JP2013247214A - Soft magnetic dust core - Google Patents

Soft magnetic dust core Download PDF

Info

Publication number
JP2013247214A
JP2013247214A JP2012119447A JP2012119447A JP2013247214A JP 2013247214 A JP2013247214 A JP 2013247214A JP 2012119447 A JP2012119447 A JP 2012119447A JP 2012119447 A JP2012119447 A JP 2012119447A JP 2013247214 A JP2013247214 A JP 2013247214A
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
resin
core
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012119447A
Other languages
Japanese (ja)
Other versions
JP5978766B2 (en
Inventor
Seigo Tokoro
誠吾 野老
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012119447A priority Critical patent/JP5978766B2/en
Publication of JP2013247214A publication Critical patent/JP2013247214A/en
Application granted granted Critical
Publication of JP5978766B2 publication Critical patent/JP5978766B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that there is a risk of damaging a core during the manufacturing process of a motor or during actual use of a motor, because the strength of a molding is significantly low, when composing a dynamo-electric machine by using a conventional molding of soft magnetic dust core.SOLUTION: In the soft magnetic dust core, a cavity (hole) surrounded by three or more powder particles is impregnated with resin in a region adjoining soft magnetic powder particles, and the resin is segregated at a part of the cavity (hole), thus forming a hole and a resin part in the cavity (hole). When confining the volume of the hole within a proper range, a soft magnetic dust core having high dimensional accuracy and holding a strength of 100 MPa or higher stably with no variation is obtained without lowering the density of the soft magnetic dust core.

Description

本発明は軟磁性圧粉磁芯に関する。 The present invention relates to a soft magnetic dust core.

モータや発電機などの回転電機は、産業用,家電,自動車分野で電気エネルギーと機械出力を変換する機器として使用される。
これらの機器は鉄板などの軟磁性材料とコイル導体で構成されており、従来から小形化や高効率化などが要求されている。
Rotating electrical machines such as motors and generators are used as devices that convert electrical energy and mechanical output in the industrial, household, and automotive fields.
These devices are composed of a soft magnetic material such as an iron plate and a coil conductor, and have conventionally been required to be downsized and highly efficient.

軟磁性圧粉磁芯は、軟磁性材料の集合体であり、個々の絶縁コーティングされた微小な鉄粉を圧縮成形によって固定子や回転子などの部品形状に形成することができ、珪素鋼板などの鉄板に比べ、三次元の形状が形成できる点が利点であり、モータの小形化に利用される。   Soft magnetic powder magnetic core is an aggregate of soft magnetic materials, which can be formed into parts such as stators and rotors by compression molding of minute iron powder with individual insulation coating, such as silicon steel plate The advantage is that a three-dimensional shape can be formed compared to the steel plate, which is used for miniaturization of motors.

しかし、軟磁性圧粉磁芯の欠点は、圧縮成形のみで形状を形成するために鉄心としての強度が低いという問題がある。製造工程におけるハンドリングおよびコイルにするための巻き線の際に破損しないことが重要であるが、強度が低いと回転機器としての使用時の振動や衝撃により軟磁性圧粉磁芯に割れや欠けや粉の脱落が発生する要因となる。
このため、これらを解決する方法として、特許文献1に示されるように、鉄基軟磁性粉末表面に、無機系化成皮膜と、シリコーン樹脂皮膜とを複合させることで、より高度な耐熱性を有する電気絶縁層を形成する方法が提案されている。しかしながら、このような方法では、樹脂のような柔らかい金属粉以外の介在物が存在するため、成形時の加圧力が粉に伝わりづらくなる。このため金属粉が変形しづらくなり、軟磁性圧粉磁芯の密度が低下し、軟磁性圧粉磁芯内部の空孔部が多くなる。また、軟磁性金属粒子の表面に上記の複合化合物等が均一に被覆されないため、強度にばらつきを生じ、強度が低下してしまう。
軟磁性圧粉磁芯の機械的強度を向上させる別の手法としては、特許文献2に記載されているように、Fe基軟磁性合金アトマイズ粉末とシリコーン樹脂との混合圧粉成形体中に樹脂の含浸処理を行う手法が記載されている。
また特許文献3には圧縮処理され、熱処理された軟磁性圧粉磁芯中に低粘度の樹脂を含ませ乾燥させる方法が記載されている。しかし、特許文献2、3に開示の手法では、圧粉成形体の内部へ樹脂が充分に含浸しないため、軟磁性圧粉磁芯の強度をさらに向上させることが難しい。
However, a disadvantage of the soft magnetic powder magnetic core is that the strength as an iron core is low because the shape is formed only by compression molding. It is important not to break when handling and winding to make a coil in the manufacturing process, but if the strength is low, the soft magnetic powder magnetic core will be cracked or chipped due to vibration or impact when used as a rotating device. This is a factor that causes powder to fall off.
For this reason, as shown in Patent Document 1, as a method for solving these problems, the surface of the iron-based soft magnetic powder is combined with an inorganic chemical conversion film and a silicone resin film to have higher heat resistance. A method for forming an electrical insulating layer has been proposed. However, in such a method, since inclusions other than soft metal powder such as resin are present, it is difficult for the pressure applied during molding to be transmitted to the powder. For this reason, the metal powder is difficult to be deformed, the density of the soft magnetic dust core is reduced, and the number of holes in the soft magnetic dust core is increased. In addition, since the above composite compound or the like is not uniformly coated on the surface of the soft magnetic metal particles, the strength varies and the strength decreases.
As another method for improving the mechanical strength of the soft magnetic powder magnetic core, as described in Patent Document 2, a resin is mixed in a powder compact formed of a Fe-based soft magnetic alloy atomized powder and a silicone resin. A technique for performing the impregnation treatment is described.
Patent Document 3 describes a method in which a low-viscosity resin is contained in a soft magnetic dust core that has been subjected to compression treatment and heat treatment, and then dried. However, in the methods disclosed in Patent Documents 2 and 3, since the resin is not sufficiently impregnated into the powder compact, it is difficult to further improve the strength of the soft magnetic dust core.

特開2008−63651号公報JP 2008-63651 A 特開2000−30925号公報JP 2000-30925 A 特開2011−36007号公報JP 2011-36007 A

従来の手法では、軟磁性圧粉磁芯内部の空孔率に対する配慮がなされておらず、軟磁性圧粉磁芯の配合比が樹脂と原料粉末のみで規定されているため、樹脂量および軟磁性粉末量が一定であったとしても成形時の圧力等の違いにより空孔率が変化してしまい、軟磁性圧粉磁芯の磁気特性に影響があり、強度のばらつきや十分な強度が得られない等の問題が生じていた。軟磁性圧粉磁芯の強度が不十分であると、製造工程におけるハンドリングや圧粉磁芯に巻き線をコイルにする際、破損の原因となる。また、軟磁性圧粉磁芯をモータ等の回転機器に使用する際は、軟磁性圧粉磁芯に割れや欠け、軟磁性圧粉磁芯からの粉の脱落が発生する可能性がある。そこで、軟磁性圧粉磁芯は、製造工程でのハンドリング時や、モータとして動作する場合に固定子と回転子間に生じるトルク反力等、外部からの衝撃や振動などの外乱に耐えられる強度が必要とされる。また軟磁性圧粉磁芯は複雑な形状とされるため、形状維持が最も重要な課題となる。このため軟磁性圧粉磁芯の曲げ強度としては、安定して100MPa以上とすることが必要とされる。
本発明は、かかる実情に鑑みて為されたものであり、その目的は、高密度の軟磁性圧粉磁芯であっても、軟磁性圧粉磁芯内部に存在する空孔部が大きくなるようにコントロールすることにより、十分に樹脂等を含浸しやすくなる構造体にすることにより、軟磁性圧粉磁芯の強度のバラツキがなく、安定して100MPa以上の強度を保持できる軟磁性圧粉磁芯を提供することである。
In the conventional method, no consideration is given to the porosity inside the soft magnetic powder magnetic core, and the blending ratio of the soft magnetic powder magnetic core is defined only by the resin and the raw material powder. Even if the amount of magnetic powder is constant, the porosity changes due to differences in pressure during molding, etc., affecting the magnetic properties of the soft magnetic dust core, resulting in variations in strength and sufficient strength. The problem of not being able to occur has occurred. If the strength of the soft magnetic powder magnetic core is insufficient, it may cause damage when handling the manufacturing process or winding the coil around the powder magnetic core. Further, when the soft magnetic powder magnetic core is used in a rotating device such as a motor, there is a possibility that the soft magnetic powder magnetic core is cracked or chipped and the powder falls off from the soft magnetic powder magnetic core. Therefore, the soft magnetic dust core is strong enough to withstand disturbances such as external impacts and vibrations during handling in the manufacturing process and torque reaction force generated between the stator and rotor when operating as a motor. Is needed. In addition, since the soft magnetic dust core has a complicated shape, maintaining the shape is the most important issue. For this reason, it is required that the bending strength of the soft magnetic dust core be stably 100 MPa or more.
The present invention has been made in view of such circumstances, and the object thereof is to increase the pores existing inside the soft magnetic dust core even if it is a high-density soft magnetic dust core. By controlling in this manner, the soft magnetic powder powder can be stably maintained with a strength of 100 MPa or more without variation in the strength of the soft magnetic powder magnetic core by making the structure sufficiently easy to be impregnated with resin, etc. It is to provide a magnetic core.

本発明者らは、鋭意研究を重ねた結果、高密度に成形された軟磁性圧粉磁芯であっても、軟磁性圧粉磁芯内部に存在する空孔部をコントロールすることにより、十分に樹脂等を含浸しやすくする構造体を作製することが可能となることを見出した。その結果、軟磁性圧粉磁芯の強度のバラツキがなく、安定して100MPa以上の強度を保持する高精度な軟磁性圧粉磁芯が構成でき、上記課題が解決されることを見出した。   As a result of intensive research, the present inventors have sufficiently controlled even the soft magnetic dust core formed with high density by controlling the voids existing inside the soft magnetic dust core. It has been found that it is possible to produce a structure that makes it easy to impregnate with resin or the like. As a result, the present inventors have found that a high-precision soft magnetic dust core capable of stably maintaining a strength of 100 MPa or more can be configured without the variation in strength of the soft magnetic dust core, and that the above problems can be solved.

本発明は、少なくとも無機酸化物層により絶縁コーティングされた鉄基軟磁性原料粉末を圧縮成形し作製された軟磁性圧粉磁芯であって、該軟磁性圧粉磁芯は、軟磁性粉末粒子が占める粉体部、空孔部及び樹脂部で構成され、樹脂の含有量が0.07wt%以上0.5wt%以下含まれることを特徴とする軟磁性圧粉磁芯である。ここで、「粉体部」とは軟磁性粉末粒子自身で占められている領域を指し、「空孔部」とは圧縮成形された軟磁性粉末粒子により形成された空隙(空孔部)部で樹脂の浸入が無い領域を指し、「樹脂部」とは前記空隙(空孔部)部において樹脂により占められる領域を指すものとする。   The present invention relates to a soft magnetic powder magnetic core produced by compression-molding an iron-based soft magnetic raw material powder that is insulation-coated with at least an inorganic oxide layer, the soft magnetic powder magnetic core comprising soft magnetic powder particles Is a soft magnetic powder magnetic core comprising a powder part, a hole part, and a resin part, wherein the resin content is 0.07 wt% or more and 0.5 wt% or less. Here, the “powder part” refers to an area occupied by the soft magnetic powder particles themselves, and the “hole part” refers to a void (hole part) part formed by compression-molded soft magnetic powder particles. In this case, the resin does not enter, and the “resin part” means an area occupied by the resin in the gap (hole part).

本発明の軟磁性圧粉磁芯において、軟磁性原料粉末は、無機酸化物層により絶縁コーティングされたものであり、本件の「無機酸化物層」とは、少なくともFe、PおよびOを含むもので、例えば鉄の亜リン酸化合物、リン酸化合物、リン酸水素化合物、ピロリン酸化合物、酸化物などが挙げられ、これらが単独もしくは複数含まれるものであることを特徴とする。   In the soft magnetic powder magnetic core of the present invention, the soft magnetic raw material powder is an insulating coating with an inorganic oxide layer, and the “inorganic oxide layer” in this case contains at least Fe, P and O For example, iron phosphorous acid compounds, phosphoric acid compounds, hydrogen phosphate compounds, pyrophosphoric acid compounds, oxides and the like can be mentioned, and these are characterized by being contained alone or in plural.

本発明に係る軟磁性圧粉磁芯における樹脂の含有量は、0.07wt%以上0.5wt%以下含まれることにより、軟磁性圧粉磁芯の機械的強度を大きく向上させることができる。軟磁性圧粉磁芯中の樹脂の含有量が、0.07wt%未満の場合、樹脂による軟磁性原料粉末粒子を結着させる効果が低減し、軟磁性圧粉磁芯の強度が100MPaより低くなり、強度ばらつきも生じる。また樹脂の含有量が0.5wt%を超える場合は、圧粉成形体を樹脂含浸した後の熱硬化の工程において、含浸した樹脂が軟磁性圧粉磁芯からしみだし、圧粉成形体の寸法精度が低下してしまう。   When the content of the resin in the soft magnetic powder magnetic core according to the present invention is 0.07 wt% or more and 0.5 wt% or less, the mechanical strength of the soft magnetic powder magnetic core can be greatly improved. When the content of the resin in the soft magnetic powder magnetic core is less than 0.07 wt%, the effect of binding the soft magnetic raw material powder particles by the resin is reduced, and the strength of the soft magnetic powder magnetic core is lower than 100 MPa. As a result, intensity variation also occurs. When the resin content exceeds 0.5 wt%, the impregnated resin oozes out from the soft magnetic powder magnetic core in the thermosetting step after impregnating the powder compact with the resin, Dimensional accuracy is reduced.

前記樹脂としては、エポキシ系樹脂,トリアジン系樹脂、シリコーン系樹脂、ポリエステル系樹脂、フェノール系樹脂などからなる群より選択される少なくとも1種であることが好ましい。これらを溶媒等で希釈して低粘度化した樹脂を用いる。   The resin is preferably at least one selected from the group consisting of epoxy resins, triazine resins, silicone resins, polyester resins, phenol resins, and the like. A resin obtained by diluting these with a solvent or the like to lower the viscosity is used.

本発明の軟磁性圧粉磁芯においては、軟磁性粉末粒子が隣接する領域において、少なくとも3つ以上の粉末粒子で囲まれた空隙(空孔部)(空孔部)の一部に樹脂が偏析しているとよい。ここで「樹脂が偏析する」とは、軟磁性圧粉磁芯において、局所的に樹脂の含有量が多い部分があることを意味する。   In the soft magnetic powder magnetic core of the present invention, in a region where the soft magnetic powder particles are adjacent, a resin is formed in a part of a void (hole portion) (hole portion) surrounded by at least three powder particles. It should be segregated. Here, “resin segregates” means that there is a portion where the resin content is locally high in the soft magnetic dust core.

本発明に係る軟磁性圧粉磁芯においては、前記樹脂を、軟磁性粉末粒子が隣接する領域の、少なくとも3つ以上の粉末粒子で囲まれた空隙(空孔部)の一部に偏析させることにより、複数の軟磁性粉末粒子を、樹脂により結着させることが可能となる。樹脂含浸時の樹脂は、軟磁性圧粉磁芯内部に存在する繋がった空孔部を移動しながら浸入していくことにより各空孔部の一部に偏析し樹脂部を形成する。樹脂はさらに隣接する2つの軟磁性粉末粒子の間にも浸入する。このため従来例に見られる結着の効果に加え、さらに樹脂が空孔部の一部に存在し、樹脂部を形成することにより結着の効果が増強され、強度が安定して向上する。
従来の軟磁性圧粉磁芯においては、軟磁性原料粉末における微粉の制御等を行わないので、微粉が空孔部を埋めてしまい、樹脂を偏析させるのに十分な空隙(空孔部)を確保することが出来なかった。そのため軟磁性圧粉磁芯に存在する樹脂は、主に隣接する2つの粉末粒子の間にしか存在せず、それ故、隣接する2つの粉末粒子しか結着させることが出来ず、複数の軟磁性粉末粒子を結着させることができなかった。その結果、軟磁性圧粉磁芯の強度の低下や、強度ばらつきが生じてしまう。
In the soft magnetic powder magnetic core according to the present invention, the resin is segregated in a part of a void (hole portion) surrounded by at least three or more powder particles in a region where the soft magnetic powder particles are adjacent. As a result, the plurality of soft magnetic powder particles can be bound by the resin. The resin at the time of resin impregnation is segregated to a part of each hole part by forming a resin part by invading while moving the connected hole part existing inside the soft magnetic dust core. The resin also penetrates between two adjacent soft magnetic powder particles. For this reason, in addition to the binding effect seen in the conventional example, the resin is further present in a part of the pores, and the formation of the resin part enhances the binding effect and improves the strength stably.
In the conventional soft magnetic powder magnetic core, fine powder in the soft magnetic raw material powder is not controlled, so that the fine powder fills the pores and has enough voids (holes) to segregate the resin. Could not secure. Therefore, the resin present in the soft magnetic dust core is mainly present only between two adjacent powder particles, and therefore, only two adjacent powder particles can be bound, and a plurality of soft particles are bonded. The magnetic powder particles could not be bound. As a result, the strength of the soft magnetic powder magnetic core is reduced and variations in strength occur.

また本発明に係る軟磁性圧粉磁芯の製造において、成形段階では、樹脂が存在しないため、粉体に力が伝達されやすく成形体を高密度化しやすい。一方、成形前に樹脂を添加する方法では、成形時には粉体粒子と粉体粒子の間に樹脂が存在することにより力が粉体に伝達しづらく、粉がつぶれにくいため高密度化しづらくなる。このため高密度化と高強度化を両立できない。   Further, in the production of the soft magnetic powder magnetic core according to the present invention, since no resin is present at the molding stage, force is easily transmitted to the powder, and the compact is easily densified. On the other hand, in the method of adding a resin before molding, the resin is present between the powder particles at the time of molding, so that it is difficult for force to be transmitted to the powder, and the powder is difficult to be crushed, making it difficult to increase the density. For this reason, it is impossible to achieve both high density and high strength.

更に、本発明に係る軟磁性圧粉磁芯は、該軟磁性圧粉磁芯における空孔部すなわち軟磁性粉体粒子により形成される空隙(空孔部)で樹脂により占有されていない領域が、0.4Vol%以上4.9Vol%以下であることを特徴とする。   Further, in the soft magnetic powder magnetic core according to the present invention, a hole portion in the soft magnetic powder magnetic core, that is, a space formed by the soft magnetic powder particles (hole portion) is not occupied by the resin. 0.4 vol% or more and 4.9 vol% or less.

空孔部が4.9%を超える場合、軟磁性圧粉磁芯内部に占める空孔部の割合が多すぎて強度が低下してしまい、結果として、軟磁性圧粉磁芯の強度が100MPa未満となってしまう。また空孔部が0.4%より少ない場合、熱硬化時に軟磁性圧粉磁芯から樹脂が染み出し、寸法精度を劣化させる要因となってしまう。上記「空孔部」とは、空孔部に偏析した樹脂部を取り除いた領域である。   When the void portion exceeds 4.9%, the ratio of the void portion in the soft magnetic powder magnetic core is too large and the strength is lowered. As a result, the strength of the soft magnetic powder magnetic core is 100 MPa. Will be less than. On the other hand, if the number of pores is less than 0.4%, the resin oozes out from the soft magnetic powder magnetic core at the time of thermosetting, resulting in deterioration of dimensional accuracy. The “hole part” is an area from which the resin part segregated in the hole part is removed.

本発明の軟磁性圧粉磁芯における軟磁性粉末粒子の長軸径は、130μm以上700μm以下であることを特徴とする。尚、ここで長軸径とは、後述するように複数の粒子の平均値である平均長軸径を意味する。 The major axis diameter of the soft magnetic powder particles in the soft magnetic powder magnetic core of the present invention is 130 μm or more and 700 μm or less. Here, the major axis diameter means an average major axis diameter that is an average value of a plurality of particles as described later.

軟磁性粉末粒子の長軸径を上記の範囲とするには、原料粉末の準備段階で、微粉や粗粉の除去を行い粒度が揃った原料粉末を用いる。このようにすることで、所望の長軸径を有する軟磁性圧粉磁芯用軟磁性粉末が得られる。従来は、原料粉末を選別することなく、粒度分布が広い原料粉末を使用したため、軟磁性圧粉磁芯内部に存在する空孔部に、微粉が入り込み、空孔部の体積が小さくなり、十分な空孔部を確保する事ができなかった。そのため、圧粉成形体に樹脂を含浸させる場合、内部に含浸しづらく、軟磁性圧粉磁芯の強度を上げることが困難であった。さらに、原料粉末中に粗大な粒子(粗粉)が存在すると、軟磁性圧粉磁芯内に過度に空孔部が形成され、高密度化が達成されないばかりか、その機械的強度も低下してしまう。そこで、本発明の軟磁性圧粉磁芯は、原料粉末の微粉や粗粉を除去し、粒度の揃った原料粉末を用いることで、隣接する粉末粒子の、少なくとも3つ以上の粉末粒子で囲まれた空孔部の体積を適正な範囲とし、該空孔部に樹脂含浸することにより、空孔部内に樹脂を偏析させることが可能となる。
これにより、軟磁性圧粉磁芯の密度を低下させることなく、強度のバラツキがなく、安定して100MPa以上の強度を保持し、寸法精度の高精度な軟磁性圧粉磁芯が得られる。
In order to set the major axis diameter of the soft magnetic powder particles in the above range, raw material powder having a uniform particle size is used by removing fine powder and coarse powder in the raw material powder preparation stage. By doing in this way, the soft-magnetic powder for soft-magnetic powder magnetic cores which has a desired major axis diameter is obtained. Conventionally, since raw material powder with a wide particle size distribution was used without selecting the raw material powder, fine powder entered the pores existing inside the soft magnetic powder magnetic core, and the volume of the pores was reduced sufficiently. It was not possible to secure a vacant hole. Therefore, when impregnating the powder compact with a resin, it is difficult to impregnate the inside, and it is difficult to increase the strength of the soft magnetic dust core. Furthermore, if coarse particles (coarse powder) are present in the raw material powder, voids are excessively formed in the soft magnetic powder magnetic core, and not only high densification is achieved, but also its mechanical strength decreases. End up. Therefore, the soft magnetic powder magnetic core of the present invention removes the fine powder and coarse powder of the raw material powder and uses the raw material powder having a uniform particle size, so that it is surrounded by at least three powder particles of adjacent powder particles. It is possible to segregate the resin in the pores by setting the volume of the pores to an appropriate range and impregnating the pores with resin.
Thereby, without decreasing the density of the soft magnetic dust core, there is no variation in strength, and a strength of 100 MPa or more can be stably maintained, and a soft magnetic dust core with high dimensional accuracy can be obtained.

本発明の軟磁性圧粉磁芯は、隣接する粉末粒子の、少なくとも3つ以上の粉末粒子で囲まれた空孔部の体積を適正な範囲とし、該空孔部の少なくとも一部に樹脂を含浸することにより、空孔部内に樹脂を偏析させる。それにより、軟磁性圧粉磁芯の密度を低下させることになく、強度のバラツキがなく、安定して100MPa以上の強度を保持する寸法精度が優れた軟磁性圧粉磁芯が得られる。   The soft magnetic powder magnetic core of the present invention has a volume of voids surrounded by at least three or more powder particles of an adjacent powder particle in an appropriate range, and a resin is contained in at least a part of the voids. By impregnating, the resin is segregated in the pores. As a result, a soft magnetic dust core having excellent dimensional accuracy that can stably maintain a strength of 100 MPa or more can be obtained without reducing the density of the soft magnetic dust core and without having a variation in strength.

本発明に係る軟磁性圧粉磁芯の樹脂含浸後の軟磁性材料と樹脂の関係を示す模式図である。It is a schematic diagram which shows the relationship between the soft magnetic material after resin impregnation of the soft magnetic dust core which concerns on this invention, and resin. 軟磁性圧粉磁芯の製造工程を示すフロー図である。It is a flowchart which shows the manufacturing process of a soft-magnetic powder magnetic core. 樹脂含浸した軟磁性圧粉磁芯内部を示す図である。It is a figure which shows the inside of the soft magnetic powder magnetic core impregnated with resin.

以下に、本発明の実施の形態について説明する。以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されるものではない。   Embodiments of the present invention will be described below. The following embodiment is an example for explaining the present invention, and the present invention is not limited to the embodiment.

本発明にかかる軟磁性圧粉磁芯は、少なくとも無機酸化物層により絶縁コーティングされた原料粉末を圧縮成形し作製された軟磁性圧粉磁芯であって、該軟磁性圧粉磁芯は、軟磁性粉末粒子が占める粉体部、空孔部及び樹脂部で構成され、該樹脂の含有量が0.07wt%以上0.5wt%以下含有されている。
図1は本発明に係る軟磁性圧粉磁芯の一実施形態における断面模式図であり、樹脂含浸後における粉体部1、空孔部2、樹脂部3との関係を示す。
The soft magnetic powder magnetic core according to the present invention is a soft magnetic powder magnetic core produced by compression molding a raw material powder that has been insulation-coated with at least an inorganic oxide layer, and the soft magnetic powder magnetic core comprises: The soft magnetic powder particles are composed of a powder part, a hole part, and a resin part, and the content of the resin is 0.07 wt% or more and 0.5 wt% or less.
FIG. 1 is a schematic cross-sectional view of an embodiment of a soft magnetic powder magnetic core according to the present invention, and shows the relationship between a powder part 1, a hole part 2, and a resin part 3 after resin impregnation.

上記粉体部1(図1)は、軟磁性粉末を主成分し、鉄を99wt%以上含む鉄基粉(粒子、粉末)である。軟磁性粉末は、鉄のみ、鉄に元素(例えば、Si、P、Co、Ni、Cr、Al、Mo、Mn、Cu、Sn、Zr、B、V、Znなど)を少量添加した組成物などがあり、これらのいずれか1種のみ、或いは2種以上の組み合わせから構成されている。軟磁性粉末は、粒子や粉末が複数集合して軟磁性粉末の粉体部1を形成している。   The powder part 1 (FIG. 1) is an iron-based powder (particles, powder) containing soft magnetic powder as a main component and containing 99 wt% or more of iron. The soft magnetic powder includes only iron, a composition obtained by adding a small amount of elements (for example, Si, P, Co, Ni, Cr, Al, Mo, Mn, Cu, Sn, Zr, B, V, Zn, etc.) to iron, etc. And any one of these or a combination of two or more. In the soft magnetic powder, a plurality of particles and powder are aggregated to form the powder portion 1 of the soft magnetic powder.

軟磁性粉末の製法は、特に限定されず、公知の方法により製造することができる。例えば、ガスアトマイズ法、水アトマイズ法、回転アトマイズ法等のアトマイズ法や、鋳造粉砕法、電解鉄を機械的に粉砕して得る電解鉄粉法が挙げられる。これらの製造方法により任意の組成及び平均長軸径の軟磁性粉末粒子を得ることができる。   The production method of the soft magnetic powder is not particularly limited, and can be produced by a known method. Examples thereof include atomizing methods such as a gas atomizing method, a water atomizing method, and a rotating atomizing method, a casting pulverizing method, and an electrolytic iron powder method obtained by mechanically pulverizing electrolytic iron. By these production methods, soft magnetic powder particles having an arbitrary composition and average major axis diameter can be obtained.

また図1において、粉体部1を構成している軟磁性粉末粒子は、成形時の加圧方向に対し、垂直方向に潰れている。また、前記加圧方向に対し、垂直方向の長さを長軸としている。軟磁性粉末粒子の長軸径としては130μm以上700μm以下が好ましい。長軸径が130μm未満の場合、粉体粒子によって囲まれてできる空孔部の体積が小さくなり、樹脂含浸時に樹脂が内部に含浸されづらい。また軟磁性粉末粒子の長軸径が700μmを超えると、軟磁性圧粉磁芯の渦電流損失が増大し、これによりコアロスが増大し200W/Kg以上になりモーターとしての効率も低下し問題となる。長軸径のさらに好ましい範囲は、130μm以上500μm未満である。500μm未満の場合、1KHz 1Tでのコアロスが150W/kg以下に抑えられ、モーターとしての効率も高くなる。   In FIG. 1, the soft magnetic powder particles constituting the powder part 1 are crushed in a direction perpendicular to the pressing direction during molding. The length in the direction perpendicular to the pressurizing direction is the major axis. The major axis diameter of the soft magnetic powder particles is preferably 130 μm or more and 700 μm or less. When the major axis diameter is less than 130 μm, the volume of the pores formed by the powder particles becomes small, and the resin is difficult to be impregnated inside during resin impregnation. Further, if the major axis diameter of the soft magnetic powder particles exceeds 700 μm, the eddy current loss of the soft magnetic powder magnetic core increases, thereby increasing the core loss to 200 W / Kg or more and reducing the efficiency as a motor. Become. A more preferable range of the major axis diameter is 130 μm or more and less than 500 μm. In the case of less than 500 μm, the core loss at 1 KHz 1T is suppressed to 150 W / kg or less, and the efficiency as a motor is increased.

粉体部1を構成する軟磁性粉末粒子の長軸径を130μm以上700μm以下にするためには、原料粉末の平均粒径を106μm以上500μm以下に制御する必要がある。平均粒径とは、累積粒度分布が50%になる粒径である。原料粉末の平均粒径が、106μm未満の原料粉を用いると、軟磁性圧粉磁芯に存在する、少なくとも3つ以上の粉末粒子で囲まれた空孔部の体積が小さくなり、樹脂含浸の際、樹脂が含浸しづらい。また、平均粒径が500μm超の原料粉では、粉体中に粗粒子が存在し、その結果、磁気特性が劣化し、軟磁性圧粉磁芯を高周波で使用した際、渦電流損失が増加しこれによりコアロスが増加する。コアロスが増加するとモーター等の回転機器として使用する際の効率が低下してしまう等の問題が生じる。   In order to make the major axis diameter of the soft magnetic powder particles constituting the powder part 1 be 130 μm or more and 700 μm or less, it is necessary to control the average particle diameter of the raw material powder to 106 μm or more and 500 μm or less. The average particle size is a particle size at which the cumulative particle size distribution becomes 50%. When the raw material powder having an average particle diameter of less than 106 μm is used, the volume of the pores surrounded by at least three or more powder particles present in the soft magnetic powder magnetic core is reduced, and the resin impregnation is performed. At this time, the resin is difficult to impregnate. In addition, in the raw material powder having an average particle size of more than 500 μm, coarse particles exist in the powder, resulting in deterioration of magnetic characteristics and increase in eddy current loss when a soft magnetic dust core is used at a high frequency. This increases the core loss. When the core loss increases, there arises a problem that efficiency when used as a rotating device such as a motor is lowered.

本発明に係る軟磁性圧粉磁芯の製造においては、使用される全原料粉末(軟磁性原料粉末)のうち平均粒径が106μm以上500μm以下の原料粉末の割合は、重量比で98wt%以上を占めていることが好ましい。このようにすると、空孔部に樹脂が偏析しやすくなり、軟磁性圧粉磁芯の強度の向上や強度ばらつきの低減に効果がある。またコアロス低減に対しても効果が得られる。   In the production of the soft magnetic powder magnetic core according to the present invention, the ratio of the raw material powder having an average particle size of 106 μm or more and 500 μm or less in the total raw material powder (soft magnetic raw material powder) used is 98 wt% or more by weight ratio. Preferably. If it does in this way, it will become easy to segregate resin to a void | hole part, and it is effective in the improvement of the intensity | strength of a soft-magnetic powder magnetic core, and reduction of intensity | strength dispersion | variation. Moreover, an effect is acquired also with respect to core loss reduction.

上記軟磁性原料粉末は、絶縁コーティングされている必要がある。軟磁性原料粉末の表面の一部又は全部に絶縁コーティングをすることにより、軟磁性原料粉末に絶縁性を付与している。絶縁コーティングとしては、軟磁性粉末に絶縁性を付与するものであれば特に限定されず、例えば、リン酸鉄、ほう酸塩、硫酸鉄、硝酸鉄、酢酸鉄、炭酸鉄、シリカ、アルミナ、ジルコニア、チタニア、マグネシア、及び酸化亜鉛からなる群より選ばれる1種以上が挙げられる。これらは1種単独で用いてもよいし、2種以上を併用してもよい。耐熱性の観点から、好ましい絶縁コーティングとしては、リン酸鉄、シリカ、チタニア、ジルコニア、マグネシア、アルミナ、酸化クロム、酸化亜鉛等が挙げられ、これらの中でも、リン酸鉄がより好ましい。特に、リン酸鉄を含む絶縁コーティングは、軟磁性原料粉末の表面を、リン酸により処理することによって形成させることができる。   The soft magnetic raw material powder needs to be insulated. Insulating properties are imparted to the soft magnetic raw material powder by applying an insulating coating to part or all of the surface of the soft magnetic raw material powder. The insulating coating is not particularly limited as long as it imparts insulating properties to the soft magnetic powder. For example, iron phosphate, borate, iron sulfate, iron nitrate, iron acetate, iron carbonate, silica, alumina, zirconia, One or more selected from the group consisting of titania, magnesia, and zinc oxide can be mentioned. These may be used alone or in combination of two or more. From the viewpoint of heat resistance, preferable insulating coatings include iron phosphate, silica, titania, zirconia, magnesia, alumina, chromium oxide, zinc oxide, etc. Among these, iron phosphate is more preferable. In particular, the insulating coating containing iron phosphate can be formed by treating the surface of the soft magnetic raw material powder with phosphoric acid.

リン酸を用いた表面処理では、軟磁性原料粉末に対して、所定量のリン酸を付与する。これにより、軟磁性原料粉末の表面が徐酸化されることにより形成された酸化鉄が溶解あるいは除去されるとともに、絶縁性に優れるリン酸鉄が軟磁性原料粉末の表面に形成される。なお「、リン酸」とは、無機酸であるオルトリン酸(HPO)を指す。 In the surface treatment using phosphoric acid, a predetermined amount of phosphoric acid is applied to the soft magnetic raw material powder. Thereby, the iron oxide formed by gradually oxidizing the surface of the soft magnetic raw material powder is dissolved or removed, and iron phosphate excellent in insulation is formed on the surface of the soft magnetic raw material powder. “Phosphoric acid” refers to orthophosphoric acid (H 3 PO 4 ), which is an inorganic acid.

かかる表面処理における、リン酸の配合量は、軟磁性原料粉末の質量に対して0.15〜4.00wt%であることが好ましい。ここで言う、リン酸の配合量は、オルトリン酸(HPO)の89wt%に水溶液に換算した質量割合である。リン酸の配合量を上記割合とすることにより、適度な厚さの絶縁コーティングを均一に構成することができる。 In this surface treatment, the amount of phosphoric acid is preferably 0.15 to 4.00 wt% with respect to the mass of the soft magnetic raw material powder. Here, the amount of phosphoric acid is the mass percentage in terms of the aqueous solution to 89 wt% of orthophosphoric acid (H 3 PO 4). By setting the blending amount of phosphoric acid to the above ratio, an insulating coating having an appropriate thickness can be formed uniformly.

絶縁コーティングの厚さは、特に限定されないが、10〜1000nmであることが好ましい。これにより、軟磁性圧粉磁芯の絶縁性、取扱性、及び生産性がより一層高められる。   The thickness of the insulating coating is not particularly limited, but is preferably 10 to 1000 nm. Thereby, the insulation of a soft magnetic powder magnetic core, handling property, and productivity are improved further.

また図1における空孔部2は、0.4Vol%以上4.9Vol%以下である軟磁性圧粉磁芯であることが望ましい。空孔部が4.9%より大きい場合、軟磁性圧粉磁芯内部に閉める空孔部の割合が多すぎて強度が低下してしまう。結果として、軟磁性圧粉磁芯の強度が100MPa未満となってしまう。また空孔部が0.4%より少ない場合、熱硬化時に軟磁性圧粉磁芯から樹脂が染み出し、寸法精度を劣化させる要因となってしまう。   1 is preferably a soft magnetic dust core having a volume of 0.4 vol% or more and 4.9 vol% or less. When the void portion is larger than 4.9%, the ratio of the void portion closed inside the soft magnetic dust core is too large, and the strength is lowered. As a result, the strength of the soft magnetic dust core becomes less than 100 MPa. On the other hand, if the number of pores is less than 0.4%, the resin oozes out from the soft magnetic powder magnetic core at the time of thermosetting, resulting in deterioration of dimensional accuracy.

また図1における樹脂部3は、エポキシ系樹脂,トリアジン系樹脂、シリコーン系樹脂、ポリエステル系樹脂、フェノール系樹脂の少なくともいづれかよりなる。これらの樹脂の含浸においては、アルコール類やトルエン、キシレン、MEK、シンナーなどで希釈して低粘度化した樹脂を用いる。   The resin portion 3 in FIG. 1 is made of at least one of an epoxy resin, a triazine resin, a silicone resin, a polyester resin, and a phenol resin. In the impregnation of these resins, a resin whose viscosity is lowered by dilution with alcohols, toluene, xylene, MEK, thinner or the like is used.

本発明の軟磁性圧粉磁芯においては、軟磁性原料粉末の成形時における成形体と金型との焼付き防止のため、該軟磁性原料粉末に潤滑材が含まれていることが好ましい。本発明で使用される潤滑材としては、亜鉛、アルミニウム、カルシウム、及び銅からなる群より選ばれる少なくとも1種以上の無機物を含む金属石鹸を用いることが望ましい。それにより、軟磁性粉末の絶縁性も更に向上する。   In the soft magnetic powder magnetic core of the present invention, it is preferable that a lubricant is contained in the soft magnetic raw material powder in order to prevent seizure between the molded body and the mold when the soft magnetic raw material powder is formed. As the lubricant used in the present invention, it is desirable to use a metal soap containing at least one inorganic substance selected from the group consisting of zinc, aluminum, calcium, and copper. Thereby, the insulating property of the soft magnetic powder is further improved.

上記潤滑材として用いられる金属石鹸の具体例としては、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸マグネシウム、ステアリン酸カルシウム、及びステアリン酸ストロンチウム等が挙げられるが、特にこれらに限定されない。それらの中でも、ステアリン酸亜鉛、ステアリン酸アルミニウム、ステアリン酸カルシウム、ステアリン酸銅、及びオレイン酸亜鉛からなる群より選ばれる少なくとも1種以上を用いることが好ましい。   Specific examples of the metal soap used as the lubricant include zinc stearate, aluminum stearate, barium stearate, magnesium stearate, calcium stearate, and strontium stearate, but are not particularly limited thereto. Among them, it is preferable to use at least one selected from the group consisting of zinc stearate, aluminum stearate, calcium stearate, copper stearate, and zinc oleate.

潤滑材の配合量は、使用する金属石鹸の性状によって異なり、特に限定されないが、軟磁性原料粉末に対し、0.01wt%以上0.3wt%以下含まれることが好ましい。潤滑材の配合量が0.01wt%未満であると、潤滑材の量が少ないため、絶縁性が保てず、金型との焼き付きの防止効果も低減してしまう。また、0.3wt%を超えると潤滑材の添加量が多いため、成形時の圧力が軟磁性原料粉末に伝わりづらくなり成形体密度を高くすることが出来ない。潤滑材の配合量は、より好ましくは0.02wt%以上0.1wt%以下である。   The blending amount of the lubricant varies depending on the properties of the metal soap to be used, and is not particularly limited. If the blending amount of the lubricant is less than 0.01 wt%, the amount of the lubricant is small, so that the insulating property cannot be maintained and the effect of preventing seizure with the mold is also reduced. On the other hand, if it exceeds 0.3 wt%, the amount of lubricant added is large, so that the pressure during molding is not easily transmitted to the soft magnetic raw material powder, and the density of the compact cannot be increased. The blending amount of the lubricant is more preferably 0.02 wt% or more and 0.1 wt% or less.

また潤滑材を使用する場合は、粉末成形時の温度を室温以上から潤滑材の溶融温度以下の範囲として成形を行うことにより、さらに高透磁率の軟磁性圧粉磁芯が得られる。これは、温度の上昇と共に、潤滑材が粉の周辺に良くいきわたるため、成形の初期の段階では粉が良くすべり、粉体が充填された状態で加圧されるため圧力が粉体に良く伝わり高密度化を実現できる。   When a lubricant is used, a soft magnetic dust core having a higher magnetic permeability can be obtained by forming the powder at a temperature in the range from room temperature to the melting temperature of the lubricant. This is because the lubricant spreads well around the powder as the temperature rises, so the powder slides well at the initial stage of molding, and the pressure is well transmitted to the powder because it is pressurized in the state filled with the powder. High density can be realized.

以下、本実施形態の軟磁性圧粉磁芯の好ましい製造方法につき、さらに詳述する。   Hereinafter, a preferred method for producing the soft magnetic powder magnetic core of the present embodiment will be described in detail.

図2は、本実施形態の軟磁性圧粉磁芯の製造工程を示すフローチャートである。
本発明による軟磁性圧粉磁芯の製造方法は、絶縁コーティングされた軟磁性原料粉末を粒径制御する工程(ST3)と、潤滑材を添加・混練する工程(ST4)と、加圧成形する工程(ST5)と、加圧成形により得られた成形体を、真空、窒素ガス雰囲気中、アルゴンガス雰囲気中、炭酸ガスなどの雰囲気中で、400℃以上700℃未満の温度で熱処理する工程(ST6)と、樹脂中に浸漬し真空含浸することにより樹脂を内部に含浸させる工程(ST7)と大気中、100℃から200℃程度の温度に保持して樹脂を効果させる硬化処理工程(ST8)を経て、本実施形態の軟磁性圧粉磁芯が作製される。
FIG. 2 is a flowchart showing manufacturing steps of the soft magnetic dust core according to the present embodiment.
The method for producing a soft magnetic powder magnetic core according to the present invention includes a step of controlling the particle size of an insulating-coated soft magnetic raw material powder (ST3), a step of adding and kneading a lubricant (ST4), and pressure molding. Step (ST5) and a step of heat-treating the molded body obtained by pressure molding at a temperature of 400 ° C. or higher and lower than 700 ° C. in an atmosphere of vacuum, nitrogen gas atmosphere, argon gas atmosphere, carbon dioxide gas or the like ( ST6), a step of impregnating the resin by dipping in the resin and vacuum impregnation (ST7), and a curing treatment step (ST8) in which the resin is made effective by maintaining the temperature at about 100 ° C. to 200 ° C. in the atmosphere. After that, the soft magnetic powder magnetic core of the present embodiment is manufactured.

まず、軟磁性原料粉末を準備する工程(ST1)では、絶縁コーティングされていない軟磁性原料粉末については絶縁処理を行う(ST2)。絶縁処理としては、例えば、リン酸を用いて軟磁性原料粉末の表面を処理する表面処理等が挙げられる。   First, in the step of preparing the soft magnetic raw material powder (ST1), the insulating treatment is performed on the soft magnetic raw material powder not subjected to the insulation coating (ST2). Examples of the insulation treatment include a surface treatment for treating the surface of the soft magnetic raw material powder with phosphoric acid.

次に、絶縁コーティングにより表面の少なくとも一部が覆われた軟磁性原料粉末を粒径制御する(ST3)。粒径制御の方法は特に限定されず、篩や公知の分級装置を用いた方法にて行うことができる。ここで使用可能な装置としては、例えば目の開きが規定されたメッシュと振動機を組み合わせた分級機が挙げられる。分級により微粉及び粗粉の除去を行う。
粒径制御の条件は特に限定されないが、室温で10〜60分間行うことが好ましい。かかる粒径制御条件とすることにより、所望の粒径の軟磁性粉末を得ることができる。また予め絶縁コーティングが軟磁性原料粉末表面に形成されている材料については粒径制御工程(ST3)から行える。
Next, the particle size of the soft magnetic raw material powder whose surface is covered with an insulating coating is controlled (ST3). The method for controlling the particle size is not particularly limited, and can be performed by a method using a sieve or a known classifier. As an apparatus that can be used here, for example, a classifier that combines a mesh with a specified opening and a vibrator is cited. Fine powder and coarse powder are removed by classification.
The conditions for controlling the particle size are not particularly limited, but it is preferably performed at room temperature for 10 to 60 minutes. By setting such a particle size control condition, a soft magnetic powder having a desired particle size can be obtained. Moreover, the material in which the insulating coating is previously formed on the surface of the soft magnetic raw material powder can be performed from the particle size control step (ST3).

潤滑材の添加・混練工程(ST4)では、絶縁性皮膜により表面の少なくとも一部が覆われた軟磁性原料粉末と、潤滑材とを混練する。(ST4)
軟磁性原料粉末や、潤滑材としては、上記のものを用いればよい。
In the lubricant addition / kneading step (ST4), the soft magnetic raw material powder having at least a part of the surface covered with the insulating film and the lubricant are kneaded. (ST4)
As the soft magnetic raw material powder and the lubricant, those described above may be used.

混練の手法は、特に限定されず、公知の装置を用いた手法で混合及び混練することが好ましい。使用可能な装置としては、例えば、メディアを用いたボールミルやビーズミル等の他、プラネタリーミキサー、Vミキサー、オープンニーダー、ヘンシェルミキサー、ホモジナイザー等の混練機、混合機、撹拌機、増粒機、分散機等が挙げられる。
この混練処理により、分散性の良い軟磁性原料粉末を得ることができる。混練条件は特に限定されないが、室温で10〜60分間混練することが好ましい。かかる混練条件とすることにより、軟磁性粉末の分散性をより向上させることができる。
The method of kneading is not particularly limited, and it is preferable to mix and knead by a method using a known apparatus. Usable devices include, for example, ball mills and bead mills using media, kneaders such as planetary mixers, V mixers, open kneaders, Henschel mixers, homogenizers, mixers, agitators, granulators, dispersions Machine.
By this kneading treatment, a soft magnetic raw material powder with good dispersibility can be obtained. The kneading conditions are not particularly limited, but it is preferable to knead for 10 to 60 minutes at room temperature. By setting it as such kneading | mixing conditions, the dispersibility of a soft-magnetic powder can be improved more.

加圧成形工程(ST5)では、プレス機械の成形金型内に上記の軟磁性原料粉末を充填し、その後、加圧して圧縮成形を施すことにより、成形体を得る。この圧縮成形における成形条件は特に限定されず、嵩密度や粘性、所望する圧粉コアの形状、寸法及び密度等に応じて適宜決定することができる。最大圧力に保持する時間は0.1秒間〜1分間程度である。   In the pressure molding step (ST5), the above-mentioned soft magnetic raw material powder is filled in a molding die of a press machine, and then pressed to perform compression molding to obtain a molded body. The molding conditions in this compression molding are not particularly limited, and can be appropriately determined according to the bulk density and viscosity, the desired shape, size and density of the dust core. The time for maintaining the maximum pressure is about 0.1 second to 1 minute.

その後、加圧成形により得られた成形体を、真空、窒素ガス雰囲気中、アルゴンガス雰囲気中、炭酸ガス雰囲気中等で、400℃以上700℃未満の温度で熱処理する工程(ST6)を行う。この熱処理により、成形時に軟磁性圧粉磁芯に残留した歪を低減できる。これによりヒステリシス損失の低減。コアロスの低減ができる。
熱処理温度を400℃以上とすることで、上記した歪の低減効果が発揮出来る。また熱処理温度を700℃未満とすることで、絶縁性被膜の破壊及び酸化等の劣化を効果的に防止することができる。
その結果、高密度で絶縁性の良好な軟磁性圧粉磁芯を効率よく得ることができる。熱処理温度は、400〜650℃であることが好ましく、450〜550℃であることがより好ましい。 熱処理の処理時間は、特に限定されず、熱処理温度や軟磁性圧粉磁芯に所望する特性等に応じて適宜選択することができる。
Then, the process (ST6) which heat-processes the compact | molding | casting obtained by pressure molding in 400 degreeC or more and less than 700 degreeC in a vacuum, nitrogen gas atmosphere, argon gas atmosphere, a carbon dioxide gas atmosphere etc. is performed. This heat treatment can reduce strain remaining on the soft magnetic dust core during molding. This reduces hysteresis loss. Core loss can be reduced.
By setting the heat treatment temperature to 400 ° C. or higher, the above-described strain reduction effect can be exhibited. In addition, by setting the heat treatment temperature to less than 700 ° C., it is possible to effectively prevent the breakdown of the insulating coating and the deterioration such as oxidation.
As a result, a soft magnetic dust core having high density and good insulation can be obtained efficiently. The heat treatment temperature is preferably 400 to 650 ° C, and more preferably 450 to 550 ° C. The treatment time of the heat treatment is not particularly limited, and can be appropriately selected according to the heat treatment temperature, the characteristics desired for the soft magnetic dust core, and the like.

熱処理後の軟磁性圧粉磁芯を樹脂中に浸漬させ、気圧制御を行うことにより軟磁性圧粉磁芯内部に樹脂を含浸させる(ST7)。樹脂は気圧を低下させることにより軟磁性圧粉磁芯内部に浸入する。軟磁性圧粉磁芯の表面から内部には空孔部が繋がりをもって存在するためこの部分を介して毛細管現象の原理により樹脂が内部まで浸入する。含浸用樹脂には、例えばエポキシ系樹脂をMEK、シンナーなどで希釈した低粘度の液状の樹脂を用いる。   The soft magnetic powder magnetic core after the heat treatment is immersed in the resin, and the pressure is controlled to impregnate the soft magnetic powder magnetic core with the resin (ST7). The resin penetrates into the soft magnetic dust core by lowering the atmospheric pressure. Since there is a continuous hole portion from the surface to the inside of the soft magnetic powder magnetic core, the resin penetrates into the inside through this portion due to the principle of capillary action. As the impregnation resin, for example, a low-viscosity liquid resin obtained by diluting an epoxy resin with MEK, thinner, or the like is used.

樹脂を含浸させた後、硬化処理を行うが、含浸樹脂としてエポキシ系樹脂やトリアジン系樹脂を用いた場合には、その硬化温度である170〜200℃程度の温度で硬化処理を行う(ST8)。これにより軟磁性圧粉磁芯の強度を増加させる。   After impregnating the resin, a curing process is performed. When an epoxy resin or a triazine resin is used as the impregnating resin, the curing process is performed at a temperature of about 170 to 200 ° C., which is the curing temperature (ST8). . This increases the strength of the soft magnetic dust core.

本発明に係る軟磁性圧粉磁芯は上述した構成としたものであるが、その形状は特に限定されるものではなく、棒状、トロイダル形状、円柱状、板状、その他複雑形状等々に適用することができる。   The soft magnetic powder magnetic core according to the present invention has the above-described configuration, but the shape is not particularly limited, and is applied to a rod shape, a toroidal shape, a columnar shape, a plate shape, and other complicated shapes. be able to.

以下、実施例によって本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.

各実施例及び比較例は以下のとおりである。
(実施例1)
リン酸処理された鉄粉(ヘガネス社製、ソマロイ700)の粒度調整を行い、該鉄粉(軟磁性原料粉末)の粒度分布の範囲を分級により、平均粒径が106μm以上180μm以下の範囲とする。分級の方法としては目の開き180μmと106μmのメッシュを用意し、メッシュを目の開きが上から180μm、106μmの順となるように並べることにより、メッシュ間には106μm以上180μm以下の粉が残り、この粉を用いて、以下のように圧粉磁芯を作製した。
リン酸処理された鉄粉に対して、ステアリン酸亜鉛0.1wt%を添加し、Vミキサー(筒井理化学器械製)を用いて、12rpmで10分間混練した。得られた混合物(混練物)を、(圧縮成形機;神藤金属製:室温25℃で成形圧力980MPaの条件下において加圧成形し、長さ30mm、幅10mmの棒状であり、成形体厚みは5.5mmの成形体を作製した。得られた成形体を真空中で熱処理した。熱処理炉には赤外線ゴールドイメージ炉(アルバック製)を用いた。熱処理条件は昇温速度5℃/minで450℃まで昇温させた後、450℃で1時間保持した。
処理の済んだ軟磁性圧粉磁芯はMEKで希釈したエポキシ樹脂を入れた容器中に浸漬し、容器ごとベルジャー内に入れ、気圧調整により真空にし、10分程度樹脂含浸を行った。その後、小型高温チャンバー(エスペック製)内に入れ、大気中にて、170℃1時間保持し、硬化処理を行った。得られた軟磁性圧粉磁芯を切断し、内部(断面)を観察した。樹脂は軟磁性圧粉磁芯内部に含浸され少なくとも3つ以上の粒子に囲まれた空孔部に偏析していることを確認した。
図3に実施例1の軟磁性圧粉磁芯の断面像を示す。図3は樹脂含浸後の圧粉磁芯内部の樹脂の状態を把握するためCP(Cross−sectionPolisher)加工後にSEM観察を実施した結果である。樹脂は含浸により粉体間の隙間に偏析する。
(実施例2)
軟磁性原料粉末の粒度分布の範囲を180μm以上250μm以下とし、成形圧力を686MPaとした以外は実施例1と同様の処理を行い、実施例2の軟磁性圧粉磁芯を得た。
(実施例3)
軟磁性原料粉末の粒度分布の範囲を250μm以上355μm以下とし、成形圧力を980MPaとした以外は実施例1と同様の処理を行い、実施例3の軟磁性圧粉磁芯を得た。
(実施例4)
軟磁性原料粉末の粒度分布の範囲を355μm以上500μm以下とし、成形圧力を686MPaとした以外は実施例1と同様の処理を行い、実施例4の軟磁性圧粉磁芯を得た。
(実施例5)
軟磁性原料粉末の粒度分布の範囲を355μm以上500μm以下とし、成形圧力を980MPaとした以外は実施例1と同様の処理を行い、実施例5の軟磁性圧粉磁芯を得た。
(実施例6)
軟磁性原料粉末の粒度分布の範囲を106μm以上500μm以下とし、成形圧力を784MPaとした以外は実施例1と同様の処理を行い、実施例6の軟磁性圧粉磁芯を得た。軟磁性圧粉磁芯の樹脂量、空孔部の割合、長軸径の調整を適宜行った。
(実施例7)
軟磁性原料粉末の粒度分布の範囲を1μm以上1000μm以下とし、成形圧力を588MPaとした以外は実施例1と同様の処理を行い、実施例7の軟磁性圧粉磁芯を得た。
(実施例8)
軟磁性原料粉末の粒度分布の範囲を106μm以上500μm以下とし、成形圧力を588MPaとした以外は実施例1と同様の処理を行い、実施例8の軟磁性圧粉磁芯を得た。
(実施例9)
軟磁性原料粉末の粒度分布の範囲を106μm以上700μm以下とし、成形圧力を980MPaとした以外は実施例1と同様の処理を行い、実施例9の軟磁性圧粉磁芯を得た。
[比較例]
比較例についても実施例1と同様の処理を行い、粒径が106μm未満の微粉や500μmを超える粗粉を含む粒度分布範囲とし、加圧成形時の圧力を調整し、軟磁性圧粉磁芯を得た。
(比較例1)
軟磁性原料粉末の粒度分布の範囲を45μm以上355μm以下とし、成形圧力を784MPaとした以外は実施例1と同様の処理を行い、比較例1の軟磁性圧粉磁芯を得た。
(比較例2)
軟磁性原料粉末の粒度分布の範囲を45μm以上250μm以下とし、成形圧力を980MPaとした以外は実施例1と同様の処理を行い、比較例2の軟磁性圧粉磁芯を得た。
(比較例3)
軟磁性原料粉末の粒度分布の範囲を1μm以上1000μm以下とし、成形圧力を980MPaとした以外は実施例1と同様の処理を行い、比較例3の軟磁性圧粉磁芯を得た。
(比較例4)
軟磁性原料粉末の粒度分布の範囲を106μm以上355μm以下とし、成形圧力を490MPaとした以外は実施例1と同様の処理を行い、比較例4の軟磁性圧粉磁芯を得た。
(比較例5)
軟磁性原料粉末の粒度分布の範囲を106μm以上500μm以下とし、成形圧力を1176MPaとした以外は実施例1と同様の処理を行い、比較例5の軟磁性圧粉磁芯を得た。
Each Example and Comparative Example are as follows.
Example 1
The particle size of the iron powder treated with phosphoric acid (Hoganes, Somaloy 700) is adjusted, and the range of the particle size distribution of the iron powder (soft magnetic raw material powder) is classified so that the average particle size is 106 μm or more and 180 μm or less. To do. As a classification method, prepare meshes with an opening of 180 μm and 106 μm, and arrange the meshes so that the opening of the mesh is in the order of 180 μm and 106 μm, so that powder of 106 μm or more and 180 μm or less remains between the meshes. Using this powder, a dust core was prepared as follows.
To the iron powder treated with phosphoric acid, 0.1 wt% of zinc stearate was added, and kneaded at 12 rpm for 10 minutes using a V mixer (manufactured by Tsutsui Riken Kikai Co., Ltd.). The obtained mixture (kneaded product) was compression-molded under the conditions of (compression molding machine; manufactured by Shindo Metal: room temperature 25 ° C. and a molding pressure of 980 MPa), and was a rod having a length of 30 mm and a width of 10 mm. A molded product of 5.5 mm was produced, and the obtained molded product was heat-treated in a vacuum.An infrared gold image furnace (manufactured by ULVAC) was used as the heat-treatment furnace, and the heat treatment conditions were 450 at a heating rate of 5 ° C./min. After raising the temperature to 0 ° C., the temperature was maintained at 450 ° C. for 1 hour.
The treated soft magnetic powder magnetic core was dipped in a container containing an epoxy resin diluted with MEK, and the whole container was placed in a bell jar and evacuated by adjusting atmospheric pressure, and impregnated with resin for about 10 minutes. Thereafter, it was placed in a small high temperature chamber (manufactured by ESPEC) and kept at 170 ° C. for 1 hour in the air to perform a curing treatment. The obtained soft magnetic dust core was cut and the inside (cross section) was observed. It was confirmed that the resin was segregated in the pores impregnated inside the soft magnetic dust core and surrounded by at least three particles.
FIG. 3 shows a cross-sectional image of the soft magnetic powder magnetic core of Example 1. FIG. 3 shows the result of SEM observation after CP (Cross-section Polisher) processing in order to grasp the state of the resin inside the dust core after the resin impregnation. The resin segregates in the gaps between the powders by impregnation.
(Example 2)
A soft magnetic dust core of Example 2 was obtained except that the range of the particle size distribution of the soft magnetic raw material powder was 180 μm or more and 250 μm or less and the molding pressure was 686 MPa.
(Example 3)
A soft magnetic dust core of Example 3 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 250 μm or more and 355 μm or less and the molding pressure was 980 MPa.
Example 4
A soft magnetic dust core of Example 4 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 355 μm or more and 500 μm or less and the molding pressure was 686 MPa.
(Example 5)
A soft magnetic dust core of Example 5 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 355 μm or more and 500 μm or less and the molding pressure was 980 MPa.
(Example 6)
A soft magnetic dust core of Example 6 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 106 μm or more and 500 μm or less and the molding pressure was 784 MPa. The amount of resin in the soft magnetic powder magnetic core, the ratio of the hole portions, and the major axis diameter were appropriately adjusted.
(Example 7)
A soft magnetic dust core of Example 7 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 1 μm or more and 1000 μm or less and the molding pressure was 588 MPa.
(Example 8)
A soft magnetic dust core of Example 8 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 106 μm or more and 500 μm or less and the molding pressure was 588 MPa.
Example 9
A soft magnetic dust core of Example 9 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 106 μm or more and 700 μm or less and the molding pressure was 980 MPa.
[Comparative example]
For the comparative example, the same treatment as in Example 1 was performed, and the particle size distribution range including fine powder having a particle size of less than 106 μm or coarse powder having a particle size of more than 500 μm was adjusted. Got.
(Comparative Example 1)
A soft magnetic dust core of Comparative Example 1 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 45 μm or more and 355 μm or less and the molding pressure was 784 MPa.
(Comparative Example 2)
A soft magnetic dust core of Comparative Example 2 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 45 μm or more and 250 μm or less and the molding pressure was 980 MPa.
(Comparative Example 3)
A soft magnetic dust core of Comparative Example 3 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 1 μm or more and 1000 μm or less and the molding pressure was 980 MPa.
(Comparative Example 4)
A soft magnetic dust core of Comparative Example 4 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 106 μm or more and 355 μm or less and the molding pressure was 490 MPa.
(Comparative Example 5)
A soft magnetic dust core of Comparative Example 5 was obtained in the same manner as in Example 1 except that the range of the particle size distribution of the soft magnetic raw material powder was 106 μm or more and 500 μm or less and the molding pressure was 1176 MPa.

〔評価〕
実施例1〜9の軟磁性圧粉磁芯及び比較例1〜5の軟磁性圧粉磁芯について、各種性能の評価を行った。表1に、得られた構造体の樹脂量、空孔部の割合、長軸径を示し、それらの強度、強度のばらつき、密度、コアロスの評価結果を示す。
〔樹脂量〕
樹脂含浸前後の軟磁性圧粉磁芯の重量を測定し、これから樹脂量を算出し樹脂の比率をwt%で表示した。また樹脂含浸前の重量が不明な樹脂含浸品については、真空または窒素中で1100℃1Hr保持の熱処理を行い。樹脂を分解し揮発させた後、重量測定を行い樹脂含浸前の重量とする。
〔空孔部の割合〕
樹脂含浸後の圧粉磁芯を真空中または窒素中で1100℃1Hr保持の熱処理を行う。これにより樹脂を分解し揮発させた後、重量測定を行い密度を算出する。また鉄の理論値は7.86g/ccのため、これから算出して空孔部をVol%で求める。
〔長軸径〕
圧縮成形された粒子の、成形時の加圧方向に垂直な方向の最大径(直径)を長軸径とする。測定はメジャーリングマイクロスコープSTM−MJS(オリンパス製)を用いて行った。100個の粒子につき測定を行い、その平均値を長軸径とした。
〔密度〕
強度測定用試料につき、強度測定の前にこれら試料の体積と質量を測定し、この値から密度を計算した。
〔強度の平均、強度のばらつきσ〕
JISZ2511(金属粉―抗折試験による圧粉体強さ測定方法)に準拠し3点曲げ試験を行い強度を測定した。試料形状は30mm×10mm×5.5mmとし樹脂含浸、硬化処理後のものを強度測定した。強度測定には強度試験機(アイコーエンジニアリング製)を用いた。
各実施例、比較例について20点の強度を測定し、平均値、標準偏差σを算出した。
〔コアロス〕
リング状試料を用いてコアロス測定を行った。試料形状は外形17内径10厚み5mmとした。測定器はB−Hアナライザー、SY−8258(IWATSU製)を用い、1KHz 1Tの条件でのコアロスを測定した。
[Evaluation]
Various performances of the soft magnetic dust cores of Examples 1 to 9 and Comparative Examples 1 to 5 were evaluated. Table 1 shows the resin amount of the obtained structure, the ratio of the pores, and the major axis diameter, and the evaluation results of their strength, strength variation, density, and core loss.
[Resin amount]
The weight of the soft magnetic dust core before and after the resin impregnation was measured, the amount of the resin was calculated from this, and the resin ratio was expressed in wt%. For resin-impregnated products whose weight before resin impregnation is unknown, heat treatment is performed at 1100 ° C. for 1 hour in vacuum or nitrogen. After the resin is decomposed and volatilized, the weight is measured to obtain the weight before the resin impregnation.
[Percentage of holes]
The dust core after impregnation with the resin is heat-treated at 1100 ° C. for 1 hour in vacuum or nitrogen. Thus, after the resin is decomposed and volatilized, the density is calculated by measuring the weight. Moreover, since the theoretical value of iron is 7.86 g / cc, it calculates from this and a void | hole part is calculated | required by Vol%.
[Long shaft diameter]
The major axis diameter is the maximum diameter (diameter) of the compression-molded particles in the direction perpendicular to the pressing direction at the time of molding. The measurement was performed using a measuring microscope STM-MJS (manufactured by Olympus). Measurement was performed on 100 particles, and the average value was defined as the major axis diameter.
〔density〕
About the sample for intensity | strength measurement, the volume and mass of these samples were measured before intensity | strength measurement, and the density was calculated from this value.
[Average intensity, intensity variation σ]
The strength was measured by performing a three-point bending test in accordance with JISZ2511 (metal powder—a method for measuring green compact strength by bending test). The sample shape was 30 mm × 10 mm × 5.5 mm, and the strength was measured after resin impregnation and curing treatment. A strength tester (manufactured by Aiko Engineering) was used for the strength measurement.
The strength of 20 points was measured for each example and comparative example, and the average value and standard deviation σ were calculated.
[Core loss]
Core loss measurement was performed using a ring-shaped sample. The sample shape was an outer shape 17 an inner diameter of 10 and a thickness of 5 mm. The measuring instrument used was a BH analyzer, SY-8258 (manufactured by IWASU), and measured the core loss under the condition of 1 KHz 1T.

表1から明らかなように、実施例1〜9の軟磁性圧粉磁心は、比較例1〜5との対比から、いずれも強度が100MPa以上と高く、強度のばらつき(σ)も低減されることが確認された。また、軟磁性圧粉磁心の密度も7.30g/cc以上の高密度に得られ、コアロスについても問題の無い範囲であることが確認された。   As is apparent from Table 1, the soft magnetic powder magnetic cores of Examples 1 to 9 are all high in strength of 100 MPa or more and the variation in strength (σ) is also reduced in comparison with Comparative Examples 1 to 5. It was confirmed. Moreover, the density of the soft magnetic powder magnetic core was also obtained at a high density of 7.30 g / cc or more, and it was confirmed that the core loss was within the range without any problem.

1 粉体部
空孔部
3 樹脂部
1 Powder part 2 Hole part 3 Resin part

Claims (4)

表面の少なくとも一部が無機酸化物層により絶縁コーティングされた軟磁性原料粉末を圧縮成形してなる軟磁性圧粉磁芯であって、
前記軟磁性圧粉磁芯は、軟磁性粉末粒子が占める粉体部、空孔部及び樹脂部で構成され、樹脂の含有量が0.07wt%以上0.5wt%以下含まれていることを特徴とする軟磁性圧粉磁芯。
A soft magnetic powder magnetic core formed by compression-molding a soft magnetic raw material powder in which at least a part of the surface is insulation-coated with an inorganic oxide layer,
The soft magnetic powder magnetic core is composed of a powder part, a hole part, and a resin part occupied by soft magnetic powder particles, and the resin content is 0.07 wt% or more and 0.5 wt% or less. A soft magnetic dust core.
前記粉体部の軟磁性粉末粒子が隣接する領域に、少なくとも3つ以上の粉末粒子で囲まれた空隙(空孔部)に樹脂が偏析し、空孔部と樹脂部とを形成していることを特徴とする請求項1記載の軟磁性圧粉磁芯。 In the region where the soft magnetic powder particles of the powder part are adjacent, the resin is segregated in a void (hole part) surrounded by at least three or more powder particles to form a hole part and a resin part. The soft magnetic dust core according to claim 1. 前記空孔部は、0.4Vol%以上4.9Vol%以下であることを特徴とする請求項1または請求項2に記載の軟磁性圧粉磁芯。 3. The soft magnetic powder magnetic core according to claim 1, wherein the hole portion is 0.4 Vol% or more and 4.9 Vol% or less. 前記粉体部の軟磁性粉末粒子の平均長軸径は、130μm以上700μm以下であることを特徴とする請求項1または請求項2に記載の軟磁性圧粉磁芯。 3. The soft magnetic powder magnetic core according to claim 1, wherein an average major axis diameter of the soft magnetic powder particles in the powder part is 130 μm or more and 700 μm or less.
JP2012119447A 2012-05-25 2012-05-25 Soft magnetic powder magnetic core Active JP5978766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012119447A JP5978766B2 (en) 2012-05-25 2012-05-25 Soft magnetic powder magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119447A JP5978766B2 (en) 2012-05-25 2012-05-25 Soft magnetic powder magnetic core

Publications (2)

Publication Number Publication Date
JP2013247214A true JP2013247214A (en) 2013-12-09
JP5978766B2 JP5978766B2 (en) 2016-08-24

Family

ID=49846774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119447A Active JP5978766B2 (en) 2012-05-25 2012-05-25 Soft magnetic powder magnetic core

Country Status (1)

Country Link
JP (1) JP5978766B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164174A (en) * 2014-01-29 2015-09-10 アルプス・グリーンデバイス株式会社 Electronic component and electronic device
WO2015141569A1 (en) * 2014-03-17 2015-09-24 Necトーキン株式会社 Soft magnetic molded body, magnetic core, and magnetic sheet
JP2020113643A (en) * 2019-01-11 2020-07-27 京セラ株式会社 Core component, method of manufacturing same, and inductor
JP2021022717A (en) * 2019-06-25 2021-02-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171115A (en) 2015-03-11 2016-09-23 スミダコーポレーション株式会社 Magnetic device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107367A1 (en) * 2003-05-30 2004-12-09 Sumitomo Electric Industries, Ltd. Soft magnetic material, motor core, transformer core and process for producing soft magnetic material
JP2006005173A (en) * 2004-06-17 2006-01-05 Toyota Central Res & Dev Lab Inc Insulation coating, powder for magnetic core, dust core, and manufacturing methods thereof
JP2008270539A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Dust core, manufacturing method thereof, motor, and reactor
JP2010010237A (en) * 2008-06-25 2010-01-14 Toshiba Corp Magnetic material, artificial medium and magnetic material manufacturing method
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107367A1 (en) * 2003-05-30 2004-12-09 Sumitomo Electric Industries, Ltd. Soft magnetic material, motor core, transformer core and process for producing soft magnetic material
JP2006005173A (en) * 2004-06-17 2006-01-05 Toyota Central Res & Dev Lab Inc Insulation coating, powder for magnetic core, dust core, and manufacturing methods thereof
JP2008270539A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Dust core, manufacturing method thereof, motor, and reactor
JP2010010237A (en) * 2008-06-25 2010-01-14 Toshiba Corp Magnetic material, artificial medium and magnetic material manufacturing method
JP4906972B1 (en) * 2011-04-27 2012-03-28 太陽誘電株式会社 Magnetic material and coil component using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164174A (en) * 2014-01-29 2015-09-10 アルプス・グリーンデバイス株式会社 Electronic component and electronic device
WO2015141569A1 (en) * 2014-03-17 2015-09-24 Necトーキン株式会社 Soft magnetic molded body, magnetic core, and magnetic sheet
US10515751B2 (en) 2014-03-17 2019-12-24 Tokin Corporation Soft magnetic molded body, magnetic core, and magnetic sheet
JP2020113643A (en) * 2019-01-11 2020-07-27 京セラ株式会社 Core component, method of manufacturing same, and inductor
JP7173873B2 (en) 2019-01-11 2022-11-16 京セラ株式会社 CORE COMPONENTS, ITS MANUFACTURING METHOD, AND INDUCTORS
JP2021022717A (en) * 2019-06-25 2021-02-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. Coil component
US11842841B2 (en) 2019-06-25 2023-12-12 Samsung Electro-Mechanics Co., Ltd. Coil component

Also Published As

Publication number Publication date
JP5978766B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5368686B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP5650928B2 (en) SOFT MAGNETIC MATERIAL, MOLDED BODY, DUST CORE, ELECTRONIC COMPONENT, SOFT MAGNETIC MATERIAL MANUFACTURING METHOD, AND DUST CORE MANUFACTURING METHOD
JP5412425B2 (en) Composite magnetic material and method for producing the same
JP5050745B2 (en) Reactor core, manufacturing method thereof, and reactor
JP6700919B2 (en) Silica-based insulating coated soft magnetic iron powder and method for producing the same
JP5067544B2 (en) Reactor core, manufacturing method thereof, and reactor
EP3441989A1 (en) Dust core coated with silica-based insulation, method for manufacturing same, and electromagnetic circuit component
JP5978766B2 (en) Soft magnetic powder magnetic core
JP6088284B2 (en) Soft magnetic mixed powder
US8911663B2 (en) Insulated iron-base powder for soft magnetic applications
CN111132778A (en) Silica-based insulating-coated soft magnetic powder and method for producing same
JP5445801B2 (en) Reactor and booster circuit
CN114270456A (en) Magnetic wedge, rotating electric machine, and method for manufacturing magnetic wedge
WO2014054514A1 (en) Magnetic core and process for producing same
WO2017170901A1 (en) Dust core coated with silica-based insulation, method for manufacturing same, and electromagnetic circuit component
JP6477124B2 (en) Soft magnetic metal dust core, and reactor or inductor
JP4825902B2 (en) Manufacturing method of dust core
EP1662518A1 (en) Soft magnetic material and method for producing same
JP2000277314A (en) Dust core and method of producing the same
JP5094780B2 (en) Dust core
JP2010185126A (en) Composite soft magnetic material and method for producing the same
JP2020127043A (en) Silica-based insulator-coated soft magnetic powder
JP6836106B2 (en) Method for manufacturing iron-based soft magnetic material
JP2011199049A (en) Pressed powder core, and method for manufacturing the same
JP2022145105A (en) Powder for magnetic core, method for manufacturing the same, and dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150