JP2013238163A - Exhaust gas purification device - Google Patents

Exhaust gas purification device Download PDF

Info

Publication number
JP2013238163A
JP2013238163A JP2012111456A JP2012111456A JP2013238163A JP 2013238163 A JP2013238163 A JP 2013238163A JP 2012111456 A JP2012111456 A JP 2012111456A JP 2012111456 A JP2012111456 A JP 2012111456A JP 2013238163 A JP2013238163 A JP 2013238163A
Authority
JP
Japan
Prior art keywords
purification
exhaust gas
purification unit
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012111456A
Other languages
Japanese (ja)
Inventor
Naohiro Sato
尚宏 佐藤
Masashi Sakota
昌史 迫田
Hideki Matsunaga
英樹 松永
Yuji Yasui
裕司 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012111456A priority Critical patent/JP2013238163A/en
Publication of JP2013238163A publication Critical patent/JP2013238163A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PROBLEM TO BE SOLVED: To provide an exhaust gas purification device capable of efficiently purifying exhaust gas during transient time of switching from lean operation to stoichiometric operation.SOLUTION: An exhaust gas purification device is provided in an exhaust passage 2 of an engine 1 in which a lean operation mode for making an air-fuel ratio of an air-fuel mixture lean and a stoichiometric operation mode for making an air-fuel ratio of an air-fuel mixture stoichiometric are switched by a predetermined condition, and is provided with a first purification part 11 provided with an oxidation catalyst having a ternary purification function, a second purification part 12 provided at a downstream side of the first purification part 11 to collect soot in exhaust gas, and a third purification part 13 provided at a downstream side of the second purification part 12 to selectively reduce NOx in exhaust gas under presence of NH. The first purification part 11 does not include an oxygen occlusion-release material, and the second purification part 12 is a filter coated with an oxidation catalyst and includes an oxygen occlusion-release material.

Description

本発明は、内燃機関の排ガス浄化装置に関する。より詳しくは、NHの存在下でNOxを還元する選択還元触媒を備えた排ガス浄化装置に関する。 The present invention relates to an exhaust gas purification apparatus for an internal combustion engine. More specifically, the present invention relates to an exhaust gas purification apparatus including a selective reduction catalyst that reduces NOx in the presence of NH 3 .

内燃機関の排ガス浄化装置は、機関の排ガスに含まれるHC(炭化水素)、CO(一酸化炭素)、及びNOx(窒素酸化物)を浄化する。排気浄化システムは、排気通路に設けられた様々な種類の触媒における反応を利用して排ガス中の上記三元成分を浄化するものが主流となっている。排ガスを浄化する触媒には、酸化触媒(DOC(Diesel Oxidation Catalyst))、三元触媒(TWC(Three-Way Catalyst))、NOx吸蔵還元型触媒(NSC(NOx Storage Catalyst))、及び選択還元触媒(SCR触媒(Selective Catalytic Reduction Catalyst))等、機能が異なる様々な触媒が提案されている。   An exhaust gas purification device for an internal combustion engine purifies HC (hydrocarbon), CO (carbon monoxide), and NOx (nitrogen oxide) contained in the exhaust gas of the engine. The exhaust purification system mainly purifies the ternary component in the exhaust gas by utilizing reactions in various types of catalysts provided in the exhaust passage. Catalysts for purifying exhaust gas include oxidation catalyst (DOC (Diesel Oxidation Catalyst)), three-way catalyst (TWC (Three-Way Catalyst)), NOx storage reduction catalyst (NSC (NOx Storage Catalyst)), and selective reduction catalyst. Various catalysts having different functions such as (SCR catalyst (Selective Catalytic Reduction Catalyst)) have been proposed.

酸化触媒は、混合気の空燃比をリーンとし酸素を多く含んだ排ガス(リーン空燃比の排ガス)下でHC及びCOの酸化反応を進行させることで、HC及びCOを浄化する酸化機能を有する。内燃機関で通常用いられる酸化触媒は、Pt,Pd,Rhから選ばれる貴金属の少なくとも1種類以上を含み、混合気の空燃比をストイキとした排ガス(ストイキ空燃比の排ガス)下ではHC及びCOの酸化反応とNOxの還元反応とが同時に高効率で進行する三元浄化機能も備える。また上記酸化触媒に酸素吸蔵放出材(OSC材)を付加して構成される三元触媒は、上記酸化触媒と比較して、三元浄化ウィンドウ、即ち三元浄化機能を発揮する空燃比幅が広くなっている。   The oxidation catalyst has an oxidation function of purifying HC and CO by advancing the oxidation reaction of HC and CO under an exhaust gas containing lean air / fuel ratio of the air-fuel mixture (exhaust gas having a lean air / fuel ratio). An oxidation catalyst usually used in an internal combustion engine contains at least one or more kinds of noble metals selected from Pt, Pd, and Rh. Under exhaust gas (stoichi air-fuel ratio exhaust gas) with the air-fuel ratio of the mixture as stoichiometric, HC and CO It also has a three-way purification function in which the oxidation reaction and the NOx reduction reaction proceed simultaneously with high efficiency. In addition, the three-way catalyst configured by adding an oxygen storage / release material (OSC material) to the oxidation catalyst has a three-way purification window, that is, an air-fuel ratio width that exhibits a three-way purification function, compared to the oxidation catalyst. It is getting wider.

選択還元触媒は、NHの存在下でNOxを還元する。NOx吸蔵還元型触媒は、リーン空燃比の排ガス下で排ガス中のNOxを吸蔵しておき、ストイキ又はストイキよりリッチ空燃比の排ガス下で吸蔵しておいたNOxを還元剤によって還元する。リーン燃焼式のガソリンエンジンやディーゼルエンジン等、リーン燃焼を基本とした機関の排ガス浄化装置は、リーン空燃比の排ガス下でのNOx浄化性能を確保するために、これら選択還元触媒やNOx吸蔵還元型触媒等のDeNOx触媒と呼称される触媒を、上述のような酸化触媒や三元触媒と組み合わせて用いる場合が多い。 The selective reduction catalyst reduces NOx in the presence of NH 3 . The NOx occlusion reduction type catalyst stores NOx in the exhaust gas under a lean air-fuel ratio exhaust gas, and reduces the NOx occluded under a stoichiometric or rich air-fuel ratio exhaust gas with a reducing agent. Exhaust gas purifiers for engines based on lean combustion, such as lean-burn gasoline engines and diesel engines, are used for these selective reduction catalysts and NOx occlusion reduction type to ensure NOx purification performance under lean air-fuel ratio exhaust gas. A catalyst called a DeNOx catalyst such as a catalyst is often used in combination with the above-described oxidation catalyst or three-way catalyst.

しかしながら、NOx排出量が多くなる加速運転時には、選択還元触媒やNOx吸蔵還元型触媒のみでは十分にNOxを浄化しきれなくなる場合がある。そこで、特許文献1に開示されているシステムのように、加速運転時には選択還元触媒の上流側に設けられた三元触媒における三元浄化反応を利用してNOxを浄化することが考えられる。特許文献2の排気浄化システムでは、NOx吸蔵還元型触媒の上流側に三元触媒を設けたシステムにおいて、加速運転時には三元触媒における三元浄化反応を利用すべく、混合気の空燃比をリーン側からストイキに切り替える。   However, during acceleration operation in which the amount of NOx emissions increases, NOx may not be sufficiently purified with only the selective reduction catalyst or the NOx storage reduction catalyst. Therefore, as in the system disclosed in Patent Document 1, it is conceivable to purify NOx using a three-way purification reaction in a three-way catalyst provided upstream of the selective reduction catalyst during acceleration operation. In the exhaust purification system of Patent Document 2, in a system in which a three-way catalyst is provided on the upstream side of the NOx storage reduction catalyst, the air-fuel ratio of the air-fuel mixture is made lean to use the three-way purification reaction in the three-way catalyst during acceleration operation. Switch from side to stoichiometric.

特開2009−293585号公報JP 2009-293585 A

上述のように、三元触媒と呼称されている触媒は、その三元浄化ウィンドウを広げるために酸素吸蔵放出材が添加されている。したがって、特許文献1の排ガス浄化装置では、空燃比をリーン側からストイキへの切り替えたとき、リーン運転時に酸素吸蔵放出材に吸蔵されていた酸素によって、三元触媒内部の雰囲気の切り替えが遅延するおそれがある。このため、空燃比をリーン側からストイキに切り替えてから、触媒内部が実際にストイキ雰囲気なり、三元浄化機能を発揮できるようになるまでに時間がかかってしまう。   As described above, an oxygen storage / release material is added to a catalyst called a three-way catalyst in order to widen the three-way purification window. Therefore, in the exhaust gas purifying apparatus of Patent Document 1, when the air-fuel ratio is switched from lean to stoichiometric, the switching of the atmosphere inside the three-way catalyst is delayed by the oxygen stored in the oxygen storage / release material during the lean operation. There is a fear. For this reason, after switching the air-fuel ratio from the lean side to stoichiometric, it takes time until the inside of the catalyst actually becomes a stoichiometric atmosphere and the three-way purification function can be exhibited.

そこで、このような三元触媒の替わりに、酸素吸蔵放出材が添加されていない酸化触媒を用いることが考えられる。しかしこの場合、触媒内部が酸素を殆ど含まないストイキ雰囲気に速やかに切り替わることにより、NOをNOに酸化する反応も進行しなくなる。したがって、空燃比をリーン側からストイキに切り替えると、酸化触媒の下流側の排ガスのNO及び酸素の割合も速やかに低下する。このため、下流側のNOx吸蔵還元型触媒の替わりに選択還元触媒を利用した場合、リーン運転からストイキ運転への切り替え時に、選択還元触媒におけるNOx浄化性能も速やかに低下してしまう。これは、選択還元触媒では、NOを還元するために少なくともNO及び酸素の何れかが必要とされているからである。 Therefore, it is conceivable to use an oxidation catalyst to which no oxygen storage / release material is added instead of such a three-way catalyst. However, in this case, since the inside of the catalyst is quickly switched to a stoichiometric atmosphere containing almost no oxygen, the reaction of oxidizing NO to NO 2 also does not proceed. Therefore, when the air-fuel ratio is switched from lean to stoichiometric, the ratio of NO 2 and oxygen in the exhaust gas downstream of the oxidation catalyst also decreases rapidly. For this reason, when the selective reduction catalyst is used instead of the downstream NOx occlusion reduction type catalyst, the NOx purification performance of the selective reduction catalyst is also rapidly reduced when switching from the lean operation to the stoichiometric operation. This is because the selective reduction catalyst requires at least one of NO 2 and oxygen in order to reduce NO.

本発明は、上述の課題に鑑みてなされたものであり、選択還元触媒を備えた排ガス浄化装置であって、リーン運転からストイキ運転への切り替え過渡時に排ガスを効率的に浄化する排ガス浄化装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and is an exhaust gas purification device provided with a selective reduction catalyst, which is an exhaust gas purification device that efficiently purifies exhaust gas during a transitional transition from lean operation to stoichiometric operation. The purpose is to provide.

上記目的を達成するため本発明は、混合気の空燃比をリーンにするリーン運転モードと混合気の空燃比をストイキにするストイキ運転モードとを所定の条件で切り換える内燃機関(例えば、後述のエンジン1)の排ガス浄化装置(例えば、後述の排ガス浄化装置10)であって、前記機関の排ガス流路(例えば、後述の排気通路2)に設けられ、三元浄化機能を有する触媒を備えた第1浄化部(例えば、後述の第1浄化部11)と、前記第1浄化部の下流に設けられ、排ガス中のスートを捕集する第2浄化部(例えば、後述の第2浄化部12)と、前記第2浄化部の下流に設けられ、排ガス中のNOxをNHの存在下で選択的に還元する選択還元触媒を備えた第3浄化部(例えば、後述の第3浄化部13)と、前記第3浄化部に、NH又はその前駆体を供給する還元剤供給部(例えば、後述の還元剤供給部14)と、を備え、前記第1浄化部は、酸素吸蔵放出材を含まず、前記第2浄化部は、酸化触媒が塗布されたフィルタであり、且つ酸素吸蔵放出材を含む、ことを特徴とする排ガス浄化装置。 To achieve the above object, the present invention relates to an internal combustion engine (for example, an engine described later) that switches between a lean operation mode in which the air-fuel ratio of the mixture is lean and a stoichiometric operation mode in which the air-fuel ratio of the mixture is stoichiometric. 1) an exhaust gas purification device (for example, an exhaust gas purification device 10 to be described later), which is provided in an exhaust gas flow path (for example, an exhaust passage 2 to be described later) of the engine and includes a catalyst having a three-way purification function. 1 purification section (for example, a first purification section 11 described later) and a second purification section (for example, a second purification section 12 described later) that is provided downstream of the first purification section and collects soot in exhaust gas. And a third purification unit (for example, a third purification unit 13 described later) provided downstream of the second purification unit and selectively reducing NOx in the exhaust gas in the presence of NH 3. If, on the third purifier, NH 3 Includes a reducing agent supply unit (for example, a reducing agent supply unit 14 to be described later) for supplying the precursor, the first purification unit does not include an oxygen storage / release material, and the second purification unit is an oxidizing agent. An exhaust gas purifying apparatus, characterized by being a filter coated with a catalyst and containing an oxygen storage / release material.

このように構成される排ガス浄化装置は、選択還元触媒を備えた第3浄化部よりも上流の第2浄化部に酸素吸蔵放出材を添加することとしている。このため、リーン空燃比からストイキ空燃比に切り替えたとき、酸化触媒と酸素吸蔵放出材を備えた第2浄化部では、リーン時に酸素吸蔵放出材に吸蔵されていた酸素を利用して排ガス中のNOをNOに酸化する反応が過渡的に進行する。その結果、第3浄化部の選択還元触媒には、第2浄化部で生成されたNOと、酸素吸蔵放出材から放出された酸素とを多く含んだ排ガスが流入する。したがって、リーンからストイキへの過渡時における第3浄化部のNOx浄化率を向上できる。
また、本発明の排ガス浄化装置は、酸素吸蔵放出材を、三元浄化機能を有する触媒を備えた第1浄化部には添加せず、第1浄化部の下流である第2浄化部に添加することとしている。このため、リーン空燃比からストイキ空燃比に切り替えたとき、第1浄化部の内部を速やかにストイキ雰囲気に移行できる。したがって、第1浄化部では、リーンからストイキへの過渡時から、速やかに三元浄化機能を発揮させることができる。
In the exhaust gas purification apparatus configured as described above, the oxygen storage / release material is added to the second purification unit upstream of the third purification unit including the selective reduction catalyst. Therefore, when the lean air-fuel ratio is switched from the lean air-fuel ratio to the stoichiometric air-fuel ratio, the second purification unit having the oxidation catalyst and the oxygen storage / release material uses the oxygen stored in the oxygen storage / release material during the lean operation in the exhaust gas. The reaction of oxidizing NO to NO 2 proceeds transiently. As a result, the exhaust gas containing a large amount of NO 2 generated in the second purification unit and oxygen released from the oxygen storage / release material flows into the selective reduction catalyst of the third purification unit. Therefore, the NOx purification rate of the third purification unit during the transition from lean to stoichiometric can be improved.
In the exhaust gas purification apparatus of the present invention, the oxygen storage / release material is not added to the first purification unit provided with the catalyst having the three-way purification function, but is added to the second purification unit downstream of the first purification unit. To do. For this reason, when the lean air-fuel ratio is switched to the stoichiometric air-fuel ratio, the inside of the first purification unit can be quickly transferred to the stoichiometric atmosphere. Therefore, the first purification unit can quickly exhibit the three-way purification function from the transition from lean to stoichiometric.

本発明によれば、リーン運転からストイキ運転への切り替え過渡時における排ガス浄化性能を向上することができる。   ADVANTAGE OF THE INVENTION According to this invention, the exhaust gas purification performance at the time of the switching transition from lean operation to stoichiometric operation can be improved.

本発明の実施形態に係る排ガス浄化装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the exhaust gas purification apparatus which concerns on embodiment of this invention. リーン空燃比からストイキ空燃比へと切り替えた場合のNOx挙動に対する酸素吸蔵放出材の影響を示す図である。It is a figure which shows the influence of the oxygen storage-release material with respect to NOx behavior at the time of switching from a lean air fuel ratio to a stoichiometric air fuel ratio. 本発明の実施形態に係る排ガス浄化装置による排ガスの浄化の流れを示す図である。It is a figure which shows the flow of purification | cleaning of the exhaust gas by the exhaust gas purification apparatus which concerns on embodiment of this invention. 混合気の空燃比をリーン側からストイキへ向けて変化させたときにおける第1、第2浄化部の酸化触媒及び第3浄化部のSCR触媒のNOx浄化率の変化を模式的に示す図である。It is a figure which shows typically the change of the NOx purification rate of the oxidation catalyst of a 1st, 2nd purification | cleaning part, and the SCR catalyst of a 3rd purification | cleaning part when the air fuel ratio of air-fuel | gaseous mixture is changed toward a stoichiometric. .

以下、本発明の実施形態を、図面を参照して説明する。
本実施形態に係る排ガス浄化装置10の概略構成を図1に示す。図1に示されるように、排ガス浄化装置10は、内燃機関(以下、「エンジン」という)1の排気通路2に設けられ、エンジン1の排ガスを浄化する。ここで、エンジン1は、混合気の空燃比をストイキよりもリーン側にする所謂リーン燃焼を基本としたもの、より具体的にはディーゼルエンジンやリーンバーンガソリンエンジン等である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a schematic configuration of an exhaust gas purification apparatus 10 according to the present embodiment. As shown in FIG. 1, the exhaust gas purification device 10 is provided in an exhaust passage 2 of an internal combustion engine (hereinafter referred to as “engine”) 1 and purifies the exhaust gas of the engine 1. Here, the engine 1 is based on so-called lean combustion in which the air-fuel ratio of the air-fuel mixture is leaner than the stoichiometric, more specifically, a diesel engine, a lean burn gasoline engine, or the like.

排ガス浄化装置10は、エンジン1の下流側の排気通路2に第1浄化部11、第2浄化部12及び第3浄化部13の順に3つの浄化部を有する。また、排ガス浄化装置10は、第3浄化部13の上流側に還元剤を供給する還元剤供給部14を備え、また、各種センサ20から供給される入力信号に応じてエンジン1や還元剤供給部14を制御する電子制御ユニット(以下、「ECU」という)15を備える。   The exhaust gas purification device 10 includes three purification units in the order of the first purification unit 11, the second purification unit 12, and the third purification unit 13 in the exhaust passage 2 on the downstream side of the engine 1. Further, the exhaust gas purification device 10 includes a reducing agent supply unit 14 that supplies a reducing agent to the upstream side of the third purification unit 13, and supplies the engine 1 and the reducing agent according to input signals supplied from various sensors 20. An electronic control unit (hereinafter referred to as “ECU”) 15 that controls the unit 14 is provided.

エンジン1には、各シリンダに燃料を噴射する燃料噴射弁が設けられている(図示せず)。この燃料噴射弁を駆動するアクチュエータは、ECU15に電磁的に接続されている。エンジン1の混合気の空燃比は、シリンダ内に導入される新気の量、図示しない排気還流装置を介してシリンダ内に導入されるEGRガスの量、並びに燃料噴射弁からの燃料噴射量等を調整することによって制御される。   The engine 1 is provided with a fuel injection valve that injects fuel into each cylinder (not shown). The actuator that drives the fuel injection valve is electromagnetically connected to the ECU 15. The air-fuel ratio of the air-fuel mixture of the engine 1 includes the amount of fresh air introduced into the cylinder, the amount of EGR gas introduced into the cylinder via an exhaust gas recirculation device (not shown), the amount of fuel injected from the fuel injection valve, etc. Is controlled by adjusting.

ECU15は、各種センサからの入力信号波形を整形し、電圧レベルを所定のレベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路と、中央演算処理ユニット(以下「CPU」という)とを備える。この他、ECU15は、CPUで実行される各種演算プログラム及び演算結果等を記憶する記憶回路と、エンジン1及び還元剤供給部14等に制御信号を出力する出力回路と、を備える。
また、ECU15は、エンジン1や排ガス浄化装置10の状態を検出するため、各種のセンサ20が接続されている。なお、センサ20としては、例えば、排気の空燃比(酸素濃度)を検出する空燃比センサ、第3浄化部13の下流側の排気のNH濃度を検出するNHセンサ、及びアクセルペダルの開度を検出するアクセル開度センサ等がある。
The ECU 15 shapes an input signal waveform from various sensors, corrects a voltage level to a predetermined level, converts an analog signal value into a digital signal value, and a central processing unit (hereinafter referred to as “a processing unit”). CPU ”). In addition, the ECU 15 includes a storage circuit that stores various calculation programs executed by the CPU, calculation results, and the like, and an output circuit that outputs control signals to the engine 1, the reducing agent supply unit 14, and the like.
The ECU 15 is connected to various sensors 20 in order to detect the state of the engine 1 and the exhaust gas purification device 10. As the sensor 20, for example, an air-fuel ratio sensor that detects the air-fuel ratio (oxygen concentration) of the exhaust, an NH 3 sensor that detects the NH 3 concentration of the exhaust downstream of the third purification unit 13, and an accelerator pedal opening. There is an accelerator opening sensor for detecting the degree.

このような構成のECU15は、センサ20からの入力信号に応じてエンジン1の混合気の空燃比を制御する。より具体的には、ECU15は、エンジン1の適切な運転モードを判断するとともに、運転モードごとに定められたアルゴリズムに従って新気量、EGR量、及び燃料噴射量等を調整することにより、エンジン1の混合気の空燃比を制御する。エンジン1の運転モードとしては、混合気の空燃比をストイキよりリーン側に制御するリーン運転モードと、空燃比センサの出力に基づいて混合気の空燃比をストイキに制御するストイキ運転モードとの2つが設定されている。例えば、ECU15は、定常運転時にはエンジンの運転モードをリーン運転モードとし、アクセル開度センサからの出力信号に基づいて高負荷運転状態になったと判定された場合には運転モードをリーン運転モードからストイキ運転モードに切り替える。   The ECU 15 having such a configuration controls the air-fuel ratio of the air-fuel mixture of the engine 1 according to the input signal from the sensor 20. More specifically, the ECU 15 determines an appropriate operation mode of the engine 1 and adjusts the fresh air amount, the EGR amount, the fuel injection amount, and the like according to an algorithm defined for each operation mode, whereby the engine 1 The air-fuel ratio of the air-fuel mixture is controlled. The operation mode of the engine 1 includes a lean operation mode in which the air-fuel ratio of the air-fuel mixture is controlled to be leaner than the stoichiometry, and a stoichiometric operation mode in which the air-fuel ratio of the air-fuel mixture is controlled to stoichiometric based on the output of the air-fuel ratio sensor. One is set. For example, the ECU 15 switches the engine operation mode from the lean operation mode to the lean operation mode when it is determined that the engine is in a high load operation state based on an output signal from the accelerator opening sensor. Switch to operation mode.

第1浄化部11は、排気通路2のうちエンジン1の直下であって第2浄化部12及び第3浄化部13よりも上流側に設けられる。第1浄化部11は、排ガス中に含まれるHC,CO及びNOを酸化・還元することによって排ガスを浄化する三元浄化機能を有する第1触媒を備える。ここで、三元浄化機能とは、ストイキ空燃比の排ガスの下で、三元浄化反応、即ちHC及びCOの酸化とNOxの還元とが同時に行われる反応が進行する機能を言う。このような三元浄化機能を有する第1触媒としては、より具体的には、酸素吸蔵放出材(以下、「OSC材」という)が添加されていない既知の酸化触媒(DOC)と呼称されているものが用いられる。なお、酸化触媒としては、Pt,Pd,Rhから選ばれる貴金属の少なくとも1種類以上を含む触媒が良く知られているが、本実施形態では酸化触媒として、例えば、アルミナ(Al)及びβゼオライトからなる担体にPt及びPd(Pt/Pd=1:1 6g/L)からなる酸化活性成分を担持させたものを用いることとしている。 The first purification unit 11 is provided in the exhaust passage 2 directly below the engine 1 and upstream of the second purification unit 12 and the third purification unit 13. The first purification unit 11 includes a first catalyst having a three-way purification function that purifies the exhaust gas by oxidizing and reducing HC, CO, and NO contained in the exhaust gas. Here, the three-way purification function refers to a function in which a three-way purification reaction, that is, a reaction in which oxidation of HC and CO and reduction of NOx are performed simultaneously proceeds under a stoichiometric air-fuel ratio exhaust gas. More specifically, the first catalyst having such a three-way purification function is referred to as a known oxidation catalyst (DOC) to which no oxygen storage / release material (hereinafter referred to as “OSC material”) is added. What is used is used. As the oxidation catalyst, a catalyst containing at least one kind of noble metal selected from Pt, Pd, and Rh is well known. In this embodiment, for example, alumina (Al 2 O 3 ) and A carrier made of β-zeolite and carrying an oxidation active component made of Pt and Pd (Pt / Pd = 1: 1 16 g / L) is used.

以上のような第1触媒を備えた第1浄化部11は、混合気の空燃比をリーン側にするリーン運転モードでは、HC及びCOを酸化することで排ガスを浄化するとともに、NOの一部をNOに酸化し下流の第2浄化部12及び第3浄化部13に供給する。また、第1浄化部11は、ストイキ運転モードでは、上記三元浄化機能によってHC,CO及びNOxを酸化・還元することで排ガスを浄化する。 In the lean operation mode in which the air-fuel ratio of the air-fuel mixture is on the lean side, the first purification unit 11 including the first catalyst as described above purifies the exhaust gas by oxidizing HC and CO, and a part of NO Is oxidized to NO 2 and supplied downstream to the second purification unit 12 and the third purification unit 13. In the stoichiometric operation mode, the first purification unit 11 purifies the exhaust gas by oxidizing and reducing HC, CO, and NOx by the above three-way purification function.

第2浄化部12は、排気通路2のうち第1浄化部11よりも下流側であって第3浄化部13よりも上流側に設けられる。第2浄化部12は、排ガスがフィルタ壁の微細な孔を通過する際に、排ガス中の炭素を主成分とするスートを、フィルタ壁の表面及びフィルタ壁中の穴に堆積させることによって捕集するフィルタである。このような第2浄化部12としては、フィルタ壁に酸化触媒が塗布されたCSF(Catalyzed Soot Filter)を用いることができる。このように第2浄化部12は、酸化触媒を有するため、上述の第1浄化部11と同様に、排ガス中のHC,CO及びNOを酸化する機能を有する。   The second purification unit 12 is provided downstream of the first purification unit 11 and upstream of the third purification unit 13 in the exhaust passage 2. When the exhaust gas passes through the fine holes in the filter wall, the second purification unit 12 collects soot mainly containing carbon in the exhaust gas by depositing it on the surface of the filter wall and the hole in the filter wall. It is a filter to do. As such a 2nd purification | cleaning part 12, CSF (Catalyzed Soot Filter) by which the oxidation catalyst was apply | coated to the filter wall can be used. Thus, since the 2nd purification | cleaning part 12 has an oxidation catalyst, it has the function to oxidize HC, CO, and NO in exhaust gas similarly to the above-mentioned 1st purification | cleaning part 11.

また、この第2浄化部12のフィルタには、酸化触媒に加えて、排ガスの雰囲気変動を吸収できる程度に有意な酸素吸蔵放出機能を有するOSC材が添加されている。この第2浄化部12に添加するOSC材としては、代表的には、酸化セリウム(CeO)や酸化セリウムにジルコニウム(Zr)、ネオジム(Nd)又はランタン(La)等が添加された複合酸化物が挙げられる。この他、例えば、ペロブスカイト(LaFeO,LaMnO)、Fe系酸化物にアルカリ土類金属を添加した材料、又はYMnO(YMn)等が挙げられる。OSC材には、以上例示列挙したものの他、排ガスの雰囲気変動を吸収できる程度の酸素吸蔵放出機能を有するものであればどのようなものを用いてもよい。なお、第2浄化部12に添加するOSC材の量は、空燃比をリーン側からストイキに切り替えた過渡期における排ガスの雰囲気変動を吸収できる程度の量であればよい。より具体的には、後に図2を参照して説明するように、40g/L程度の量のOSC材を添加することにより、確実に有意な効果を奏することが検証されている。 In addition to the oxidation catalyst, an OSC material having a significant oxygen storage / release function is added to the filter of the second purification unit 12 to the extent that it can absorb the atmospheric fluctuation of the exhaust gas. The OSC material added to the second purification unit 12 is typically a composite oxide in which zirconium (Zr), neodymium (Nd), lanthanum (La), or the like is added to cerium oxide (CeO 2 ) or cerium oxide. Things. Other examples include perovskite (LaFeO 3 , LaMnO 3 ), a material obtained by adding an alkaline earth metal to an Fe-based oxide, or YMnO 3 (Y 2 Mn 2 O 5 ). As the OSC material, any material other than those exemplified above may be used as long as it has an oxygen storage / release function capable of absorbing the atmospheric fluctuation of exhaust gas. Note that the amount of the OSC material added to the second purification unit 12 may be an amount that can absorb the change in the atmosphere of the exhaust gas during the transition period when the air-fuel ratio is switched from lean to stoichiometric. More specifically, as will be described later with reference to FIG. 2, it has been verified that the addition of an OSC material in an amount of about 40 g / L ensures a significant effect.

還元剤供給部14は、還元剤(NH)の前駆体としての尿素水を貯蔵する尿素水タンク141と、尿素水を排気通路2内に噴射する尿素水噴射弁142と、を備える。尿素水噴射弁142は、排気通路2のうち第3浄化部13よりも上流側に設けられる。尿素水噴射弁142は、図示しないアクチュエータで駆動されると開閉し、尿素水タンク141内の尿素水を排気通路2内に噴射する。尿素水噴射弁142から噴射された尿素水は、排気又は第3浄化部13の熱により熱分解又は加水分解されて還元剤としてのアンモニア(NH)となる。尿素水噴射弁142のアクチュエータは、ECU15に接続されている。ECU15は、NHセンサの出力に応じて必要な尿素水噴射量を算出するとともに、この噴射量に応じた量の尿素水が噴射されるように尿素水噴射弁142を制御する。 The reducing agent supply unit 14 includes a urea water tank 141 that stores urea water as a precursor of the reducing agent (NH 3 ), and a urea water injection valve 142 that injects urea water into the exhaust passage 2. The urea water injection valve 142 is provided on the upstream side of the third purification unit 13 in the exhaust passage 2. The urea water injection valve 142 opens and closes when driven by an actuator (not shown), and injects urea water in the urea water tank 141 into the exhaust passage 2. The urea water injected from the urea water injection valve 142 is thermally decomposed or hydrolyzed by the heat of the exhaust or the third purification unit 13 to become ammonia (NH 3 ) as a reducing agent. The actuator of the urea water injection valve 142 is connected to the ECU 15. The ECU 15 calculates the necessary urea water injection amount according to the output of the NH 3 sensor, and controls the urea water injection valve 142 so that an amount of urea water corresponding to this injection amount is injected.

第3浄化部13は、排気通路2のうち第1浄化部11、第2浄化部12及び還元剤供給部14よりも下流側に設けられる。第3浄化部13は、還元剤としてのNHの存在する雰囲気下で、排ガス中のNOxを選択的に還元する選択還元触媒(以下、「SCR触媒」という)を備える。ここで、NHの存在下にある第3浄化部13において進行するNO及びNOの還元反応の反応式は、下記式(1−1)、(1−2)、(1−3)のようになっている。式(1−1)に示す反応は、排ガス中のNOとNOとを同時に還元する反応であり、Fast SCRと称される。式(1−2)に示す反応は、排ガス中のNOのみを還元する反応であり、Standard SCRと称される。式(1−3)に示す反応は、排ガス中のNOのみを還元する反応であり、Slow SCRと称される。

Figure 2013238163
The third purification unit 13 is provided downstream of the first purification unit 11, the second purification unit 12, and the reducing agent supply unit 14 in the exhaust passage 2. The third purification unit 13 includes a selective reduction catalyst (hereinafter referred to as “SCR catalyst”) that selectively reduces NOx in the exhaust gas in an atmosphere in which NH 3 as a reducing agent is present. Here, the reaction formulas of the reduction reaction of NO and NO 2 that proceed in the third purification unit 13 in the presence of NH 3 are the following formulas (1-1), (1-2), and (1-3): It is like that. The reaction shown in Formula (1-1) is a reaction that simultaneously reduces NO and NO 2 in the exhaust gas, and is referred to as Fast SCR. The reaction shown in Formula (1-2) is a reaction that reduces only NO in the exhaust gas, and is referred to as Standard SCR. The reaction shown in Formula (1-3) is a reaction that reduces only NO 2 in the exhaust gas, and is referred to as Slow SCR.
Figure 2013238163

このようなSCR触媒における上記(1−1)乃至(1−3)に示す反応では、上記式(1−1)に示す反応が最も反応速度が速い。そのため、SCR触媒によるNOx浄化率は、第3浄化部13に供給される排ガスのNO−NOx比(NOとNOを合わせたNOxに対するNOのモル比)が、0.5近傍の最適値に近づくほど高くなる。なお、エンジン1から排出されるNOxの大部分はNOで構成されており、NOに比してNOは少ない。このため、第3浄化部13に流入する排ガスのNO−NOx比を0.5に近づけるためには、第3浄化部13より上流側の第1、第2浄化部11,12において排ガス中のNOの一部を酸化して生成する必要がある。このため、NOの生成効率を左右する第1、第2浄化部11,12の酸化触媒の組成や貴金属量は、リーン運転中に第3浄化部13に流入する排ガスのNO−NOx比が概ね0.5近傍になるように調製されることが好ましい。 Among the reactions shown in the above (1-1) to (1-3) in such an SCR catalyst, the reaction shown in the above formula (1-1) has the fastest reaction rate. Therefore, the NOx purification rate by the SCR catalyst is optimal when the NO 2 -NOx ratio of the exhaust gas supplied to the third purification unit 13 (the molar ratio of NO 2 to NOx that combines NO and NO 2 ) is around 0.5. The closer to the value, the higher. Incidentally, most of the NOx discharged from the engine 1 is constituted by NO, NO 2 is less than to NO. For this reason, in order to make the NO 2 -NOx ratio of the exhaust gas flowing into the third purification unit 13 close to 0.5, the first and second purification units 11 and 12 upstream from the third purification unit 13 It is necessary to oxidize and generate a part of NO. Therefore, first affects the production efficiency of NO 2, the composition and amount of the noble metal oxidation catalyst of the second purification units 11 and 12, NO 2 -NOx ratio of the exhaust gas flowing into the third purification unit 13 during lean operation Is preferably adjusted to be approximately 0.5.

次に、図2を参照して、第1浄化部11ではなく第2浄化部12のみにOSC材を添加することの利点について説明する。
図2(1)は、リーン運転モードからストイキ運転モードへの切り替え後に第3浄化部の選択還元触媒に流入する排ガスのNO−NOx比を示すグラフであり、選択還元触媒の上流の酸化触媒を有する浄化部に40g/LのOSC材を添加した場合のNO−NOx比(図中、実線)と、選択還元触媒の上流の浄化部に酸素吸蔵放出材を添加しない場合のNO−NOx比(図中、破線)と、の関係を示す。図2(1)には、選択還元触媒に流入する排ガスのNO−NOx比が0.5の近傍に保たれた状態から、2点破線で示すタイミングで、排ガスの酸素濃度を6%から0%に切り替えた場合におけるNO−NOx比の変化を示す。
Next, with reference to FIG. 2, the advantage of adding the OSC material only to the second purification unit 12 and not the first purification unit 11 will be described.
FIG. 2 (1) is a graph showing the NO 2 -NOx ratio of exhaust gas flowing into the selective reduction catalyst of the third purification unit after switching from the lean operation mode to the stoichiometric operation mode, and an oxidation catalyst upstream of the selective reduction catalyst NO 2 -NOx ratio (solid line in the figure) when 40 g / L of OSC material is added to the purification section having NO 2 , and NO 2 − when oxygen storage / release material is not added to the purification section upstream of the selective reduction catalyst The relationship with the NOx ratio (broken line in the figure) is shown. In FIG. 2 (1), the oxygen concentration of the exhaust gas is changed from 6% at a timing indicated by a two-dot broken line from a state where the NO 2 -NOx ratio of the exhaust gas flowing into the selective reduction catalyst is maintained in the vicinity of 0.5. The change of the NO 2 -NOx ratio when switching to 0% is shown.

図2(1)に示すように、排ガスの酸素濃度が低下すると、即ちリーン運転からストイキ運転に切り替えると、選択還元触媒の上流側の浄化部におけるNO酸化効率が低下するため、NO−NOx比は低下する。ここで、酸素吸蔵放出材を上流の浄化部に添加した場合としない場合とを比較して明らかなように、選択還元触媒の上流に酸素吸蔵放出材を添加した場合の方が、NO−NOx比が減少しにくい。これは、酸化触媒を有する浄化部に酸素吸蔵放出材を添加した場合、低酸素濃度のストイキ雰囲気に切り替わった後も、酸素吸蔵放出材に吸蔵されていた酸素を利用してNOをNOに酸化する反応が進行するためである。そのため、リーン運転モードからストイキ運転モードへの切り替え過渡期において、第3浄化部13のSCR触媒によるNOx浄化率の低下を抑制するためには、第3浄化部13の上流の浄化部には、OSC材を添加することが好ましいことが判る。 As shown in FIG. 2 (1), when the oxygen concentration of the exhaust gas decreases, i.e. when switching from lean operation to the stoichiometric operation, since the NO oxidation efficiency of the purification unit of the upstream side of the selective reduction catalyst decreases, NO 2 -NOx The ratio drops. Here, as is clear from the comparison between the case where the oxygen storage / release material is added to the upstream purification section and the case where the oxygen storage / release material is not added, the case where the oxygen storage / release material is added upstream of the selective reduction catalyst is NO 2 −. The NOx ratio is difficult to decrease. This is because when oxygen storage / release material is added to the purification section having an oxidation catalyst, NO is converted to NO 2 using oxygen stored in the oxygen storage / release material even after switching to a low oxygen concentration stoichiometric atmosphere. This is because the oxidation reaction proceeds. Therefore, in the transition period from the lean operation mode to the stoichiometric operation mode, in order to suppress the decrease in the NOx purification rate by the SCR catalyst of the third purification unit 13, the purification unit upstream of the third purification unit 13 includes: It can be seen that it is preferable to add the OSC material.

また、図2(2)は、リーン運転モードからストイキ運転モードへの切り替え後に選択還元触媒に流入する排ガスのNOx濃度を示すグラフ、即ち第1浄化部11の下流の排ガスのNOx濃度を示すグラフである。図2(2)では、第1浄化部11にOSC材を添加した場合のNOx濃度(図中、実線)と、第1浄化部11にOSC材を添加しない場合のNOx濃度(図中、破線)と、の関係を示している。図2(2)には、2点破線で示すタイミングで混合気の空燃比をリーン側からストイキに切り替えた場合におけるNOx濃度の変化を示す。   FIG. 2B is a graph showing the NOx concentration of the exhaust gas flowing into the selective reduction catalyst after switching from the lean operation mode to the stoichiometric operation mode, that is, the graph showing the NOx concentration of the exhaust gas downstream of the first purification unit 11. It is. In FIG. 2B, the NOx concentration when the OSC material is added to the first purification unit 11 (solid line in the figure) and the NOx concentration when the OSC material is not added to the first purification unit 11 (broken line in the figure) ). FIG. 2 (2) shows the change in the NOx concentration when the air-fuel ratio of the air-fuel mixture is switched from lean to stoichiometric at the timing indicated by the two-dot broken line.

図2(2)に示すように、第1浄化部11にはOSC材を添加しない場合の方が、SCR触媒に流入する排ガスのNOx濃度の減少速度が速い。即ち、第1浄化部11は、OSC材を添加しない場合の方が、リーン空燃比からストイキ空燃比への切り替え後に素早く三元浄化機能を発揮することができる。これは、第1浄化部11にOSC材を添加した場合には、ストイキ空燃比への切り替え時にOSC材から酸素が放出されるため第1浄化部11内が直ちにストイキ雰囲気に切り替わらず三元浄化機能の発揮が遅延するのに対して、第1浄化部11にOSC材を添加しない場合には、ストイキ空燃比への切り替えに伴い第1浄化部11内が直ちにストイキ雰囲気に切り替わる結果、三元浄化機能が早急に発揮されることになるためである。
以上より、リーン運転モードからストイキ運転モードへの切り替え過渡期において、第3浄化部13の選択還元触媒のNOx浄化率の低下を抑制し、且つ、第1浄化部11の酸化触媒のNOx浄化率を速やかに向上させるためには、酸素吸蔵放出材は、第3浄化部13の上流側且つ第1浄化部11の下流側の第2浄化部12に添加することが好ましいことが検証された。
As shown in FIG. 2 (2), when the OSC material is not added to the first purification unit 11, the NOx concentration decreasing rate of the exhaust gas flowing into the SCR catalyst is faster. In other words, the first purification unit 11 can exhibit the three-way purification function more quickly after switching from the lean air-fuel ratio to the stoichiometric air-fuel ratio when the OSC material is not added. This is because when the OSC material is added to the first purification unit 11, oxygen is released from the OSC material when switching to the stoichiometric air-fuel ratio, so that the inside of the first purification unit 11 is not immediately switched to the stoichiometric atmosphere, but the three-way purification. When the OSC material is not added to the first purification unit 11 while the function is delayed, the inside of the first purification unit 11 is immediately switched to the stoichiometric atmosphere as a result of switching to the stoichiometric air-fuel ratio. This is because the purifying function is immediately demonstrated.
As described above, in the transition period from the lean operation mode to the stoichiometric operation mode, the decrease in the NOx purification rate of the selective reduction catalyst of the third purification unit 13 is suppressed, and the NOx purification rate of the oxidation catalyst of the first purification unit 11 is suppressed. It has been verified that it is preferable to add the oxygen storage / release material to the second purification unit 12 upstream of the third purification unit 13 and downstream of the first purification unit 11 in order to improve the temperature quickly.

以上、本実施形態の排ガス浄化装置10の構成について説明した。続いて、排ガス浄化装置10による排ガスの浄化の流れを、図3を参照して説明する。図3(1)は、リーン運転モード中、即ちエンジン1の混合気をリーン側にしている場合の排ガス浄化装置10による排ガス浄化の流れを示し、図3(2)は、混合気の空燃比がリーン側からストイキに切り替わる切り替え過渡期における排ガス浄化装置10による排ガス浄化の流れを示し、図3(3)は、ストイキ運転モード中、即ちエンジン1の混合気をストイキに制御している場合の排ガス浄化装置10による排ガス浄化の流れを示す。   The configuration of the exhaust gas purification device 10 of the present embodiment has been described above. Next, the flow of exhaust gas purification by the exhaust gas purification device 10 will be described with reference to FIG. FIG. 3 (1) shows the flow of exhaust gas purification by the exhaust gas purification device 10 in the lean operation mode, that is, when the air-fuel mixture of the engine 1 is on the lean side, and FIG. 3 (2) is the air-fuel ratio of the air-fuel mixture. FIG. 3 (3) shows the flow of exhaust gas purification by the exhaust gas purification device 10 during the switching transition period when the engine is switched from lean to stoichiometric. FIG. 3 (3) shows the case where the air-fuel mixture of the engine 1 is controlled to stoichiometric during the stoichiometric operation mode. The flow of exhaust gas purification by the exhaust gas purification device 10 is shown.

図3(1)に示すように、リーン運転中のエンジン1の排ガスには酸素が含まれるため、排ガスの成分は、第1浄化部11及び第2浄化部12の酸化触媒を介して酸化することになる。即ち、排ガス中のHC,COは、HOやCOに酸化し浄化される一方で、排ガス中のNOは、NOに酸化し下流の第3浄化部13(選択還元触媒)に供給される。第1浄化部11及び第2浄化部12を通過したNOxは、還元剤の存在下にある第3浄化部13において選択的に還元されることになる。ここで、第3浄化部13には、第1、第2浄化部11,12において生成されたNOとNOの両方が流入するため、最も反応速度の速いFast SCRが主体的に進行する。
このように、排ガス浄化装置10は、リーン運転中に排出される排ガスを、第1浄化部11乃至第3浄化部13を用いて浄化する。特に、排ガス中のNOxについては、第1浄化部11及び第2浄化部12において適切なNO−NOx比にした上で第3浄化部13に供給するため、第3浄化部13において高い割合で浄化することができる。
このとき、第1浄化部11及び第2浄化部12は、排ガスによりリーン雰囲気に保たれることになるが、第1浄化部11は、OSC材を備えないため酸素を殆ど吸蔵しない。一方、第2浄化部12は、OSC材を備えるため排ガス中に含まれる酸素を吸蔵する。
As shown in FIG. 3 (1), since the exhaust gas of the engine 1 during the lean operation contains oxygen, the components of the exhaust gas are oxidized through the oxidation catalysts of the first purification unit 11 and the second purification unit 12. It will be. That is, HC and CO in the exhaust gas are oxidized and purified to H 2 O and CO 2 , while NO in the exhaust gas is oxidized to NO 2 and supplied to the downstream third purification unit 13 (selective reduction catalyst). Is done. The NOx that has passed through the first purification unit 11 and the second purification unit 12 is selectively reduced in the third purification unit 13 in the presence of the reducing agent. Here, the third purification unit 13, first, because both NO 2 and NO generated in the second purification units 11 and 12 flows, the fastest reaction rate Fast SCR proceeds subjectively.
As described above, the exhaust gas purification device 10 purifies the exhaust gas discharged during the lean operation using the first purification unit 11 to the third purification unit 13. In particular, since NOx in the exhaust gas is supplied to the third purification unit 13 after setting the appropriate NO 2 -NOx ratio in the first purification unit 11 and the second purification unit 12, a high rate in the third purification unit 13 Can be purified.
At this time, the first purification unit 11 and the second purification unit 12 are maintained in a lean atmosphere by the exhaust gas, but the first purification unit 11 does not include any OSC material and therefore hardly stores oxygen. On the other hand, since the 2nd purification | cleaning part 12 is provided with OSC material, it stores the oxygen contained in waste gas.

図3(2)に示すように、混合気の空燃比をリーン側からストイキに切り替えると、エンジン1から排出される排ガスの酸素濃度は減少し、第1浄化部11内は次第にリーン雰囲気からストイキ雰囲気に切り替わるため、第1浄化部11では三元浄化反応が進行するようになる。このため、第1浄化部11におけるNOx浄化率が徐々に上昇する。また、第1浄化部11では、その内部がストイキ雰囲気に切り替わるまでは三元浄化機能が完全に発揮されない。このため、第1浄化部11において浄化しきれないNOxが第2浄化部12に流入する。   As shown in FIG. 3 (2), when the air-fuel ratio of the air-fuel mixture is switched from lean to stoichiometric, the oxygen concentration of the exhaust gas discharged from the engine 1 decreases, and the inside of the first purification unit 11 gradually becomes lean from the lean atmosphere. In order to switch to the atmosphere, the three-way purification reaction proceeds in the first purification unit 11. For this reason, the NOx purification rate in the first purification unit 11 gradually increases. Moreover, in the 1st purification | cleaning part 11, a ternary purification function is not fully exhibited until the inside switches to a stoichiometric atmosphere. For this reason, NOx that cannot be purified by the first purification unit 11 flows into the second purification unit 12.

ここで、ストイキ空燃比の排ガスには酸素が殆ど含まれないものの、第2浄化部12が有するOSC材にはリーン運転中に吸蔵した酸素が蓄えられている。そのため、第2浄化部12では、OSC材に蓄えられた酸素を用いて、第1浄化部11から排出されるNOの一部をNOに酸化する。即ち、切り替え過渡時に第1浄化部11で浄化し切れなかったNOは、第2浄化部12のOSC材に蓄えられた酸素を用いてNOに酸化され、第3浄化部13に供給されることになる。その結果、第3浄化部13にはNOとNOとの両方が流入するため、最も反応速度の速いFast SCRが過渡的に進行する。即ち、混合気の空燃比をリーン側からストイキに切り替えると、第3浄化部13に供給される排ガスのNO−NOx比は、図2(1)を参照して説明したように最適な値(0.5)から減少するものの、第3浄化部13の上流の第2浄化部12にOSC材を添加することにより、NO−NOx比の減少速度を抑制でき、ひいては切り替え過渡期における第3浄化部13のNOx浄化率を向上させることができる。
また、第2浄化部12において、OSC材に吸蔵されていた酸素のうちNOの酸化に供されなかった分は、そのまま第3浄化部13へ放出される。これにより第3浄化部13のSCR触媒では、酸素濃度が低いストイキ雰囲気では発生しないStandard SCRが進行し、排ガス中のNOが還元される。即ち、切り替え過渡期における第3浄化部13のNOx浄化率は、第3浄化部13にNOが供給されることだけでなく、酸素が供給されることによっても向上する。
Here, although the stoichiometric air-fuel ratio exhaust gas contains almost no oxygen, the OSC material of the second purification unit 12 stores the oxygen stored during the lean operation. Therefore, the second purification unit 12 oxidizes part of NO discharged from the first purification unit 11 to NO 2 using oxygen stored in the OSC material. That is, NO that could not be completely purified by the first purifying unit 11 during the switching transition is oxidized to NO 2 using oxygen stored in the OSC material of the second purifying unit 12 and supplied to the third purifying unit 13. It will be. As a result, since both NO and NO 2 flow into the third purification unit 13, the Fast SCR with the fastest reaction speed proceeds transiently. That is, when the air-fuel ratio of the air-fuel mixture is switched from lean to stoichiometric, the NO 2 -NOx ratio of the exhaust gas supplied to the third purification unit 13 is an optimum value as described with reference to FIG. Although decreasing from (0.5), by adding the OSC material to the second purification unit 12 upstream of the third purification unit 13, the rate of decrease of the NO 2 -NOx ratio can be suppressed, and as a result, the second in the switching transition period. The NOx purification rate of the 3 purification unit 13 can be improved.
Further, in the second purification unit 12, the oxygen that has been occluded in the OSC material that has not been used for the oxidation of NO is directly released to the third purification unit 13. Thereby, in the SCR catalyst of the third purification unit 13, the standard SCR that does not occur in the stoichiometric atmosphere with a low oxygen concentration proceeds, and NO in the exhaust gas is reduced. That is, the NOx purification rate of the third purification unit 13 in the switching transition period is improved not only by supplying NO 2 to the third purification unit 13 but also by supplying oxygen.

また、第1浄化部11にはOSC材が添加されていないため、空燃比の切り替えに伴い、第1浄化部11内はリーン雰囲気からストイキ雰囲気へと迅速に切り替わる。したがって、第1浄化部11では三元浄化反応によるNOxの浄化が速やかに開始する(図2(2)参照)。その結果、第1浄化部11にOSC材を添加する場合に比べて、リーン空燃比からストイキ空燃比への切り替え過渡期における第1浄化部11のNOx浄化率を向上できる。   Further, since no OSC material is added to the first purification unit 11, the inside of the first purification unit 11 is quickly switched from a lean atmosphere to a stoichiometric atmosphere as the air-fuel ratio is switched. Therefore, the NOx purification by the three-way purification reaction is quickly started in the first purification unit 11 (see FIG. 2 (2)). As a result, compared with the case where the OSC material is added to the first purification unit 11, the NOx purification rate of the first purification unit 11 in the transition period from the lean air-fuel ratio to the stoichiometric air-fuel ratio can be improved.

図3(3)に示すように、リーン空燃比からストイキ空燃比へと切り替わり、第1浄化部11内がストイキ雰囲気に完全に切り替わると、排ガスは、第1浄化部11における三元浄化反応によって浄化される。また、OSC材が添加されているためストイキ雰囲気に切り替わるまでに第1浄化部11と比較すれば時間がかかるものの、ストイキ雰囲気に完全に切り替わった後は、第2浄化部12においても三元浄化反応が進行する。以上のように、ストイキ運転モード中の排ガスは、第1、第2浄化部11,12によって浄化される。   As shown in FIG. 3 (3), when the lean air-fuel ratio is switched to the stoichiometric air-fuel ratio and the inside of the first purification unit 11 is completely switched to the stoichiometric atmosphere, the exhaust gas is caused by the three-way purification reaction in the first purification unit 11. Purified. Further, since the OSC material is added, it takes more time to switch to the stoichiometric atmosphere than the first purifying section 11, but after the switching to the stoichiometric atmosphere is complete, the second purifying section 12 also performs the three-way purification. The reaction proceeds. As described above, the exhaust gas during the stoichiometric operation mode is purified by the first and second purification units 11 and 12.

図4(1)は、混合気の空燃比をリーン側からストイキへ向けて変化させたときにおける第1、第2浄化部11,12の酸化触媒及び第3浄化部13のSCR触媒のそれぞれのNOx浄化率の変化を模式的に示す図である。図4(1)中、「DOC浄化率」は第1浄化部11及び第2浄化部12を合わせたものNOx浄化率を示し、「SCR浄化率」は第3浄化部13のNOx浄化率を示す。図4(2)は、これらDOC浄化率及びSCR浄化率を合わせた装置全体のNOx浄化率の変化を模式的に示す図である。   FIG. 4A shows the oxidation catalyst of the first and second purification units 11 and 12 and the SCR catalyst of the third purification unit 13 when the air-fuel ratio of the air-fuel mixture is changed from the lean side toward the stoichiometry. It is a figure which shows typically the change of a NOx purification rate. In FIG. 4A, “DOC purification rate” indicates the NOx purification rate of the first purification unit 11 and the second purification unit 12 combined, and “SCR purification rate” indicates the NOx purification rate of the third purification unit 13. Show. FIG. 4 (2) is a diagram schematically showing a change in the NOx purification rate of the entire apparatus in which these DOC purification rate and SCR purification rate are combined.

図4(1)に示すように、空燃比がリーン側からストイキに向けて変化すると、DOC浄化率はストイキに近づくに従い上昇し、SCR浄化率はストイキに近づくに従い低下する。このとき、第2浄化部12にOSC材を添加しない場合(図中2点破線)、第3浄化部13のNOx浄化率はストイキに近づくに従い急激に減少する。これに対し、第2浄化部12にOSC材を添加する場合(図中細実線)、上述のようにSCR触媒にはNO及び酸素が供給されるため、SCR浄化率の減少は緩やかになる。また、このようにSCR浄化率の低下を抑制することにより、図4(2)に示すように、切り替え過渡期における装置全体のNOx浄化率も向上できる。 As shown in FIG. 4A, when the air-fuel ratio changes from the lean side toward the stoichiometric ratio, the DOC purification rate increases as it approaches the stoichiometry, and the SCR purification rate decreases as it approaches the stoichiometry. At this time, when the OSC material is not added to the second purification unit 12 (two-dot broken line in the figure), the NOx purification rate of the third purification unit 13 rapidly decreases as it approaches the stoichiometry. On the other hand, when the OSC material is added to the second purification unit 12 (thin solid line in the figure), as described above, NO 2 and oxygen are supplied to the SCR catalyst, so that the decrease in the SCR purification rate becomes gradual. . Further, by suppressing the decrease in the SCR purification rate in this way, as shown in FIG. 4 (2), the NOx purification rate of the entire apparatus in the switching transition period can also be improved.

以上説明したように、排ガス浄化装置10は、排気通路2の上流側から順に酸化触媒を備える第1浄化部11、フィルタである第2浄化部12、及びSCR触媒を備える第3浄化部13を設け、最上流の第1浄化部11にはOSC材を添加することなく、第1浄化部11の下流であり、且つ第3浄化部13の上流である第2浄化部12に酸化触媒及びOSC材を添加することとしている。
これにより、リーン空燃比からストイキ空燃比への切り替え過渡期においても、第3浄化部13の上流で排ガス中のNOをNOに酸化することができ、第3浄化部13のNOx浄化率を高めることができる。また、第1浄化部11にOSC材を添加しないため、第1浄化部11内の雰囲気を迅速にストイキ雰囲気に切り替えることができ、第1浄化部11の三元浄化機能を迅速に発揮させることができる。その結果、図4(2)に示すように、リーン空燃比からストイキ空燃比への切り替え過渡期における、第1浄化部11及び第3浄化部13を合わせたNOx浄化率を向上させることができる。
As described above, the exhaust gas purification apparatus 10 includes the first purification unit 11 including the oxidation catalyst, the second purification unit 12 serving as a filter, and the third purification unit 13 including the SCR catalyst in order from the upstream side of the exhaust passage 2. The first purification unit 11 is provided with the oxidation catalyst and the OSC in the second purification unit 12 that is downstream of the first purification unit 11 and upstream of the third purification unit 13 without adding the OSC material to the most upstream first purification unit 11. The material is to be added.
As a result, even in the transition period from the lean air-fuel ratio to the stoichiometric air-fuel ratio, NO in the exhaust gas can be oxidized to NO 2 upstream of the third purification unit 13, and the NOx purification rate of the third purification unit 13 can be increased. Can be increased. In addition, since no OSC material is added to the first purification unit 11, the atmosphere in the first purification unit 11 can be quickly switched to the stoichiometric atmosphere, and the three-way purification function of the first purification unit 11 can be exhibited quickly. Can do. As a result, as shown in FIG. 4 (2), the combined NOx purification rate of the first purification unit 11 and the third purification unit 13 can be improved in the transition period from the lean air-fuel ratio to the stoichiometric air-fuel ratio. .

1…エンジン(内燃機関)
2…排気通路(流路)
10…排ガス浄化装置(排ガス浄化装置)
11…第1浄化部(第1浄化部)
12…第2浄化部(第2浄化部)
13…第3浄化部(第3浄化部)
14…還元剤供給部(還元剤供給部)
1. Engine (internal combustion engine)
2 ... Exhaust passage (flow path)
10 ... Exhaust gas purification device (exhaust gas purification device)
11 ... 1st purification part (1st purification part)
12 ... 2nd purification part (2nd purification part)
13 ... Third purification section (third purification section)
14 ... Reducing agent supply unit (reducing agent supply unit)

Claims (1)

混合気の空燃比をリーンにするリーン運転モードと混合気の空燃比をストイキにするストイキ運転モードとを所定の条件で切り換える内燃機関の排ガス浄化装置であって、
前記機関の排ガス流路に設けられ、三元浄化機能を有する触媒を備えた第1浄化部と、
前記第1浄化部の下流に設けられ、排ガス中のスートを捕集する第2浄化部と、
前記第2浄化部の下流に設けられ、排ガス中のNOxをNHの存在下で選択的に還元する選択還元触媒を備えた第3浄化部と、
前記第3浄化部に、NH又はその前駆体を供給する還元剤供給部と、
を備え、
前記第1浄化部は、酸素吸蔵放出材を含まず、
前記第2浄化部は、酸化触媒が塗布されたフィルタであり、且つ酸素吸蔵放出材を含む、
ことを特徴とする排ガス浄化装置。
An exhaust gas purification apparatus for an internal combustion engine that switches between a lean operation mode for leaning an air-fuel ratio of a mixture and a stoichiometric operation mode for stoichiometrically changing the air-fuel ratio of the mixture under a predetermined condition,
A first purification unit provided with a catalyst having a three-way purification function provided in an exhaust gas flow path of the engine;
A second purification unit provided downstream of the first purification unit for collecting soot in the exhaust gas;
A third purification unit comprising a selective reduction catalyst provided downstream of the second purification unit and selectively reducing NOx in the exhaust gas in the presence of NH 3 ;
A reducing agent supply unit for supplying NH 3 or a precursor thereof to the third purification unit;
With
The first purification unit does not include an oxygen storage / release material,
The second purification unit is a filter coated with an oxidation catalyst and includes an oxygen storage / release material,
An exhaust gas purification apparatus characterized by that.
JP2012111456A 2012-05-15 2012-05-15 Exhaust gas purification device Pending JP2013238163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012111456A JP2013238163A (en) 2012-05-15 2012-05-15 Exhaust gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012111456A JP2013238163A (en) 2012-05-15 2012-05-15 Exhaust gas purification device

Publications (1)

Publication Number Publication Date
JP2013238163A true JP2013238163A (en) 2013-11-28

Family

ID=49763408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012111456A Pending JP2013238163A (en) 2012-05-15 2012-05-15 Exhaust gas purification device

Country Status (1)

Country Link
JP (1) JP2013238163A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192940A (en) * 2017-07-21 2017-10-26 三菱重工業株式会社 Catalyst for exhaust gas treatment, exhaust gas treatment device and manufacturing method of catalyst for exhaust gas treatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017192940A (en) * 2017-07-21 2017-10-26 三菱重工業株式会社 Catalyst for exhaust gas treatment, exhaust gas treatment device and manufacturing method of catalyst for exhaust gas treatment

Similar Documents

Publication Publication Date Title
EP2146065B1 (en) Exhaust purification system for internal combustion engine
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
US8713916B2 (en) NOx purification system and method for control of NOx purification system
JP2007127022A (en) Exhaust emission control device of internal combustion engine
JP2008163856A (en) Exhaust emission control device of internal combustion engine
JP5804544B2 (en) Exhaust treatment device for internal combustion engine
EP2738363B1 (en) Exhaust purification device of internal combustion engine
JP2011149360A (en) Exhaust emission control device for internal combustion engine
JP2009264282A (en) Exhaust emission control device for internal combustion engine
JP2012026331A (en) Exhaust gas post treatment system
JP2010209783A (en) Exhaust emission control device
JP5672296B2 (en) Exhaust gas purification system for internal combustion engine
JP2010196551A (en) Exhaust emission control device of internal combustion engine
JP2010249100A (en) Exhaust emission control device of internal combustion engine
JP2013238163A (en) Exhaust gas purification device
JP5359360B2 (en) Exhaust gas purification device for internal combustion engine
JP5783423B2 (en) Exhaust gas purification device
US9604176B2 (en) Exhaust gas purification system and exhaust gas purification method
JP2013238170A (en) Exhaust cleaning system for internal combustion engine
JP5746008B2 (en) Exhaust gas purification device for internal combustion engine
JP5476770B2 (en) Exhaust gas purification system and control method of exhaust gas purification system
JP4924756B2 (en) Exhaust gas purification device for internal combustion engine
JP2010025014A (en) Exhaust emission control device of internal combustion engine
JP2018096228A (en) Exhaust emission control system of lean combustion internal combustion engine and exhaust emission control method of lean combustion internal combustion engine
JP5782710B2 (en) Exhaust gas purification apparatus and exhaust gas purification method for internal combustion engine