JP2013237580A - Reforming system - Google Patents

Reforming system Download PDF

Info

Publication number
JP2013237580A
JP2013237580A JP2012110790A JP2012110790A JP2013237580A JP 2013237580 A JP2013237580 A JP 2013237580A JP 2012110790 A JP2012110790 A JP 2012110790A JP 2012110790 A JP2012110790 A JP 2012110790A JP 2013237580 A JP2013237580 A JP 2013237580A
Authority
JP
Japan
Prior art keywords
reformer
catalyst
hydrogen
control valve
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012110790A
Other languages
Japanese (ja)
Other versions
JP5886497B2 (en
Inventor
Shohei Matsumoto
祥平 松本
Shuji Yumoto
修士 湯本
Hideto Kubo
秀人 久保
Takashi Fuji
敬司 藤
Hirofumi Fujiwara
弘文 藤原
Hitoshi Tanaka
仁 田中
Koji Yoshihara
康二 吉原
Susumu Kojima
進 小島
Tomojiro Sugimoto
知士郎 杉本
Rio Shimizu
里欧 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Toyota Motor Corp
Original Assignee
Toyota Industries Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Toyota Motor Corp filed Critical Toyota Industries Corp
Priority to JP2012110790A priority Critical patent/JP5886497B2/en
Publication of JP2013237580A publication Critical patent/JP2013237580A/en
Application granted granted Critical
Publication of JP5886497B2 publication Critical patent/JP5886497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reforming system capable of bringing out the effect of a normal temperature starting catalyst effectively, and enabling the further shortening of an arrival time of a reforming catalyst to a reformable temperature.SOLUTION: A reforming system includes a reducing atmosphere holding means that maintains a carrier of a normal temperature starting catalyst in a reduced state over an operation shutdown period of a reformer, the normal temperature starting catalyst being disposed in the reformer, being a catalyst that reforms a hydrogen-based fuel to generate hydrogen, and self-heating by the reaction of oxygen and the carrier at normal temperature when the carrier of the catalyst is in the reduced state. The reducing atmosphere holding means has a first control valve that controls inflow of air into the reformer, a second control valve that controls emission of a reformed gas from the reformer, and a fuel injection system that supplies the hydrogen-based fuel to an upstream side passage between the first control valve and the reformer. The system controls so that a remaining gas in the reformer is extruded to fill the reformer with the hydrogen-based fuel upon the shutdown of the reformer.

Description

本発明は、燃料電池や内燃機関の吸気/排気系などに供給する水素を生成すべく、少なくとも水素を一構成成分として含む水素系燃料を空気とともに混合ガスとして取り入れて水素を生成する改質器を備える、改質システムに関する。   The present invention relates to a reformer that generates hydrogen by introducing a hydrogen-based fuel containing at least hydrogen as a constituent component together with air as a mixed gas in order to generate hydrogen to be supplied to a fuel cell or an intake / exhaust system of an internal combustion engine. The present invention relates to a reforming system.

近年、水素系燃料と空気とを含む混合ガスの一部を、改質器に配設された酸化反応を行う触媒(以下、酸化触媒という)で酸化させ、その反応熱を利用して内部から改質反応を行う触媒(以下、改質触媒という)を昇温して改質反応を促進させる、いわゆるオートサーマル方式の改質器の開発が進められている。このような改質器における課題の一つに、改質触媒における改質反応は改質触媒温度が高温に昇温された際に起こるがゆえに、改質触媒温度の昇温に相当の時間を要し、水素ガスの供給を必要とする装置(例えば、内燃機関)の始動性に支障をきたす場合がある、という課題がある。   In recent years, a part of a mixed gas containing hydrogen-based fuel and air is oxidized by a catalyst that performs an oxidation reaction (hereinafter referred to as an oxidation catalyst) disposed in a reformer, and the reaction heat is used to generate a gas from the inside. Development of a so-called autothermal reformer that promotes a reforming reaction by raising the temperature of a catalyst that performs the reforming reaction (hereinafter referred to as a reforming catalyst) is in progress. One of the problems in such a reformer is that the reforming reaction in the reforming catalyst occurs when the reforming catalyst temperature is raised to a high temperature, so that a considerable time is required for raising the reforming catalyst temperature. In other words, there is a problem that the startability of an apparatus (for example, an internal combustion engine) that requires supply of hydrogen gas may be hindered.

このような課題を解決する一手段として、改質反応を促進させて水素ガス発生までに要する時間の短縮化を図るべく、通電により発熱する発熱体を改質触媒の上流側に配置し、さらに、取り入れられた混合ガスと発熱反応する触媒粒子を該発熱体に担持させる構成、すなわち、所謂電気加熱式触媒(EHC)を改質触媒の上流側に配置する構成を有する改質器が知られている(特許文献1参照)。このような改質器の構成によれば、発熱体への通電によって発熱体自体が昇温されるとともに発熱体に担持された触媒粒子が昇温され、該触媒粒子と取り入れられた混合ガスとの発熱反応が促進されて、加熱された混合ガスにより迅速に酸化触媒及び改質触媒を昇温させることができ、改質触媒の改質可能温度への到達時間の短縮化を図ることが可能となりうる。   As a means for solving such a problem, a heating element that generates heat by energization is arranged upstream of the reforming catalyst in order to accelerate the reforming reaction and shorten the time required to generate hydrogen gas. A reformer having a configuration in which catalyst particles that exothermically react with an introduced mixed gas are supported on the heating element, that is, a so-called electric heating catalyst (EHC) is disposed upstream of the reforming catalyst is known. (See Patent Document 1). According to such a configuration of the reformer, the heating element itself is heated by energization of the heating element, and the catalyst particles carried on the heating element are heated, and the catalyst particles and the mixed gas taken in and The exothermic reaction of the catalyst is promoted, and the temperature of the oxidation catalyst and the reforming catalyst can be quickly raised by the heated mixed gas, and the time required for the reforming catalyst to reach the reformable temperature can be shortened. It can be.

特開2002−154805号公報JP 2002-154805 A 特開2008−229604号公報JP 2008-229604 A

上記のようなオートサーマル方式の改質器の適用が期待される技術分野は拡大傾向にあり、改質触媒の改質可能温度への到達時間の更なる短縮化の要望がある。   The technical field where application of the autothermal reformer as described above is expected is expanding, and there is a demand for further shortening the time required for the reforming catalyst to reach the reformable temperature.

ところで、常温にて酸化反応により自己発熱するとともに水素系燃料を改質して水素を生成する触媒であって、該触媒の反応停止期間中にわたり該触媒の担体を還元状態に保持することができれば、外部熱エネルギーを供給せずに常温からの短時間起動を繰り返し可能とする触媒(以下、常温起動触媒と称す)が知られている(特許文献2参照)。すなわち、触媒反応停止期間中にわたり該触媒の担体を還元状態に保持することができれば、常温にて酸素と担体との反応による自己発熱が生じて該自己発熱にて触媒温度を急速に昇温させることができ、一方で、改質反応により生成された水素と反応熱とにより担体が自動的に還元状態に戻るというような触媒が知られている。このような常温起動触媒によれば、最初の起動にて触媒担体を還元状態にしてから後に実行される起動においては、外部熱エネルギーを供給することなく、例えば上記のような電気加熱式触媒にて熱エネルギーを供給することなく改質触媒の改質可能温度への到達時間の更なる短縮化を図りうるとともに、また、要求される改質可能温度への到達時間短縮化の仕様から電気加熱式触媒の使用を必要とする場合においても、電気加熱式触媒の小型化を図ることができ消費電力という点においても改善しうる。   By the way, a catalyst that generates hydrogen by reforming a hydrogen-based fuel and generates hydrogen by an oxidation reaction at room temperature, provided that the catalyst support can be maintained in a reduced state during the reaction stop period of the catalyst. A catalyst that can be repeatedly started for a short time from room temperature without supplying external thermal energy (hereinafter referred to as a room temperature startup catalyst) is known (see Patent Document 2). That is, if the catalyst support can be maintained in a reduced state during the catalytic reaction stop period, self-heating due to the reaction between oxygen and the support occurs at room temperature, and the catalyst temperature is rapidly raised by the self-heating. On the other hand, a catalyst is known in which the carrier is automatically returned to a reduced state by hydrogen generated by the reforming reaction and reaction heat. According to such a room temperature start-up catalyst, in the start-up executed after the catalyst carrier is brought into the reduced state at the first start-up, for example, the above-mentioned electrically heated catalyst is supplied without supplying external heat energy. Therefore, it is possible to further shorten the time required for the reforming catalyst to reach the reformable temperature without supplying thermal energy, and to use electric heating based on the specifications for shortening the required time for reaching the reformable temperature. Even in the case where the use of a type catalyst is required, the electric heating type catalyst can be miniaturized and the power consumption can be improved.

しかしながら、上記のような常温起動触媒がもたらす効果を有効に引き出すにあたっては、触媒反応が停止している期間中にわたり触媒担体を還元状態に保持しておくことを可能とするような構成が必要となる。   However, in order to effectively bring out the effects brought about by the normal temperature starting catalyst as described above, it is necessary to have a configuration that makes it possible to keep the catalyst carrier in a reduced state during the period when the catalytic reaction is stopped. Become.

本発明は上記課題に鑑み、少なくとも水素を一構成成分として含む水素系燃料を空気とともに混合ガスとして取り入れて水素を生成する改質器であって、水素系燃料を改質して水素を生成する触媒を有する改質器を備える改質システムにおいて、改質器の運用停止期間中にわたり常温起動触媒の担体を還元状態に保持する還元雰囲気保持手段を有することで、上記のような常温起動触媒の効果を有効に引き出すことを可能とし、改質触媒の改質可能温度への到達時間の更なる短縮化を図ることを可能にするとともに、電力消費という観点においても優れた改質システムを提供することを目的とする。   In view of the above-mentioned problems, the present invention is a reformer that generates hydrogen by introducing a hydrogen-based fuel containing at least hydrogen as a constituent component together with air as a mixed gas, and reforms the hydrogen-based fuel to generate hydrogen. In a reforming system including a reformer having a catalyst, a reducing atmosphere holding means for holding the support of the room temperature starting catalyst in a reduced state during the operation stop period of the reformer, Providing an excellent reforming system from the viewpoint of power consumption as well as making it possible to bring out the effect effectively and to further shorten the time required for the reforming catalyst to reach the reformable temperature. For the purpose.

請求項1に記載の発明によれば、少なくとも水素を一構成成分として含む水素系燃料を空気とともに混合ガスとして取り入れて水素を生成する改質器を備える改質システムであって、前記改質器には、前記水素系燃料を改質して水素を生成する触媒であって、該触媒の担体が還元状態にある場合において常温にて酸素と該担体との反応により自己発熱するという常温起動触媒が配設され、当該改質システムは、前記改質器の運用停止期間中にわたり前記常温起動触媒の担体を還元状態に保持する還元雰囲気保持手段を有し、前記還元雰囲気保持手段は、前記改質器と流体連通していて該改質器への空気の流入をもたらす上流側通路に配置され、前記改質器内への空気の流入を制御する第1制御バルブと、前記改質器と流体連通していて該改質器にて生成された改質ガスの放出をもたらす下流側通路に配置され、前記改質ガスの前記改質器からの放出を制御する第2制御バルブと、前記第1制御バルブと前記改質器との間の前記上流側通路に前記水素系燃料を供給する燃料噴射装置とを有し、前記改質器の運転停止時に、該改質器内の残存ガスを押出して該改質器内を前記水素系燃料にて満たすように、前記第1制御バルブと前記第2制御バルブと前記燃料噴射装置とを制御する、改質システムが提供される。   According to the first aspect of the present invention, there is provided a reforming system including a reformer that takes in hydrogen-based fuel containing at least hydrogen as a constituent component together with air as a mixed gas to generate hydrogen, and the reformer A catalyst for reforming the hydrogen-based fuel to generate hydrogen, and when the catalyst carrier is in a reduced state, the catalyst is self-heating at room temperature due to the reaction between oxygen and the carrier, and is started at room temperature The reforming system has a reducing atmosphere holding means for holding the support of the room temperature starting catalyst in a reduced state during the operation stop period of the reformer, and the reducing atmosphere holding means is the modified atmosphere holding means. A first control valve disposed in an upstream passage that is in fluid communication with the mass device and that causes the inflow of air into the reformer, and controls the inflow of air into the reformer; and the reformer; The reforming is in fluid communication A second control valve that is disposed in a downstream side passage that causes the release of the reformed gas generated in the step, and controls the release of the reformed gas from the reformer, the first control valve, and the reformer And a fuel injection device for supplying the hydrogen-based fuel to the upstream side passage between the gas generator and the remaining gas in the reformer when the reformer is shut down. A reforming system is provided that controls the first control valve, the second control valve, and the fuel injection device so as to be filled with the hydrogen-based fuel.

すなわち、請求項1に記載の発明では、少なくとも水素を一構成成分として含む水素系燃料を空気とともに混合ガスとして取り入れて水素を生成する改質器を備える改質システムにおいて、改質器内に配置され水素系燃料を改質して水素を生成する触媒として、触媒の担体が還元状態にある場合において常温にて酸素と該担体との反応により自己発熱するという常温起動触媒を適用する。そして、このような常温起動触媒がもたらす効果を有効に引き出すべく、本改質システムは、改質器の運用停止期間中にわたり常温起動触媒の担体を還元状態に保持する還元雰囲気保持手段を有して構成される。より具体的には、還元雰囲気保持手段は、改質器内への空気の流入を制御する第1制御バルブと、改質ガスの前記改質器からの放出を制御する第2制御バルブと、第1制御バルブと改質器との間の上流側通路に水素系燃料を供給する燃料噴射装置とを有し、改質器の運転停止時に、該改質器内の残存ガスを押出して該改質器内を水素系燃料にて満たすように、第1制御バルブと第2制御バルブと燃料噴射装置とを制御する。   That is, according to the first aspect of the present invention, in a reforming system including a reformer that generates hydrogen by introducing a hydrogen-based fuel containing at least hydrogen as a constituent component together with air as a mixed gas, the fuel is disposed in the reformer. As a catalyst for reforming the hydrogen-based fuel to generate hydrogen, a room temperature start-up catalyst that self-heats due to a reaction between oxygen and the carrier at room temperature when the catalyst carrier is in a reduced state is applied. In order to effectively bring out the effects brought about by such a room temperature starting catalyst, the reforming system has a reducing atmosphere holding means for holding the support of the room temperature starting catalyst in a reduced state during the operation stop period of the reformer. Configured. More specifically, the reducing atmosphere holding means includes a first control valve that controls the inflow of air into the reformer, a second control valve that controls the release of reformed gas from the reformer, A fuel injection device for supplying hydrogen-based fuel to the upstream passage between the first control valve and the reformer, and when the reformer is shut down, the residual gas in the reformer is extruded to The first control valve, the second control valve, and the fuel injection device are controlled so that the reformer is filled with hydrogen-based fuel.

このような還元雰囲気保持手段を有する改質システムによれば、常温起動触媒の反応が停止している期間中にわたり該触媒の担体を還元状態に保持しておくことができ、次の改質器の運用起動の際に、常温にて酸素と担体との反応による自己発熱が生じて該自己発熱にて触媒温度を急速に昇温させることができ、外部熱エネルギーを供給することなく、触媒の改質可能温度への到達時間の更なる短縮化を図ることを可能とする。また、要求される改質可能温度への到達時間短縮化の仕様から電気加熱式触媒の使用を必要とする場合においても、電気加熱式触媒の小型化を図ることができ、消費電力という点においても改善しうる。   According to the reforming system having such a reducing atmosphere holding means, the carrier of the catalyst can be held in a reduced state during the period when the reaction of the room temperature starting catalyst is stopped. At the start of operation, self-heating due to the reaction between oxygen and the carrier occurs at room temperature, and the catalyst temperature can be rapidly raised by the self-heating, and without supplying external heat energy, It is possible to further shorten the time required to reach the reformable temperature. In addition, even when it is necessary to use an electrically heated catalyst due to the specification of shortening the time required to reach the required reformable temperature, the electrically heated catalyst can be reduced in size and in terms of power consumption. Can also improve.

請求項2に記載の発明によれば、前記改質器内の圧力を検出する圧力検出器を備え、前記還元雰囲気保持手段は、前記改質器の運用停止期間中において、前記圧力検出器により前記改質器内の圧力が所定値よりも低下したことが検出された場合、前記燃料噴射装置により前記改質器内に前記水素系燃料を供給する、請求項1に記載の改質システムが提供される。   According to the second aspect of the present invention, the pressure detector for detecting the pressure in the reformer is provided, and the reducing atmosphere holding means is operated by the pressure detector during the operation stop period of the reformer. 2. The reforming system according to claim 1, wherein when the pressure in the reformer is detected to be lower than a predetermined value, the hydrogen fuel is supplied into the reformer by the fuel injection device. Provided.

請求項3に記載の発明によれば、電気加熱式ヒーターが、前記常温起動触媒の上流側にて該常温起動触媒に隣接して配置される、請求項1または請求項2に記載の改質システムが提供される。   According to the invention described in claim 3, the reformer according to claim 1, wherein an electric heater is disposed adjacent to the room temperature starting catalyst on the upstream side of the room temperature starting catalyst. A system is provided.

請求項4に記載の発明によれば、前記常温起動触媒は、前記混合ガスが流入する入口部分と、前記改質ガスが放出される出口部分とを有し、前記出口部分には、前記入口部分に配置される担体よりも多くの量の担体が配置される、請求項3に記載の改質システムが提供される。   According to the invention described in claim 4, the normal temperature starting catalyst has an inlet portion into which the mixed gas flows and an outlet portion from which the reformed gas is discharged, and the outlet portion includes the inlet. 4. A reforming system according to claim 3, wherein a greater amount of support is placed than the support placed in the part.

請求項5に記載の発明によれば、前記第1制御バルブと前記第2制御バルブとの間に、前記改質器に対する前記混合ガスの流入方向と前記改質ガスの放出方向とを逆転しうる流入放出方向変更手段が配設される、請求項1または請求項2に記載の改質システムが提供される。   According to the fifth aspect of the present invention, the inflow direction of the mixed gas and the discharge direction of the reformed gas with respect to the reformer are reversed between the first control valve and the second control valve. A reforming system according to claim 1 or 2 is provided, wherein the inflow / discharge direction changing means is arranged.

請求項6に記載の発明によれば、前記常温起動触媒の担体は、水素系燃料の改質に関与する改質用触媒粒子を担持し、前記常温起動触媒の中央部分の担体には、前記常温起動触媒の両端部分の担体に担持される前記改質用触媒粒子よりも多くの量の前記改質用触媒粒子が担持される、請求項5に記載の改質システムが提供される。   According to the invention described in claim 6, the carrier for the room temperature starting catalyst carries the reforming catalyst particles involved in the reforming of the hydrogen-based fuel, and the carrier in the central part of the room temperature starting catalyst includes the 6. The reforming system according to claim 5, wherein a larger amount of the reforming catalyst particles is supported than the reforming catalyst particles supported on the support at both ends of the room temperature starting catalyst.

各請求項に記載の発明によれば、少なくとも水素を一構成成分として含む水素系燃料を空気とともに混合ガスとして取り入れて水素を生成する改質器であって、水素系燃料を改質して水素を生成する触媒を有する改質器を備える改質システムにおいて、改質器内に配置され水素系燃料を改質して水素を生成する触媒として、触媒の担体が還元状態にある場合において常温にて酸素と該担体との反応により自己発熱するという常温起動触媒を適用し、また、改質器の運用停止期間中にわたり常温起動触媒の担体を還元状態に保持する還元雰囲気保持手段を有することで、上記のような常温起動触媒の効果を有効に引き出すことを可能とし、改質触媒の改質可能温度への到達時間の更なる短縮化を図ることを可能にするとともに、電力消費という観点においても優れた改質システムを提供すること可能とする、という共通の効果を奏する。   According to the invention described in each claim, a reformer that takes in hydrogen-based fuel containing at least hydrogen as a constituent component together with air as a mixed gas to generate hydrogen, reforming the hydrogen-based fuel to generate hydrogen In a reforming system including a reformer having a catalyst for generating hydrogen, a catalyst that is disposed in the reformer and generates hydrogen by reforming a hydrogen-based fuel is used at room temperature when the catalyst support is in a reduced state. By applying a room temperature starting catalyst that self-heats due to the reaction between oxygen and the carrier, and having a reducing atmosphere holding means for holding the carrier of the room temperature starting catalyst in a reduced state during the operation stop period of the reformer It is possible to effectively bring out the effects of the normal temperature starting catalyst as described above, to further shorten the time required for the reforming catalyst to reach the reformable temperature, and to Allows to provide novel modified systems at point achieves the same effect that.

本発明の改質システムの全体構成の一実施形態を示す図である。It is a figure which shows one Embodiment of the whole structure of the reforming system of this invention. 本発明の改質システムの全体構成の別の実施形態を示す図である。It is a figure which shows another embodiment of the whole structure of the reforming system of this invention. 本発明の改質システムの全体構成のさらに別の実施形態を示す図である。It is a figure which shows another embodiment of the whole structure of the reforming system of this invention. 図3に示す改質システムの実施形態における、改質器に対する混合ガス及び改質ガスの順方向流れを示す図である。FIG. 4 is a diagram showing a forward flow of mixed gas and reformed gas with respect to the reformer in the embodiment of the reforming system shown in FIG. 3. 図3に示す改質システムの実施形態における、改質器に対する混合ガス及び改質ガスの逆方向流れを示す図である。FIG. 4 is a diagram showing the reverse flow of the mixed gas and the reformed gas with respect to the reformer in the embodiment of the reforming system shown in FIG. 3. 本発明の改質システムにおける常温起動触媒の担体分布の一実施形態を示す図である。It is a figure which shows one Embodiment of the support | carrier distribution of the normal temperature starting catalyst in the reforming system of this invention.

以下、添付図面を用いて本発明に係る改質システムの実施形態について説明する。図1は、本発明の改質システムの全体構成の一実施形態を示す図である。図1において、1は改質システム、2は改質器、3は常温起動触媒、4は上流側通路、5は下流側通路、6は第1制御バルブ、7は第2制御バルブ、8は燃料噴射装置、9は圧力検出器、のそれぞれを示す。   Hereinafter, embodiments of a reforming system according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a diagram showing an embodiment of the overall configuration of the reforming system of the present invention. In FIG. 1, 1 is a reforming system, 2 is a reformer, 3 is a normal temperature starting catalyst, 4 is an upstream passage, 5 is a downstream passage, 6 is a first control valve, 7 is a second control valve, and 8 is Each of the fuel injection devices 9 is a pressure detector.

図1に示される実施形態における改質器2は、少なくとも水素を一構成成分として含む水素系燃料を改質して水素を生成する改質器である。そして、本発明の改質システム1における改質器2には、水素系燃料を改質して水素を生成する触媒であって、該触媒の担体が還元状態にある場合には常温にて酸素と該担体との反応により自己発熱するという常温起動触媒3が配設される。このような常温起動触媒3は、改質器2の運用停止期間中すなわち触媒反応の停止期間中にわたり該触媒の担体を還元状態に保持することができれば、次の起動時に常温にて酸素と担体との反応による自己発熱を生じさせて該自己発熱にて触媒温度を急速に昇温させることができ、一方で、改質反応により生成された水素と反応熱とにより担体は還元状態に戻るというような触媒として知られている。尚、本実施形態における常温起動触媒3は、ハニカム構造にて形成され、取り入れられた混合ガスが流れる方向に沿って形成されている複数の流路を有するものとされる。そして、常温起動触媒3の触媒粒子は担持体に担持されているものとされ、該担持体は基材にて支持されるものとする。   The reformer 2 in the embodiment shown in FIG. 1 is a reformer that generates hydrogen by reforming a hydrogen-based fuel containing at least hydrogen as a constituent component. The reformer 2 in the reforming system 1 of the present invention includes a catalyst that reforms a hydrogen fuel to generate hydrogen, and oxygen is used at room temperature when the carrier of the catalyst is in a reduced state. A room temperature start-up catalyst 3 that self-heats due to the reaction between the carrier and the carrier is disposed. If such a room temperature starting catalyst 3 can maintain the catalyst carrier in a reduced state during the operation stop period of the reformer 2, that is, during the catalyst reaction stop period, oxygen and the carrier at normal temperature at the next start time. The catalyst temperature can be rapidly raised by the self-heating due to the reaction with the catalyst, while the carrier returns to the reduced state by the hydrogen generated by the reforming reaction and the heat of reaction. Known as such a catalyst. Note that the room temperature starting catalyst 3 in the present embodiment is formed in a honeycomb structure and has a plurality of flow paths formed along the direction in which the introduced mixed gas flows. The catalyst particles of the room temperature starting catalyst 3 are assumed to be carried on a carrier, and the carrier is supported on the base material.

従って、このような常温起動触媒によれば、該触媒の反応停止期間中にわたり該触媒の担体を還元状態に保持することができれば、外部熱エネルギーを供給せずに常温からの短時間起動を繰り返し可能とする。すなわち、最初に触媒担体を還元状態にしてからの後に実行される起動においては、外部熱エネルギーを供給することなく、例えば上記のような電気加熱式触媒にて熱エネルギーを供給することなく触媒温度の改質可能温度への到達時間の更なる短縮化を図りうるとともに、また、要求される改質可能温度への到達時間短縮化の仕様から電気加熱式触媒(EHC)の使用を必要とする場合においても、電気加熱式触媒の小型化を図ることができ、消費電力という点においても改善しうる。しかしながら、上記のような常温起動触媒がもたらす効果を有効に引き出すにあたっては、改質器の運用停止期間中すなわち触媒反応が停止している期間中にわたり触媒の担体を還元状態に保持しておくことを可能とするような構成が必要となる。   Therefore, according to such a room temperature start-up catalyst, if the catalyst support can be maintained in a reduced state during the reaction stop period of the catalyst, short-time start-up from room temperature is repeated without supplying external heat energy. Make it possible. That is, in the start-up executed after the catalyst carrier is first reduced, the catalyst temperature is not supplied without supplying external heat energy, for example, without supplying heat energy with the electric heating catalyst as described above. The time required to reach the reformable temperature can be further shortened, and the use of an electrically heated catalyst (EHC) is required due to the specification of shortening the time required to reach the required reformable temperature. Even in this case, it is possible to reduce the size of the electrically heated catalyst and to improve power consumption. However, in order to effectively bring out the effects brought about by the room temperature starting catalyst as described above, the catalyst carrier must be kept in a reduced state during the operation period of the reformer, that is, during the period when the catalytic reaction is stopped. It is necessary to have a configuration that enables this.

このことに基づいて、本発明の改質システムにおいては、改質器2に配置され水素系燃料を改質して水素を生成する触媒として、触媒の担体が還元状態にある場合に常温にて酸素と担体との反応により自己発熱するという常温起動触媒3を適用する。そして、このような常温起動触媒3がもたらす効果を有効に引き出すべく、本発明の改質システム1は、改質器2の運用停止期間中にわたり常温起動触媒3の担体を還元状態に保持する還元雰囲気保持手段を有して構成される。   Based on this, in the reforming system of the present invention, as a catalyst that is disposed in the reformer 2 to generate hydrogen by reforming the hydrogen-based fuel, when the catalyst carrier is in a reduced state, at room temperature. A room temperature start-up catalyst 3 that self-heats due to the reaction between oxygen and the carrier is applied. In order to effectively bring out the effect brought about by such a room temperature starting catalyst 3, the reforming system 1 of the present invention reduces the carrier of the room temperature starting catalyst 3 in a reduced state during the operation stop period of the reformer 2. It has an atmosphere holding means.

そして、本発明の改質システム1における還元雰囲気保持手段は、改質器2と流体連通していて改質器2への空気の流入をもたらす上流側通路4に配置され、改質器2内への空気の流入を制御する第1制御バルブ6と、改質器2と流体連通していて改質器2にて生成された改質ガスの放出をもたらす下流側通路5に配置され、改質ガスの改質器2からの放出を制御する第2制御バルブ7と、第1制御バルブ6と改質器2との間の上流側通路に水素系燃料を供給する燃料噴射装置8とを有し、改質器2の運用停止時に、該改質器2内の残存ガスを押出して該改質器2内を水素系燃料にて満たすように、第1制御バルブ6と第2制御バルブ7と燃料噴射装置8とを制御するように構成される。   The reducing atmosphere holding means in the reforming system 1 of the present invention is disposed in the upstream passage 4 that is in fluid communication with the reformer 2 and causes the inflow of air to the reformer 2. A first control valve 6 that controls the inflow of air into the downstream passage 5 and a downstream passage 5 that is in fluid communication with the reformer 2 and that releases the reformed gas generated in the reformer 2. A second control valve 7 for controlling the release of the gaseous gas from the reformer 2, and a fuel injection device 8 for supplying hydrogen-based fuel to the upstream passage between the first control valve 6 and the reformer 2. A first control valve 6 and a second control valve so that when the operation of the reformer 2 is stopped, the residual gas in the reformer 2 is pushed out to fill the reformer 2 with hydrogen-based fuel. 7 and the fuel injection device 8 are controlled.

図1に示される本改質システムの実施形態においては、還元雰囲気保持手段は、改質器2の運用が停止されると、まず、第1制御バルブ6を閉じて改質器2への空気の供給を遮断するように制御する。次に、還元雰囲気保持手段は、燃料噴射装置8により上流側通路4を介して改質器2に水素系燃料を供給して、改質器2内に残存するガスを改質器2から押出し、その後、第2制御バルブ7を閉じることにより、改質器2内を水素系燃料にて満たし、このような改質器2が水素系燃料にて満たされた状態すなわち改質器2内が還元雰囲気とされた状態を改質器2の運用停止期間中にわたり保持するように、第1制御バルブ6と第2制御バルブ7と燃料噴射装置8とを制御する。   In the embodiment of the reforming system shown in FIG. 1, when the operation of the reformer 2 is stopped, the reducing atmosphere holding means first closes the first control valve 6 and supplies air to the reformer 2. Control to cut off the supply. Next, the reducing atmosphere holding means supplies the hydrogen-based fuel to the reformer 2 via the upstream side passage 4 by the fuel injection device 8 and pushes the gas remaining in the reformer 2 from the reformer 2. Thereafter, by closing the second control valve 7, the interior of the reformer 2 is filled with hydrogen-based fuel, and the state where such a reformer 2 is filled with hydrogen-based fuel, that is, the interior of the reformer 2 is The first control valve 6, the second control valve 7, and the fuel injection device 8 are controlled so that the reduced atmosphere is maintained during the operation stop period of the reformer 2.

このような制御を行う還元雰囲気保持手段を有して構成される本発明の改質システム1によれば、改質器2の運用停止期間中すなわち常温起動触媒3の反応が停止している期間中にわたり触媒の担体を還元状態に保持しておくことができ、次の改質器2の運用起動の際に、常温にて酸素と担体との反応による自己発熱を生じさせて該自己発熱にて触媒温度を急速に昇温させることができ、外部熱エネルギーを供給することなく、触媒温度の改質可能温度への到達時間の更なる短縮化を図ることを可能とする。なお、次の起動時は空気のみを供給すればよい。また、要求される改質可能温度への到達時間短縮化の仕様から電気加熱式触媒の使用を必要とする場合においても、電気加熱式触媒の小型化を図ることができ、消費電力という点においても改善しうる。   According to the reforming system 1 of the present invention configured with the reducing atmosphere holding means for performing such control, the period during which the reformer 2 is stopped, that is, the reaction of the room temperature starting catalyst 3 is stopped. The catalyst carrier can be maintained in a reduced state throughout, and at the time of starting the operation of the next reformer 2, self-heating is caused by the reaction between oxygen and the carrier at room temperature, and this self-heating is caused. Thus, the catalyst temperature can be rapidly raised, and the time for reaching the reformable temperature of the catalyst temperature can be further shortened without supplying external heat energy. In the next start-up, only air needs to be supplied. In addition, even when it is necessary to use an electrically heated catalyst due to the specification of shortening the time required to reach the required reformable temperature, the electrically heated catalyst can be reduced in size and in terms of power consumption. Can also improve.

ところで、運用時における改質器2の温度は概して、約800℃というような高温状態にあり、運用停止後のしばらくの間は高温状態が継続されることとなるが、その後においては、改質器2の温度は徐々に低下することとなり、この温度低下に起因して改質器2内の圧力が負圧となり、それにともなって、上流側通路4に配置された第1制御バルブ6と下流側通路5に配置された第2制御バルブ7との間の上流側通路4及び下流側通路5の各通路内圧力も負圧となりうることが考えられる。この負圧の状態が改質器の運用停止期間中にわたり継続されると、次の改質器2の起動時までの間に何らかの原因で外部から酸素が改質器2内に侵入してしまうというような事態が生じやすい状態が継続されることとなり、改質器の運用停止から次の起動時まで触媒の担体の還元状態を保持できないというような事態の発生も生じうる。   By the way, the temperature of the reformer 2 during operation is generally in a high temperature state such as about 800 ° C., and the high temperature state continues for a while after the operation is stopped. The temperature of the reformer 2 gradually decreases, and the pressure in the reformer 2 becomes negative due to this temperature decrease, and accordingly, the first control valve 6 disposed in the upstream passage 4 and the downstream side It is conceivable that the pressure in each of the upstream side passage 4 and the downstream side passage 5 between the second control valve 7 disposed in the side passage 5 can also be negative. If this negative pressure state is continued during the operation stop period of the reformer, oxygen will enter the reformer 2 from the outside for some reason until the next reformer 2 is started. Such a situation is likely to occur, and there may be a situation in which the reduced state of the catalyst carrier cannot be maintained from the stop of the operation of the reformer to the next startup.

このことに基づいて、図1に示される実施形態における改質システムにおいては、改質器2内の圧力を検出する圧力検出器9が下流側通路5に配置され、還元雰囲気保持手段は、改質器2の運用停止期間中において、圧力検出器9により改質器2内の圧力が所定値よりも低下したことが検出された場合には、改質器2内への酸素の侵入を抑制すべく、燃料噴射装置8により改質器2内に水素系燃料を供給するという制御を行う。   Based on this, in the reforming system in the embodiment shown in FIG. 1, the pressure detector 9 for detecting the pressure in the reformer 2 is disposed in the downstream passage 5, and the reducing atmosphere holding means is modified. When the pressure detector 9 detects that the pressure in the reformer 2 has decreased below a predetermined value during the operation stop period of the mass device 2, the entry of oxygen into the reformer 2 is suppressed. Therefore, the fuel injection device 8 performs control to supply hydrogen-based fuel into the reformer 2.

尚、このような改質器2内への酸素の侵入を抑制する制御機能を還元雰囲気保持手段が有する必要があるか否かは、改質システムの使用環境や設計仕様などに応じて適宜に決定されるものであり、還元雰囲気保持手段が、このような制御機能を有さずに構成されてもよい。また、本実施形態においては、改質器2内の圧力を検出する圧力検出器9は下流側通路5に配置されるように構成されるが、これに限られることはなく、少なくとも第1制御バルブ6と第2制御バルブ7との間にて配置されていればよく、圧力検出器9は上流側通路4に配置されてもよく、あるいは、改質器2に直接的に配置されるように構成されてもよい。   It should be noted that whether or not the reducing atmosphere holding means needs to have a control function for suppressing the intrusion of oxygen into the reformer 2 depends on the use environment and design specifications of the reforming system. In other words, the reducing atmosphere holding means may be configured without such a control function. In the present embodiment, the pressure detector 9 that detects the pressure in the reformer 2 is configured to be disposed in the downstream passage 5, but is not limited thereto, and at least the first control is performed. The pressure detector 9 may be disposed between the valve 6 and the second control valve 7, and the pressure detector 9 may be disposed in the upstream passage 4, or may be disposed directly in the reformer 2. May be configured.

ところで、上記のような常温起動触媒3における常温にての自己発熱反応の度合いは、触媒の担体の還元状態の度合いに依存し、より還元状態の強い部分のほうが自己発熱反応が強い。改質器2が継続した運用状態に置かれている場合には概して、混合ガスが流入する触媒前方部分においては主として酸化反応が行われ、改質ガスが放出される触媒後方部分においては主として改質反応が行われる。よって、改質器の運用停止時には、混合ガスが流入する触媒前方部分の担体と比較して触媒後方部分の担体の方が、より還元状態の度合いが強く、次の改質器の起動時においては、触媒後方部分の自己発熱による昇温が、触媒前方部分の昇温より早くなる。この点に関して、触媒前方部分の昇温を触媒後方部分と同じにするように補助することを可能とするような何らかの手段を講じることができれば、触媒温度がより均一に近くなり、全体として起動温度に達する時間が短く出来るので、更なる改質器の起動性の向上を図ることが可能となる。   By the way, the degree of the self-heating reaction at room temperature in the above-described room temperature starting catalyst 3 depends on the degree of reduction of the catalyst carrier, and the self-heating reaction is stronger in the portion where the reduction state is stronger. In general, when the reformer 2 is continuously operated, an oxidation reaction is mainly performed in the front part of the catalyst into which the mixed gas flows, and mainly in the rear part of the catalyst in which the reformed gas is released. A quality reaction takes place. Therefore, when the operation of the reformer is stopped, the carrier in the rear part of the catalyst has a stronger degree of reduction compared to the carrier in the front part of the catalyst into which the mixed gas flows, and at the start of the next reformer The temperature rise due to self-heating in the rear part of the catalyst is faster than the temperature rise in the front part of the catalyst. In this regard, if some measure can be taken to allow the temperature rise in the front part of the catalyst to be the same as that in the back part of the catalyst, the catalyst temperature will become more uniform and the starting temperature as a whole. Therefore, it is possible to further improve the startability of the reformer.

このことに基づいて、図2に示される実施形態における本発明の改質システムにおいては、電気加熱式ヒーター10が、常温起動触媒3の上流側(前方部分)にて該常温起動触媒3に隣接して配置される。尚、図2における改質器2、常温始動触媒3、上流側通路4、下流側通路5、第1制御バルブ6、第2制御バルブ7、燃料噴射装置8、圧力検出器9のそれぞれは、図1に示された実施形態のものと同様の構成配置とされる。   Based on this, in the reforming system of the present invention in the embodiment shown in FIG. 2, the electric heater 10 is adjacent to the room temperature starting catalyst 3 on the upstream side (front portion) of the room temperature starting catalyst 3. Arranged. In addition, each of the reformer 2, the normal temperature start catalyst 3, the upstream side passage 4, the downstream side passage 5, the first control valve 6, the second control valve 7, the fuel injection device 8, and the pressure detector 9 in FIG. The configuration is the same as that of the embodiment shown in FIG.

図2に示されるような構成配置を有する改質システムによれば、改質器2の運用停止後の次の起動時において、第1制御バルブ6を開放して上流側通路4を介して空気を改質器2に流入させるのと同時に電気加熱式ヒーター10を通電して加熱することで、常温起動触媒3における常温にての自己発熱反応により触媒後方部分の昇温と同様に、電気加熱式ヒーター10により触媒前方部分の昇温も実施させることができ、更なる改質器の起動性の向上を図ることが可能となる。   According to the reforming system having the configuration as shown in FIG. 2, at the next startup after the operation of the reformer 2 is stopped, the first control valve 6 is opened and the air is passed through the upstream passage 4. As the temperature of the rear portion of the catalyst is increased by the self-heating reaction at normal temperature in the normal temperature starting catalyst 3, the electric heating is performed by energizing and heating the electric heater 10 at the same time as the gas flows into the reformer 2. The temperature of the front part of the catalyst can also be increased by the type heater 10, and it becomes possible to further improve the startability of the reformer.

また、本発明の改質システムにおいては、さらなる改質器の起動性の向上を図るべく、図1及び図2に示された実施形態における常温起動触媒3が、混合ガスが流入する入口部分と、改質ガスが放出される出口部分とを有し、該出口部分には、該入口部分に配置される担体よりも多くの量の担体が配置されるように構成されてもよい。すなわち、改質器2の運用停止後において触媒の担体が強い還元状態におかれる部分であって、次の起動時において自己発熱による昇温が強い上記出口部分に、より多くの量の担体を配置するように構成することで、より迅速に触媒を昇温させることができ、更なる改質器の起動性の向上を図ることが可能となる。   In the reforming system of the present invention, in order to further improve the startability of the reformer, the room temperature starting catalyst 3 in the embodiment shown in FIGS. 1 and 2 includes an inlet portion into which the mixed gas flows. And an outlet portion from which the reformed gas is discharged, and the outlet portion may be configured such that a larger amount of carrier is disposed than the carrier disposed in the inlet portion. That is, after the operation of the reformer 2 is stopped, the catalyst carrier is placed in a strong reduction state, and at the next start-up, a larger amount of carrier is placed in the outlet portion where the temperature rise due to self-heating is strong. By arranging to arrange, it is possible to raise the temperature of the catalyst more quickly, and to further improve the startability of the reformer.

図6は、本発明の改質システムにおける常温起動触媒の担体分布の一実施形態を示す図であって、改質ガスの出口部分には、混合ガスの入口部分に配置される担体よりも多くの量の担体が配置されるような常温起動触媒の担体分布の一実施形態を示す図である。図6に示される常温起動触媒3の実施形態においては、常温起動触媒3が、混合ガスが流入する部分を含む上流側領域21と、改質ガスの出口部分を含む下流側領域22との2つの領域に分けられて、下流側領域22には、上流側領域21に配置される担体よりも多くの量の担体が配置されるように構成される。   FIG. 6 is a diagram showing an embodiment of the carrier distribution of the room temperature starting catalyst in the reforming system of the present invention, in which the outlet portion of the reformed gas is more than the carrier disposed at the inlet portion of the mixed gas. FIG. 6 is a diagram showing an embodiment of a carrier distribution of a room temperature start-up catalyst in which the amount of carrier is arranged. In the embodiment of the room temperature starting catalyst 3 shown in FIG. 6, the room temperature starting catalyst 3 includes two upstream regions 21 including a portion into which a mixed gas flows and downstream regions 22 including a reformed gas outlet portion. Divided into two regions, the downstream region 22 is configured such that a larger amount of the carrier than the carrier disposed in the upstream region 21 is disposed.

尚、常温起動触媒における改質ガスの出口部分には、常温起動触媒における混合ガスの入口部分に配置される担体よりも多くの量の担体が配置されるような常温起動触媒の構成は、図6に示されるよう構成に限れることはなく、例えば、常温起動触媒における混合ガスの入口部分から改質ガスの出口部分に向かい、徐々に担体量が増加するように構成されてもよい。   The configuration of the room temperature starting catalyst in which a larger amount of carrier than the carrier disposed in the inlet portion of the mixed gas in the room temperature starting catalyst is disposed at the outlet portion of the reformed gas in the room temperature starting catalyst is shown in FIG. The configuration is not limited to the one shown in FIG. 6. For example, the carrier amount may gradually increase from the mixed gas inlet portion to the reformed gas outlet portion of the room temperature starting catalyst.

図3は、本発明の改質システムの全体構成のさらに別の実施形態を示す図である。尚、図3における改質器2、常温始動触媒3、上流側通路4、下流側通路5、第1制御バルブ6、第2制御バルブ7、燃料噴射装置8、圧力検出器9のそれぞれは、図1に示された実施形態のものと同様の構成配置とされる。   FIG. 3 is a diagram showing still another embodiment of the overall configuration of the reforming system of the present invention. In addition, each of the reformer 2, the normal temperature starting catalyst 3, the upstream passage 4, the downstream passage 5, the first control valve 6, the second control valve 7, the fuel injection device 8, and the pressure detector 9 in FIG. The configuration is the same as that of the embodiment shown in FIG.

先にも説明したように、改質器2が継続した運用状態に置かれている場合には概して、混合ガスが流入する触媒前方部分においては主として酸化反応が行われ、改質ガスが放出される触媒後方部分においては主として改質反応が行われる。よって、改質器の運用停止時には、混合ガスが流入する触媒前方部分の担体と比較して触媒後方部分の担体の方が、より還元状態の度合いが強く、次の改質器の起動時においては、触媒後方部分から自己発熱による昇温が強いこととなり、触媒前方部分の昇温が遅く、触媒の起動が遅れて開始されることなる。この点に関して、図2に示される実施形態の改質システムにおいては、電気加熱式ヒーター10を、常温起動触媒3の上流側にて該常温起動触媒3に隣接して配置することで、触媒後方部分の昇温と同様に、触媒前方部分の昇温も実施させることを可能し、更なる改質器の起動性の向上を図ることを可能としている。   As described above, when the reformer 2 is in a continuous operation state, generally, an oxidation reaction is mainly performed in the front part of the catalyst into which the mixed gas flows, and the reformed gas is released. The reforming reaction is mainly performed in the rear portion of the catalyst. Therefore, when the operation of the reformer is stopped, the carrier in the rear part of the catalyst has a stronger degree of reduction compared to the carrier in the front part of the catalyst into which the mixed gas flows, and at the start of the next reformer The temperature rise due to self-heating from the rear portion of the catalyst is strong, the temperature rise in the front portion of the catalyst is slow, and the start of the catalyst is delayed. In this regard, in the reforming system of the embodiment shown in FIG. 2, the electric heating heater 10 is disposed adjacent to the room temperature starting catalyst 3 on the upstream side of the room temperature starting catalyst 3, so that the catalyst rear side. Similarly to the temperature increase of the portion, it is possible to increase the temperature of the front portion of the catalyst, and to further improve the startability of the reformer.

これに対して、図3に示される実施形態の改質システムにおいては、第1制御バルブ6と第2制御バルブ7との間に、改質器に対する混合ガスの流入方向と改質ガスの放出方向とを逆転しうる流入放出方向変更手段を配設することで、すなわち、本実施形態における改質システムにおいては、改質器内を流れるガスの流れを、触媒前方部分から触媒後方部分へと流れる順方向流れと、触媒後方部分から触媒前方部分へと流れる逆方向流れとの間で変更する(切り替える)ことを可能とすることで、更なる改質器の起動性の向上を図ることを可能とする。   In contrast, in the reforming system of the embodiment shown in FIG. 3, the inflow direction of the mixed gas to the reformer and the discharge of the reformed gas are between the first control valve 6 and the second control valve 7. By arranging the inflow / discharge direction changing means that can reverse the direction, that is, in the reforming system in the present embodiment, the flow of the gas flowing in the reformer is changed from the catalyst front portion to the catalyst rear portion. By making it possible to change (switch) between the flowing forward flow and the reverse flow flowing from the rear part of the catalyst to the front part of the catalyst, it is possible to further improve the startability of the reformer. Make it possible.

例えば、改質器内の流れるガスの流れが順方向流れに制御された改質器運用時においては概して、混合ガスが流入する触媒前方部分においては主として酸化反応が行われ、改質ガスが放出される触媒前方部分においては主として改質反応が行われることとなるために、運用停止後における起動時においては、触媒前方部分の担体と比較して触媒後方部分の担体の方が、より還元状態の度合いが強い状態にあることなる。従って、改質器内の流れるガスの流れが順方向流れに制御された改質器運用が停止された後の起動時においては、改質器内を流れるガスの流れを触媒後方部分から触媒前方部分へと流れる逆方向流れとすることで、ガスの流れによって触媒後方部分で生じた自己発熱を触媒前方部分に迅速に伝えることができ、これにより、更なる改質器の起動性の向上を図ることを可能とする。   For example, during operation of a reformer in which the flow of gas flowing in the reformer is controlled to a forward flow, the oxidation reaction is mainly performed in the front part of the catalyst into which the mixed gas flows and the reformed gas is released. Since the reforming reaction is mainly performed in the front part of the catalyst, the support in the rear part of the catalyst is more reduced than the support in the front part of the catalyst when starting after operation stop. The degree of is in a strong state. Therefore, at the start-up after the reformer operation in which the flow of gas flowing in the reformer is controlled to the forward flow is stopped, the flow of gas flowing in the reformer is changed from the rear part of the catalyst to the front of the catalyst. By using the reverse flow to the part, the self-heating generated in the rear part of the catalyst due to the gas flow can be quickly transmitted to the front part of the catalyst, thereby further improving the startability of the reformer. It is possible to plan.

一方で、改質器内の流れるガスの流れが逆方向流れに制御された改質器運用時においては概して、混合ガスが流入する触媒後方部分においては主として酸化反応が行われ、改質ガスが放出される触媒前方部分においては主として改質反応が行われることとなるために、運用停止後における起動時においては、触媒後方部分の担体と比較して触媒前方部分の担体の方が、より還元状態の度合いが強い状態にあることなる。従って、改質器内の流れるガスの流れが逆方向流れに制御された改質器運用が停止された後の起動時においては、改質器内を流れるガスの流れを触媒前方部分から触媒後方部分へと流れる順方向流れとすることで、ガスの流れによって触媒前方部分で生じた自己発熱を触媒後方部分に迅速に伝えることができ、これにより、更なる改質器の起動性の向上を図ることを可能とする。   On the other hand, during the operation of the reformer in which the flow of gas flowing in the reformer is controlled in the reverse direction, the oxidation reaction is mainly performed in the rear portion of the catalyst into which the mixed gas flows, and the reformed gas is Since the reforming reaction is mainly performed in the front part of the released catalyst, the support in the front part of the catalyst is more reduced than the support in the rear part of the catalyst at the start after operation stop. The state is in a strong state. Therefore, at the start-up after the reformer operation in which the flow of gas flowing in the reformer is controlled to the reverse flow is stopped, the flow of gas flowing in the reformer is changed from the front part of the catalyst to the rear part of the catalyst. By using a forward flow that flows to the part, the self-heating generated in the front part of the catalyst due to the gas flow can be quickly transmitted to the rear part of the catalyst, thereby further improving the startability of the reformer. It is possible to plan.

このことに基づいて、上記のような改質器に対する混合ガスの流入方向と改質ガスの放出方向とを逆転しうる流入放出方向変更手段を有する本実施形態の改質システムにおいては、該流入放出方向変更手段により、改質器の各再起動時における改質器内を流れるガスの流れを、順方向流れと逆方向流れとの間で交互に順番に行うように制御することで、更なる改質器の起動性の向上を図ることを可能とする。しかしながら、改質器の各再起動時における改質器内を流れるガスの流れの制御は、これに限られるものではなく、その他の一定の条件に基づいて制御されてもよい。例えば、改質器の再起動時の起動が十分に行われることなく停止された場合などを考慮して、触媒温度などに基づいて、改質器の各再起動時における改質器内を流れるガスの流れ方向が制御されるように構成されてもよい。   Based on this, in the reforming system of this embodiment having the inflow / discharge direction changing means capable of reversing the inflow direction of the mixed gas and the discharge direction of the reformed gas to the reformer as described above, the inflow The discharge direction changing means controls the flow of the gas flowing in the reformer at each restart of the reformer so as to be alternately performed between the forward flow and the reverse flow. It is possible to improve the startability of the reformer. However, the control of the flow of gas flowing in the reformer at each restart of the reformer is not limited to this, and may be controlled based on other certain conditions. For example, considering the case where the reformer is stopped without being fully activated, the flow in the reformer at each restart of the reformer is based on the catalyst temperature and the like. You may comprise so that the flow direction of gas may be controlled.

図3において、11は第1迂回通路、12は第2迂回通路、13は第3制御バルブ、14は第4制御バルブ、15は第5制御バルブ、16は第6制御バルブ、をそれぞれ示す。尚、図3における改質器2、常温始動触媒3、上流側通路4、下流側通路5、第1制御バルブ6、第2制御バルブ7、燃料噴射装置8、圧力検出器9のそれぞれは、図1に示された実施形態のものと同様の構成配置とされる。   In FIG. 3, 11 is a first bypass passage, 12 is a second bypass passage, 13 is a third control valve, 14 is a fourth control valve, 15 is a fifth control valve, and 16 is a sixth control valve. In addition, each of the reformer 2, the normal temperature starting catalyst 3, the upstream passage 4, the downstream passage 5, the first control valve 6, the second control valve 7, the fuel injection device 8, and the pressure detector 9 in FIG. The configuration is the same as that of the embodiment shown in FIG.

図3に示す実施形態の改質システムにおける流入放出方向変更手段は、改質器2を介することなく上流側通路4と下流側通路5とを流体連通する第1迂回通路11と、上流側通路4との合流部および下流側通路5との合流部がともに、第1迂回通路11のものに対して下流側にシフトされて形成され、改質器2を介することなく上流側通路4と下流側通路5とを流体連通するという第2迂回通路12とを有して構成される。さらに、本改質システムにおける流入放出方向変更手段は、上流側通路4と下流側通路5と第1迂回通路11と第2迂回通路12とのそれぞれの通路に配置される、第3制御バルブ13、第4制御バルブ14、第5制御バルブ15及び第6制御バルブ16を有して構成される。   The inflow / discharge direction changing means in the reforming system of the embodiment shown in FIG. 3 includes a first bypass passage 11 that fluidly communicates the upstream passage 4 and the downstream passage 5 without going through the reformer 2, and an upstream passage. 4 and the downstream passage 5 are both formed by being shifted to the downstream side with respect to that of the first bypass passage 11, and the upstream side passage 4 and the downstream side without passing through the reformer 2. The second bypass passage 12 is configured to be in fluid communication with the side passage 5. Further, the inflow / discharge direction changing means in the reforming system is disposed in each of the upstream passage 4, the downstream passage 5, the first bypass passage 11, and the second bypass passage 12. , A fourth control valve 14, a fifth control valve 15, and a sixth control valve 16.

図4は、図3に示す改質システムの実施形態における、改質器に対する混合ガス及び改質ガスの順方向流れを示す図である。図5は、図3に示す改質システムの実施形態における、改質器に対する混合ガス及び改質ガスの逆方向流れを示す図である。   FIG. 4 is a diagram showing the forward flow of the mixed gas and the reformed gas with respect to the reformer in the embodiment of the reforming system shown in FIG. FIG. 5 is a diagram showing the reverse flow of the mixed gas and the reformed gas with respect to the reformer in the embodiment of the reforming system shown in FIG. 3.

図4において、Aは順方向に流入する混合ガスの流れを示し、Bは順方向に放出される改質ガスの流れを示す。この際、図面から理解されうるごとく、改質器に対する混合ガス及び改質ガスの順方向流れに制御する場合においては、流入放出方向変更手段は、第3制御バルブ13及び第4制御バルブ14を開き、第5制御バルブ15及び第6制御バルブ16を閉じるように制御する。一方で、図5においては、Cは逆方向に流入する混合ガスの流れを示し、Dは逆方向に放出される改質ガスの流れを示す。この際、図面から理解されうるごとく、改質器に対する混合ガス及び改質ガスの逆方向流れに制御する場合においては、流入放出方向変更手段は、第3制御バルブ13及び第4制御バルブ14を閉じ、第5制御バルブ15及び第6制御バルブ16を開くように制御する。   In FIG. 4, A shows the flow of the mixed gas flowing in the forward direction, and B shows the flow of the reformed gas released in the forward direction. At this time, as can be understood from the drawings, in the case of controlling the forward flow of the mixed gas and the reformed gas to the reformer, the inflow / discharge direction changing means controls the third control valve 13 and the fourth control valve 14. The fifth control valve 15 and the sixth control valve 16 are controlled to be opened and closed. On the other hand, in FIG. 5, C indicates the flow of the mixed gas flowing in the reverse direction, and D indicates the flow of the reformed gas released in the reverse direction. At this time, as can be understood from the drawings, in the case of controlling the reverse flow of the mixed gas and the reformed gas to the reformer, the inflow / discharge direction changing means controls the third control valve 13 and the fourth control valve 14. Control is performed to close and open the fifth control valve 15 and the sixth control valve 16.

このように流入放出方向変更手段により各制御バルブを制御することより、改質器内を流れるガスの流れを、触媒前方部分から触媒後方部分へと流れる順方向流れと、触媒後方部分から触媒前方部分へと流れる逆方向流れとの間で変更する(切り替える)ことを可能とする。尚、流入放出方向変更手段の形態は、このような実施形態に限られるものではなく、改質器内を流れるガスの流れを順方向流れと逆方向流れとの間で変更することを可能とするような任意の構成が適用されうる。   In this way, by controlling each control valve by the inflow / discharge direction changing means, the flow of the gas flowing in the reformer is changed to the forward flow from the catalyst front part to the catalyst rear part, and from the catalyst rear part to the catalyst front. It is possible to change (switch) between the reverse flow to the part. The form of the inflow / discharge direction changing means is not limited to such an embodiment, and the flow of gas flowing in the reformer can be changed between the forward flow and the reverse flow. Any configuration can be applied.

また、上記のような流入放出方向変更手段を有する改質システムにおいては、改質器内を流れるガスの流れが、触媒前方部分から触媒後方部分へと流れる順方向流れと、触媒後方部分から触媒前方部分へと流れる逆方向流れとの間で切り替えるがゆえに、改質器の運用中においては混合ガスの取入れ口となりうる触媒の両端部分のいずれか一方の端部分にて主として酸化反応が行われ、触媒の中央部分にて主として改質反応が行われることとなる。   Further, in the reforming system having the inflow / discharge direction changing means as described above, the flow of the gas flowing in the reformer is the forward flow flowing from the catalyst front part to the catalyst rear part, and the catalyst rear part to the catalyst. Because of switching between the reverse flow flowing to the front portion, during the operation of the reformer, the oxidation reaction is mainly performed at one of the end portions of the catalyst that can serve as a mixed gas intake port. The reforming reaction is mainly performed at the central portion of the catalyst.

このことに基づいて、上記のような流入放出方向変更手段を有する改質システムの一実施形態においては、常温起動触媒が、水素系燃料の改質に関与する改質用触媒粒子を担体に担持して構成されるものとされ、該常温起動触媒の中央部分の担体に、該常温起動触媒の両端部分の担体に担持される改質用触媒粒子よりも多くの量の改質用触媒粒子が担持されるように構成されるものとする。このように構成された常温起動触媒によれば、改質器の運用中において主として改質反応が行われることとなる触媒の中央部分の担体に多くの量の改質用触媒粒子が担持されるので、より効率的に改質反応もたらすことが可能となる。また、改質器の運用中において主として酸化反応が行われることとなる触媒の両端部分の担体に担持される触媒粒子は少ないものとされるがゆえに、酸化反応熱により性能劣化してしまうような触媒粒子の低減を可能とするとともに、担体に担持される触媒粒子の全体量を低減することができ低コスト化をも図ることを可能とする。   Based on this, in one embodiment of the reforming system having the inflow / discharge direction changing means as described above, the room temperature starting catalyst carries the reforming catalyst particles involved in the reforming of the hydrogen-based fuel on the carrier. The reforming catalyst particles in a larger amount than the reforming catalyst particles supported on the supports at both ends of the room temperature starting catalyst are supported on the carrier at the center part of the room temperature starting catalyst. It shall be configured to be carried. According to the normal temperature starting catalyst configured in this way, a large amount of the reforming catalyst particles are supported on the support in the central portion of the catalyst where the reforming reaction is mainly performed during the operation of the reformer. Therefore, it is possible to bring about a reforming reaction more efficiently. In addition, since the number of catalyst particles supported on the support at both ends of the catalyst that is mainly subjected to the oxidation reaction during the operation of the reformer is small, the performance deteriorates due to the heat of the oxidation reaction. The catalyst particles can be reduced, and the total amount of the catalyst particles supported on the carrier can be reduced, so that the cost can be reduced.

また、上記の各実施形態において、停止時に改質器2内の残存するガスを押出す際に供給した水素系燃料の余剰分を蓄えるタンクを改質器2に接続しても良い。この場合も停止期間中にわたり改質器2内が還元雰囲気となるように制御バルブで遮断すれば良い。タンクに蓄えた余剰の水素系燃料(および改質ガスとの混合物)は次回の起動時に使用すれば良い。   Further, in each of the above embodiments, a tank that stores surplus hydrogen-based fuel supplied when the gas remaining in the reformer 2 is pushed out when stopped may be connected to the reformer 2. In this case as well, the control valve may be shut off so that the inside of the reformer 2 becomes a reducing atmosphere during the stop period. The surplus hydrogen fuel (and the mixture with reformed gas) stored in the tank may be used at the next start-up.

以上の説明から理解されうるごとく、上述したような本発明の改質システムによれば、少なくとも水素を一構成成分として含む水素系燃料を空気とともに混合ガスとして取り入れて水素を生成する改質器であって、水素系燃料を改質して水素を生成する触媒を有する改質器を備える改質システムにおいて、改質器の運用停止期間中にわたり常温起動触媒の担体を還元状態に保持する還元雰囲気保持手段を有することで、上記のような常温起動触媒の効果を有効に引き出すことを可能とし、改質触媒の改質可能温度への到達時間の更なる短縮化を図ることを可能にするとともに、電力消費という観点においても優れた改質システムを提供すること可能とする。   As can be understood from the above description, according to the reforming system of the present invention as described above, a reformer that generates hydrogen by incorporating a hydrogen-based fuel containing at least hydrogen as a constituent component together with air as a mixed gas. A reforming system comprising a reformer having a catalyst that reforms a hydrogen-based fuel to generate hydrogen, and a reducing atmosphere in which the support for the room temperature starting catalyst is maintained in a reduced state during the operation stop period of the reformer By having the holding means, it is possible to effectively draw out the effect of the above-mentioned normal temperature starting catalyst, and it is possible to further shorten the time required for the reforming catalyst to reach the reformable temperature. Therefore, it is possible to provide an excellent reforming system from the viewpoint of power consumption.

1 改質システム
2 改質器
3 常温起動触媒
4 上流側通路
5 下流側通路
6 第1制御バルブ
7 第2制御バルブ
8 燃料噴射装置
9 圧力検出器
DESCRIPTION OF SYMBOLS 1 Reformation system 2 Reformer 3 Normal temperature starting catalyst 4 Upstream side passage 5 Downstream side passage 6 First control valve 7 Second control valve 8 Fuel injection device 9 Pressure detector

Claims (6)

少なくとも水素を一構成成分として含む水素系燃料を空気とともに混合ガスとして取り入れて水素を生成する改質器を備える改質システムであって、
前記改質器には、前記水素系燃料を改質して水素を生成する触媒であって、該触媒の担体が還元状態にある場合において常温にて酸素と該担体との反応により自己発熱するという常温起動触媒が配設され、
当該改質システムは、前記改質器の運用停止期間中にわたり前記常温起動触媒の担体を還元状態に保持する還元雰囲気保持手段を有し、
前記還元雰囲気保持手段は、
前記改質器と流体連通していて該改質器への空気の流入をもたらす上流側通路に配置され、前記改質器内への空気の流入を制御する第1制御バルブと、
前記改質器と流体連通していて該改質器にて生成された改質ガスの放出をもたらす下流側通路に配置され、前記改質ガスの前記改質器からの放出を制御する第2制御バルブと、
前記第1制御バルブと前記改質器との間の前記上流側通路に前記水素系燃料を供給する燃料噴射装置とを有し、
前記改質器の運転停止時に、該改質器内の残存ガスを押出して該改質器内を前記水素系燃料にて満たすように、前記第1制御バルブと前記第2制御バルブと前記燃料噴射装置とを制御する、改質システム。
A reforming system including a reformer that takes in hydrogen-containing fuel containing at least hydrogen as a constituent component together with air as a mixed gas to generate hydrogen,
The reformer is a catalyst that reforms the hydrogen-based fuel to generate hydrogen, and self-heats due to a reaction between oxygen and the carrier at room temperature when the catalyst carrier is in a reduced state. A room temperature startup catalyst called
The reforming system has a reducing atmosphere holding means for holding the support of the room temperature starting catalyst in a reduced state during the operation stop period of the reformer,
The reducing atmosphere holding means is
A first control valve disposed in an upstream passage that is in fluid communication with the reformer and provides an inflow of air into the reformer, and controls the inflow of air into the reformer;
A second passage that is in fluid communication with the reformer and is disposed in a downstream passage that provides for the release of the reformed gas produced by the reformer and controls the release of the reformed gas from the reformer; A control valve;
A fuel injection device for supplying the hydrogen-based fuel to the upstream passage between the first control valve and the reformer;
When the operation of the reformer is stopped, the first control valve, the second control valve, and the fuel so as to extrude the remaining gas in the reformer and fill the reformer with the hydrogen-based fuel. A reforming system that controls an injection device.
前記改質器内の圧力を検出する圧力検出器を備え、
前記還元雰囲気保持手段は、前記改質器の運用停止期間中において、前記圧力検出器により前記改質器内の圧力が所定値よりも低下したことが検出された場合、前記燃料噴射装置により前記改質器内に前記水素系燃料を供給する、請求項1に記載の改質システム。
A pressure detector for detecting the pressure in the reformer;
When the pressure detector detects that the pressure in the reformer has decreased below a predetermined value during the operation stop period of the reformer, the reducing atmosphere holding means is The reforming system according to claim 1, wherein the hydrogen-based fuel is supplied into a reformer.
電気加熱式ヒーターが、前記常温起動触媒の上流側にて該常温起動触媒に隣接して配置される、請求項1または請求項2に記載の改質システム。   The reforming system according to claim 1 or 2, wherein an electric heater is disposed adjacent to the room temperature starting catalyst on the upstream side of the room temperature starting catalyst. 前記常温起動触媒は、前記混合ガスが流入する入口部分と、前記改質ガスが放出される出口部分とを有し、前記出口部分には、前記入口部分に配置される担体よりも多くの量の担体が配置される、請求項3に記載の改質システム。   The room temperature starting catalyst has an inlet portion into which the mixed gas flows and an outlet portion from which the reformed gas is released, and the outlet portion has a larger amount than the carrier disposed in the inlet portion. The reforming system according to claim 3, wherein the carrier is arranged. 前記第1制御バルブと前記第2制御バルブとの間に、前記改質器に対する前記混合ガスの流入方向と前記改質ガスの放出方向とを逆転しうる流入放出方向変更手段が配設される、請求項1または請求項2に記載の改質システム。   Between the first control valve and the second control valve, an inflow / discharge direction changing means capable of reversing the inflow direction of the mixed gas with respect to the reformer and the discharge direction of the reformed gas is disposed. The reforming system according to claim 1 or 2. 前記常温起動触媒の担体は、水素系燃料の改質に関与する改質用触媒粒子を担持し、
前記常温起動触媒の中央部分の担体には、前記常温起動触媒の両端部分の担体に担持される前記改質用触媒粒子よりも多くの量の前記改質用触媒粒子が担持される、請求項5に記載の改質システム。
The carrier for the room temperature starting catalyst carries reforming catalyst particles involved in reforming the hydrogen fuel,
The support at the center part of the room temperature starting catalyst carries a larger amount of the reforming catalyst particles than the reforming catalyst particles supported on the support at both ends of the room temperature starting catalyst. 5. The reforming system according to 5.
JP2012110790A 2012-05-14 2012-05-14 Reforming system Active JP5886497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012110790A JP5886497B2 (en) 2012-05-14 2012-05-14 Reforming system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012110790A JP5886497B2 (en) 2012-05-14 2012-05-14 Reforming system

Publications (2)

Publication Number Publication Date
JP2013237580A true JP2013237580A (en) 2013-11-28
JP5886497B2 JP5886497B2 (en) 2016-03-16

Family

ID=49762957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012110790A Active JP5886497B2 (en) 2012-05-14 2012-05-14 Reforming system

Country Status (1)

Country Link
JP (1) JP5886497B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220205415A1 (en) * 2019-05-29 2022-06-30 Kabushiki Kaisha Toyota Jidoshokki Engine system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306309A (en) * 2002-02-18 2003-10-28 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
JP2004307236A (en) * 2003-04-03 2004-11-04 Tokyo Gas Co Ltd Hydrogen production system, and starting and stopping method therefor
JP2005071934A (en) * 2003-08-27 2005-03-17 Toshiba International Fuel Cells Corp Fuel cell system, and starting, stopping, and maintaining method of same
JP2011047551A (en) * 2009-08-26 2011-03-10 Hitachi Zosen Corp Gas heating device and fuel cell system using the same
JP2011183284A (en) * 2010-03-05 2011-09-22 Dowa Holdings Co Ltd Hydrogen producing catalyst, method for producing hydrogen producing catalyst, hydrogen producing method, hydrogen producing apparatus and fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003306309A (en) * 2002-02-18 2003-10-28 Osaka Gas Co Ltd Method for operating hydrogen-containing gas-producing apparatus
JP2004307236A (en) * 2003-04-03 2004-11-04 Tokyo Gas Co Ltd Hydrogen production system, and starting and stopping method therefor
JP2005071934A (en) * 2003-08-27 2005-03-17 Toshiba International Fuel Cells Corp Fuel cell system, and starting, stopping, and maintaining method of same
JP2011047551A (en) * 2009-08-26 2011-03-10 Hitachi Zosen Corp Gas heating device and fuel cell system using the same
JP2011183284A (en) * 2010-03-05 2011-09-22 Dowa Holdings Co Ltd Hydrogen producing catalyst, method for producing hydrogen producing catalyst, hydrogen producing method, hydrogen producing apparatus and fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220205415A1 (en) * 2019-05-29 2022-06-30 Kabushiki Kaisha Toyota Jidoshokki Engine system
US11578686B2 (en) * 2019-05-29 2023-02-14 Kabushiki Kaisha Toyota Jidoshokki Engine system

Also Published As

Publication number Publication date
JP5886497B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
JP3826770B2 (en) Fuel reforming system
JP6477889B2 (en) Solid oxide fuel cell system
JP2020070213A (en) Reforming system
US10122026B2 (en) Fuel cell system
KR100759693B1 (en) Carbon monoxide remover and reformer for fuel cell
JP5886497B2 (en) Reforming system
JP5539754B2 (en) Method for heating fuel cell desulfurizer and fuel cell system
JP4873282B2 (en) Reforming method and reformer
JP2013157134A (en) Solid oxide fuel cell system
JP3490877B2 (en) Starting method of reformer for fuel cell
JP5806979B2 (en) Reformer
JP2003303608A (en) Fuel cell generation system, control method of fuel cell generation system
JP5926866B2 (en) Solid oxide fuel cell system and method for stopping the same
JP2013237581A (en) Reforming system
JP2013234079A (en) Hydrogen generating apparatus
JP2013212954A (en) Reforming system
JP2012079420A (en) Solid oxide fuel cell apparatus
JP2015140285A (en) Method for operating hydrogen-containing gas generation apparatus, and hydrogen-containing gas generation apparatus
JP2004067407A (en) Reforming reactor
JP2005332834A (en) Fuel cell power generation system and method of controlling fuel cell power generation system
JP2011256059A (en) Method for operating hydrogen generator and fuel cell system
JP2005170741A (en) Fuel reforming system
JP2004256356A (en) Method of manufacturing reformed gas and reforming apparatus used for the manufacturing method
JP2004161578A (en) Device for manufacturing hydrogen
JP2006169013A (en) Hydrogen producing apparatus, fuel cell system and method of operating the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160211

R150 Certificate of patent or registration of utility model

Ref document number: 5886497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250