースと、
    b)前記信号を受信すると、前記加熱素子が利用可能な電力を取得するように切り替えるか否かの判定を行い、前記判定の肯定的な応答として起動信号を提供するように構成されたプロセッサと、
    c)前記プロセッサと通信し、前記起動信号を受信すると前記加熱素子にエネルギを供給するように構成された、スイッチと
    を備え、前記蓄熱装置の事前設定値を調整し、それにより前記蓄熱装置が前記事前設定値の制限外で動作できるようにするよう構成された、制御装置。
  2. 前記蓄熱装置の現在の状態に応じて前記加熱素子に選択的にエネルギを供給するよう構成された、請求項1に記載の制御装置。
  3. 前記プロセッサは、前記ネットワークオペレータから前記信号を受信すると、前記蓄熱装置の前記事前設定値を満たすために前記加熱素子の起動が必要か否かを監視するように構成される、請求項2に記載の制御装置。
  4. 加熱が必要でないと判定されると、受信した前記信号と無関係に前記加熱素子を起動しないと選択するよう構成される、請求項3に記載の制御装置。
  5. 前記加熱素子の同期した動作を過去の期間にわたって記録して、さらに加熱が必要であるか否かを判定するように構成される、請求項3または4に記載の制御装置。
  6. 前記蓄熱装置の現在の動作パラメータに問い合わせて、前記設定値に合致するのにさらに加熱が必要であるか否かを突き止めるように構成される、請求項3または4に記載の制御装置。
  7. 前記加熱素子にエネルギを供給するか否かを判定するときに、前記蓄熱装置と双方向信号対話で対話するように構成される、請求項6に記載の制御装置。
  8. 前記蓄熱装置の状態に関する定期的な信号を前記蓄熱装置に併設されたセンサから受信するように構成され、さらに、前記加熱素子にエネルギを供給するか否かを判定するときに前記定期的な信号を使用するように構成される、請求項6または7に記載の制御装置。
  9. 前記蓄熱装置の充電率と温度との間の定義された関係を提供する少なくとも1つのデータストアを備えた、請求項7または8に記載の制御装置。
  10. 前記蓄熱装置の容量または前記設定値に対して検知した実際の温度を処理し、前記蓄熱装置をフル稼働させるのに必要な充電レベルを定義するように構成される、請求項9に記載の制御装置。
  11. 前記蓄熱装置の前記調整された設定値は、前記蓄熱装置が前記蓄熱装置の通常使用に必要な加熱より多くの加熱を受け取ることを可能にする、請求項3に記載の制御装置。
  12. エネルギを供給するための前記蓄熱装置の現在の容量、および将来の期間に熱を供給するための前記蓄熱装置の想定される要求を監視するように構成される、請求項1乃至11のいずれかに記載の制御装置。
  13. 前記想定される要求が前記容量を上回るとき、前記制御装置は、起動を要求する信号を前記ネットワークから受信していない事実と無関係に前記加熱素子を起動するように構成される、請求項12に記載の制御装置。
  14. 前記ネットワークの将来の負荷を予測し、前記予測に基づいて前記加熱素子のエネルギ供給を実行し、前記蓄熱装置の加熱が前記ネットワーク内の既に高負荷である期間と重複せず、それにより前記ネットワークの負荷管理を支援することを保証するように構成される、請求項12または13に記載の制御装置。
  15. 前記判定の肯定的な応答として前記起動信号を提供する際に、前記加熱素子を切り替えて利用可能な電力を取得するための遅延を生成するように構成された、請求項1乃至14のいずれかに記載の制御装置。
  16. 前記ネットワークから受信した信号が、前記制御装置の指定の開始終了時刻、または所定レベルの蓄熱に達するまで前記蓄熱装置の加熱が継続されるという要求を伴う開始時刻を含み、前記制御装置が前記信号に問い合わせて適切な動作を判定するように構成される、請求項1乃至15のいずれかに記載の制御装置。
  17. 前記受信した信号が、様々な制御装置に対する複数の信号を含み、前記制御装置は前記制御装置に対する正しい信号を判定するように構成される、請求項1乃至16のいずれかに記載の制御装置。
  18. 前記少なくとも1つの加熱素子の起動を所定回数実行するように構成される、請求項1乃至17のいずれかに記載の制御装置。
  19. 複数の蓄熱装置に接続され、前記複数の蓄熱装置を制御する、請求項1乃至18のいずれかに記載の制御装置。
  20. 前記プロセッサは、前記制御信号を受け取ると複数の電力レベルのうち1つを選択し、前記選択された電力レベルに関連付けられた充電信号を提供するように動作可能である、請求項1乃至20のいずれかに記載の制御装置。
  21. 前記プロセッサと通信する充電ユニットをさらに備え、前記充電信号を受信すると前記少なくとも1つの加熱素子に前記選択された電力レベルで商用電源供給から電力供給し、それにより前記蓄熱装置が少なくとも部分的に充電されるように保たれることを保証するように構成された、請求項20に記載の制御装置。
  22. 前記充電ユニットが、前記蓄熱装置の静的熱損失に適合する負荷を提供するように構成された、請求項21に記載の制御装置。
  23. 前記充電ユニットが、前記蓄熱装置がその自動放熱速度と同じ割合で熱を蓄えるレベルで前記蓄熱装置に電力を供給するように構成された、請求項21または22に記載の制御装置。
  24. 前記充電ユニットが、前記蓄熱装置が所定値を超えて過熱することを防ぐように構成された、請求項21乃至23のいずれかに記載の制御装置。
  25. 前記充電ユニットが、前記蓄熱装置の温度を検知するように構成された、請求項21乃至24のいずれかに記載の制御装置。
  26. 前記充電ユニットが周囲の大気温度を検知するように構成された、請求項21乃至25のいずれかに記載の制御装置。
  27. 前記充電ユニットが、前記蓄熱装置が所定温度以上にあるときに前記蓄熱装置への電力供給を一時的に停止するように構成された、請求項25に記載の制御装置。
  28. 前記充電ユニットが、前記蓄熱装置が所定温度以下にあるときに前記蓄熱装置への電力供給を再開するように構成された、請求項27に記載の制御装置。
  29. 前記充電ユニットが、前記周囲の大気温度が所定温度以上にあるときに前記蓄熱装置への電力供給を一時的に停止するように構成された、請求項26に記載の制御装置。
  30. 前記充電ユニットが、前記周囲の大気温度が所定温度以下にあるときに前記蓄熱装置への電力供給を再開するように構成された、請求項29に記載の制御装置。
  31. 前記制御装置がさらにサーモスタットを備える、請求項20乃至30のいずれかに記載の制御装置。
  32. 前記充電ユニットが少なくとも1つの切替装置を備える、請求項20乃至31のいずれかに記載の制御装置。
  33. 前記複数の電力レベルを格納するためのデータ・リポジトリをさらに備える、請求項20乃至32のいずれかに記載の制御装置。
  34. 前記電力レベルが、予測された気候条件に関連付けられる、請求項20乃至33のいずれか1つの請求項に記載の制御装置。
  35. 前記予測された気候条件が風を含む、請求項34に記載の制御装置。
  36. 前記予測された気候条件が湿度を含む、請求項34または35に記載の制御装置。
  37. 前記予測された気候条件が雨量を含む、請求項34乃至36のいずれか1つの請求項に記載の制御装置。
  38. 前記予測された気候条件が大気圧を含む、請求項34乃至37のいずれか1つの請求項に記載の制御装置。
  39. 前記予測された気候条件が大気粒子数を含む、請求項34乃至38のいずれか1つの請求項に記載の制御装置。
  40. 前記電力レベルがリアルタイムな気候条件に関連付けられる、請求項20乃至33のいずれか1つの請求項に記載の制御装置。
  41. 前記リアルタイムな気候条件が、温度、風、雨量、湿度、大気圧、および大気粒子数のうち少なくとも1つを含む、請求項40に記載の制御装置。
  42. 前記電力レベルが過去の気候条件に関連付けられる、請求項20乃至33のいずれか1つの請求項に記載の制御装置。
  43. 前記過去の気候条件が、温度、風、雨量、湿度、大気圧、および大気粒子数のうち少なくとも1つを含む、請求項42に記載の制御装置。
  44. 前記電力レベルが1年のうちの月に関連付けられる、請求項20乃至33のいずれか1つの請求項に記載の制御装置。
  45. 前記電力レベルが1年のうちの季節に関連付けられる、請求項20乃至33のいずれか1つの請求項に記載の制御装置。
  46. 検知した条件を読み取るように構成された、請求項20乃至45のいずれか1つの請求項に記載の制御装置。
  47. 前記蓄熱装置の検知した温度を読み取るように構成された、請求項20乃至46のいずれか1つの請求項に記載の制御装置。
  48. 検知した周囲の温度を読み取るように構成された、請求項20乃至46のいずれか1つの請求項に記載の制御装置。
  49. 前記蓄熱装置の前記検知した温度を前記ネットワークオペレータに送信するように構成された、請求項47に記載の制御装置。
  50. 前記ネットワークオペレータからの前記制御信号は、前記蓄熱装置の前記検知した温度に少なくとも部分的に基づいている、請求項49に記載の制御装置。
  51. 前記検知した周囲の温度を前記ネットワークオペレータに送信するように構成された、請求項48に記載の制御装置。
  52. 前記ネットワークオペレータからの前記制御信号は、前記検知した周囲の温度に少なくとも部分的に基づいている、請求項51に記載の制御装置。
  53. 前記検知した条件を前記ネットワークオペレータに送信するように構成された、請求項46に記載の制御装置。
  54. 前記ネットワークオペレータからの前記制御信号は前記検知した条件に少なくとも部分的に基づいている、請求項53に記載の制御装置。
  55. 前記ネットワークオペレータに問い合わせて前記制御信号を要求するように構成された、請求項20乃至54のいずれか1つの請求項に記載の制御装置。
  56. 前記ネットワークオペレータから前記制御装置への前記制御信号が電気料金情報に関連付けられる、請求項20乃至33のいずれか1つの請求項に記載の制御装置。
  57. 前記蓄熱装置が関連するデフォルトの中心温度を各々が有する複数の動作モードを有する、請求項1乃至56のいずれか1つの請求項に記載の制御装置。
  58. 前記動作モード間で選択的に切り替えるための切替素子をさらに備える、請求項57に記載の制御装置。
  59. 前記切替素子が、前記リモートのネットワークオペレータからの前記制御信号に応答して、前記蓄熱装置を前記動作モードのうちの1つに選択的に切り替えるように構成された、請求項57または58に記載の制御装置。
  60. 前記切替素子が、前記蓄熱装置を前記動作モードのうちの1つに切り替えるために手動で操作されるように構成された、請求項57または58に記載の制御装置。
  61. 前記蓄熱装置が第1の動作モードおよび第2の動作モードを有する、請求項58乃至60のいずれか1つの請求項に記載の制御装置。
  62. 前記蓄熱装置がスタンバイ・モードを有する、請求項61に記載の制御装置。
  63. 前記切替素子が、前記蓄熱装置を前記第1の動作モード、前記第2の動作モード、および前記スタンバイ動作モードのうち1つに選択的に切り替えるように動作可能である、請求項62に記載の制御装置。
  64. 前記蓄熱装置が前記第1の動作モードにあるとき、前記蓄熱装置のデフォルトの中心温度が摂氏550℃に設定される、請求項63に記載の制御装置。
  65. 前記蓄熱装置が前記第2の動作モードにあるとき、前記蓄熱装置のデフォルトの中心温度が摂氏400℃に設定される、請求項63または64に記載の制御装置。
  66. 蓄熱装置のネットワークの選択的電力供給により蓄熱をもたらすことを可能とする請求項1乃至65のいずれか1つの請求項に記載の制御装置を複数備えた、配電網負荷管理ツール。
  67. 制御対象である前記蓄熱装置に併設された、請求項1乃至65のいずれか1つの請求項に記載の制御装置。
  68. 蓄熱装置のネットワークの選択的起動により配電網内の超過容量を吸収する請求項1乃至67のいずれかに記載の制御装置を複数備えた、配電網負荷管理ツール。
  69. 前記制御装置が複数の集合にグループ化され、蓄熱装置の個々の集合を選択的に起動するように構成された、請求項68に記載のツール。
  70. 蓄熱装置内の少なくとも1つの加熱素子への電力を制御して、前記蓄熱装置が少なくとも部分的に充電されるように保つための制御装置であって、
    制御信号をリモートのネットワークオペレータから受信するための、第1のインタフェースと、
    前記制御信号を受信すると、複数の電力レベルのうち1つを選択し、前記選択された電力レベルに関連付けられた充電信号を提供するように構成された、プロセッサと、
    前記プロセッサと通信し、前記充電信号を受信すると前記少なくとも1つの加熱素子に前記選択された電力レベルで主電源供給から電力供給し、それにより前記蓄熱装置が少なくとも部分的に充電されるように保たれることを保証するように構成された、充電ユニットと
    を備えた、制御装置。
JP2013513707A 2010-06-10 2011-06-10 蓄熱装置の制御装置 Expired - Fee Related JP5898184B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB1009698.0A GB2481048B (en) 2010-06-10 2010-06-10 Thermal storage device controllar
GB1009698.0 2010-06-10
GB1101971.8 2011-02-04
GB1101971.8A GB2487781B (en) 2011-02-04 2011-02-04 Thermal storage device controller
PCT/EP2011/059679 WO2011154521A2 (en) 2010-06-10 2011-06-10 Thermal storage device controller

Publications (3)

Publication Number Publication Date
JP2013528349A true JP2013528349A (ja) 2013-07-08
JP2013528349A5 JP2013528349A5 (ja) 2014-07-31
JP5898184B2 JP5898184B2 (ja) 2016-04-06

Family

ID=45098459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013513707A Expired - Fee Related JP5898184B2 (ja) 2010-06-10 2011-06-10 蓄熱装置の制御装置

Country Status (12)

Country Link
US (1) US9370044B2 (ja)
EP (1) EP2580832B1 (ja)
JP (1) JP5898184B2 (ja)
KR (1) KR20130048223A (ja)
CN (1) CN103190049B (ja)
AU (1) AU2011263698B2 (ja)
CA (1) CA2801973C (ja)
CL (1) CL2012003468A1 (ja)
DK (1) DK2580832T3 (ja)
ES (1) ES2630252T3 (ja)
WO (1) WO2011154521A2 (ja)
ZA (1) ZA201209378B (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130178992A1 (en) * 2010-08-26 2013-07-11 Terafero Bvba Intelligent electronic interface for a thermal energy storage module, and methods for stored thermal energy and thermal energy storage capacity trading
EP2694557A4 (en) 2011-04-08 2015-07-15 Auckland Uniservices Ltd LOCAL SUSTAINABLE POWER MANAGEMENT FOR NETWORKS FROM ELECTRICAL EQUIPMENT
DE102011054199A1 (de) 2011-10-05 2013-04-11 EnBW Energie Baden-Württemberg AG Energieversorgungsnetz und Steuerverfahren zur Verteilung regenerativ erzeugter Stromenergie
GB2500618B (en) * 2012-03-26 2015-07-15 Basic Holdings Storage heaters
EP2645532A1 (en) * 2012-03-28 2013-10-02 Terafero bvba An intelligent electronic control and communications interface module for a thermal or electrical energy storage module grid, and methods for stored thermal or electrical energy and thermal or electrical energy storage capacity trading.
AU2013207551B2 (en) * 2012-07-20 2015-12-17 Tata Consultancy Services Limited Method and system for adaptive forecast of wind resources
EP2893605B1 (en) * 2012-09-06 2019-04-24 Auckland UniServices Limited Local demand side power management for electric utility networks
US20140174707A1 (en) * 2012-12-21 2014-06-26 GM Global Technology Operations LLC Method and system for thermal storage in a vehicle
DE102013012906A1 (de) * 2013-08-05 2015-02-05 Tekmar Regelsysteme Gmbh Regelungssystem für Elektrospeicherheizungen, eine Schnittstelle hierzu sowie ein Verfahren zur Regelung von Elektrospeicherheizungen
GB2526552B (en) * 2014-05-27 2017-03-08 Basic Holdings A system and method for adaptively controlling the charging time of a storage heater
US10948937B2 (en) 2015-09-21 2021-03-16 Peak Power, Inc. Systems and methods for creating load peaks and valleys
CN106444894B (zh) * 2016-09-18 2018-07-03 珠海格力电器股份有限公司 一种温度控制方法和加热设备
FR3077702A1 (fr) * 2018-02-08 2019-08-09 Psa Automobiles Sa Dispositif de controle de l’alimentation de moyens de chauffage electrique d’un systeme, en fonction de la puissance electrique disponible.
FR3077704B1 (fr) * 2018-02-08 2022-09-09 Psa Automobiles Sa Procede de controle de l’alimentation de moyens de chauffage electrique d’un systeme, en fonction de la puissance electrique disponible, des besoins et d’une priorite.
FR3077703B1 (fr) * 2018-02-08 2020-01-17 Psa Automobiles Sa Procede de controle de l’alimentation de moyens de chauffage electrique d’un systeme, en fonction de la puissance electrique disponible et des besoins.
EP3748458B1 (en) 2019-06-03 2021-04-28 Siemens Schweiz AG Thermal storage device controller
CN113119799A (zh) * 2019-12-30 2021-07-16 廊坊光华热处理表面工程有限公司 一种基于后装储热模块的用于纯电动汽车的储热式低温预约适温维护控制方法
KR102384980B1 (ko) * 2020-05-15 2022-04-08 한국지역난방공사 신재생 열병합발전소를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법
KR102384981B1 (ko) * 2020-05-15 2022-04-08 한국지역난방공사 열변환장치를 활용한 가상발전소 시스템 및 이를 이용한 가상발전소 운영 방법
CN112413702B (zh) * 2020-10-23 2021-11-26 国网天津市电力公司电力科学研究院 一种蓄热式电采暖负荷与配电网台区的匹配方法及***
CA3200230A1 (en) 2020-11-30 2022-06-02 John Setel O'donnell Energy storage system and applications
US11913361B2 (en) 2020-11-30 2024-02-27 Rondo Energy, Inc. Energy storage system and alumina calcination applications
US11913362B2 (en) 2020-11-30 2024-02-27 Rondo Energy, Inc. Thermal energy storage system coupled with steam cracking system
US12018596B2 (en) 2020-11-30 2024-06-25 Rondo Energy, Inc. Thermal energy storage system coupled with thermal power cycle systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277058A (ja) * 2001-01-12 2002-09-25 Mitsubishi Electric Corp ネットワーク対応電気温水器及びその電力負荷平準化システム
JP2002295906A (ja) * 2001-03-29 2002-10-09 Toto Ltd 電気温水器遠隔制御装置
JP2007151371A (ja) * 2005-11-30 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> 系統協調型変動抑制システムおよび出力変動抑制方法
WO2007094054A1 (ja) * 2006-02-15 2007-08-23 Mitsubishi Denki Kabushiki Kaisha 電力系統安定化システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH526076A (de) 1970-08-17 1972-07-31 Landis & Gyr Ag Verfahren zur Regelung von mindestens einer über ein Versorgungsnetz gespeisten elektrischen Speicherheizeinrichtung
US3906242A (en) 1974-08-16 1975-09-16 Megatherm Corp Computerized peak-shaving system for alleviating electric utility peak loads
US4023043A (en) * 1974-08-16 1977-05-10 Megatherm Corporation Computerized peak-shaving system for alleviating electric utility peak loads
US5462225A (en) * 1994-02-04 1995-10-31 Scientific-Atlanta, Inc. Apparatus and method for controlling distribution of electrical energy to a space conditioning load
US5956462A (en) * 1996-09-26 1999-09-21 Aquabeat Pty Ltd. Domestic electric energy control
GB2407440B (en) * 2003-09-23 2006-02-22 Responsiveload Ltd Grid stabilising system
CN100580334C (zh) * 2005-06-18 2010-01-13 宋建军 太阳能热能变量输入、均衡输出储能***
CN100517146C (zh) * 2007-04-19 2009-07-22 上海交通大学 车辆通行监控***
WO2009067208A1 (en) 2007-11-21 2009-05-28 Flohr Daniel P Adjusting distributed storage of solar electrical power responsive to changes in supply and demand
GB0810374D0 (en) 2008-06-06 2008-07-09 Macfarlane Alistair Storage heater
US8204633B2 (en) 2008-07-01 2012-06-19 Carina Technology, Inc. Water heater demand side management system
US8816870B2 (en) * 2009-03-31 2014-08-26 Pvt Solar, Inc. Healthy home graphical user interface method and device
US8224495B2 (en) * 2009-08-05 2012-07-17 Cool Energy, Inc. Control of power generation system having thermal energy and thermodynamic engine components

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277058A (ja) * 2001-01-12 2002-09-25 Mitsubishi Electric Corp ネットワーク対応電気温水器及びその電力負荷平準化システム
JP2002295906A (ja) * 2001-03-29 2002-10-09 Toto Ltd 電気温水器遠隔制御装置
JP2007151371A (ja) * 2005-11-30 2007-06-14 Nippon Telegr & Teleph Corp <Ntt> 系統協調型変動抑制システムおよび出力変動抑制方法
WO2007094054A1 (ja) * 2006-02-15 2007-08-23 Mitsubishi Denki Kabushiki Kaisha 電力系統安定化システム

Also Published As

Publication number Publication date
CA2801973A1 (en) 2011-12-15
EP2580832A2 (en) 2013-04-17
ES2630252T3 (es) 2017-08-18
DK2580832T3 (en) 2017-04-10
AU2011263698B2 (en) 2014-12-11
CA2801973C (en) 2018-08-21
ZA201209378B (en) 2014-03-26
US20130146587A1 (en) 2013-06-13
CN103190049B (zh) 2017-09-08
US9370044B2 (en) 2016-06-14
CN103190049A (zh) 2013-07-03
WO2011154521A2 (en) 2011-12-15
CL2012003468A1 (es) 2013-07-12
AU2011263698A1 (en) 2013-01-10
KR20130048223A (ko) 2013-05-09
EP2580832B1 (en) 2016-12-28
JP5898184B2 (ja) 2016-04-06
WO2011154521A3 (en) 2012-05-18

Similar Documents

Publication Publication Date Title
JP5898184B2 (ja) 蓄熱装置の制御装置
US11106228B2 (en) Thermal energy storage apparatus, controllers and thermal energy storage control methods
CA2753025C (en) Household energy management system and method for one or more appliances and power generator
WO2009036764A2 (en) Distance regulated energy consuming devices
EP3063476B1 (en) Temperature control apparatus, method for its operation and computer program product
WO2012047898A2 (en) Dynamic control of small-scale electrical loads for matching variations in electric utility supply
DK2151032T3 (en) Method for operation of a device with at least one energy distributor layout
GB2500618A (en) Storage heater having a controller configured to select an operating temperature of a core material of the heater
EP3392997B1 (en) System and method for using excess electrical energy produced by an installation with renewable electricity generation
WO2018211263A1 (en) Heat and power generation and storage system
JP6762297B2 (ja) 機器制御システムおよび制御方法
GB2481048A (en) Thermal storage device controller
GB2487147A (en) Thermal storage device controller
GB2487781A (en) Thermal storage controller
GB2487148A (en) Thermal storage device controller
EP4067755A1 (en) System for controlling a demand response of a plurality of electrical heating devices and use thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160303

R150 Certificate of patent or registration of utility model

Ref document number: 5898184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees