JP2013245765A - Mass damper type vibration control device - Google Patents

Mass damper type vibration control device Download PDF

Info

Publication number
JP2013245765A
JP2013245765A JP2012119951A JP2012119951A JP2013245765A JP 2013245765 A JP2013245765 A JP 2013245765A JP 2012119951 A JP2012119951 A JP 2012119951A JP 2012119951 A JP2012119951 A JP 2012119951A JP 2013245765 A JP2013245765 A JP 2013245765A
Authority
JP
Japan
Prior art keywords
mass
unit
assembly
collision
masses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012119951A
Other languages
Japanese (ja)
Other versions
JP5917291B2 (en
Inventor
Koichi Hora
宏一 洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokkyokiki Corp
Original Assignee
Tokkyokiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokkyokiki Corp filed Critical Tokkyokiki Corp
Priority to JP2012119951A priority Critical patent/JP5917291B2/en
Publication of JP2013245765A publication Critical patent/JP2013245765A/en
Application granted granted Critical
Publication of JP5917291B2 publication Critical patent/JP5917291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a collision load, in a mass damper type vibration control device, when a mass greatly responses to an earthquake or the like and collides with a stopper in a stroke end.SOLUTION: A mass damper type vibration control device includes: a mass assembly 4 having a plurality of vertically stacked unit masses 2; a lower-stage support leg 15 for supporting a lowest-stage mass 7 in the mass assembly 4; and collision walls 5, 6 which cause the lowest-stage mass 7 to collide for specifying a moving range of the mass assembly 4. The mass assembly 4 includes: a lower surface 14a which supports unit masses 2 in upper layers of a pair of unit masses 2 on unit masses 2 of lower layers; and upper-stage collision walls 12, 13 which cause a collision of the unit masses 2 in the upper layers for specifying the moving range thereof. A force required for moving the mass assembly 4 supported by the lower-stage support leg 15 is smaller than a force required for moving the unit masses 2 in the upper layers relative to the unit masses 2 in the lower layers.

Description

本発明は、マスダンパー型制振装置に関する。   The present invention relates to a mass damper type vibration damping device.

従来、建築構造物の制振装置の一つとして、建築構造物に制振用のマスを水平方向で揺動自在に設置し、このマスの揺動エネルギーにより構造部の振動を減衰させるマスダンパー型のものがある(例えば、特許文献1参照。)。   Conventionally, as one of damping devices for building structures, a mass damper for damping vibrations of a structural part is installed in a building structure so as to be swingable in a horizontal direction and the mass swing energy There are types (for example, refer to Patent Document 1).

特開平11−303927号公報JP-A-11-303927

ところで、マスダンパー型制振装置は、建築構造物の風ゆれ対策として用いられることが多いが、大地震時には制振装置の可動部が大きく応答してストロークエンドに達し、可動部の逸脱を防ぐためのストッパに衝突する。その時の衝突荷重が非常に大きいので、建築構造物側での耐荷重の対策が必要になるという課題がある。   By the way, mass damper type vibration control devices are often used as countermeasures against wind fluctuations in building structures, but in the event of a large earthquake, the movable part of the vibration control device responds greatly and reaches the stroke end to prevent deviation of the movable part. Collide with the stopper for. Since the impact load at that time is very large, there is a problem that it is necessary to take measures against the load resistance on the building structure side.

そこで本発明は、マスダンパー型制振装置において、地震時などにマスが大きく応答してストロークエンドでストッパに衝突した際の衝突荷重を小さくすることを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to reduce a collision load when a mass greatly responds in the event of an earthquake and collides with a stopper at a stroke end in a mass damper type vibration damping device.

上記課題の解決手段として、請求項1に記載した発明は、上下に重なる複数の単位マスを有し、建築構造物側の第一の支持面上に該第一の支持面に沿って移動可能に支持されるマス組体と、前記マス組体の最下段の単位マスに設けられ、前記マス組体を前記第一の支持面上に移動可能に支持する第一の支持部と、前記建築構造物側に設けられ、前記マス組体の前記第一の支持面に沿う移動時に、前記最下段の単位マスを衝突可能とし、前記マス組体の前記第一の支持面上での移動範囲を規定する第一の衝突部とを備え、前記マス組体が、上下に重なる一対の単位マスの内の上層の単位マスに設けられ、該上層の単位マスを、前記一対の単位マスの内の下層の単位マス側の第二の支持面上に該第二の支持面に沿って移動可能に支持する被支持面と、前記下層の単位マス又は前記最下段の単位マスに設けられ、前記上層の単位マスの前記第二の支持面に沿う移動時に、前記上層の単位マスを衝突可能とし、前記上層の単位マスの前記第二の支持面上での移動範囲を規定する第二の衝突部とを有し、前記第一の支持部が支持したマス組体の移動に要する力が、前記上層の単位マスの前記下層の単位マスに対する相対移動に要する力よりも小さくされることを特徴とする。   As a means for solving the above-mentioned problems, the invention described in claim 1 has a plurality of unit masses that are vertically stacked and is movable along the first support surface on the first support surface on the building structure side. A mass assembly supported by the mass assembly, a first support portion provided in a lowermost unit mass of the mass assembly, and movably supporting the mass assembly on the first support surface; and the building Provided on the structure side, when the mass assembly moves along the first support surface, the lowermost unit mass can collide, and the mass assembly moves on the first support surface. The mass assembly is provided in an upper unit mass of a pair of unit masses that are vertically stacked, and the upper unit mass is disposed within the pair of unit masses. A supported surface that is movably supported along the second support surface on the second support surface on the unit mass side of the lower layer The upper unit mass is provided in the lower unit mass or the lowest unit mass, and the upper unit mass can collide with the upper unit mass when the upper unit mass moves along the second support surface. A second collision part that defines a moving range on the second support surface, and the force required to move the mass assembly supported by the first support part is the force of the unit mass of the upper layer It is characterized by being made smaller than the force required for relative movement with respect to the lower unit mass.

請求項2に記載した発明は、前記マス組体が、前記最下段の単位マス上に上段側の単位マスを複数段有することを特徴とする。
請求項3に記載した発明は、前記第一の支持部が、前記マス組体を浮動状態に支持し、前記第二の支持面が、前記被支持面を摩擦接触により支持することを特徴とする。
請求項4に記載した発明は、前記複数の単位マスの少なくとも一対を一体に締結し、該締結された単位マス間の摩擦力を調整する締結手段を備えることを特徴とする。
請求項5に記載した発明は、前記最下段の単位マスを前記第一の衝突部から離間した中立位置へ付勢する第一の付勢手段を備えることを特徴とする。
請求項6に記載した発明は、前記上層の単位マスを前記第二の衝突部から離間した中立位置へ付勢する第二の付勢手段を備えることを特徴とする。
The invention described in claim 2 is characterized in that the mass assembly has a plurality of upper unit masses on the lowermost unit mass.
The invention described in claim 3 is characterized in that the first support portion supports the mass assembly in a floating state, and the second support surface supports the supported surface by frictional contact. To do.
The invention described in claim 4 is characterized by comprising fastening means for fastening at least a pair of the plurality of unit masses together and adjusting a frictional force between the fastened unit masses.
The invention described in claim 5 is characterized by comprising first urging means for urging the lowermost unit mass to a neutral position separated from the first collision portion.
The invention described in claim 6 is characterized by comprising second urging means for urging the unit mass of the upper layer to a neutral position separated from the second collision portion.

本発明によれば、建築構造物の風ゆれなどの比較的小さなゆれを制振しているときは、前記上層の単位マスの前記下層の単位マスに対する相対移動に要する力を超える力は働かないので、複数の単位マスは一体のマスとして第一の支持面上を移動し、制振することができる。一方、大地震時においては、マスが大きく応答し建築構造物側に設けられたストロークエンドストッパ(第一の衝突部)に衝突することになるが、従来の技術(特開平11−303927)ではマスは一体なので、該マスの建築構造物への衝突時の反力は、本願の図3の二点鎖線のようにひとつのピークで大きい値を示す。しかし本発明では、一体のマスとして移動したマス組体が第一の衝突部に衝突することによって、上層の単位マスの下層の単位マスに対する相対移動に要する力以上の力が発生し、上層の単位マスが下層の単位マスに対して相対移動して下層の単位マスの第二の衝突部に衝突する。このとき、質量の小さい単位マスの衝撃が小さいことと、単位マス個々の衝撃が時間差をもって作用することとにより、建築構造物側に作用する衝撃力を分散させることができ、衝撃力を小さくすることができる。   According to the present invention, when a relatively small fluctuation such as a wind fluctuation of a building structure is damped, a force exceeding the force required for the relative movement of the upper unit mass with respect to the lower unit mass does not work. Therefore, the plurality of unit masses can move and dampen on the first support surface as an integral mass. On the other hand, in the event of a large earthquake, the mass will respond greatly and will collide with the stroke end stopper (first collision part) provided on the building structure side, but in the conventional technique (Japanese Patent Laid-Open No. 11-303927) Since the mass is integral, the reaction force when the mass collides with the building structure shows a large value at one peak as shown by the two-dot chain line in FIG. 3 of the present application. However, in the present invention, when the mass assembly that has moved as an integral mass collides with the first collision portion, a force greater than the force required for the relative movement of the upper unit mass with respect to the lower unit mass is generated. The unit mass moves relative to the lower unit mass and collides with the second collision portion of the lower unit mass. At this time, the impact force acting on the building structure side can be dispersed by reducing the impact of the unit mass having a small mass and the impact of each unit mass acting with a time difference, thereby reducing the impact force. be able to.

マス組体は、最下段の単位マス上に上段側の単位マスを複数段有する構成であることが望ましい。
前記第一の支持部がマス組体を浮動状態に支持する場合、比較的小さなゆれも制振し易く、下層の単位マスが上層の単位マスを摩擦接触により支持することで、一体のマスとして安定して制振することができる。
単位マス間の摩擦力を調整する締結手段を有する場合、どの程度の衝撃で上層の単位マスが下方の単位マスに対して相対移動するかを任意に設定することができる。
最下段の単位マスを衝突前の状態に付勢する第一の付勢手段を有する場合、一体の単位マスを中立位置に戻し易くなる。
上層の単位マスを衝突前の状態に付勢する第二の付勢手段を有する場合、上層の単位マスを中立位置に戻し易くなる。
It is desirable that the mass assembly has a plurality of upper unit masses on the lower unit mass.
When the first support portion supports the mass assembly in a floating state, it is easy to control relatively small fluctuations, and the lower unit mass supports the upper unit mass by frictional contact, so that an integral mass is obtained. Stable vibration can be controlled.
When the fastening means for adjusting the frictional force between the unit masses is provided, it is possible to arbitrarily set how much impact the upper unit mass moves relative to the lower unit mass.
When the first urging means for urging the lowermost unit mass to the state before the collision is provided, the integrated unit mass can be easily returned to the neutral position.
When the second unit for urging the upper unit mass to the state before the collision is provided, the upper unit mass can be easily returned to the neutral position.

本発明の第一実施形態におけるマスダンパー型制振装置の正面図である。It is a front view of a mass damper type damping device in a first embodiment of the present invention. 上記マスダンパー型制振装置の制振作動時の正面図である。It is a front view at the time of the damping operation of the said mass damper type damping device. 上記マスダンパー型制振装置の制振作動時の衝撃荷重の時間変化を示すグラフである。It is a graph which shows the time change of the impact load at the time of the damping operation of the said mass damper type damping device. 本発明の第二実施形態におけるマスダンパー型制振装置の正面図である。It is a front view of the mass damper type damping device in a second embodiment of the present invention. 本発明の第三実施形態におけるマスダンパー型制振装置の正面図である。It is a front view of the mass damper type damping device in a third embodiment of the present invention.

<第一実施形態>
以下、本発明の実施形態について図面を参照して説明する。
図1は、本実施形態のマスダンパー型制振装置(以下、単に制振装置ということがある。)1の正面図である。制振装置1は、ビル等の建築構造物の上部内に設置され、地震や強風等による建築構造物の揺れ(振動)が生じた際にこの揺れを打ち消すように作用する。制振装置1は、多段の単位マス2を建築構造物の振動と同じ周期(固有振動数)で振動させるように設定され、この多段の単位マス2の合計重量により建築構造物を制振する。
<First embodiment>
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a front view of a mass damper type vibration damping device (hereinafter sometimes simply referred to as a vibration damping device) 1 of the present embodiment. The vibration damping device 1 is installed in an upper part of a building structure such as a building, and acts to cancel the vibration when a vibration (vibration) of the building structure due to an earthquake or a strong wind occurs. The vibration damping device 1 is set so as to vibrate the multistage unit mass 2 at the same period (natural frequency) as the vibration of the building structure, and controls the building structure by the total weight of the multistage unit mass 2. .

制振装置1は、例えば建築構造物の水平な床面上に固設される水平なベース板3と、ベース板3の水平な上面3a上にこの上面3aに沿って所定の方向(図の左右方向)で移動可能に支持されるマス組体4と、ベース板3の水平な上面3aにおけるマス組体4の移動方向(以下、制振方向という)の両端部から上方に向けて突設される一対の衝突壁5,6とを備える。以下、制振装置1における前記制振方向の中央側を制振方向内側、制振方向の端側を制振方向外側ということがある。   The vibration damping device 1 includes, for example, a horizontal base plate 3 fixed on a horizontal floor surface of a building structure, and a predetermined direction (shown in the drawing) on the horizontal upper surface 3a of the base plate 3 along the upper surface 3a. The mass assembly 4 supported so as to be movable in the left-right direction) and projecting upward from both ends of the moving direction of the mass assembly 4 on the horizontal upper surface 3a of the base plate 3 (hereinafter referred to as vibration damping direction) And a pair of collision walls 5 and 6. Hereinafter, the center side of the damping direction in the damping device 1 may be referred to as the damping direction inside, and the end side of the damping direction may be referred to as the damping direction outside.

ベース板3は、建築構造物の床を補強すると共に水平な上面3aを形成する。ベース板3の上面3aはマス組体4の支持面となる。なお、ベース板3を建築構造物の一部としてもよい。また、ベース板3を用いず建築構造物の床面上に直接マス組体4を支持してもよい。
マス組体4は、上下幅が比較的薄い扁平状の単位マス2を上下に複数段(図では8段)積み重ねてなる。前記各単位マス2は、前記制振方向で互いに相対移動可能に積層される。以下、マス組体4における最もベース板3側に位置する単位マス2を最下段マス7、最下段マス7上に重なる複数の単位マス2をそれぞれ上段マス8という。
The base plate 3 reinforces the floor of the building structure and forms a horizontal upper surface 3a. The upper surface 3 a of the base plate 3 serves as a support surface for the mass assembly 4. The base plate 3 may be a part of the building structure. Further, the mass assembly 4 may be directly supported on the floor surface of the building structure without using the base plate 3.
The mass assembly 4 is formed by stacking flat unit masses 2 having a relatively thin vertical width in a plurality of stages (eight stages in the figure). The unit masses 2 are stacked so as to be movable relative to each other in the vibration damping direction. Hereinafter, the unit mass 2 positioned closest to the base plate 3 in the mass assembly 4 is referred to as the lowermost mass 7, and the plurality of unit masses 2 that overlap the lowermost mass 7 are referred to as the upper mass 8, respectively.

一対の衝突壁5,6は、マス組体4(最下段マス7)の制振方向外側方に第一の隙間を有して配置される。この第一の隙間により、マス組体4が制振方向で所定量だけ移動可能となる。一対の衝突壁5,6は、その制振方向内側に取り付けた緩衝材(例えばバンプラバー)5a,6aに最下段マス7の制振方向外側端を衝突させることで、マス組体4の建築構造物に対する移動範囲を規定する。   The pair of collision walls 5 and 6 are disposed with a first gap on the outer side in the vibration damping direction of the mass assembly 4 (the lowermost mass 7). Due to the first gap, the mass assembly 4 can move by a predetermined amount in the vibration damping direction. The pair of collision walls 5 and 6 are constructed of the mass assembly 4 by causing the outer ends in the vibration suppression direction of the lowermost mass 7 to collide with cushioning materials (for example, bump rubber) 5a and 6a attached inside the vibration suppression direction. Define the movement range for the structure.

詳細には、図中左側の衝突壁5は、マス組体4が図中左側へ前記第一の隙間を超えて移動しようとしたときに、最下段マス7の図中左側の側面を当該衝突壁5に取り付けた緩衝材5aに衝突させることで、マス組体4の建築構造物に対する移動範囲の左端位置を規定する。
また、図中右側の衝突壁6は、マス組体4が図中右側へ前記第一の隙間を超えて移動しようとしたときに、最下段マス7の図中右側の側面を当該衝突壁6に取り付けた緩衝材6aに衝突させることで、マス組体4の建築構造物に対する移動範囲の右端位置を規定する(図2参照)。なお、建築構造物の床面上に直接衝突壁5,6を固設することも可能である。
Specifically, the collision wall 5 on the left side in the figure is collided with the side surface on the left side in the figure of the lowermost mass 7 when the mass assembly 4 tries to move to the left side in the figure beyond the first gap. By colliding with the buffer material 5a attached to the wall 5, the left end position of the moving range of the mass assembly 4 with respect to the building structure is defined.
In addition, the right collision wall 6 in the drawing shows that when the mass assembly 4 tries to move to the right side in the drawing beyond the first gap, the right side surface in the drawing of the lowermost mass 7 corresponds to the collision wall 6. The right end position of the movement range of the mass assembly 4 with respect to the building structure is defined by colliding with the cushioning material 6a attached to (see FIG. 2). It is also possible to fix the collision walls 5 and 6 directly on the floor of the building structure.

各上段マス8は、互いにほぼ同一の構成を有するもので、水平な板状のマス本体11と、マス本体11の水平な上面11aにおける制振方向外側の部位から上方に向けて突設される一対の上段衝突壁12,13と、マス本体11の下面における制振方向内側の部位から下方に向けて突設される上段支持脚14とをそれぞれ有する。なお、最下段マス7も各上段マス8と同様のマス本体11及び一対の上段衝突壁12,13を有している。   Each of the upper masses 8 has substantially the same configuration, and protrudes upward from a horizontal plate-shaped mass body 11 and a portion on the horizontal upper surface 11a of the mass body 11 on the outer side in the vibration damping direction. A pair of upper collision walls 12 and 13 and upper support legs 14 projecting downward from a portion of the lower surface of the mass body 11 on the inner side in the vibration damping direction are provided. The lowermost mass 7 also has a mass body 11 and a pair of upper collision walls 12 and 13 similar to the upper mass 8.

各上段マス8は、その直下の単位マス2(最下段マス7も含む)のマス本体11における水平な上面11aに、上段支持脚14の同じく水平な下面14aを当接させる。これにより、各上段マス8がその直下の単位マス2の上面11aに、該上面11aに沿って移動可能に支持される。   Each upper mass 8 abuts the horizontal lower surface 14a of the upper support leg 14 against the horizontal upper surface 11a of the mass body 11 of the unit mass 2 (including the lowermost mass 7) immediately below the upper mass 8. Thereby, each upper mass 8 is supported by the upper surface 11a of the unit mass 2 immediately below the upper mass 11 so as to be movable along the upper surface 11a.

各上段マス8の上段支持脚14は、直下の単位マス2の一対の上段衝突壁12,13の間に配置される。一対の上段衝突壁12,13は、これらの間に配置された上段支持脚14の制振方向外側方に第二の隙間を有して配置される。この第二の隙間により、上段支持脚14(上段マス8)が制振方向で所定量だけ移動可能となる。
一対の上段衝突壁12,13は、その制振方向内側に取り付けた上段緩衝材(例えばバンプラバー)12a,13aに直上の単位マス2の上段支持脚14の制振方向外側端を衝突させることで、前記直上の単位マス2における直下の単位マス2に対する移動範囲を規定する。
The upper support legs 14 of each upper mass 8 are disposed between the pair of upper collision walls 12 and 13 of the unit mass 2 immediately below. The pair of upper collision walls 12 and 13 are disposed with a second gap on the outer side in the vibration control direction of the upper support leg 14 disposed between them. By this second gap, the upper support leg 14 (upper mass 8) can move by a predetermined amount in the vibration damping direction.
The pair of upper collision walls 12 and 13 cause the upper end cushioning material (for example, bump rubber) 12a and 13a attached on the inner side in the vibration suppression direction to collide the outer end in the vibration suppression direction of the upper support leg 14 of the unit mass 2 immediately above. Then, the movement range of the unit mass 2 immediately above the unit mass 2 immediately below is defined.

詳細には、図中左側の上段衝突壁12は、直上の単位マス2が図中左側へ前記第二の隙間を超えて移動しようとしたときに、前記直上の単位マス2の上段支持脚14の図中左側の側面を当該上段衝突壁12に取り付けた上段緩衝材12aに衝突させることで、前記直上の単位マス2の直下の単位マス2に対する移動範囲の左端位置を規定する。
また、図中右側の上段衝突壁13は、直上の単位マス2が図中右側へ前記第二の隙間を超えて移動しようとしたときに、前記直上の単位マス2の上段支持脚14の図中右側の側面を当該上段衝突壁13に取り付けた上段緩衝材13aに衝突させることで、前記直上の単位マス2の直下の単位マス2に対する移動範囲の右端位置を規定する(図2参照)。
Specifically, the upper colliding wall 12 on the left side of the figure is the upper support leg 14 of the upper unit mass 2 immediately above the unit mass 2 when the unit mass 2 is about to move to the left side of the figure beyond the second gap. The left side surface in the figure is made to collide with the upper cushioning material 12a attached to the upper collision wall 12, thereby defining the left end position of the movement range with respect to the unit mass 2 immediately below the unit mass 2 immediately above.
Further, the upper collision wall 13 on the right side of the figure is a view of the upper support leg 14 of the upper unit mass 2 when the upper unit mass 2 is about to move to the right side in the figure beyond the second gap. By causing the middle right side surface to collide with the upper cushioning material 13a attached to the upper collision wall 13, the right end position of the movement range with respect to the unit mass 2 immediately below the unit mass 2 immediately above is defined (see FIG. 2).

なお、最上段の上段マス8は、その上方に単位マス2がなく、かつマス組体4の高さを抑える等の理由から、上段衝突壁12,13を無くしているが、上段衝突壁12,13を設けて他の単位マス2との共用化を図ってもよい。   Note that the upper stage upper mass 8 has no unit mass 2 above it and the upper stage collision walls 12 and 13 are eliminated for reasons such as suppressing the height of the mass assembly 4. , 13 may be provided to share with other unit cells 2.

最下段マス7は、その下面から下方に向けて突設される例えば一対の下段支持脚15を有する。下段支持脚15の下端には、最下段マス7(マス組体4)をベース板3上で制振方向に沿って移動自在とするローラ15aが設けられる。この下段支持脚15により、最下段マス7(マス組体4)がベース板3上に制振方向で移動自在な浮動状態で支持される。   The lowermost stage mass 7 has, for example, a pair of lower stage support legs 15 protruding downward from the lower surface thereof. A roller 15 a is provided at the lower end of the lower support leg 15 to make the lowermost mass 7 (the mass assembly 4) movable on the base plate 3 along the vibration damping direction. By the lower support legs 15, the lowermost mass 7 (the mass assembly 4) is supported on the base plate 3 in a floating state that is movable in the vibration damping direction.

制振装置1は、各衝突壁5,6の制振方向内側の側面と最下段マス7の例えば下段支持脚15の制振方向外側の側面との間に、例えばコイルバネからなる下段付勢バネ16,17を有する。下段付勢バネ16,17は、最下段マス7(マス組体4)を制振方向内側に付勢し、マス組体4を各衝突壁5,6から搬送方向内側へ前記第一の隙間だけ離間した中立位置への移動を補助すると共に、マス組体4と下段付勢ばね16,17からなる固有振動数が建築構造物の固有振動数と同調するように設定することでダイナミックダンパーとして機能することができる。   The vibration damping device 1 includes a lower-stage biasing spring made of, for example, a coil spring, between a side surface on the inner side in the vibration-damping direction of each of the collision walls 5 and 6 and a side surface of the lowermost mass 7 on the outer side in the vibration-damping direction. 16 and 17. The lower urging springs 16 and 17 urge the lowermost mass 7 (mass assembly 4) to the inside in the vibration control direction, and move the mass assembly 4 from the collision walls 5 and 6 to the inside in the transport direction. As a dynamic damper by assisting the movement to the neutral position separated by a distance and setting the natural frequency of the mass assembly 4 and the lower biasing springs 16 and 17 to be synchronized with the natural frequency of the building structure Can function.

マス組体4は、各上段マス8の上段支持脚14の制振方向外側の側面と、各上段マス8の直下の単位マス2における各上段衝突壁12,13の制振方向内側の側面との間に、例えばコイルバネからなる上段付勢バネ18,19を有する。上段付勢バネ18,19は、対応する上段マス8の上段支持脚14を制振方向内側に付勢し、この上段支持脚14(上段マス8)を直下の単位マス2における各上段衝突壁12,13から制振方向内側へ前記第二の隙間だけ離間した中立位置への移動を補助する。   The mass assembly 4 includes a side surface on the outer side of the upper support leg 14 in the vibration control direction of each upper mass 8, and a side surface on the inner side in the vibration control direction of the upper collision walls 12 and 13 in the unit mass 2 immediately below each upper mass 8. In between, there are upper urging springs 18 and 19 made of, for example, coil springs. The upper stage urging springs 18 and 19 urge the upper stage supporting legs 14 of the corresponding upper stage masses 8 to the inside in the vibration control direction, and the upper stage supporting legs 14 (upper stage masses 8) are respectively applied to the upper stage collision walls in the unit mass 2 immediately below. The movement to the neutral position spaced apart by the second gap inward in the damping direction from 12, 13 is assisted.

各上段マス8の上段支持脚14は、その下面14aを直下の単位マス2のマス本体11の上面11aに面接触させる。前記下面14a(上段マス8)と前記上面11a(直下の単位マス2)との間には、垂直抗力に応じた静止摩擦力(上段マス8の移動の抵抗となる力)が発生する。   The upper support legs 14 of each upper mass 8 bring the lower surface 14a into surface contact with the upper surface 11a of the mass body 11 of the unit mass 2 immediately below. Between the lower surface 14a (upper mass 8) and the upper surface 11a (immediately below unit mass 2), a static frictional force (a force that acts as a resistance to movement of the upper mass 8) is generated.

上段支持脚14の静止摩擦力(上段マス8を中立位置に保持する力、以下、中立保持力という。)は、下段支持脚15のマス組体4移動時の抵抗力よりも大とされる。
したがって、マス組体4は、各上段マス8をその直下の単位マス2に対して移動させる力よりも小さい力で移動可能とされる。
The static frictional force of the upper support leg 14 (the force that holds the upper mass 8 in the neutral position, hereinafter referred to as neutral holding force) is greater than the resistance force of the lower support leg 15 when the mass assembly 4 moves. .
Therefore, the mass assembly 4 can be moved with a force smaller than the force for moving each upper mass 8 with respect to the unit mass 2 immediately below it.

次に、本実施形態のマスダンパー型制振装置1の作用について説明する。
まず、建築構造物に前記制振方向の成分を有する振動が生じると、ベース板3及び各衝突壁5,6が建築構造物と一体にかつ同期して振動する。マス組体4はベース板3上に浮動支持されているので、建築構造物と一体には振動しない。建築構造物の振幅が小さければ、マス組体4には下段支持脚15の抵抗力や下段付勢バネ16,17の付勢力のみを介して、建築構造物から運動エネルギーが付与される。この運動エネルギーにより、下段支持脚15に支持されたマス組体4全体が建築構造物の振動を打ち消すように振動し、建築構造物の振動が減衰(制振)される。
Next, the operation of the mass damper type vibration damping device 1 of the present embodiment will be described.
First, when vibration having a component in the vibration control direction is generated in the building structure, the base plate 3 and the collision walls 5 and 6 vibrate integrally and synchronously with the building structure. Since the mass assembly 4 is floatingly supported on the base plate 3, it does not vibrate integrally with the building structure. If the amplitude of the building structure is small, kinetic energy is applied to the mass assembly 4 from the building structure only through the resistance force of the lower support legs 15 and the urging forces of the lower urging springs 16 and 17. By this kinetic energy, the entire mass assembly 4 supported by the lower support legs 15 vibrates so as to cancel the vibration of the building structure, and the vibration of the building structure is attenuated (damped).

一方、図2を参照し、建築構造物の振幅が所定以上であると、制振方向一側(例えば図の右側)の衝突壁5が最下段マス7の同側(図の右側)に衝突する。衝突壁5が衝突した最下段マス7は、入力方向(左側)へ建築構造物と一体的に移動する。最下段マス7よりも上方の各上段マス8には、それぞれ直下の単位マス2との間の静止摩擦力を介して、最下段マス7から衝撃力が付与される。このとき、前記静止摩擦力を超えた慣性力が作用する上段マス8は、直下の単位マス2に対して前記入力方向とは反対の方向(右側)へ相対移動する。直下の単位マス2に対して相対移動した上段マス8は、所定の移動量で直下の単位マス2の制振方向一側(図の右側)の上段衝突壁13に衝突する。   On the other hand, referring to FIG. 2, when the amplitude of the building structure is greater than or equal to a predetermined value, the collision wall 5 on one side of the damping direction (for example, the right side in the figure) collides with the same side (the right side in the figure) of the lowermost mass 7. To do. The lowermost mass 7 on which the collision wall 5 has collided moves integrally with the building structure in the input direction (left side). An impact force is applied from the lowermost mass 7 to each upper mass 8 above the lowermost mass 7 via a static frictional force with the unit mass 2 immediately below. At this time, the upper mass 8 on which the inertial force exceeding the static friction force acts moves relative to the unit mass 2 immediately below in the direction (right side) opposite to the input direction. The upper mass 8 that has moved relative to the unit mass 2 immediately below collides with the upper collision wall 13 on the one side (right side in the drawing) of the unit mass 2 immediately below with a predetermined movement amount.

以下、前記静止摩擦力を超えた慣性力が作用する上段マス8から順に、前記同様の相対移動及び衝突を所定の時間差で生じさせる。このような相対移動及び衝突により、一体のマスが建築構造物に衝突する場合と比べて建築構造物に加わる負荷を軽減できる。   Hereinafter, in the order from the upper mass 8 on which the inertial force exceeding the static friction force acts, the same relative movement and collision are caused with a predetermined time difference. By such relative movement and collision, the load applied to the building structure can be reduced as compared with the case where the integral mass collides with the building structure.

図3を参照し、前記マス組体4が一体のマスの場合、図中鎖線で示すように、衝突壁5,6(建築構造物)には、瞬間的に過大な衝撃荷重が生じる。一方、本実施形態における多段式のマス組体4の場合、図中実線で示すように、衝突壁5,6(建築構造物)には、比較的小さな衝撃荷重が所定の時間差をもって連続的に生じる。これにより、建築構造物側に作用する衝撃力を分散させることができ、衝撃力を小さくすることができる。   Referring to FIG. 3, when the mass assembly 4 is an integral mass, an excessive impact load is instantaneously generated on the collision walls 5 and 6 (building structure) as indicated by a chain line in the figure. On the other hand, in the case of the multistage mass assembly 4 in this embodiment, as shown by the solid line in the figure, relatively small impact loads are continuously applied to the collision walls 5 and 6 (building structure) with a predetermined time difference. Arise. Thereby, the impact force acting on the building structure side can be dispersed, and the impact force can be reduced.

以上説明したように、上記実施形態におけるマスダンパー型制振装置1は、上下に重なる複数の単位マス2を有し、建築構造物側の第一の支持面(上面3a)上に該第一の支持面に沿って移動可能に支持されるマス組体4と、前記マス組体4の最下段の単位マス2(最下段マス7)に設けられ、前記マス組体4を前記第一の支持面上に移動可能に支持する下段支持脚15と、前記建築構造物側に設けられ、前記マス組体4の前記第一の支持面に沿う移動時に、前記最下段マス7を衝突可能とし、前記マス組体4の前記第一の支持面上での移動範囲を規定する衝突壁5,6とを備える。   As described above, the mass damper type vibration damping device 1 according to the above-described embodiment has a plurality of unit masses 2 that are stacked one above the other, and the first damper surface 1 on the first side of the building structure (the upper surface 3a). The mass assembly 4 is movably supported along the support surface, and the lowermost unit mass 2 (the lowermost mass 7) of the mass assembly 4 is provided. A lower support leg 15 that is movably supported on a support surface, and is provided on the building structure side so that the lowermost mass 7 can collide when the mass assembly 4 moves along the first support surface. And collision walls 5 and 6 for defining a moving range of the mass assembly 4 on the first support surface.

また、上記マスダンパー型制振装置1は、前記マス組体4が、上下に重なる一対の単位マス2の内の上層の単位マス2に設けられ、該上層の単位マス2を、前記一対の単位マス2の内の下層の単位マス2側の第二の支持面(上面11a)上に該第二の支持面に沿って移動可能に支持する被支持面(下面14a)と、前記下層の単位マス2に設けられ、前記上層の単位マス2の前記第二の支持面に沿う移動時に、前記上層の単位マス2を衝突可能とし、前記上層の単位マス2の前記第二の支持面上での移動範囲を規定する上段衝突壁12,13とを有し、前記下段支持脚15が支持したマス組体4の移動に要する力が、前記上層の単位マス2の前記下層の単位マス2に対する相対移動に要する力よりも小さくされる。   Further, in the mass damper type vibration damping device 1, the mass assembly 4 is provided on the upper unit mass 2 of the pair of unit masses 2 that overlap vertically, and the upper unit mass 2 is connected to the pair of unit masses 2. A supported surface (lower surface 14a) that is movably supported along the second supporting surface on a second supporting surface (upper surface 11a) on the lower side of the unit mass 2 in the unit mass 2, and the lower layer When the upper unit mass 2 moves along the second support surface of the upper unit mass 2, the upper unit mass 2 can collide with the upper unit mass 2. The upper unit walls 2 and 13 that define the range of movement at the lower part of the unit mass 2 of the lower layer of the upper unit mass 2 is the force required to move the mass assembly 4 supported by the lower support legs 15. It is made smaller than the force required for relative movement with respect to.

また、上記マスダンパー型制振装置1は、前記マス組体4が、前記最下段マス7上に上段側の単位マス2(上段マス8)を複数段有する。
また、上記マスダンパー型制振装置1は、前記下段支持脚15が、前記マス組体4を浮動状態に支持し、前記第二の支持面(上面11a)が、前記被支持面(下面14a)を摩擦接触により支持する。
また、上記マスダンパー型制振装置1は、前記最下段マス7を前記衝突壁5,6から離間した中立位置へ付勢する下段付勢バネ16,17と、前記上層の単位マス2を前記上段衝突壁12,13から離間した中立位置へ付勢する上段付勢バネ18,19とを備える。
In the mass damper type vibration damping device 1, the mass assembly 4 includes a plurality of upper unit masses 2 (upper mass 8) on the lowermost mass 7.
In the mass damper type vibration damping device 1, the lower support leg 15 supports the mass assembly 4 in a floating state, and the second support surface (upper surface 11a) is supported by the supported surface (lower surface 14a). ) Is supported by frictional contact.
Further, the mass damper type vibration damping device 1 includes the lower stage urging springs 16 and 17 that urge the lowermost stage mass 7 to a neutral position separated from the collision walls 5 and 6, and the upper unit mass 2. And upper urging springs 18 and 19 for urging to a neutral position separated from the upper collision walls 12 and 13.

上記構成によれば、大地震時にマスが大きく応答し、建築構造物側に設けられたストロークエンドストッパ(衝突壁5,6)に衝突する場合、最下段の単位マス2及び上段側の単位マス2の時間差をもった衝突により、一体のマスとして衝突する場合と比べて、衝突荷重や衝突音の増加を抑えることができる。特に、上段側の単位マス2を複数段有する場合は、衝突荷重及び衝突音を抑制する効果が高い。
また、下段支持脚15が支持したマス組体4の移動に要する力が、上下に重なる一対の単位マス2の内の上層の単位マス2の、下層の単位マス2に対する相対移動に要する力よりも小さいので、建築構造物の小振動時(マス組体4が衝突壁5,6に衝突しない程度の振動時)には、各単位マス2間の相対移動を生じさせず、マス組体4全体の重量により制振を行うことができる。これは、下段支持脚15がローラ15a等を介してマス組体4を浮動状態に支持し、前記第二の支持面(上面11a)が、前記被支持面(下面14a)を摩擦接触により支持することで、容易に実現することができる。
According to the above configuration, when the mass responds greatly during a large earthquake and collides with the stroke end stopper (collision walls 5 and 6) provided on the building structure side, the lowest unit mass 2 and the upper unit mass By the collision having a time difference of 2, it is possible to suppress an increase in collision load and collision noise as compared with the case of collision as an integral mass. In particular, when the upper stage unit mass 2 has a plurality of stages, the effect of suppressing the collision load and the collision noise is high.
Further, the force required for the movement of the mass assembly 4 supported by the lower support legs 15 is greater than the force required for the relative movement of the upper unit mass 2 of the upper and lower unit masses 2 of the pair of unit masses 2 that are vertically overlapped with each other. Therefore, at the time of small vibration of the building structure (when the mass assembly 4 does not collide with the collision walls 5 and 6), the mass assembly 4 does not cause relative movement between the unit masses 2. Vibration can be controlled by the overall weight. This is because the lower support legs 15 support the mass assembly 4 in a floating state via rollers 15a and the like, and the second support surface (upper surface 11a) supports the supported surface (lower surface 14a) by frictional contact. This can be easily realized.

また、マス組体4を衝突前の状態に付勢する下段付勢バネ16,17を有することで、前記小振動時にはマス組体4全体をダイナミックダンパーとして利用することができる。
さらに、上段側の単位マス2を衝突前の状態に付勢する上段付勢バネ18,19を有することで、単位マス2を中立位置に戻り易くすることできる。
In addition, by having the lower biasing springs 16 and 17 that bias the mass assembly 4 to the state before the collision, the entire mass assembly 4 can be used as a dynamic damper during the small vibration.
Furthermore, the unit mass 2 can be easily returned to the neutral position by having the upper stage biasing springs 18 and 19 for biasing the upper unit mass 2 to the state before the collision.

<第二実施形態>
次に、本発明の第二実施形態について図4を参照して説明する。
この実施形態は、前記第一実施形態に対して、複数の単位マス2を一体に締結し、該締結された単位マス2間の摩擦力を調整する調整ボルトBを備える点で特に異なる。その他の、前記実施形態と同一構成には同一符号を付して詳細説明は省略する。
<Second embodiment>
Next, a second embodiment of the present invention will be described with reference to FIG.
This embodiment is different from the first embodiment in that a plurality of unit masses 2 are integrally fastened and an adjustment bolt B for adjusting the frictional force between the fastened unit masses 2 is provided. The other components that are the same as those in the above embodiment are given the same reference numerals, and detailed description thereof is omitted.

本実施形態のマス組体24は、扁平状の単位マス2を上下に複数段(図では5段)積み重ねて一体に締結してなる。マス組体24において、最下段マス7は上段マス8に対して厚く、かつ上段マス8は上段側ほど平面方向で小型に形成される。第二実施形態では、第一実施形態の上段支持脚14並びに上段付勢バネ18,19は無くされる。
各上段マス8は、その直下の単位マス2(最下段マス7も含む)のマス本体11における水平な上面11aに、マス本体11の水平な下面14aを摩擦接触させる。各上段マス8のマス本体11は、直下の単位マス2の一対の上段衝突壁12,13の間に配置される。
複数の単位マス2は、一対の調整ボルトBにより一体に締結され、各単位マス2間の摩擦力を調整可能である。
The mass assembly 24 of the present embodiment is formed by stacking flat unit masses 2 in a plurality of stages (five levels in the figure) and fastening them together. In the mass assembly 24, the lowermost mass 7 is thicker than the upper mass 8, and the upper mass 8 is formed smaller in the planar direction toward the upper side. In the second embodiment, the upper support legs 14 and the upper biasing springs 18 and 19 of the first embodiment are eliminated.
Each upper mass 8 brings the horizontal lower surface 14a of the mass body 11 into frictional contact with the horizontal upper surface 11a of the mass body 11 of the unit mass 2 (including the lowermost mass 7) immediately below. The mass body 11 of each upper mass 8 is disposed between the pair of upper collision walls 12 and 13 of the unit mass 2 immediately below.
The plurality of unit masses 2 are fastened together by a pair of adjustment bolts B, and the frictional force between the unit masses 2 can be adjusted.

本実施形態の構成において、建築構造物の振幅が所定以上であり、制振方向一側の衝突壁5が最下段マス7の同側に衝突し、各上段マス8に直下の単位マス2との間の静止摩擦力を超える慣性力が作用すると、該上段マス8が直下の単位マス2に対して入力方向とは反対の方向へ相対移動する。直下の単位マス2に対して相対移動した上段マス8は、所定の移動量で直下の単位マス2の制振方向一側の上段衝突壁13に衝突する。以下、前記静止摩擦力を超えた慣性力が作用する上段マス8から順に、前記同様の相対移動及び衝突を所定の時間差で生じさせる。単位マス2個々の衝撃が時間差をもって作用することにより、建築構造物側に作用する衝撃力を分散させることができ、衝撃力を小さくすることができる。前記静止摩擦力は、一対の調整ボルトBの締め付け力により調整可能であり、締め付け力の調整によってどの程度の衝撃で上層の単位マス2が下層の単位マス2に対して相対移動するかを任意に設定することができる。   In the configuration of the present embodiment, the amplitude of the building structure is equal to or greater than a predetermined value, the collision wall 5 on one side of the vibration damping direction collides with the same side of the lowermost mass 7, and the unit mass 2 directly below each upper mass 8. When an inertial force that exceeds the static friction force between the upper mass 8 and the unit mass 2 directly below, the upper mass 8 moves in a direction opposite to the input direction. The upper mass 8 that has moved relative to the unit mass 2 directly below collides with the upper collision wall 13 on one side of the vibration suppression direction of the unit mass 2 immediately below by a predetermined movement amount. Hereinafter, in the order from the upper mass 8 on which the inertial force exceeding the static friction force acts, the same relative movement and collision are caused with a predetermined time difference. When the impact of each unit mass 2 acts with a time difference, the impact force acting on the building structure side can be dispersed and the impact force can be reduced. The static frictional force can be adjusted by the tightening force of the pair of adjusting bolts B, and it can be arbitrarily determined how much the upper unit mass 2 moves relative to the lower unit mass 2 by adjusting the tightening force. Can be set to

<第三実施形態>
次に、本発明の第三実施形態について図5を参照して説明する。
この実施形態は、前記第一実施形態に対して、前記調整ボルトBを備えると共に、最下段マス7に各上段マス8を衝突させる一対の衝突壁22,23を備える点で特に異なる。その他の、前記実施形態と同一構成には同一符号を付して詳細説明は省略する。
<Third embodiment>
Next, a third embodiment of the present invention will be described with reference to FIG.
This embodiment is different from the first embodiment in that it includes the adjustment bolt B and a pair of collision walls 22 and 23 that cause the upper mass 8 to collide with the lowermost mass 7. The other components that are the same as those in the above embodiment are given the same reference numerals, and detailed description thereof is omitted.

本実施形態のマス組体34は、扁平状の単位マス2を上下に複数段(図では7段)積み重ねて一体に締結してなる。マス組体34において、最下段マス7は上段マス8に対して厚く形成される。第三実施形態では、第一実施形態の上段支持脚14、上段付勢バネ18,19並びに衝突壁12,13は無くされる。
各上段マス8は、その直下の単位マス2(最下段マス7も含む)のマス本体11における水平な上面11aに、マス本体11の水平な下面14aを摩擦接触させる。各上段マス8のマス本体11は、最下段マス7の一対の衝突壁22,23の間に配置される。衝突壁22,23は、前記衝突壁12,13よりも大型であり、各上段マス8を全て衝突可能である。
The mass assembly 34 of the present embodiment is formed by stacking flat unit masses 2 in a plurality of levels (seven levels in the drawing) and fastening them together. In the mass assembly 34, the lowermost mass 7 is formed thicker than the upper mass 8. In the third embodiment, the upper support legs 14, the upper urging springs 18 and 19 and the collision walls 12 and 13 of the first embodiment are eliminated.
Each upper mass 8 brings the horizontal lower surface 14a of the mass body 11 into frictional contact with the horizontal upper surface 11a of the mass body 11 of the unit mass 2 (including the lowermost mass 7) immediately below. The mass body 11 of each upper mass 8 is arranged between the pair of collision walls 22 and 23 of the lowermost mass 7. The collision walls 22 and 23 are larger than the collision walls 12 and 13 and can collide with each upper mass 8.

本実施形態の構成において、建築構造物の振幅が所定以上であり、制振方向一側の衝突壁5が最下段マス7の同側に衝突し、各上段マス8に直下の単位マス2との間の静止摩擦力を超える慣性力が作用すると、該上段マス8が直下の単位マス2に対して入力方向とは反対の方向へ相対移動する。直下の単位マス2に対して相対移動した上段マス8は、所定の移動量で最下段マス7の制振方向一側の衝突壁23に衝突する。以下、前記静止摩擦力を超えた慣性力が作用する上段マス8から順に、前記同様の相対移動及び衝突を所定の時間差で生じさせる。このように単位マス2個々の衝撃が時間差をもって作用することにより、建築構造物側に作用する衝撃力を分散させることができ、衝撃力を小さくすることができる。前記静止摩擦力は、一対の調整ボルトBの締め付け力により調整可能である。締め付け力の調整によってどの程度の衝撃で上層の単位マス2が下層の単位マス2に対して相対移動するかを任意に設定することができる。   In the configuration of the present embodiment, the amplitude of the building structure is equal to or greater than a predetermined value, the collision wall 5 on one side of the vibration damping direction collides with the same side of the lowermost mass 7, and the unit mass 2 directly below each upper mass 8. When an inertial force that exceeds the static friction force between the upper mass 8 and the unit mass 2 directly below, the upper mass 8 moves in a direction opposite to the input direction. The upper mass 8 that has moved relative to the unit mass 2 immediately below collides with the collision wall 23 on the one side in the vibration control direction of the lower mass 7 with a predetermined movement amount. Hereinafter, in the order from the upper mass 8 on which the inertial force exceeding the static friction force acts, the same relative movement and collision are caused with a predetermined time difference. Thus, when the impact of each unit mass 2 acts with a time difference, the impact force acting on the building structure side can be dispersed, and the impact force can be reduced. The static friction force can be adjusted by the tightening force of the pair of adjustment bolts B. It is possible to arbitrarily set how much the upper unit mass 2 moves relative to the lower unit mass 2 by adjusting the tightening force.

なお、本発明は上記実施形態に限られるものではなく、例えば、下段支持脚15がローラ15aではなく磁力や圧力等を用いてマス組体4を浮動支持してもよい。各付勢バネ16〜19が板バネやゴム部材からなるものでもよい。第一実施形態において、マス本体11の上面11aに支持部を設け、マス本体11の下面に上段衝突壁12,13を設けた構成でもよい。第二及び第三実施形態において、複数の単位マス2の少なくとも一対を一体に締結した構成であったり、上段付勢バネ18,19に相当する構成を有してもよい。
そして、上記実施形態における構成は本発明の一例であり、当該発明の要旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not limited to the above-described embodiment. For example, the lower support leg 15 may float and support the mass assembly 4 using magnetic force or pressure instead of the roller 15a. Each of the urging springs 16 to 19 may be a leaf spring or a rubber member. In 1st embodiment, the structure which provided the support part in the upper surface 11a of the mass main body 11, and provided the upper stage collision walls 12 and 13 in the lower surface of the mass main body 11 may be sufficient. In 2nd and 3rd embodiment, it may be the structure which fastened at least one pair of the several unit mass 2 integrally, and may have the structure corresponded to the upper stage biasing springs 18 and 19. FIG.
And the structure in the said embodiment is an example of this invention, A various change is possible in the range which does not deviate from the summary of the said invention.

1,1’,1” マスダンパー型制振装置
2 単位マス
3a 上面(第一の支持面)
4,24,34 マス組体
5,6 衝突壁(第一の衝突部)
7 最下段マス(最下段の単位マス)
8 上段マス(上段側の単位マス)
11a 上面(第二の支持面)
12,13 上段衝突壁(第二の衝突部)
14a 下面(被支持面)
15 下段支持脚(第一の支持部)
16,17 下段付勢バネ(第一の付勢手段)
18,19 上段付勢バネ(第二の付勢手段)
22,23 上段衝突壁(第二の衝突部)
B 調整ボルト(締結手段)
1,1 ', 1 "mass damper type damping device 2 unit mass 3a upper surface (first support surface)
4, 24, 34 Mass assembly 5, 6 Collision wall (first collision part)
7 Bottom mass (bottom unit mass)
8 Upper cell (upper unit cell)
11a Top surface (second support surface)
12, 13 Upper collision wall (second collision part)
14a Bottom surface (supported surface)
15 Lower support legs (first support part)
16, 17 Lower urging spring (first urging means)
18, 19 Upper urging spring (second urging means)
22, 23 Upper collision wall (second collision part)
B Adjustment bolt (fastening means)

Claims (6)

上下に重なる複数の単位マスを有し、建築構造物側の第一の支持面上に該第一の支持面に沿って移動可能に支持されるマス組体と、
前記マス組体の最下段の単位マスに設けられ、前記マス組体を前記第一の支持面上に移動可能に支持する第一の支持部と、
前記建築構造物側に設けられ、前記マス組体の前記第一の支持面に沿う移動時に、前記最下段の単位マスを衝突可能とし、前記マス組体の前記第一の支持面上での移動範囲を規定する第一の衝突部とを備え、
前記マス組体が、
上下に重なる一対の単位マスの内の上層の単位マスに設けられ、該上層の単位マスを、前記一対の単位マスの内の下層の単位マスの第二の支持面上に該第二の支持面に沿って移動可能とする被支持面と、
前記下層の単位マス又は前記最下段の単位マスに設けられ、前記上層の単位マスの前記第二の支持面に沿う移動時に、前記上層の単位マスを衝突可能とし、前記上層の単位マスの前記第二の支持面上での移動範囲を規定する第二の衝突部とを有し、
前記第一の支持部が支持したマス組体の移動に要する力が、前記上層の単位マスの前記下層の単位マスに対する相対移動に要する力よりも小さくされることを特徴とするマスダンパー型制振装置。
A plurality of unit masses that overlap vertically, and a mass assembly that is supported on the first support surface on the building structure side so as to be movable along the first support surface;
A first support portion that is provided in a lowermost unit mass of the mass assembly, and that supports the mass assembly on the first support surface in a movable manner;
Provided on the building structure side, when the mass assembly moves along the first support surface, the lowermost unit mass can collide, and the mass assembly on the first support surface A first collision part that defines a moving range;
The mass assembly is
The upper unit mass of the pair of unit masses that overlap each other is provided on the second support surface of the lower unit mass of the pair of unit masses. A supported surface that is movable along the surface;
It is provided in the lower unit mass or the lowermost unit mass, and when the upper unit mass moves along the second support surface, the upper unit mass can collide, and the upper unit mass A second collision part defining a range of movement on the second support surface,
A mass damper type control characterized in that a force required to move the mass assembly supported by the first support portion is smaller than a force required to move the upper unit mass relative to the lower unit mass. Shaker.
前記マス組体が、前記最下段の単位マス上に上段側の単位マスを複数段有することを特徴とする請求項1に記載のマスダンパー型制振装置。   The mass damper type vibration damping device according to claim 1, wherein the mass assembly includes a plurality of upper unit masses on the lowermost unit mass. 前記第一の支持部が、前記マス組体を浮動状態に支持し、
前記第二の支持面が、前記被支持面を摩擦接触により支持することを特徴とする請求項1又は2に記載のマスダンパー型制振装置。
The first support portion supports the mass assembly in a floating state;
The mass damper type vibration damping device according to claim 1, wherein the second support surface supports the supported surface by frictional contact.
前記複数の単位マスの少なくとも一対を一体に締結し、該締結された単位マス間の摩擦力を調整する締結手段を備えることを特徴とする請求項3に記載のマスダンパー型制振装置。   The mass damper type vibration damping device according to claim 3, further comprising fastening means for fastening at least a pair of the plurality of unit masses integrally and adjusting a frictional force between the fastened unit masses. 前記最下段の単位マスを前記第一の衝突部から離間した中立位置へ付勢する第一の付勢手段を備えることを特徴とする請求項1から4の何れか1項に記載のマスダンパー型制振装置。   5. The mass damper according to claim 1, further comprising: a first urging unit that urges the lowermost unit mass to a neutral position separated from the first collision unit. Mold damping device. 前記上層の単位マスを前記第二の衝突部から離間した中立位置へ付勢する第二の付勢手段を備えることを特徴とする請求項1から5の何れか1項に記載のマスダンパー型制振装置。   The mass damper type according to any one of claims 1 to 5, further comprising second urging means for urging the upper unit mass to a neutral position separated from the second collision portion. Damping device.
JP2012119951A 2012-05-25 2012-05-25 Mass damper type damping device Active JP5917291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012119951A JP5917291B2 (en) 2012-05-25 2012-05-25 Mass damper type damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012119951A JP5917291B2 (en) 2012-05-25 2012-05-25 Mass damper type damping device

Publications (2)

Publication Number Publication Date
JP2013245765A true JP2013245765A (en) 2013-12-09
JP5917291B2 JP5917291B2 (en) 2016-05-11

Family

ID=49845703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012119951A Active JP5917291B2 (en) 2012-05-25 2012-05-25 Mass damper type damping device

Country Status (1)

Country Link
JP (1) JP5917291B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210978A (en) * 2018-06-01 2019-12-12 前田建設工業株式会社 Rotational friction damper
WO2020239590A1 (en) * 2019-05-24 2020-12-03 Soh Wind Tunnels Aps Pendulum mass damper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506874U (en) * 1973-05-14 1975-01-24
JPH0821127A (en) * 1994-07-08 1996-01-23 Oiles Ind Co Ltd Damping structure in high-rise structure using impact damper
JPH0932880A (en) * 1995-07-17 1997-02-04 Tokai Rubber Ind Ltd Dynamic damper
JPH11303927A (en) * 1998-04-15 1999-11-02 Taisei Corp Stopper mechanism of vibration control device heavy bob
JP2000097281A (en) * 1998-09-22 2000-04-04 Toshiba Mach Co Ltd Dynamic vibration-absorbing device
JP2004239323A (en) * 2003-02-04 2004-08-26 Tokkyokiki Corp Dynamic vibration absorber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506874U (en) * 1973-05-14 1975-01-24
JPH0821127A (en) * 1994-07-08 1996-01-23 Oiles Ind Co Ltd Damping structure in high-rise structure using impact damper
JPH0932880A (en) * 1995-07-17 1997-02-04 Tokai Rubber Ind Ltd Dynamic damper
JPH11303927A (en) * 1998-04-15 1999-11-02 Taisei Corp Stopper mechanism of vibration control device heavy bob
JP2000097281A (en) * 1998-09-22 2000-04-04 Toshiba Mach Co Ltd Dynamic vibration-absorbing device
JP2004239323A (en) * 2003-02-04 2004-08-26 Tokkyokiki Corp Dynamic vibration absorber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210978A (en) * 2018-06-01 2019-12-12 前田建設工業株式会社 Rotational friction damper
JP7040699B2 (en) 2018-06-01 2022-03-23 前田建設工業株式会社 Rotational friction damper
WO2020239590A1 (en) * 2019-05-24 2020-12-03 Soh Wind Tunnels Aps Pendulum mass damper
EP3976906B1 (en) * 2019-05-24 2024-02-14 Soh Wind Tunnels ApS Pendulum mass damper
US12031352B2 (en) 2019-05-24 2024-07-09 Soh Wind Tunnels Aps Pendulum mass damper

Also Published As

Publication number Publication date
JP5917291B2 (en) 2016-05-11

Similar Documents

Publication Publication Date Title
JP6372034B2 (en) Anti-vibration vibration reduction device
JP6482373B2 (en) Seismic isolation structure
WO2015005286A1 (en) Damping device
JP5917291B2 (en) Mass damper type damping device
JP2015227605A (en) Vibration control device and building comprising the same
JPH1130279A (en) Base isolator
JP5338611B2 (en) Vertical seismic isolation device
JP6877720B2 (en) Vibration damping device for structures
JP5462059B2 (en) Foundation structure
JP5801139B2 (en) Shock damper
TWI577859B (en) Seismic isolation structure
JP7455682B2 (en) Buffer structure and buffer material
JP2009121523A (en) Base isolation device
JP6398421B2 (en) Vibration control structure
JP6150489B2 (en) Vibration control device
JP5095015B1 (en) Seismic isolation device
JP5609000B2 (en) Damping method, damping structure, and seismic reinforcement method
JP2016151278A (en) Vibration control device
JP3157352U (en) Elliptical leaf spring unit, elliptical multi-stage leaf spring device, vertical vibration damping device, horizontal uniaxial vibration damping device, and upper and lower floor seismic isolation device
JP2024090144A (en) Vibration-damping structure
JP6384174B2 (en) Vibration control structure
JP2020070615A (en) Vertical vibration damping device and vertical vibration damping structure
JP5852394B2 (en) Seismic isolation device
JP2018145626A (en) Damping structure
JP4908152B2 (en) Floor seismic isolation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160406

R150 Certificate of patent or registration of utility model

Ref document number: 5917291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250