JP2013254827A - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
JP2013254827A
JP2013254827A JP2012129058A JP2012129058A JP2013254827A JP 2013254827 A JP2013254827 A JP 2013254827A JP 2012129058 A JP2012129058 A JP 2012129058A JP 2012129058 A JP2012129058 A JP 2012129058A JP 2013254827 A JP2013254827 A JP 2013254827A
Authority
JP
Japan
Prior art keywords
core
silicon steel
steel strip
winding
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012129058A
Other languages
Japanese (ja)
Other versions
JP5988712B2 (en
Inventor
Satoshi Watanabe
聡 渡辺
Yoshifumi Minamii
良文 南井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012129058A priority Critical patent/JP5988712B2/en
Publication of JP2013254827A publication Critical patent/JP2013254827A/en
Application granted granted Critical
Publication of JP5988712B2 publication Critical patent/JP5988712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a small transformer obtained by eliminating a distortion in a silicon steel sheet wound core by reducing no-load loss and performing annealing at a prescribed high temperature.SOLUTION: A silicon steel sheet wound core 11 obtained by laminating and winding a silicon steel sheet of prescribed width to form the shape of a rectangular ring and eliminating a distortion by performing annealing at a prescribed high temperature, and an amorphous alloy wound core 12 obtained by laminating and winding an amorphous alloy thin belt having almost the same width as the silicon steel sheet to form the shape of a rectangular ring having almost the same shape as the silicon steel sheet wound core 11, performing annealing at a prescribed low temperature to eliminate a distortion and being arranged overlappedly on a width direction side part of the silicon steel sheet core 11 are provided. A composite core 10 having a leg part and a yoke part 10b, a core 30 externally fitted to the leg part of the composite core 10, a secondary winding 42 externally fitted to the core 30, and a primary winding 41 externally fitted to the secondary winding 42 are provided.

Description

本発明は、変圧器に関する。   The present invention relates to a transformer.

変圧器で発生する損失には、主に鉄心で発生する無負荷損と、主に巻線で発生する負荷損とがあり、特に、負荷率に関係なく常時発生する無負荷損については、従来から低減のための努力が行われてきた。   There are two types of losses that occur in transformers: no-load loss that occurs mainly in iron cores and load loss that occurs mainly in windings. Since then, efforts have been made to reduce it.

その一つが珪素鋼帯によるものであり、通常設定される磁束密度域(1.5〜1.7Tesla)において、単位重量当たりの損失が通常材料に比べて60〜70%程度に低減されたものがある。この低損失珪素鋼帯は、特定機器に対応する変圧器、いわゆるトップランナー変圧器に使用されているほか、更に損失を低減した一部の省エネタイプの変圧器にも使用されている。   One of them is due to the silicon steel strip, and the loss per unit weight is reduced to about 60 to 70% compared to the normal material in the normally set magnetic flux density range (1.5 to 1.7 Tesla). There is. This low-loss silicon steel strip is used not only for transformers corresponding to specific equipment, so-called top runner transformers, but also for some energy-saving transformers that further reduce loss.

一方、鉄心材としては、珪素鋼帯よりも更に低損失な非晶質合金薄帯がある。非晶質合金薄帯は、単位重量当たりの損失が、同条件の珪素鋼帯の1/3程度と、非常に良好な損失特性を有しており、通常の変圧器よりも更に損失を低減することができる鉄心材として注目されている。   On the other hand, as the iron core material, there is an amorphous alloy ribbon that has a lower loss than the silicon steel strip. Amorphous alloy ribbon has a very good loss characteristic with a loss per unit weight of about 1/3 of the silicon steel strip under the same conditions, and further reduces the loss compared to ordinary transformers. Has attracted attention as a core material that can be.

変圧器に対する省エネ要求は年々高まっており、珪素鋼帯の改良や非晶質合金薄帯の適用拡大が期待されるが、どちらの鉄心材にも問題がある。以下、夫々の鉄心材の問題について説明する。   Energy saving requirements for transformers are increasing year by year, and improvement of silicon steel strips and expanded application of amorphous alloy strips are expected, but both iron core materials have problems. Hereinafter, the problem of each iron core material will be described.

珪素鋼帯は、従来から変圧器の鉄心材として使用されてきた材料であり、1.7Tesla程度の磁束密度域で変圧器に適用できる反面、現状以上の低損失化については、劇的な改良が難しい状況にあり、特に、変圧器負荷の低い使用条件において必要とされる従来よりも極端に低い無負荷損失については実現が困難である、という問題がある。   Silicon steel strip is a material that has been used as a core material for transformers in the past. It can be applied to transformers in a magnetic flux density range of about 1.7 Tesla. However, in particular, there is a problem that it is difficult to realize a no-load loss that is extremely low as compared with the prior art, which is required under low transformer load usage conditions.

一方、非晶質合金薄帯は、1.3Tesla程度の比較的に低磁束密度域においては、非常に優れた磁気特性を有するものの、使用することのできる磁束密度の最大値が珪素鋼帯の75%程度で低いため、変圧器の鉄心として機能させるためには、珪素鋼帯に対してより大きな断面積の鉄心とするか、もしくは、巻線の巻回数増加という、磁束密度低減対策が必要であり、その結果、機器の大形化や重量増を招いている。   On the other hand, the amorphous alloy ribbon has a very excellent magnetic property in a relatively low magnetic flux density region of about 1.3 Tesla, but the maximum value of the magnetic flux density that can be used is that of the silicon steel strip. Since it is about 75% and low, in order to function as an iron core of a transformer, it is necessary to take measures to reduce the magnetic flux density, such as using an iron core with a larger cross-sectional area than the silicon steel strip or increasing the number of winding turns. As a result, the equipment is increased in size and weight.

従来、非晶質合金薄帯で巻いた巻鉄心を内側鉄心とし、この内側鉄心の幅方向両側に、前記内側鉄心の積層面形状に合わせて珪素鋼帯を巻回した巻鉄心を配置して外側鉄心とし、この内側及び外側鉄心の継鉄部周囲を絶縁テープにより縛って一体に構成した誘導電器鉄心が開示されている(例えば、特許文献1参照)。   Conventionally, a wound iron core wound with an amorphous alloy ribbon is used as an inner iron core, and a wound iron core wound with a silicon steel band is arranged on both sides in the width direction of the inner iron core in accordance with the laminated surface shape of the inner iron core. An induction iron core is disclosed in which an outer iron core is formed, and the periphery of the inner and outer iron cores is bound together with an insulating tape so as to be integrated (see, for example, Patent Document 1).

また、珪素鋼帯と非晶質合金薄帯とを交互に積層し巻線した磁心コイルが開示されている(例えば、特許文献2参照)。   Also disclosed is a magnetic core coil in which silicon steel strips and amorphous alloy ribbons are alternately laminated and wound (see, for example, Patent Document 2).

実開昭63−137917号公報Japanese Utility Model Publication No. 63-137717 実開昭58−039020号公報Japanese Utility Model Publication No. 58-039020

しかしながら、上記特許文献1に開示された従来の技術によれば、非晶質合金薄帯で巻いた内側鉄心が、誘導電器鉄心の大部分を占めているので、鉄心の磁束密度を高くすることができず、磁束密度低減対策が必要であり、その結果、機器の大形化や重量増を招く、という問題がある。   However, according to the prior art disclosed in Patent Document 1, the inner iron core wound with the amorphous alloy ribbon occupies most of the induction electric iron core, so that the magnetic flux density of the iron core is increased. However, there is a problem in that measures for reducing the magnetic flux density are necessary, and as a result, the apparatus is increased in size and weight.

また、上記特許文献2に開示された従来の技術によれば、珪素鋼帯と非晶質合金薄帯とを交互に積層しているので、比較的低温(450℃〜650℃)で焼鈍して非晶質合金薄帯の歪を除去することはできるが、比較的高温(750℃〜840℃)を必要とする珪素鋼帯の焼鈍ができない、という問題がある。   Further, according to the conventional technique disclosed in Patent Document 2, since the silicon steel strips and the amorphous alloy ribbons are alternately laminated, annealing is performed at a relatively low temperature (450 ° C. to 650 ° C.). Thus, although the distortion of the amorphous alloy ribbon can be removed, there is a problem that the silicon steel strip that requires a relatively high temperature (750 ° C. to 840 ° C.) cannot be annealed.

本発明は、上記に鑑みてなされたものであって、無負荷損を低減し、所定の高温で焼鈍して珪素鋼帯巻鉄心の歪を除去した小形の変圧器を得ることを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to obtain a small transformer that reduces no-load loss and anneals at a predetermined high temperature to remove the distortion of a silicon steel strip core. .

上述した課題を解決し、目的を達成するために、本発明は、所定幅の珪素鋼帯を積層巻帯して矩形リング状に形成し、所定の高温で焼鈍して歪を除去した珪素鋼帯巻鉄心と、前記珪素鋼帯と略同一幅の非晶質合金薄帯を積層巻帯して前記珪素鋼帯巻鉄心と略同一形状の矩形リング状に形成し、所定の低温で焼鈍して歪を除去し、前記珪素鋼帯巻鉄心の幅方向側部に重ねて配置した非晶質合金巻鉄心と、を備え、脚部と継鉄部を有する複合鉄心と、前記複合鉄心の脚部に外嵌された巻芯と、前記巻芯に外嵌された二次巻線と、前記二次巻線に外嵌された一次巻線と、を備えることを特徴とする。   In order to solve the above-described problems and achieve the object, the present invention provides a silicon steel in which a silicon steel strip having a predetermined width is laminated and formed into a rectangular ring shape and annealed at a predetermined high temperature to remove strain. A wound iron core and an amorphous alloy ribbon having substantially the same width as the silicon steel band are laminated and formed into a rectangular ring shape having substantially the same shape as the silicon steel band iron core, and annealed at a predetermined low temperature. And a composite iron core having a leg portion and a yoke portion, and a leg of the composite iron core. And a secondary winding externally fitted to the winding core, and a primary winding externally fitted to the secondary winding.

本発明によれば、無負荷損を低減し、所定の高温で焼鈍して珪素鋼帯巻鉄心の歪を除去した小形の変圧器が得られる。   According to the present invention, it is possible to obtain a small transformer in which no-load loss is reduced and annealing is performed at a predetermined high temperature to remove the distortion of the silicon steel strip wound core.

図1は、本発明の変圧器の実施の形態を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of a transformer of the present invention. 図2は、実施の形態の変圧器の脚部の断面図である。FIG. 2 is a cross-sectional view of a leg portion of the transformer according to the embodiment. 図3は、珪素鋼帯巻鉄心、非晶質合金巻鉄心及び実施の形態の複合鉄心の磁化特性を示す図である。FIG. 3 is a diagram showing magnetization characteristics of a silicon steel strip wound core, an amorphous alloy wound core, and the composite core of the embodiment.

以下に、本発明にかかる変圧器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a transformer according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態
図1は、本発明の変圧器の実施の形態を示す斜視図であり、図2は、実施の形態の変圧器の脚部の断面図であり、図3は、珪素鋼帯、非晶質合金薄帯及び実施の形態の複合鉄心の磁化特性を示す図である。
Embodiment FIG. 1 is a perspective view showing an embodiment of the transformer of the present invention, FIG. 2 is a cross-sectional view of a leg portion of the transformer of the embodiment, and FIG. It is a figure which shows the magnetization characteristic of an amorphous alloy ribbon and the composite iron core of embodiment.

図1及び図2に示すように、実施の形態の変圧器90は、所定幅の珪素鋼帯を積層巻帯して矩形リング状に形成した珪素鋼帯巻鉄心11と、前記珪素鋼帯と略同一幅の非晶質合金薄帯を積層巻帯して、珪素鋼帯巻鉄心11と略同一形状の矩形リング状に形成し、珪素鋼帯巻鉄心11の幅方向側部に重ねて配置した非晶質合金巻鉄心12と、を備えている。珪素鋼帯巻鉄心11と非晶質合金巻鉄心12とで複合鉄心10を構成している。   As shown in FIGS. 1 and 2, the transformer 90 of the embodiment includes a silicon steel strip core 11 formed by laminating and winding a silicon steel strip having a predetermined width into a rectangular ring shape, and the silicon steel strip. An amorphous alloy ribbon having substantially the same width is laminated and formed into a rectangular ring shape having substantially the same shape as that of the silicon steel strip iron core 11, and is placed on the side in the width direction of the silicon steel strip iron core 11. And an amorphous alloy wound iron core 12. A silicon steel strip wound core 11 and an amorphous alloy wound core 12 constitute a composite core 10.

珪素鋼帯巻鉄心11は、所定の高温(750℃〜840℃)で焼鈍して歪を除去し、非晶質合金巻鉄心12は、所定の低温(450℃〜650℃)で焼鈍して歪を除去し、両者は別々に異なる温度で焼鈍された後に、重ねられて一つにされ、複合鉄心10となる。   The silicon steel strip wound core 11 is annealed at a predetermined high temperature (750 ° C. to 840 ° C.) to remove the strain, and the amorphous alloy wound core 12 is annealed at a predetermined low temperature (450 ° C. to 650 ° C.). After the strain is removed and the two are separately annealed at different temperatures, they are overlapped to form one composite core 10.

矩形リング状の複合鉄心10には、対向する二つの脚部10aと、対向する2つの継鉄部10bが形成されている。対向する二つの継鉄部10bのうち、1つの継鉄部10bは、接合部10c(珪素鋼帯又は非晶質合金薄帯を1枚毎にカットして端部同士を突合せ接合し、接合部を順次階段状にずらしたステップラップジョイント、又は、珪素鋼帯又は非晶質合金薄帯を1枚毎にカットして端部同士を重ね合わせ接合し、接合部を順次階段状にずらしたダブルステップラップジョイント)となっている。   The rectangular ring-shaped composite iron core 10 is formed with two opposing leg portions 10a and two opposing yoke portions 10b. Of the two yoke portions 10b facing each other, one yoke portion 10b is joined to a joint portion 10c (silicon steel strip or amorphous alloy ribbon is cut one by one and the ends are butt-joined to each other. Step lap joints with parts shifted sequentially stepwise, or silicon steel strips or amorphous alloy ribbons are cut for each sheet, the ends are overlapped and joined, and the joints are sequentially shifted stepwise Double step lap joint).

複合鉄心10の接合部10cの接合を解いて開いた状態で、二つの脚部10a夫々に、内側から順に、同心状に、矩形筒状のスペーサ20、非磁性金属材料からなる巻芯30、二次巻線42及び一次巻線41を外嵌し、外嵌後に閉じて端部同士を接合する。珪素鋼帯巻鉄心11と非晶質合金巻鉄心12とは、二次巻線42及び一次巻線41を外嵌後に、図示しないクランプにより一体化される。   In a state where the joint portion 10c of the composite iron core 10 is unbonded and opened, each of the two leg portions 10a is arranged concentrically from the inside in a rectangular cylindrical spacer 20, a core 30 made of a nonmagnetic metal material, The secondary winding 42 and the primary winding 41 are externally fitted, closed after the external fitting, and the ends are joined together. The silicon steel strip wound core 11 and the amorphous alloy wound core 12 are integrated by a clamp (not shown) after the secondary winding 42 and the primary winding 41 are externally fitted.

スペーサ20は、変圧器90組立後の各構成要素(珪素鋼帯巻鉄心11、非晶質合金巻鉄心12、巻芯30、二次巻線42及び一次巻線41)の相対変位(位置ずれ)を防止する。巻芯30は、短絡等の過大電流による電磁機械力により、各構成要素が相対変位(位置ずれ)するのを防止する。   The spacer 20 is a relative displacement (displacement) of each component (silicon steel strip wound core 11, amorphous alloy wound core 12, winding core 30, secondary winding 42 and primary winding 41) after the transformer 90 is assembled. ). The core 30 prevents each component from being relatively displaced (displaced) by an electromagnetic mechanical force due to an excessive current such as a short circuit.

次に、図3を参照して、実施の形態の変圧器90の磁気特性について説明する。非晶質合金巻鉄心12は、珪素鋼帯巻鉄心11に比べ優れた磁気特性を有しているが、磁束密度1.5Tesla前後で飽和するため、変圧器の鉄心として機能させるには、磁束密度を最大1.3Tesla程度に抑える必要がある。   Next, the magnetic characteristics of the transformer 90 according to the embodiment will be described with reference to FIG. The amorphous alloy wound core 12 has excellent magnetic characteristics compared to the silicon steel strip wound core 11, but since it saturates around a magnetic flux density of 1.5 Tesla, a magnetic flux is required to function as a transformer core. It is necessary to suppress the density to about 1.3 Tesla at maximum.

一方、珪素鋼帯巻鉄心11の磁気特性は、磁束密度1.5Tesla付近までは、非晶質合金巻鉄心12に劣るが、飽和点が磁束密度1.9〜2.0Tesla付近にあるため、磁束密度1.7Tesla程度で使用することができる。   On the other hand, the magnetic properties of the silicon steel strip wound core 11 are inferior to the amorphous alloy wound core 12 until the magnetic flux density is around 1.5 Tesla, but the saturation point is near the magnetic flux density of 1.9 to 2.0 Tesla. It can be used at a magnetic flux density of about 1.7 Tesla.

周波数、電圧及び巻線の巻数が同一の場合、磁束密度が低ければ鉄心の断面積を大きくする必要があるので、一般的に、非晶質合金巻鉄心12を用いた変圧器は、無負荷特性(素材の磁気特性に関係する)は優れるが、珪素鋼帯巻鉄心11を用いた変圧器よりも大きくなる。   When the frequency, the voltage, and the number of turns of the winding are the same, it is necessary to increase the cross-sectional area of the iron core if the magnetic flux density is low. Therefore, a transformer using the amorphous alloy wound iron core 12 is generally unloaded. Although the characteristics (related to the magnetic characteristics of the material) are excellent, it is larger than that of the transformer using the silicon steel strip wound core 11.

図3に示すように、実施の形態の変圧器90は、一つの巻線に対して、珪素鋼帯巻鉄心11及び非晶質合金帯巻鉄心12が鎖交するため、磁気特性は、両者の中間の特性を示す。図3において、一点鎖線で囲んだ領域は、非晶質合金巻鉄心12が飽和する磁束密度域よりも高く、且つ、珪素鋼帯巻鉄心11よりも良好な磁気特性が得られる領域であり、実施の形態の変圧器90は、この領域の磁束密度を利用するものである。   As shown in FIG. 3, in the transformer 90 of the embodiment, since the silicon steel strip core 11 and the amorphous alloy strip core 12 are linked to one winding, the magnetic characteristics are both The intermediate characteristics are shown. In FIG. 3, the region surrounded by the alternate long and short dash line is a region that is higher than the magnetic flux density region where the amorphous alloy wound core 12 is saturated and has better magnetic properties than the silicon steel strip wound core 11. The transformer 90 of the embodiment uses the magnetic flux density in this region.

実施の形態の変圧器90で使用する磁束密度は、上記の一点鎖線で囲んだ領域で、1.4〜1.6Teslaであり、この領域での使用により、非晶質合金巻鉄心12のみでは使用し得ない高い磁束密度で、珪素鋼帯巻鉄心11のみでは達成し得ない良好な無負荷特性(無負荷電流、無負荷損)を有する変圧器90を得ることができる。   The magnetic flux density used in the transformer 90 of the embodiment is 1.4 to 1.6 Tesla in the region surrounded by the alternate long and short dash line, and the amorphous alloy wound iron core 12 alone is used in this region. It is possible to obtain a transformer 90 having a high magnetic flux density that cannot be used and having good no-load characteristics (no-load current, no-load loss) that cannot be achieved by the silicon steel strip core 11 alone.

なお、実施の形態の変圧器90は、単相変圧器であるが、変圧器90と同様な複合鉄心を用いることにより、本発明は、三相変圧器にも適用することができる。   In addition, although the transformer 90 of the embodiment is a single-phase transformer, the present invention can also be applied to a three-phase transformer by using a composite iron core similar to the transformer 90.

以上のように、本発明に係る変圧器は、無負荷損を低減しつつ、大形化を抑制した変圧器として有用である。   As described above, the transformer according to the present invention is useful as a transformer that suppresses an increase in size while reducing no-load loss.

10 複合鉄心
10a 脚部
10b 継鉄部
10c 接合部
11 珪素鋼帯巻鉄心
12 非晶質合金巻鉄心
20 スペーサ
30 巻芯
41 一次巻線
42 二次巻線
DESCRIPTION OF SYMBOLS 10 Composite iron core 10a Leg part 10b Joint part 10c Joint part 11 Silicon steel strip wound core 12 Amorphous alloy wound core 20 Spacer 30 Winding core 41 Primary winding 42 Secondary winding

Claims (2)

所定幅の珪素鋼帯を積層巻帯して矩形リング状に形成し、所定の高温で焼鈍して歪を除去した珪素鋼帯巻鉄心と、前記珪素鋼帯と略同一幅の非晶質合金薄帯を積層巻帯して前記珪素鋼帯巻鉄心と略同一形状の矩形リング状に形成し、所定の低温で焼鈍して歪を除去し、前記珪素鋼帯巻鉄心の幅方向側部に重ねて配置した非晶質合金巻鉄心と、を備え、脚部と継鉄部を有する複合鉄心と、
前記複合鉄心の脚部に外嵌された巻芯と、
前記巻芯に外嵌された二次巻線と、
前記二次巻線に外嵌された一次巻線と、
を備えることを特徴とする変圧器。
A silicon steel strip core formed by laminating and winding a silicon steel strip having a predetermined width into a rectangular ring shape, and removing the strain by annealing at a predetermined high temperature, and an amorphous alloy having substantially the same width as the silicon steel strip A thin ribbon is laminated and formed into a rectangular ring shape that is substantially the same shape as the silicon steel strip core, annealed at a predetermined low temperature to remove strain, and on the side in the width direction of the silicon steel strip core. An amorphous alloy wound core disposed in a stack, and a composite core having a leg portion and a yoke portion;
A core wound around the legs of the composite core;
A secondary winding externally fitted to the winding core;
A primary winding externally fitted to the secondary winding;
A transformer characterized by comprising:
前記複合鉄心の継鉄部は、前記複合鉄心の端部同士を接合する接合部となっていて、前記脚部に、前記巻芯、二次巻線及び一次巻線を外嵌するときには接合を解いて開き、外嵌後に閉じて、前記端部同士を接合することを特徴とする請求項1に記載の変圧器。   The yoke portion of the composite core is a joint that joins the ends of the composite core, and when the core, the secondary winding, and the primary winding are externally fitted to the legs, the joint is joined. The transformer according to claim 1, wherein the transformer is opened after being opened and closed after external fitting to join the end portions.
JP2012129058A 2012-06-06 2012-06-06 Transformer Active JP5988712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012129058A JP5988712B2 (en) 2012-06-06 2012-06-06 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012129058A JP5988712B2 (en) 2012-06-06 2012-06-06 Transformer

Publications (2)

Publication Number Publication Date
JP2013254827A true JP2013254827A (en) 2013-12-19
JP5988712B2 JP5988712B2 (en) 2016-09-07

Family

ID=49952114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012129058A Active JP5988712B2 (en) 2012-06-06 2012-06-06 Transformer

Country Status (1)

Country Link
JP (1) JP5988712B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011964A (en) * 2015-06-26 2017-01-12 株式会社日立製作所 Power converter and wind power generation system
CN106504866A (en) * 2016-12-19 2017-03-15 华城电机(武汉)有限公司 Amorphous alloy transformer winding construction
CN107845494A (en) * 2017-12-18 2018-03-27 吴茂安 Five sections of hybrid three dimensional wound cores
WO2021166314A1 (en) * 2020-02-19 2021-08-26 株式会社日立産機システム Stationary induction apparatus and transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107103988B (en) * 2017-06-08 2018-08-24 吴茂安 Bi-material layers amorphous three phase transformer iron core

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776811A (en) * 1980-10-30 1982-05-14 Fujitsu Denso Ltd Composite core for transformer
JPS57143808A (en) * 1981-03-02 1982-09-06 Daihen Corp Wound core for stationary electrical equipment
JPS59197106A (en) * 1983-04-06 1984-11-08 ウエスチングハウス エレクトリック コ−ポレ−ション Magnetic core for transformer
JPH033306A (en) * 1989-05-31 1991-01-09 Daihen Corp Wound iron core and manufacture thereof
JPH05251244A (en) * 1992-03-06 1993-09-28 Toshiba Corp High frequency transformer iron core
JPH05275255A (en) * 1992-03-27 1993-10-22 Nippon Steel Corp Manufacture of transformer of good magnetic properties
JPH10340816A (en) * 1997-06-06 1998-12-22 Hitachi Ltd Amorphous rolled core transformer
US6005468A (en) * 1997-06-06 1999-12-21 Hitachi, Ltd. Amorphous transformer
JP2000082625A (en) * 1998-06-29 2000-03-21 Hitachi Ltd Amorphous iron core transformer

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5776811A (en) * 1980-10-30 1982-05-14 Fujitsu Denso Ltd Composite core for transformer
JPS57143808A (en) * 1981-03-02 1982-09-06 Daihen Corp Wound core for stationary electrical equipment
JPS59197106A (en) * 1983-04-06 1984-11-08 ウエスチングハウス エレクトリック コ−ポレ−ション Magnetic core for transformer
JPH033306A (en) * 1989-05-31 1991-01-09 Daihen Corp Wound iron core and manufacture thereof
JPH05251244A (en) * 1992-03-06 1993-09-28 Toshiba Corp High frequency transformer iron core
JPH05275255A (en) * 1992-03-27 1993-10-22 Nippon Steel Corp Manufacture of transformer of good magnetic properties
JPH10340816A (en) * 1997-06-06 1998-12-22 Hitachi Ltd Amorphous rolled core transformer
US6005468A (en) * 1997-06-06 1999-12-21 Hitachi, Ltd. Amorphous transformer
JP2000082625A (en) * 1998-06-29 2000-03-21 Hitachi Ltd Amorphous iron core transformer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017011964A (en) * 2015-06-26 2017-01-12 株式会社日立製作所 Power converter and wind power generation system
CN106504866A (en) * 2016-12-19 2017-03-15 华城电机(武汉)有限公司 Amorphous alloy transformer winding construction
CN106504866B (en) * 2016-12-19 2018-06-26 华城电机(武汉)有限公司 Amorphous alloy transformer winding construction
CN107845494A (en) * 2017-12-18 2018-03-27 吴茂安 Five sections of hybrid three dimensional wound cores
WO2021166314A1 (en) * 2020-02-19 2021-08-26 株式会社日立産機システム Stationary induction apparatus and transformer
JP2021132091A (en) * 2020-02-19 2021-09-09 株式会社日立産機システム Stationary induction apparatus and transformer
JP7208182B2 (en) 2020-02-19 2023-01-18 株式会社日立産機システム Stationary induction equipment and transformers

Also Published As

Publication number Publication date
JP5988712B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5953541B2 (en) Manufacturing method of three-dimensional triangular structure amorphous alloy transformer core
TWI529756B (en) Magnetic core
WO2013065095A1 (en) Reactor, transformer, and power conversion apparatus using same
JP5988712B2 (en) Transformer
US20090273431A1 (en) Lower cost continuous flux path transformer core and method of manufacture
JP4997330B2 (en) Multiphase transformer and transformer system
JP6397349B2 (en) Three-phase five-legged iron core and stationary electromagnetic equipment
EP3026683B1 (en) Transformer, power supply device, and method for manufacturing transformer
JP7208182B2 (en) Stationary induction equipment and transformers
US9881735B2 (en) Fe-based amorphous transformer magnetic core, production method therefor, and transformer
Chang et al. Magnetic properties improvement of amorphous cores using newly developed step-lap joints
JP2011159851A (en) Reactor
JP6819136B2 (en) Trance
KR102136026B1 (en) Combined structure of variable-capacity transformer structure using ferrite core for magnetic flux assistance and method for manufacturing the same
JP2008218660A (en) Reactor apparatus
JP2015099818A (en) High-frequency reactor, and method for designing the same
US20160240307A1 (en) Coil component, high current indcutor, high current reactor inlcuding the same
CN110121752B (en) Semi-hybrid transformer core
JP5923908B2 (en) Reactor
JP6075678B2 (en) Composite magnetic core, reactor and power supply
JP7143235B2 (en) Iron core for stationary induction electric machine
JP2016157890A (en) Coil component
JP2013197570A (en) Composite magnetic core, reactor, and power supply device
JP2013080856A (en) Laminated core for stationary induction electrical apparatus
JP2010278322A (en) Choke coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5988712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250