JP2013242223A - Eddy current flaw detection device and method - Google Patents

Eddy current flaw detection device and method Download PDF

Info

Publication number
JP2013242223A
JP2013242223A JP2012115415A JP2012115415A JP2013242223A JP 2013242223 A JP2013242223 A JP 2013242223A JP 2012115415 A JP2012115415 A JP 2012115415A JP 2012115415 A JP2012115415 A JP 2012115415A JP 2013242223 A JP2013242223 A JP 2013242223A
Authority
JP
Japan
Prior art keywords
excitation
detection
coil
eddy current
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012115415A
Other languages
Japanese (ja)
Other versions
JP5959306B2 (en
Inventor
Soichi Ueno
聡一 上野
Noriyasu Kobayashi
徳康 小林
Yuko Kitajima
裕子 北島
Shigeki Maruyama
茂樹 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012115415A priority Critical patent/JP5959306B2/en
Publication of JP2013242223A publication Critical patent/JP2013242223A/en
Application granted granted Critical
Publication of JP5959306B2 publication Critical patent/JP5959306B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress degradation in detection sensitivity of a flaw depending on a direction of the flaw, and detect the flaw with high sensitivity.SOLUTION: An eddy current flaw detection device includes: a flaw detection probe 11 including a plurality of excitation coils 14 and a plurality of detection coils 15 and capable of scanning the surface of a body to be tested; an exciter for supplying an excitation current to the excitation coils; and a detector for acquiring detection signals from the detection coils to detect a flaw in the body to be tested. The flaw detection probe 11 is formed by arranging two or more rows of excitation coil rows 16A and 16B each having the excitation coils 14 linearly arranged, and arranging one or more rows of detection coil rows 17A and 17B each having the detection coils linearly arranged between the excitation coil rows. An excitation current supplied by the exciter allows an eddy current to flow in the body to be tested between the excitation coils of the adjacent excitation rows so as to be inclined to the excitation coil rows. While the eddy current is alternately changed in direction to different inclined angles, the flaw of the body to be tested is detected by the detection coil and the detector.

Description

本発明は、金属構造材や小口径配管などに発生した欠陥を非破壊検査する渦電流探傷装置及び方法に関する。   The present invention relates to an eddy current flaw detection apparatus and method for nondestructive inspection of defects generated in metal structural materials, small-diameter pipes, and the like.

蒸気発生器における伝熱管等の小口径配管の外面或いは内面の欠陥検査には、磁場を利用した渦電流探傷試験(Eddy Current Testing:ECT)を適用した渦電流探傷装置が用いられる。   An eddy current flaw detector applying an eddy current flaw test (ECT) using a magnetic field is used for defect inspection of the outer surface or inner surface of a small-diameter pipe such as a heat transfer tube in a steam generator.

この渦電流探傷装置は、磁場を発生する励磁コイルと磁場変化を検出する検出コイルとを1つのコイルが兼ねる自己誘導型と、2つのコイルを用いる相互誘導型とがある。いずれの場合においても、励磁コイルに交流電流を供給して励磁磁場を形成し、被検査体表面に渦電流を発生させる。そして、前記渦電流の分布が欠陥により変化することを利用し、渦電流分布の変化による二次的な磁場変化を検出コイルが検出することで、欠陥の検出を行うものである。   This eddy current flaw detector includes a self-induction type in which one coil serves as an exciting coil that generates a magnetic field and a detection coil that detects a change in the magnetic field, and a mutual induction type that uses two coils. In either case, an alternating current is supplied to the exciting coil to form an exciting magnetic field, and an eddy current is generated on the surface of the object to be inspected. Then, by utilizing the fact that the distribution of the eddy current changes due to the defect, the detection coil detects the secondary magnetic field change due to the change of the eddy current distribution, thereby detecting the defect.

特許文献1には、管検査用のプローブのセンサ素子に3次元的に配置したコイル構造を適用し、管軸に対して傾斜した渦電流を被検査体に発生することで、管軸方向欠陥及び管周方向欠陥に対し検出感度を略同一に設定できるプローブ構造が開示されている。   In Patent Document 1, a coil structure arranged three-dimensionally in the sensor element of a probe for tube inspection is applied, and an eddy current inclined with respect to the tube axis is generated in the object to be inspected. In addition, a probe structure is disclosed in which detection sensitivity can be set to be substantially the same for defects in the pipe circumferential direction.

特開2008−197016号公報JP 2008-197016 A

ECTでは、プローブの励磁コイル及び検出コイルに対する欠陥の方向によって、欠陥の検出感度が異なる。つまり、欠陥の検出感度は、励磁コイルが被検査体に形成する渦電流の方向に依存しており、欠陥に対して垂直な方向に流れる渦電流を形成させた場合には検出感度が高くなるが、欠陥に対して平行な方向に流れる渦電流を形成させた場合には検出感度が低下してしまう。   In ECT, the defect detection sensitivity differs depending on the direction of the defect with respect to the excitation coil and the detection coil of the probe. That is, the detection sensitivity of the defect depends on the direction of the eddy current formed by the exciting coil on the object to be inspected, and the detection sensitivity increases when the eddy current flowing in the direction perpendicular to the defect is formed. However, when an eddy current flowing in a direction parallel to the defect is formed, the detection sensitivity is lowered.

特許文献1におけるプローブの励磁コイルの配置では、走査方向に対して傾斜した渦電流を形成するので、管軸方向欠陥と管周方向欠陥を同程度の検出感度で検出することが可能であるが、形成する渦電流が一意の方向であるため、欠陥の方向によっては、欠陥の検出感度が著しく低下する場合が生ずる。   In the arrangement of the excitation coil of the probe in Patent Document 1, since an eddy current inclined with respect to the scanning direction is formed, it is possible to detect a defect in the tube axis direction and a defect in the tube circumferential direction with the same detection sensitivity. Since the eddy current to be formed is in a unique direction, the detection sensitivity of the defect may be significantly lowered depending on the direction of the defect.

本発明の実施形態の目的は、上述の事情を考慮してなされたものであり、欠陥の方向に依存した欠陥の検出感度の低下を抑制できると共に、欠陥を高感度に検出できる渦電流探傷装置及び方法を提供することにある。   An object of an embodiment of the present invention is made in consideration of the above-described circumstances, and is capable of suppressing a decrease in defect detection sensitivity depending on a defect direction and capable of detecting a defect with high sensitivity. And providing a method.

本発明に係る実施形態の渦電流探傷装置は、複数の励磁コイル及び検出コイルを備え被検査体の表面を走査可能な探傷プローブと、前記励磁コイルへ励磁電流を供給する励磁器と、前記検出コイルから検出信号を取得して前記被検査体の欠陥を検出する検出器と、を有する渦電流探傷装置であって、前記探傷プローブは、前記励磁コイルを直線状に配列した励磁コイル列が2列以上設置され、前記検出コイルを直線状に配列した1列以上の検出コイル列が、前記励磁コイル列間に設置されてなり、前記励磁器が供給する励磁電流によって、隣り合う前記励磁コイル列のそれぞれの前記励磁コイル間で前記被検査体に、前記励磁コイル列に対し傾斜して渦電流が流れると共に、この渦電流の向きが異なる傾斜角に交互に切り換えられ、この切り換えられた状態で前記検出コイル及び前記検出器により、前記被検査体の欠陥が検出されるよう構成されたことを特徴とするものである。   An eddy current flaw detector according to an embodiment of the present invention includes a flaw detection probe that includes a plurality of excitation coils and a detection coil and that can scan the surface of an inspection object, an exciter that supplies an excitation current to the excitation coil, and the detection An eddy current flaw detector having a detector that acquires a detection signal from a coil and detects a defect of the inspection object, wherein the flaw detection probe has two excitation coil arrays in which the excitation coils are arranged in a straight line. One or more detection coil rows arranged in a row and arranged in a straight line are arranged between the excitation coil rows, and the adjacent excitation coil rows are excited by an excitation current supplied by the exciter. An eddy current flows between the exciting coils in the test object at an inclination with respect to the excitation coil array, and the direction of the eddy current is alternately switched to a different inclination angle. By the obtained said detection coil and said detector in a state, it is characterized in that a defect of the object to be inspected is arranged to be detected.

また、本発明に係る実施形態の渦電流探傷方法は、励磁コイルを直線状に配列して2列以上設置された励磁コイル列と、検出コイルを直線状に配列し、前記励磁コイル列間に1列以上設置された検出コイル列とを備え、被検査体の表面を走査する探傷プローブを用意し、隣り合う前記励磁コイル列のそれぞれの前記励磁コイル間で前記被検査体に、前記励磁コイル列に対し傾斜する渦電流を流し、この渦電流の向きを異なる傾斜角に交互に切り換えながら、前記検出コイルにより前記被検査体の欠陥を検出することを特徴とするものである。   Further, in the eddy current flaw detection method according to the embodiment of the present invention, the excitation coils are arranged in a straight line and two or more excitation coil arrays are arranged, and the detection coils are arranged in a straight line. A flaw detection probe that scans the surface of the object to be inspected, and the excitation coil between the excitation coils of the adjacent excitation coil arrays is provided with the excitation coil. An eddy current that is inclined with respect to the column is allowed to flow, and defects of the inspection object are detected by the detection coil while alternately switching the direction of the eddy current to different inclination angles.

本発明の実施形態によれば、様々な方向の欠陥を高感度に検出できる。この結果、欠陥の方向に依存した欠陥の検出感度の低下を抑制できると共に、欠陥を高感度に検出できる。   According to the embodiment of the present invention, defects in various directions can be detected with high sensitivity. As a result, it is possible to suppress a decrease in defect detection sensitivity depending on the defect direction, and to detect defects with high sensitivity.

本発明に係る渦電流探傷装置の第1実施形態における探傷プローブを示す斜視図。The perspective view which shows the flaw detection probe in 1st Embodiment of the eddy current flaw detection apparatus which concerns on this invention. 図1の探傷プローブの励磁コイル列及び検出コイル列を展開して示す展開図。The expanded view which expands and shows the exciting coil row | line | column and detection coil row | line | column of the flaw detection probe of FIG. 図1の探傷プロープの励磁コイルへ励磁電流を供給する励磁系統を主に示すシステム構成図。The system block diagram which mainly shows the excitation system which supplies excitation current to the excitation coil of the flaw detection probe of FIG. 図1の探傷プロープの検出コイルから検出信号を取得する検出系統を主に示すシステム構成図。The system block diagram which mainly shows the detection system which acquires a detection signal from the detection coil of the flaw detection probe of FIG. 図1及び図2の励磁コイルが形成する渦電流の一例を示す説明図。FIG. 3 is an explanatory diagram showing an example of an eddy current formed by the exciting coil of FIGS. 1 and 2. 図1及び図2の励磁コイルが形成する渦電流の他の例を示す説明図。FIG. 3 is an explanatory diagram showing another example of eddy current formed by the exciting coil of FIGS. 1 and 2. 本発明に係る渦電流探傷装置の第2実施形態における探傷プローブの励磁コイル列及び検出コイル列を展開して示す展開図。The expanded view which expands and shows the exciting coil row | line | column and detection coil row | line | column of the flaw detection probe in 2nd Embodiment of the eddy current flaw detector which concerns on this invention. 図7の探傷プローブの励磁コイルへ励磁電流を供給する電磁系統を示すシステム構成図。The system block diagram which shows the electromagnetic system which supplies an exciting current to the exciting coil of the flaw detection probe of FIG. 探傷プローブの第1変形形態における励磁コイル列及び検出コイル列を展開して示す展開図。The expanded view which expands and shows the exciting coil row | line | column and detection coil row | line in the 1st modification of a flaw detection probe. 探傷プローブの第2変形形態を示す斜視図。The perspective view which shows the 2nd modification of a flaw detection probe.

以下、本発明を実施するための実施形態を図面に基づき説明する。
[A]第1実施形態(図1〜図6)
図1は、本発明に係る渦電流探傷装置の第1実施形態における探傷プローブを示す斜視図であり、図3は、図1の探傷プローブの励磁コイルへ励磁電流を供給する励磁系統を主に示すシステム構成図である。
Embodiments for carrying out the present invention will be described below with reference to the drawings.
[A] First embodiment (FIGS. 1 to 6)
FIG. 1 is a perspective view showing a flaw detection probe in the first embodiment of the eddy current flaw detection apparatus according to the present invention. FIG. 3 mainly shows an excitation system for supplying an excitation current to the excitation coil of the flaw detection probe in FIG. FIG.

図3に示す渦電流探傷装置10は、金属構造材や小口径配管、本実施形態では原子力プラントの蒸気発生器の伝熱管などにおける被検査体としての小口径配管の欠陥を非破壊検査するものである。この渦電流探傷装置10は、複数の励磁コイル14及び検出コイル15を備え被検査体の表面を走査可能な探傷プローブ11(図1)と、この探傷プローブ11の励磁コイル14へ励磁電流を供給する励磁器12と、探傷プローブ11の検出コイル15から検出信号を取得して被検査体の欠陥を検出する検出器13と、を有して構成される。   The eddy current flaw detector 10 shown in FIG. 3 performs nondestructive inspection of defects in a small-diameter pipe as an object to be inspected in a metal structure material, a small-diameter pipe, and in this embodiment, a heat transfer pipe of a steam generator of a nuclear power plant. It is. The eddy current flaw detection apparatus 10 includes a plurality of excitation coils 14 and a detection coil 15 and supplies an excitation current to the flaw detection probe 11 (FIG. 1) capable of scanning the surface of the object to be inspected and the excitation coil 14 of the flaw detection probe 11. And a detector 13 for detecting a detection signal from the detection coil 15 of the flaw detection probe 11 and detecting a defect of the inspection object.

ここで、図1に示す探傷プローブ11は、蒸気発生器の伝熱管などの小口径配管内に挿入されて、この被検査体としての小口径配管の内面を走査するものである。そして、渦電流探傷装置10は、探傷プローブ11の励磁コイル14へ励磁器12から励磁電流(交流電流)を供給して励磁磁場を形成し、この励磁磁場により被検査体の表面に渦電流を発生させる。この渦電流の分布が欠陥によって変化することを利用して、渦電流の分布の変化による2次的な磁場の変化を検出コイル15が検出することで、この検出コイル15の検出信号から検出器13が被検査体の欠陥を検出する。   Here, the flaw detection probe 11 shown in FIG. 1 is inserted into a small-diameter pipe such as a heat transfer pipe of a steam generator, and scans the inner surface of the small-diameter pipe as the object to be inspected. The eddy current flaw detector 10 supplies an excitation current (alternating current) from the exciter 12 to the excitation coil 14 of the flaw detection probe 11 to form an excitation magnetic field, and this excitation magnetic field generates an eddy current on the surface of the object to be inspected. generate. By utilizing the fact that the distribution of the eddy current changes due to the defect, the detection coil 15 detects a secondary magnetic field change due to the change in the eddy current distribution, so that the detector is detected from the detection signal of the detection coil 15. Reference numeral 13 detects a defect in the inspection object.

前記探傷プローブ11は、図1及び図2に示すように、円柱形状のケーシング19の外表面に、励磁コイル14を直線状に等間隔に配列して2列以上(本実施形態では2列)設置された励磁コイル列16A及び16Bと、検出コイル15を直線状に等間隔に配列し、前記ケーシング19の外表面で励磁コイル列16Aと16Bとの間に1列以上(本実施形態では2列)設置された検出コイル列17A及び17Bと、を有して構成される。   As shown in FIGS. 1 and 2, the flaw detection probe 11 has two or more rows (in this embodiment, two rows) in which excitation coils 14 are linearly arranged on the outer surface of a cylindrical casing 19 at equal intervals. The installed excitation coil rows 16A and 16B and the detection coil 15 are arranged in a straight line at equal intervals, and one or more rows (2 in the present embodiment) are arranged between the excitation coil rows 16A and 16B on the outer surface of the casing 19. The detection coil rows 17A and 17B are provided.

このうち、励磁コイル列16A及び16Bについては、奇数列目(本実施形態では1列目)の励磁コイル列16Aの各励磁コイル14の中心が、偶数列目(本実施形態では2列目)の励磁コイル列16Bの各励磁コイル14の中心に対し、励磁コイル列16A及び16Bの列方向において前記等間隔の1/2ずらした位置に位置づけられる。また、検出コイル列17A及び17Bについては、1列目の検出コイル列17Aの各検出コイル15の中心が、2列目の検出コイル列17Bの各検出コイル15の中心に対し、検出コイル列17A及び17Bの列方向において一致する位置に位置づけられる。更に、検出コイル列17A及び17Bは、励磁コイル列16A及び17Bに平行に設置されている。   Among these, for the excitation coil arrays 16A and 16B, the center of each excitation coil 14 of the excitation coil array 16A in the odd-numbered array (first array in the present embodiment) is the even-numbered array (second array in the present embodiment). With respect to the center of each excitation coil 14 of the excitation coil row 16B, the excitation coil rows 16A and 16B are positioned at positions shifted by ½ of the same interval in the row direction. Further, for the detection coil arrays 17A and 17B, the center of each detection coil 15 of the first detection coil array 17A is relative to the center of each detection coil 15 of the second detection coil array 17B. And 17B in the column direction. Furthermore, the detection coil arrays 17A and 17B are installed in parallel to the excitation coil arrays 16A and 17B.

図3に示す前記励磁器12は位相・振幅制御機構18を備える。この位相・振幅制御機構18は、励磁コイル列16A及び16Bのそれぞれの励磁コイル14と個別に接続され、各励磁コイル14へ任意の位相差及び任意の振幅の励磁電流(交流電流)を供給可能に構成される。更に、この位相・振幅制御機構18は、励磁コイル列16A及び16Bの励磁コイル14へ、位相差及び振幅の異なる複数種類の励磁電流を経時的に切り換えて供給可能とする。   The exciter 12 shown in FIG. 3 includes a phase / amplitude control mechanism 18. This phase / amplitude control mechanism 18 is individually connected to the respective excitation coils 14 of the excitation coil arrays 16A and 16B, and can supply an excitation current (alternating current) having an arbitrary phase difference and an arbitrary amplitude to each excitation coil 14. Configured. Further, the phase / amplitude control mechanism 18 can supply a plurality of types of excitation currents having different phase differences and amplitudes over time to the excitation coils 14 of the excitation coil arrays 16A and 16B.

例えば、位相・振幅制御機構18は、図5及び図6に示すように、1列目の励磁コイル列16Aにおいては、同一振幅で且つ位相差が異なる(例えば位相差0、位相差π)異なる種類の励磁電流を、隣接する励磁コイル14に、切り換えることなく連続して供給する。また、位相・振幅制御機構18は、2列目の励磁コイル列16Bにおいては、同一振幅で且つ位相差が異なる(例えば位相差0、位相差π)異なる種類の励磁電流を、隣接する励磁コイル14に経時的に切り換えて供給する。   For example, as shown in FIGS. 5 and 6, the phase / amplitude control mechanism 18 has the same amplitude and different phase differences (for example, phase difference 0, phase difference π) in the first excitation coil row 16A. Various types of exciting currents are continuously supplied to adjacent exciting coils 14 without switching. Further, the phase / amplitude control mechanism 18 is configured so that in the second excitation coil row 16B, different types of excitation currents having the same amplitude and different phase differences (for example, phase difference 0, phase difference π) are supplied to adjacent excitation coils. 14 to supply over time.

より具体的には、位相・振幅制御機構18は、1列目の励磁コイル列16Aにおいて互いに隣接する励磁コイル14A、14B、14C、14D、14E、14F、14G及び14Hと、2列目の励磁コイル列16Bにおいて互いに隣接する励磁コイル14I、14J、14K、14L、14M、14N、14O及び14Pへ、次のように励磁電流を供給する。   More specifically, the phase / amplitude control mechanism 18 includes the excitation coils 14A, 14B, 14C, 14D, 14E, 14F, 14G, and 14H adjacent to each other in the first excitation coil array 16A, and the excitation in the second column. In the coil row 16B, excitation currents are supplied to the excitation coils 14I, 14J, 14K, 14L, 14M, 14N, 14O, and 14P adjacent to each other as follows.

即ち、位相・振幅制御機構18は、1列目の励磁コイル列16Aにおいて一つ置きに配置された励磁コイル14A、14C、14E及び14Gへ、位相差πの励磁電流を連続して供給し、一つ置きに配置された励磁コイル14B、14D、14F及び14Hへ、位相差0の励磁電流を連続して供給する。   That is, the phase / amplitude control mechanism 18 continuously supplies an excitation current having a phase difference of π to the excitation coils 14A, 14C, 14E, and 14G that are alternately arranged in the first excitation coil row 16A. An excitation current having a phase difference of 0 is continuously supplied to every other excitation coil 14B, 14D, 14F, and 14H.

また、位相・振幅制御機構18は、2列目の励磁コイル列16Bにおいて一つ置きに配置された励磁コイル14I、14K、14M及び14Oと励磁コイル列14J、14L、14N及び14Pとへ、位相差0の励磁電流と位相差πの励磁電流とを経時的に交互に切り換えて供給する。この場合、全ての励磁コイル14A〜14Pへ供給される励磁電流の振幅は、略同一値である。 Further, the phase / amplitude control mechanism 18 is moved to the excitation coils 14I, 14K, 14M and 14O and the excitation coil arrays 14J, 14L, 14N and 14P which are arranged alternately in the second excitation coil array 16B. An excitation current having a phase difference of 0 and an excitation current having a phase difference of π are alternately switched over time. In this case, the amplitudes of the excitation currents supplied to all the excitation coils 14A to 14P are substantially the same value.

このような励磁電流が励磁器12の位相・振幅制御機構18から、隣り合う励磁コイル列16Aと16Bのそれぞれの励磁コイル14へ供給されることによって、これらの励磁コイル列16Aと16Bのそれぞれの励磁コイル14付近において被検査体に流れる渦電流は、隣り合う励磁コイル列16Aと16Bにおいて、位相差の異なる励磁電流が流れる励磁コイル14間(図5及び図6の斜線領域)で強め合い、位相差の同一な励磁電流が流れる励磁コイル14間(図5及び図6の網掛け領域)で弱め合う。この結果、隣り合う励磁コイル列16Aと16Bにおいて、位相差の異なる励磁電流が流れる励磁コイル14を橋渡しするような渦電流α(図5の実線表示)、渦電流β(図6の実線表示)が被検査体に、励磁コイル列16A、16Bの列方向に対し傾斜して流れる。   Such an excitation current is supplied from the phase / amplitude control mechanism 18 of the exciter 12 to the respective excitation coils 14 of the adjacent excitation coil arrays 16A and 16B, whereby each of the excitation coil arrays 16A and 16B. The eddy currents flowing in the object to be inspected in the vicinity of the excitation coil 14 are strengthened between the excitation coils 14 in which the excitation currents having different phase differences flow in the adjacent excitation coil arrays 16A and 16B (shaded areas in FIGS. 5 and 6). It weakens between the exciting coils 14 in which exciting currents having the same phase difference flow (shaded areas in FIGS. 5 and 6). As a result, eddy currents α (shown by solid lines in FIG. 5) and eddy currents β (shown by solid lines in FIG. 6) that bridge excitation coils 14 through which exciting currents having different phase differences flow in adjacent exciting coil arrays 16A and 16B. Flows through the object to be inspected with an inclination with respect to the direction of the excitation coil rows 16A and 16B.

これらの渦電流α、βは、励磁コイル列16A、16Bの列方向に対し異なる傾斜角、即ち励磁コイル列16A、16Bの列方向に対する直角方向に対し線対称な向きの渦電流である。そして、これらの渦電流α、βは、励磁コイル列16Bにおいて励磁コイル14I、14K、14M、14Oと、励磁コイル14J、14L、14N、14Pとに、位相差0の励磁電流と位相差πの励磁電流とが経時的に交互に切り換えられて供給されることにより交互に生じるものである。   These eddy currents α and β are eddy currents having different inclination angles with respect to the column direction of the excitation coil arrays 16A and 16B, that is, symmetric currents with respect to a direction perpendicular to the column direction of the excitation coil arrays 16A and 16B. These eddy currents α and β are applied to the exciting coils 14I, 14K, 14M, and 14O and the exciting coils 14J, 14L, 14N, and 14P in the exciting coil array 16B. The excitation current and the alternating current are alternately generated by being switched over time.

更に、これらの渦電流α、βの少なくとも一つは、被検査体に発生した管軸方向欠陥1、管周方向欠陥2に対して略同一の角度で交差する。また、渦電流αが斜め方向欠陥3に交差する角度と、渦電流βが斜め方向欠陥4に交差する角度は略同一であり、かつ渦電流α、βが管軸方向欠陥1や管周方向欠陥2に交差する角度よりも直角に近い角度で交差する。したがって、感度の関係は、(渦電流α、βの管軸方向欠陥1に対する感度)≒(渦電流α、βの管周方向欠陥2に対する感度)<(渦電流αの斜め方向欠陥3に対する感度)≒(渦電流βの斜め方向欠陥4に対する感度)となる。   Furthermore, at least one of these eddy currents α and β intersects the tube axis direction defect 1 and the tube circumferential direction defect 2 generated in the inspection object at substantially the same angle. In addition, the angle at which the eddy current α intersects the oblique defect 3 and the angle at which the eddy current β intersects the oblique defect 4 are substantially the same, and the eddy currents α and β are in the tube axis direction defect 1 and the tube circumferential direction. It intersects at an angle closer to a right angle than the angle intersecting the defect 2. Therefore, the relationship of sensitivity is (sensitivity of the eddy currents α and β to the tube axis direction defect 1) ≈ (sensitivity of the eddy currents α and β to the tube circumferential defect 2) <(sensitivity of the eddy current α to the oblique direction defect 3). ) ≈ (sensitivity of the eddy current β to the oblique defect 4).

図4に示すように、前記検出器13は位相検波機構20及びスイッチング機構21を備え、スイッチング機構21を介して位相検波機構20が全ての検出コイル15に接続される。スイッチング機構21は、隣り合う励磁コイル列16A、16Bのそれぞれの励磁コイル14間で、励磁コイル列16A、16Bの列方向に対し傾斜して流れる渦電流α、βに対応する領域の検出コイル15を、検出信号を取得すべき検出コイル15として経時的に選択する。これにより、位相検波機構20は、スイッチング機構21にて選択された検出コイル15から検出信号を取得し、検出コイル列17A及び17Bの全ての検出コイル15から検出信号を取得する。   As shown in FIG. 4, the detector 13 includes a phase detection mechanism 20 and a switching mechanism 21, and the phase detection mechanism 20 is connected to all the detection coils 15 via the switching mechanism 21. The switching mechanism 21 includes a detection coil 15 in a region corresponding to the eddy currents α and β flowing between the excitation coils 14 of the adjacent excitation coil rows 16A and 16B in an inclined manner with respect to the row direction of the excitation coil rows 16A and 16B. Is selected over time as the detection coil 15 from which a detection signal is to be acquired. Thereby, the phase detection mechanism 20 acquires a detection signal from the detection coil 15 selected by the switching mechanism 21, and acquires a detection signal from all the detection coils 15 of the detection coil rows 17A and 17B.

更に、位相検波機構20は、位相差が異なる複数種類の励磁電流(位相差πの励磁電流と位相差0の励磁電流)の信号を合成した合成信号を参照信号とし、この参照信号に基づき、検出コイル15からの検出信号を検波して被検査体の欠陥を検出する。   Further, the phase detection mechanism 20 uses, as a reference signal, a synthesized signal obtained by synthesizing signals of a plurality of types of excitation currents having different phase differences (excitation current having a phase difference of π and excitation current having a phase difference of 0). A detection signal from the detection coil 15 is detected to detect a defect in the inspection object.

以上のように構成されたことから、本実施形態によれば、次の効果(1)を奏する。
(1)励磁器12が供給する励磁電流によって、探傷プローブ11における隣り合う励磁コイル列16A、16Bのそれぞれの励磁コイル14間で被検査体に、線対称な向きの渦電流α、βが交互に切り換えられながら流れる。これらの渦電流α、βが、被検査体に発生した管軸方向欠陥1、管周方向欠陥2に対して略同一の角度で交差し、更に、渦電流αが斜め方向欠陥3に対して、渦電流βが斜め方向欠陥4に対して略直角に交差することから、様々な方向の欠陥を高感度に検出できる。この結果、欠陥の方向に依存した欠陥の検出感度の低下を抑制できると共に、欠陥を高感度に検出できる。
With the configuration as described above, according to the present embodiment, the following effect (1) is obtained.
(1) By the excitation current supplied by the exciter 12, eddy currents α and β in the direction of line symmetry are alternately applied to the object to be inspected between the excitation coils 14 of the adjacent excitation coil arrays 16A and 16B in the flaw detection probe 11. It flows while being switched to. These eddy currents α and β intersect with the tube axis direction defect 1 and the tube circumferential direction defect 2 generated in the object to be inspected at substantially the same angle, and the eddy current α with respect to the oblique direction defect 3. Since the eddy current β intersects the oblique direction defect 4 at a substantially right angle, defects in various directions can be detected with high sensitivity. As a result, it is possible to suppress a decrease in defect detection sensitivity depending on the defect direction, and to detect defects with high sensitivity.

[B]第2実施形態(図7、図8)
図7は、本発明に係る渦電流探傷装置の第2実施形態における探傷プローブの励磁コイル列及び検出コイル列を展開して示す展開図である。図8は、図7の探傷プローブの励磁コイルへ励磁電流を供給する励磁系統を示すシステム構成図である。この第2実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIGS. 7 and 8)
FIG. 7 is a developed view showing an excitation coil array and a detection coil array of the flaw detection probe in the second embodiment of the eddy current flaw detection apparatus according to the present invention. FIG. 8 is a system configuration diagram showing an excitation system for supplying an excitation current to the excitation coil of the flaw detection probe of FIG. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施形態の渦電流探傷装置30が前記第1実施形態と異なる点は、探傷プローブ31の励磁コイル列32A、32Bにおける直線状に配列された隣接する励磁コイル33の巻線方向が互いに反転されると共に、これらの励磁コイル33が直列に接続されて励磁器35に接続された点である。   The eddy current flaw detector 30 of the present embodiment is different from the first embodiment in that the winding directions of adjacent exciting coils 33 arranged in a straight line in the exciting coil rows 32A and 32B of the flaw detecting probe 31 are reversed. In addition, these exciting coils 33 are connected in series and connected to the exciter 35.

尚、本第2実施形態における探傷プローブ31の励磁コイル33の空間的配置、検出コイル15の空間的配置及び巻き線方向、並びに検出器13の構成は前記第1実施形態と同様である。   Note that the spatial arrangement of the excitation coil 33 of the flaw detection probe 31, the spatial arrangement and winding direction of the detection coil 15, and the configuration of the detector 13 in the second embodiment are the same as those in the first embodiment.

本第2実施形態の励磁コイル列32Aでは、図7に示すように、互いに隣接する励磁コイル33A、33B、33C、33D、33E、33F、33G及び33Hのうち、一つ置きに配置された励磁コイル33B、33D、33F及び33Hが順巻きに、一つ置きに配置された励磁コイル33A、33C、33E及び33Gが逆巻きに構成される。また、励磁コイル列32Bでは、互いに隣接する励磁コイル33I、33J、33K、33L、33M、33N、33O及び33Pのうち、一つ置きに配置された励磁コイル33I、33K、33M及び33Oが順巻きに、一つ置きに配置された励磁コイル33J、33L、33N及び33Pが逆巻きに構成されている。   In the excitation coil row 32A of the second embodiment, as shown in FIG. 7, the excitation coils arranged every other one of the excitation coils 33A, 33B, 33C, 33D, 33E, 33F, 33G, and 33H adjacent to each other. The coils 33B, 33D, 33F, and 33H are configured to be forward wound, and the excitation coils 33A, 33C, 33E, and 33G that are disposed alternately are configured to be reverse wound. Further, in the exciting coil row 32B, the exciting coils 33I, 33K, 33M and 33O arranged alternately are sequentially wound among the exciting coils 33I, 33J, 33K, 33L, 33M, 33N, 33O and 33P adjacent to each other. In addition, the excitation coils 33J, 33L, 33N, and 33P arranged every other are configured in a reverse winding.

そして、図8に示すように、励磁コイル列32Aの励磁コイル33A〜Hが直列接続されて励磁器35の位相・振幅制御機構36に接続され、更に、励磁コイル列32Bの励磁コイル33I〜33Pが直列に接続されて励磁器35の位相・振幅制御機構36に接続される。   As shown in FIG. 8, the excitation coils 33A to 33H of the excitation coil array 32A are connected in series and connected to the phase / amplitude control mechanism 36 of the exciter 35, and further the excitation coils 33I to 33P of the excitation coil array 32B. Are connected in series and connected to the phase / amplitude control mechanism 36 of the exciter 35.

従って、位相・振幅制御機構36から励磁コイル列32A、32Bの励磁コイル33へ励磁電流が供給されたとき、順巻きの励磁コイル33と逆巻きの励磁コイル33との間で位相差がπの励磁電流が流れることになる。このため、励磁コイル列33Aと33Bへ供給する励磁電流を同一向きまたは逆向きに切り換えることで、前記第1実施形態の場合と同様に、隣り合う励磁コイル列32A、32Bのそれぞれの励磁コイル33間で被検査体に、渦電流α、βが交互に切り換えられて流れることになる。   Accordingly, when an excitation current is supplied from the phase / amplitude control mechanism 36 to the excitation coils 33 of the excitation coil arrays 32A and 32B, an excitation having a phase difference of π between the forward winding excitation coil 33 and the reverse winding excitation coil 33. Current will flow. For this reason, by switching the excitation current supplied to the excitation coil arrays 33A and 33B in the same direction or in the opposite direction, the excitation coils 33 in the adjacent excitation coil arrays 32A and 32B, respectively, as in the case of the first embodiment. In the meantime, the eddy currents α and β are alternately switched to flow through the object to be inspected.

この結果、本実施形態においても、前記第1実施形態の場合と同様な効果(1)を奏するほか、次の効果(2)を奏する。
(2)励磁コイル列32Aと32Bのそれぞれの励磁コイル33が直列に接続されて励磁器35の位相・振幅制御機構36に接続されたことから、結線数が減少し、渦電流探傷装置30の製作性を向上させることができる。
As a result, also in this embodiment, in addition to the same effect (1) as in the first embodiment, the following effect (2) is obtained.
(2) Since the exciting coils 33 of the exciting coil arrays 32A and 32B are connected in series and connected to the phase / amplitude control mechanism 36 of the exciter 35, the number of connections is reduced, and the eddy current flaw detector 30 Manufacturability can be improved.

以上実施形態について説明してきたが、本発明は、上述のような実施形態の具体的構成に限定されるものではなく、本発明の主旨を逸脱しない範囲で種々変形することができる。   Although the embodiment has been described above, the present invention is not limited to the specific configuration of the embodiment as described above, and various modifications can be made without departing from the gist of the present invention.

例えば、励磁コイル列は、2列の励磁コイル列16A、16Bに限らず、図9に示すように、3列の励磁コイル列16A、16B及び16Cであってもよい。更に、励磁コイル列16Aのそれぞれの励磁コイル14の中心は、励磁コイル16Bのそれぞれの励磁コイル14の中心に対し、励磁コイル列16A及び16Bの列方向において一致した位置に位置づけられてもよい。   For example, the excitation coil arrays are not limited to the two excitation coil arrays 16A and 16B, but may be three excitation coil arrays 16A, 16B, and 16C as shown in FIG. Furthermore, the center of each excitation coil 14 of the excitation coil row 16A may be positioned at a position coincident with the center of each excitation coil 14 of the excitation coil 16B in the row direction of the excitation coil rows 16A and 16B.

また、第1実施形態において、励磁器12の位相・振幅制御機構18から探傷プローブ11の励磁コイル列16A、16Bにおける隣接する励磁コイル14のそれぞれに、位相差0の励磁電流と位相差πの励磁電流ではなく、位相差−π/2の励磁電流と位相差π/2の励磁電流を供給してもよく、または、位相差がπ/2刻みで異なる励磁電流を供給してもよい。   Further, in the first embodiment, an excitation current having a phase difference of 0 and a phase difference of π are supplied from the phase / amplitude control mechanism 18 of the exciter 12 to each of the adjacent excitation coils 14 in the excitation coil arrays 16A and 16B of the flaw detection probe 11. Instead of the excitation current, an excitation current having a phase difference of −π / 2 and an excitation current having a phase difference of π / 2 may be supplied, or excitation currents having different phase differences in steps of π / 2 may be supplied.

また、第1実施形態において、励磁器12の位相・振幅制御機構18から探傷プローブ11の励磁コイル列16A、16Bの励磁コイル14へ供給する励磁電流の振幅値が同一の場合を述べたが、励磁コイル14毎に異なった振幅値の励磁電流を供給してもよい。   In the first embodiment, the case where the amplitude value of the excitation current supplied from the phase / amplitude control mechanism 18 of the exciter 12 to the excitation coil 14 of the flaw detection probe 11 is the same is described. Excitation currents having different amplitude values may be supplied for each excitation coil 14.

更に、第1及び第2実施形態の探傷プローブ11、31は、原子力プラントにおける蒸気発生器の伝熱管などの小口径配管に挿入されるものを述べたが、図10に示す探傷プローブ41のように、原子力プラントにおける原子炉管台や原子炉圧力容器の炉底部などのような金属構造材の表面上を走査するものでもよい。この探傷プローブ41では、平板または直方体形状のケーシング42の表面に、複数の励磁コイル14が配列された2列以上、例えば2列の励磁コイル列16A、16Bと、この励磁コイル列16A、16B間に、複数の検出コイル15が配列された1列以上、例えば2列の検出コイル17A、17Bとが設置されている。   Furthermore, although the flaw detection probes 11 and 31 of the first and second embodiments have been described as being inserted into a small-diameter pipe such as a heat transfer tube of a steam generator in a nuclear power plant, like the flaw detection probe 41 shown in FIG. Further, it may be possible to scan the surface of a metal structure material such as a reactor nozzle in a nuclear power plant or a reactor bottom of a reactor pressure vessel. In this flaw detection probe 41, two or more rows, for example, two rows of exciting coil rows 16A and 16B in which a plurality of exciting coils 14 are arranged on the surface of a flat plate or rectangular parallelepiped casing 42, and between the exciting coil rows 16A and 16B. In addition, one or more rows, for example, two rows of detection coils 17A and 17B in which a plurality of detection coils 15 are arranged are installed.

1 管軸方向欠陥
2 管周方向欠陥
3、4 斜め方向欠陥
10 渦電流探傷装置
11 探傷プローブ
12 励磁器
13 検出器
14 励磁コイル
15 検出コイル
16A、16B 励磁コイル列
17A、17B 検出コイル列
30 渦電流探傷装置
31 探傷プローブ
32A、32B 励磁コイル列
33 励磁コイル
35 励磁器
α、β 渦電流
DESCRIPTION OF SYMBOLS 1 Tube axial direction defect 2 Pipe circumferential direction defect 3, 4 Diagonal direction defect 10 Eddy current flaw detector 11 Flaw detection probe 12 Exciter 13 Detector 14 Excitation coil 15 Detection coil 16A, 16B Excitation coil sequence 17A, 17B Detection coil sequence 30 Eddy Current flaw detector 31 Flaw detection probe 32A, 32B Exciting coil array 33 Exciting coil 35 Exciter α, β Eddy current

Claims (8)

複数の励磁コイル及び検出コイルを備え被検査体の表面を走査可能な探傷プローブと、
前記励磁コイルへ励磁電流を供給する励磁器と、
前記検出コイルから検出信号を取得して前記被検査体の欠陥を検出する検出器と、を有する渦電流探傷装置であって、
前記探傷プローブは、前記励磁コイルを直線状に配列した励磁コイル列が2列以上設置され、前記検出コイルを直線状に配列した1列以上の検出コイル列が、前記励磁コイル列間に設置されてなり、
前記励磁器が供給する励磁電流によって、隣り合う前記励磁コイル列のそれぞれの前記励磁コイル間で前記被検査体に、前記励磁コイル列に対し傾斜して渦電流が流れると共に、この渦電流の向きが異なる傾斜角に交互に切り換えられ、この切り換えられた状態で前記検出コイル及び前記検出器により、前記被検査体の欠陥が検出されるよう構成されたことを特徴とする渦電流探傷装置。
A flaw detection probe comprising a plurality of excitation coils and detection coils and capable of scanning the surface of the object to be inspected;
An exciter for supplying an exciting current to the exciting coil;
An eddy current flaw detector having a detector for acquiring a detection signal from the detection coil and detecting a defect of the inspection object,
In the flaw detection probe, two or more excitation coil arrays in which the excitation coils are linearly arranged are installed, and one or more detection coil arrays in which the detection coils are linearly arranged are installed between the excitation coil arrays. And
The excitation current supplied by the exciter causes an eddy current to flow between the excitation coils of the adjacent excitation coil arrays in an inclined manner with respect to the excitation coil array, and the direction of the eddy current. Are alternately switched to different inclination angles, and in this switched state, the detection coil and the detector are configured to detect defects in the object to be inspected.
前記励磁コイル列は、奇数列目の励磁コイル列における各励磁コイルの中心が、偶数列目の励磁コイル列における各励磁コイルの中心に対し、前記励磁コイル列の列方向においてずらした位置に位置づけられて構成されたことを特徴とする請求項1に記載の渦電流探傷装置。 The excitation coil array is positioned at a position where the center of each excitation coil in the odd-number excitation coil array is shifted in the array direction of the excitation coil array with respect to the center of each excitation coil in the even-number excitation coil array. The eddy current flaw detector according to claim 1, wherein the eddy current flaw detector is configured. 前記励磁器は、励磁コイル列のそれぞれの励磁コイルへ任意の位相差の励磁電流を供給可能に構成されたことを特徴とする請求項1または2に記載の渦電流探傷装置。 3. The eddy current flaw detector according to claim 1, wherein the exciter is configured to be able to supply an excitation current having an arbitrary phase difference to each excitation coil of the excitation coil array. 前記励磁器は、励磁コイル列の励磁コイルへ、位相差の異なる複数種類の励磁電流を経時的に切り換えて供給可能に構成されたことを特徴とする請求項1乃至3のいずれか1項に記載の渦電流探傷装置。 4. The apparatus according to claim 1, wherein the exciter is configured to be able to switch and supply a plurality of types of excitation currents having different phase differences over time to the excitation coils of the excitation coil array. The eddy current flaw detector described. 前記検出器は、位相差が異なる励磁電流の信号を合成した合成信号を参照信号とし、この参照信号に基づき、検出コイルからの検出信号を検波して欠陥を検出するよう構成されたことを特徴とする請求項4に記載の渦電流探傷装置。 The detector is configured to detect a defect by detecting a detection signal from a detection coil based on a synthesized signal obtained by synthesizing excitation current signals having different phase differences based on the reference signal. The eddy current flaw detector according to claim 4. 前記検出器は、隣り合う励磁コイル列のそれぞれの励磁コイル間で、前記励磁コイル列に対し傾斜して流れる渦電流に対応して、検出信号を検出すべき検出コイルを選択し、この選択した検出コイルから検出信号を取得するよう構成されたことを特徴とする請求項1乃至5のいずれか1項に記載の渦電流探傷装置。 The detector selects a detection coil for detecting a detection signal corresponding to an eddy current flowing in an inclined manner with respect to the excitation coil array between the respective excitation coils of the adjacent excitation coil arrays. The eddy current flaw detector according to any one of claims 1 to 5, wherein a detection signal is obtained from a detection coil. 前記励磁コイル列は、直線状に配列された隣接する励磁コイルの巻き線方向が互いに反転されると共に、これらの励磁コイルが直列に接続されて励磁器に接続されたことを特徴とする請求項1、2及び6項のいずれか1項に記載の渦電流探傷装置。 The exciting coil array is characterized in that the winding directions of adjacent exciting coils arranged in a straight line are reversed with each other, and these exciting coils are connected in series and connected to an exciter. The eddy current flaw detector according to any one of items 1, 2, and 6. 励磁コイルを直線状に配列して2列以上設置された励磁コイル列と、検出コイルを直線状に配列し、前記励磁コイル列間に1列以上設置された検出コイル列とを備え、被検査体の表面を走査する探傷プローブを用意し、
隣り合う前記励磁コイル列のそれぞれの前記励磁コイル間で前記被検査体に、前記励磁コイル列に対し傾斜する渦電流を流し、この渦電流の向きを異なる傾斜角に交互に切り換えながら、前記検出コイルにより前記被検査体の欠陥を検出することを特徴とする渦電流探傷方法。
An excitation coil array in which two or more excitation coils are arranged in a straight line and a detection coil array in which one or more detection coils are arranged in a straight line between the excitation coil arrays Prepare a flaw detection probe that scans the surface of the body,
An eddy current that is inclined with respect to the excitation coil array is passed between the excitation coils of the adjacent excitation coil arrays, and the detection is performed by alternately switching the direction of the eddy current to different inclination angles. An eddy current flaw detection method characterized by detecting a defect of the inspection object by a coil.
JP2012115415A 2012-05-21 2012-05-21 Eddy current flaw detection apparatus and method Active JP5959306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115415A JP5959306B2 (en) 2012-05-21 2012-05-21 Eddy current flaw detection apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115415A JP5959306B2 (en) 2012-05-21 2012-05-21 Eddy current flaw detection apparatus and method

Publications (2)

Publication Number Publication Date
JP2013242223A true JP2013242223A (en) 2013-12-05
JP5959306B2 JP5959306B2 (en) 2016-08-02

Family

ID=49843236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115415A Active JP5959306B2 (en) 2012-05-21 2012-05-21 Eddy current flaw detection apparatus and method

Country Status (1)

Country Link
JP (1) JP5959306B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081815A (en) * 2013-10-22 2015-04-27 三菱重工業株式会社 Eddy current flaw detection probe and eddy current flaw detection method
JP2016224010A (en) * 2015-06-03 2016-12-28 日立Geニュークリア・エナジー株式会社 Eddy current inspection device
JP2018066671A (en) * 2016-10-20 2018-04-26 日立Geニュークリア・エナジー株式会社 Eddy current flaw detection system and eddy current flaw detection method
JP2019138871A (en) * 2018-02-15 2019-08-22 株式会社東芝 Eddy-current flaw detection device and eddy-current flaw detection method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235019A (en) * 1999-02-12 2000-08-29 Genshiryoku Engineering:Kk Eddy-current flaw detecting probe
JP2006226884A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Eddy current flaw detection probe and eddy current flaw detection system
JP2007263930A (en) * 2006-03-30 2007-10-11 Mitsubishi Heavy Ind Ltd Eddy current flaw detector
JP2009074943A (en) * 2007-09-20 2009-04-09 Nuclear Engineering Ltd Eddy current flaw detection method, eddy current flaw detector and eddy current flaw detection probe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235019A (en) * 1999-02-12 2000-08-29 Genshiryoku Engineering:Kk Eddy-current flaw detecting probe
JP2006226884A (en) * 2005-02-18 2006-08-31 Hitachi Ltd Eddy current flaw detection probe and eddy current flaw detection system
JP2007263930A (en) * 2006-03-30 2007-10-11 Mitsubishi Heavy Ind Ltd Eddy current flaw detector
JP2009074943A (en) * 2007-09-20 2009-04-09 Nuclear Engineering Ltd Eddy current flaw detection method, eddy current flaw detector and eddy current flaw detection probe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015081815A (en) * 2013-10-22 2015-04-27 三菱重工業株式会社 Eddy current flaw detection probe and eddy current flaw detection method
US9903838B2 (en) 2013-10-22 2018-02-27 Mitsubishi Heavy Industries, Ltd. Eddy current testing probe and eddy current testing method
JP2016224010A (en) * 2015-06-03 2016-12-28 日立Geニュークリア・エナジー株式会社 Eddy current inspection device
JP2018066671A (en) * 2016-10-20 2018-04-26 日立Geニュークリア・エナジー株式会社 Eddy current flaw detection system and eddy current flaw detection method
JP2019138871A (en) * 2018-02-15 2019-08-22 株式会社東芝 Eddy-current flaw detection device and eddy-current flaw detection method

Also Published As

Publication number Publication date
JP5959306B2 (en) 2016-08-02

Similar Documents

Publication Publication Date Title
KR101450842B1 (en) Eddy-current flaw detecting method, eddy-current flaw detecting device, and eddy-current flaw detecting probe
JP5922633B2 (en) Eddy current flaw detection probe and eddy current flaw detection method
JP5959306B2 (en) Eddy current flaw detection apparatus and method
US10823702B2 (en) Built-in S-typed array eddy current testing probe and method for detecting defects of tubular structure
JP2006226884A (en) Eddy current flaw detection probe and eddy current flaw detection system
JP2018522245A (en) Drive coil for eddy current flaw detection probe
KR101941354B1 (en) Array eddy current probe with isolated transmit/receive part and eddy current inspection method using thereof
US7948233B2 (en) Omnidirectional eddy current array probes and methods of use
JP6934054B2 (en) Phased array flaw detectors and methods
KR101966168B1 (en) Eddy Current Inspection Apparatus for Nondestructive Test
JP2012173121A (en) Eddy current-utilizing flaw detection testing apparatus and testing method of the same
JP5140214B2 (en) Rotating eddy current flaw detection probe
JP6879969B2 (en) Eddy current flaw detection probe
KR102140170B1 (en) Probe for nondestructive testing device using crossed gradient induction current and method for manufacturing induction coil for nondestructive testing device
JP6062158B2 (en) Eddy current flaw detection apparatus and method
JP2011033510A (en) Eddy current flaw detection probe
KR102265354B1 (en) annular array eddy currentprobe non-destructive inspection device equipped with magnetic lenses
JP6751645B2 (en) Eddy current flaw detection system and eddy current flaw detection method
JP5911749B2 (en) Eddy current flaw testing apparatus and method
JP2010038914A (en) Remote field eddy current flaw detecting probe
JP2016024169A (en) Eddy current flaw detection probe
JP6979774B2 (en) Eddy current flaw detector and eddy current flaw detector method
WO2018168480A1 (en) Eddy current flaw detecting probe
KR20200030327A (en) Eddy current probe having tilted coils
JP4901917B2 (en) Magnetic measurement device, nondestructive inspection device, and method of arranging detection coil of magnetic sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R151 Written notification of patent or utility model registration

Ref document number: 5959306

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151