JP2013234923A - Beam axis adjustment method and device - Google Patents

Beam axis adjustment method and device Download PDF

Info

Publication number
JP2013234923A
JP2013234923A JP2012107650A JP2012107650A JP2013234923A JP 2013234923 A JP2013234923 A JP 2013234923A JP 2012107650 A JP2012107650 A JP 2012107650A JP 2012107650 A JP2012107650 A JP 2012107650A JP 2013234923 A JP2013234923 A JP 2013234923A
Authority
JP
Japan
Prior art keywords
antenna
received power
angle
amount
beam axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012107650A
Other languages
Japanese (ja)
Other versions
JP5983007B2 (en
Inventor
Yutaka Hasegawa
裕 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012107650A priority Critical patent/JP5983007B2/en
Publication of JP2013234923A publication Critical patent/JP2013234923A/en
Application granted granted Critical
Publication of JP5983007B2 publication Critical patent/JP5983007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a beam axis adjustment method and a beam axis adjustment device that can efficiently adjust a beam axis of an antenna without use of a sensor detecting an inclination.SOLUTION: An inclination angle of an antenna substrate is changed by a first angle pitch (an actuator drive amount is changed by a first unit drive amount) all over an adjustable angle range of the antenna substrate to perform a rough measurement of a reception electric power (S110 to S140). In a detailed measurement target range including a peak of the reception electric power narrowed down on the basis of the rough measurement result, the inclination angle of the antenna substrate is changed by a second angle pitch (the actuator drive amount is changed by a second unit drive amount) set narrower than the first angle pitch to perform a detailed measurement of the reception electric power (S150 to S190). On the basis of a measurement result of the detailed measurement, an axis adjustment amount is calculated that serves as the actuator drive amount making the reception electric power maximal. By setting the actuator drive amount to the axis adjustment amount, the inclination angle of the antenna substrate is adjusted (S200 to S210).

Description

本発明は、アンテナのビーム軸を調整するビーム軸調整方法及びビーム軸調整装置に関する。   The present invention relates to a beam axis adjusting method and a beam axis adjusting apparatus for adjusting a beam axis of an antenna.

従来、自動車の走行安全などのためにレーダ装置が用いられている。レーダ装置の検知精度を確保するためには、レーダ装置の出荷時や車体への組付時に、レーダ波の出射方向(ビーム軸)が所望の方向を向くように検査、調整する必要がある。   Conventionally, radar devices have been used for driving safety of automobiles. In order to ensure the detection accuracy of the radar apparatus, it is necessary to inspect and adjust the emission direction (beam axis) of the radar wave in a desired direction when the radar apparatus is shipped or assembled to the vehicle body.

また、車体に組み付けた状態でビーム軸の調整を可能とするために、アンテナが形成された基板(以下「アンテナ基板」という)の筐体に対する傾斜角度を、アクチュエータを駆動することで変化させるように構成すると共に、重力方向に対するアンテナの傾斜角度を検出する傾きセンサをレーダ装置に設けたものが知られている。このレーダ装置では、傾きセンサの検出結果が所望の基準傾き角度となるように、アクチュエータを駆動してアンテナ基板の傾斜角度を調整することで、アンテナのビーム軸の向きを調整している(例えば、特許文献1参照)。   Further, in order to enable adjustment of the beam axis in a state where it is mounted on the vehicle body, the inclination angle of the substrate on which the antenna is formed (hereinafter referred to as “antenna substrate”) with respect to the housing is changed by driving the actuator. In addition, a radar apparatus is known in which an inclination sensor that detects an inclination angle of an antenna with respect to the direction of gravity is provided in a radar device. In this radar apparatus, the direction of the beam axis of the antenna is adjusted by driving the actuator and adjusting the tilt angle of the antenna substrate so that the detection result of the tilt sensor becomes a desired reference tilt angle (for example, , See Patent Document 1).

特開平2010−96588号公報JP 2010-96588 A

しかし、この従来技術では、レーダ装置が傾きセンサを備えている必要があり、これを備えていないレーダ装置には適用することができないという問題があった。また、この従来技術では、装置の単体毎に傾きセンサでの検出結果とビーム軸の向きとの関係を予め正確に測定をしておく必要があり、その測定に大きな手間を要するという問題もあった。   However, this conventional technique has a problem that the radar apparatus needs to include a tilt sensor and cannot be applied to a radar apparatus that does not include the tilt sensor. In addition, in this conventional technique, it is necessary to accurately measure in advance the relationship between the detection result of the tilt sensor and the direction of the beam axis for each unit of the apparatus, and there is a problem that the measurement requires a lot of trouble. It was.

本発明は、上記問題点を解決するために、傾きを検出するセンサを用いることなくアンテナのビーム軸を効率よく調整可能なビーム軸調整方法及びビーム軸調整装置を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a beam axis adjustment method and a beam axis adjustment apparatus that can efficiently adjust the beam axis of an antenna without using a sensor that detects an inclination.

上記目的を達成するためになされた発明である請求項1に記載のビーム軸調整方法では、筐体に対するアンテナ基板の傾斜角度をアクチュエータによって変化させることで、筐体に対するアンテナのビーム軸の向きが調整可能に構成されると共に、アンテナ基板を介してレーダ波を送受信して受信電力を測定する測定部を備えたレーダ装置を調整の対象とする。   In the beam axis adjusting method according to claim 1, which is an invention made to achieve the above object, the direction of the antenna beam axis relative to the casing is changed by changing an inclination angle of the antenna substrate with respect to the casing by an actuator. A radar apparatus that is configured to be adjustable and includes a measurement unit that measures received power by transmitting and receiving radar waves via an antenna substrate is an adjustment target.

また、本発明のビーム軸調整方法では、レーダ装置の筐体に対するアンテナのビーム軸の向きが予め定められた指定方向を向いているときに測定部にて測定される受信電力を最大にするようなレーダ装置との位置関係を有するリフレクタを利用する。   In the beam axis adjustment method of the present invention, the received power measured by the measurement unit is maximized when the direction of the beam axis of the antenna with respect to the housing of the radar apparatus is in a predetermined designated direction. A reflector having a positional relationship with a simple radar apparatus is used.

そして、まず第1のステップでは、アクチュエータによるアンテナ基板の駆動量を、予め定められた第1単位駆動量ずつ変化させると共に、測定部に受信電力を測定させることにより、予め定められた調整可能角度範囲内でのアンテナ基板の傾斜角度と受信電力との関係を、第1単位制御量に対応した角度ピッチで求める。   First, in the first step, the amount of drive of the antenna substrate by the actuator is changed by a predetermined first unit drive amount, and the received power is measured by the measurement unit, so that a predetermined adjustable angle is obtained. The relationship between the angle of inclination of the antenna substrate within the range and the received power is obtained at an angle pitch corresponding to the first unit control amount.

第2のステップでは、第1のステップでの測定結果から、受信電力が最大となる傾斜角度である仮調整ポイントを求める。
第3のステップでは、駆動量を、第1単位駆動量より小さく設定された第2単位駆動量ずつ変化させると共に、測定部に受信電力を測定させることにより、第2のステップで求めた仮調整ポイントを挟むようにして調整可能角度範囲より狭い範囲に設定される詳細測定対象範囲内でのアンテナ基板の傾斜角度と受信電力との関係を、第2単位駆動量に対応した角度ピッチで求める。
In the second step, a temporary adjustment point that is an inclination angle at which the received power is maximized is obtained from the measurement result in the first step.
In the third step, the drive amount is changed by the second unit drive amount set to be smaller than the first unit drive amount, and the received power is measured by the measurement unit, so that the temporary adjustment obtained in the second step is performed. The relationship between the angle of inclination of the antenna substrate and the received power within the detailed measurement target range set to a range narrower than the adjustable angle range with the point in between is obtained at an angle pitch corresponding to the second unit drive amount.

第4のステップでは、第3のステップでの測定結果から、受信電力が最大となる傾斜角度である調整ポイントに対応する駆動量を軸調整量として求める。
最後に、第5のステップでは、駆動量が第4のステップで求めた軸調整量となるようにアクチュエータを作動させる。
In the fourth step, from the measurement result in the third step, the drive amount corresponding to the adjustment point that is the inclination angle at which the received power is maximized is obtained as the axis adjustment amount.
Finally, in the fifth step, the actuator is operated so that the drive amount becomes the axis adjustment amount obtained in the fourth step.

従って、本発明のビーム軸調整方法によれば、重力方向に対する傾斜角度を検出するセンサ等を用いることなく、ビーム軸を指定方向に向ける調整を行うことができる。しかも、調整可能角度範囲の全体に渡って第1単位制御量に対応した角度ピッチで粗く受信電力を測定した後、その測定結果に基づいて、測定対象となる角度範囲を詳細測定対象範囲に絞り込み、その詳細測定対象範囲内では第2単位制御量に対応した角度ピッチで細かく受信電力を測定し、その測定結果から調整ポイントに対応する軸調整量を求めているため、軸調整量を効率よく求めることができ、その結果、ビーム軸の調整に要する時間を短縮することができる。   Therefore, according to the beam axis adjusting method of the present invention, it is possible to adjust the beam axis in the designated direction without using a sensor or the like that detects an inclination angle with respect to the direction of gravity. Moreover, after measuring the received power roughly at an angle pitch corresponding to the first unit control amount over the entire adjustable angle range, the angle range to be measured is narrowed down to the detailed measurement target range based on the measurement result. In the detailed measurement target range, the received power is measured finely at an angular pitch corresponding to the second unit control amount, and the axis adjustment amount corresponding to the adjustment point is obtained from the measurement result. As a result, the time required for adjusting the beam axis can be shortened.

また、請求項4に記載のビーム軸調整装置では、第1測定手段が上述の第1のステップで実行する処理を実現し、仮ピーク抽出手段が上述の第2のステップで実行する処理を実現し、第2測定手段が上述の第3のステップで実行する処理を実現し、調整値抽出手段が上述の第4のステップで実行する処理を実現し、調整実行手段が上述の第5のステップで実行する処理を実現する。   Further, in the beam axis adjusting apparatus according to claim 4, the first measurement means realizes the processing executed in the first step, and the temporary peak extraction means realizes the processing executed in the second step. The second measuring means realizes the process executed in the third step described above, the adjustment value extracting means realizes the process executed in the fourth step, and the adjustment executing means executes the fifth step described above. Realize the process executed in.

従って、本発明のビーム軸調整装置では、請求項1に記載のビーム軸調整方法を実現することができ、請求項1の方法を実施することで得られる効果と同様の効果を得ることができる。   Therefore, in the beam axis adjusting apparatus of the present invention, the beam axis adjusting method according to claim 1 can be realized, and the same effect as that obtained by carrying out the method of claim 1 can be obtained. .

ビーム軸調整システムの全体構成を示すブロック図である。It is a block diagram which shows the whole structure of a beam axis adjustment system. レーダ装置の可動部についての構成及び動作を示す説明図である。It is explanatory drawing which shows the structure and operation | movement about the movable part of a radar apparatus. 軸調整処理の内容を示すフローチャートである。It is a flowchart which shows the content of an axis adjustment process. 軸調整処理で実施する概略測定及び詳細測定の測定結果を例示するグラフである。It is a graph which illustrates the measurement result of the rough measurement and detailed measurement which are carried out in the axis adjustment processing. レーダ装置を車体に組み付けた状態でビーム軸の調整を実行する場合のビーム軸調整システムの構成を示すブロック図である。It is a block diagram which shows the structure of the beam axis adjustment system in the case of performing adjustment of a beam axis in the state which assembled | attached the radar apparatus to the vehicle body.

以下に本発明の実施形態を図面と共に説明する。
ここでは、レーダ装置1の出荷前にビーム軸の調整(以下「軸調整」という)を実施する際に使用されるビーム軸調整システムについて説明する。
Embodiments of the present invention will be described below with reference to the drawings.
Here, a beam axis adjustment system used when beam axis adjustment (hereinafter referred to as “axis adjustment”) is performed before shipment of the radar apparatus 1 will be described.

<全体構成>
ビーム軸調整システムは、図1に示すように、調整対象となるレーダ装置1と、レーダ装置1に接続して使用される検査ツール2と、レーダ装置1に対して所定の位置関係を有するように設置されるリフレクタ3とで構成される。
<Overall configuration>
As shown in FIG. 1, the beam axis adjustment system has a predetermined positional relationship with respect to the radar apparatus 1 to be adjusted, the inspection tool 2 used by being connected to the radar apparatus 1, and the radar apparatus 1. And the reflector 3 installed in the.

但し、軸調整は、単体のレーダ装置1を所定の検査台(図示せず)に固定した状態で実施される。また、リフレクタ3は、検査台に固定されたレーダ装置1から、予め定められた指定方向に向けてレーダ波が照射された場合に、レーダ装置1での受信強度(リフレクタからの反射波)が最大となるように設置される。なお、指定方向とは、レーダ装置1の検知対象となる物標を効果的に検出することができる向きであり、実験によって求められる。   However, the axis adjustment is performed in a state where the single radar device 1 is fixed to a predetermined inspection table (not shown). Further, the reflector 3 has a received intensity (reflected wave from the reflector) at the radar device 1 when a radar wave is emitted in a predetermined designated direction from the radar device 1 fixed to the examination table. Installed to maximize. Note that the designated direction is a direction in which a target to be detected by the radar apparatus 1 can be effectively detected, and is determined by experiments.

<レーダ装置>
レーダ装置1は、送信信号に従ってミリ波帯の電磁波からなるレーダ波(本実施形態ではFMCW波)を送信する送信アンテナ11と、レーダ波を受信する複数のアンテナ素子からなる受信アンテナ12と、送信アンテナ11に供給する送信信号の生成、及び受信アンテナ11からの受信信号に基づくビート信号(送信信号との差の周波数成分)の生成を行うと共に、受信信号の信号強度の測定を行う送受信回路13と、外部装置との通信を行うための通信インタフェース(通信I/F)14と、送信アンテナ11及び受信アンテナ12のビーム軸の向き(送信アンテナの送信強度や受信アンテナの受信利得が最大となる方向)を変化させるためのアクチュエータからなる駆動部15と、通信I/F14を介して入力される指令に従って、送受信回路13や駆動部15を利用した各種処理を実行し、その処理結果を通信I/F14を介して出力する信号処理部16とを備えている。
<Radar device>
The radar apparatus 1 includes a transmission antenna 11 that transmits a radar wave (FMCW wave in this embodiment) composed of an electromagnetic wave in the millimeter wave band according to a transmission signal, a reception antenna 12 that includes a plurality of antenna elements that receive the radar wave, and a transmission A transmission / reception circuit 13 that generates a transmission signal supplied to the antenna 11 and generates a beat signal (frequency component of a difference from the transmission signal) based on the reception signal from the reception antenna 11 and measures the signal strength of the reception signal. And the communication interface (communication I / F) 14 for communicating with an external device, and the beam axis directions of the transmission antenna 11 and the reception antenna 12 (the transmission intensity of the transmission antenna and the reception gain of the reception antenna are maximized). In accordance with a command input via the communication I / F 14 and the drive unit 15 including an actuator for changing the direction). It performs various processing using the signal circuit 13 and the driver 15, and a signal processing unit 16 for output via the communication I / F14 to the processing result.

なお、送信アンテナ11及び受信アンテナ12は、同一の基板(以下「アンテナ基板」)101上に形成された、いわゆる平面アンテナからなる。また、アンテナ基板101のアンテナ形成面に対する法線方向がビーム軸の向きと一致するように構成されている。   The transmitting antenna 11 and the receiving antenna 12 are so-called planar antennas formed on the same substrate (hereinafter referred to as “antenna substrate”) 101. Further, the normal direction with respect to the antenna formation surface of the antenna substrate 101 is configured to coincide with the direction of the beam axis.

そして、図2に示すように、アンテナ基板101は、筐体102を基準とした傾斜角度(ひいてはビーム軸の向き)を変化させることが可能となるよう筐体102に対して揺動可能に支持されている。但し、受信アンテナ12を構成する複数のアンテナ素子はアレイ状に一列に配列されており、その配列方向が筐体の左右方向(図中、紙面の奥行き方向)と一致し、且つ、ビーム軸が筐体102の上下方向に変化するようにされている。   As shown in FIG. 2, the antenna substrate 101 is supported so as to be swingable with respect to the housing 102 so that the inclination angle (and hence the direction of the beam axis) with respect to the housing 102 can be changed. Has been. However, the plurality of antenna elements constituting the receiving antenna 12 are arranged in a line in an array, the arrangement direction thereof coincides with the left-right direction of the casing (the depth direction in the drawing in the drawing), and the beam axis is The casing 102 is configured to change in the vertical direction.

また、筐体102内には、駆動部15を構成するアクチュエータ103や付勢部材104の他、信号処理部16や通信I/F14を実装する制御基板(図示せず)も収納されている。   In addition, in the housing 102, a control board (not shown) on which the signal processing unit 16 and the communication I / F 14 are mounted is housed in addition to the actuator 103 and the urging member 104 constituting the driving unit 15.

なお、アクチュエータ103は、一端がアンテナ基板と接触する位置に配置された駆動軸を有し、この駆動軸を軸方向(以下「駆動軸方向」という)に変位させる周知のリニア型ステッピングモータからなる。また、付勢部材104は、アンテナ基板101をアクチュエータ103の駆動軸に当接させる方向に付勢するばねからなる。   The actuator 103 has a drive shaft disposed at a position where one end is in contact with the antenna substrate, and includes a known linear stepping motor that displaces the drive shaft in the axial direction (hereinafter referred to as “drive shaft direction”). . The urging member 104 includes a spring that urges the antenna substrate 101 in a direction in which the antenna substrate 101 abuts against the drive shaft of the actuator 103.

つまり、アンテナ基板101は、アクチュエータ103を構成する駆動軸の変位量(ひいてはステッピングモータの駆動ステップ数)が、アクチュエータ103によるアンテナ基板101の駆動量(以下「アクチュエータ駆動量」という)と一致し、このアクチュエータ駆動量に応じて筐体102に対する傾斜角度が変化するように構成されている。また、以下では、アクチュエータ103の駆動軸の可動範囲に対応したアンテナ基板101の傾斜角度の可変範囲を調整可能角度範囲という。   That is, in the antenna substrate 101, the displacement amount of the drive shaft constituting the actuator 103 (and hence the number of stepping motor drive steps) matches the drive amount of the antenna substrate 101 by the actuator 103 (hereinafter referred to as “actuator drive amount”). The tilt angle with respect to the housing 102 is changed according to the actuator driving amount. Hereinafter, the variable range of the tilt angle of the antenna substrate 101 corresponding to the movable range of the drive shaft of the actuator 103 is referred to as an adjustable angle range.

<信号処理部での処理>
信号処理部16は、通信I/F14を介して通常動作を実行する旨の指令を受けた場合には、送受信回路13を周期的に作動させ、送受信回路13から供給されるビート信号をサンプリングして周波数解析し、その解析結果に基づいて、レーダ波を反射した物標に関する情報(距離,相対速度,方位等)を通信I/F14を介して出力する。
<Processing in signal processor>
When the signal processing unit 16 receives a command to execute the normal operation via the communication I / F 14, the signal processing unit 16 periodically operates the transmission / reception circuit 13 and samples the beat signal supplied from the transmission / reception circuit 13. The frequency analysis is performed, and information (distance, relative speed, azimuth, etc.) regarding the target reflecting the radar wave is output via the communication I / F 14 based on the analysis result.

また、信号処理部16は、通信I/F14を介して調整動作を実行する旨の指令を受けた場合には、指令に従って駆動部15を作動させると共に、送受信回路13を作動させることで得られた受信強度の測定結果を通信I/F14を介して出力する。なお、受信強度の測定結果としては、受信アンテナ12を構成する各アンテナ素子での受信電力の平均値又は合計値を出力する。また、調整動作の指令には、アクチュエータ103の駆動量が少なくとも含まれている。   Further, when the signal processing unit 16 receives a command to execute the adjustment operation via the communication I / F 14, the signal processing unit 16 operates the drive unit 15 according to the command and operates the transmission / reception circuit 13. The measurement result of the received intensity is output via the communication I / F 14. In addition, as a measurement result of the reception intensity, an average value or a total value of reception power at each antenna element constituting the reception antenna 12 is output. Further, the adjustment operation command includes at least the drive amount of the actuator 103.

<検査ツール>
図1に戻り、検査ツール2は、マイクロコンピュータを中心に構成され、当該検査ツール2の各部を統括制御する制御部21と、レーダ装置1との通信を行う通信インタフェース(通信I/F)22と、各種操作キーを介して情報の入力を受け付ける操作部23と、操作部23の操作方法や、操作部23を操作することでレーダ装置1から取得した情報等を表示する表示部24とを備えている。
<Inspection tool>
Returning to FIG. 1, the inspection tool 2 is configured around a microcomputer, and a communication interface (communication I / F) 22 that performs communication between the control unit 21 that controls each part of the inspection tool 2 and the radar apparatus 1. And an operation unit 23 that accepts input of information via various operation keys, and an operation method of the operation unit 23 and a display unit 24 that displays information acquired from the radar device 1 by operating the operation unit 23. I have.

<軸調整処理>
ここで、検査ツール2の制御部21が実行する軸調整処理の内容を、図3に示すフローチャートに沿って説明する。
<Axis adjustment processing>
Here, the contents of the axis adjustment process executed by the control unit 21 of the inspection tool 2 will be described with reference to the flowchart shown in FIG.

なお、本処理は、操作部23にて軸調整処理を起動するための操作が行われると起動する。また、以下では、アクチュエータ103においてステッピングモータを予め設定された第1のステップ数だけ動作させたときの駆動軸の変位量、ひいてはアクチュエータ103の駆動軸によるアンテナ基板101の駆動量(アクチュエータ駆動量)を第1単位駆動量とよび、第1のステップ数より少ない第2のステップ数だけ動作させたときのアクチュエータ駆動量を第2単位駆動量とよぶ。更に、アクチュエータ駆動量が第1単位駆動量である場合におけるアンテナ基板101の傾斜角度(以下「基板傾斜角度」という)の変化量を第1角度ピッチ、アクチュエータ駆動量が第2単位駆動量である場合における基板傾斜角度の変化量を第2角度ピッチとよぶ。   This process is started when an operation for starting the axis adjustment process is performed on the operation unit 23. In the following, the displacement amount of the drive shaft when the stepping motor is operated by the preset first number of steps in the actuator 103, and hence the drive amount of the antenna substrate 101 by the drive shaft of the actuator 103 (actuator drive amount). Is called the first unit drive amount, and the actuator drive amount when the actuator is operated by the second step number smaller than the first step number is called the second unit drive amount. Further, when the actuator drive amount is the first unit drive amount, the change amount of the tilt angle of the antenna substrate 101 (hereinafter referred to as “substrate tilt angle”) is the first angle pitch, and the actuator drive amount is the second unit drive amount. The change amount of the substrate tilt angle in this case is called a second angle pitch.

本処理が起動すると、まず、調整可能角度範囲の一方の境界(ここでは、アクチュエータ103の駆動軸がステッピングモータ側に最大限に引っ込んだ状態に対応した境界)を概略測定開始ポイント、概略測定開始ポイントに対応するアクチュエータ駆動量を開始駆動量(図4の丸印「1」を参照)として、アクチュエータ駆動量を開始駆動量に設定させる指令を信号処理部16に出力することで、基板傾斜角度を概略測定開始ポイントに設定する(S110)。   When this processing is started, first, one boundary of the adjustable angle range (here, the boundary corresponding to the state where the drive shaft of the actuator 103 is retracted to the stepping motor side to the maximum) is the approximate measurement start point and the approximate measurement start. By using the actuator drive amount corresponding to the point as the start drive amount (see the circle “1” in FIG. 4), a command for setting the actuator drive amount to the start drive amount is output to the signal processing unit 16, whereby the substrate tilt angle Is set as the approximate measurement start point (S110).

次に、送受信回路13を介して受信電力を測定させる指令を信号処理部16に出力し、その測定結果を信号処理部16から取得する(S120)。そして、受信電力の測定回数が予め定められた指定回数に達しているか否かを判断する(S130)。測定回数が指定回数に達していなければ、アクチュエータ駆動量を第1単位駆動量だけ変化させる指令を信号処理部16に出力することで、基板傾斜角度を第1角度ピッチだけ変化させ(S140)、S120に戻る。   Next, a command for measuring the received power is transmitted to the signal processing unit 16 via the transmission / reception circuit 13, and the measurement result is acquired from the signal processing unit 16 (S120). Then, it is determined whether or not the number of reception power measurements has reached a predetermined number of times (S130). If the number of times of measurement has not reached the specified number of times, a command for changing the actuator drive amount by the first unit drive amount is output to the signal processing unit 16, thereby changing the substrate tilt angle by the first angle pitch (S 140). Return to S120.

これにより、調整可能角度範囲(=[第1角度ピッチ]×{[指定回数]−1})の全体に渡って、基板傾斜角度を第1角度ピッチずつ(即ち、アクチュエータ駆動量を第1単位駆動量ずつ)変化させて受信電力を概略測定した結果(図4の丸印「1」〜「5」で示すグラフ参照)が得られることになる。   Thus, the substrate tilt angle is set by the first angle pitch (that is, the actuator driving amount is set to the first unit over the entire adjustable angle range (= [first angle pitch] × {[specified number of times] −1})). The result (see the graphs indicated by circles “1” to “5” in FIG. 4) obtained by changing the drive amount) and roughly measuring the received power is obtained.

一方、先のS130にて、測定回数が指定回数に達していると判断した場合、概略測定の結果に基づき、後述する詳細測定の起点となるアクチュエータ駆動量である起点駆動量(図4の三角印「6」を参照)を求める(S150)。   On the other hand, if it is determined in S130 that the number of measurements has reached the specified number of times, a starting point driving amount (triangular in FIG. 4), which is an actuator driving amount serving as a starting point of detailed measurement described later, based on the result of the rough measurement. (Refer to mark “6”) (S150).

具体的には、概略測定の測定結果から、受信電力が1番目及び2番目に大きくなるアクチュエータ駆動量及びその受信電力に基づき、受信電力ピークとなるアクチュエータ駆動量(これに対応する基板傾斜角度を仮調整ポイントという)を推定し、その推定したアクチュエータ駆動量より、第2単位駆動量の整数倍(1〜5程度)だけ、予め設定されたシフト方向(図4では「5」から「1」に向かう方向)とは反対方向にシフトさせたアクチュエータ駆動量を起点駆動量として設定する。なお、シフト方向は、この方向に限るものではなく、逆方向であってもよい。   Specifically, from the measurement result of the rough measurement, the actuator driving amount at which the received power reaches the peak based on the actuator driving amount at which the received power becomes the first and second and the received power (the substrate tilt angle corresponding to this) (Referred to as “temporary adjustment point”), and a predetermined shift direction (from “5” to “1” in FIG. 4) by an integral multiple (about 1 to 5) of the second unit drive amount from the estimated actuator drive amount. The driving amount of the actuator shifted in the direction opposite to the direction) is set as the starting point driving amount. Note that the shift direction is not limited to this direction, and may be the reverse direction.

次に、アクチュエータ駆動量を起点駆動量に設定させる指令を信号処理部16に出力することで、基板傾斜角度を基点駆動量に対応した詳細測定開始ポイントに設定する(S160)。その後、先のS120と同様にして受信電力の測定結果を取得し(S170)、測定回数が予め定められた指定回数に達しているか否かを判断する(S180)。   Next, by outputting a command for setting the actuator drive amount to the starting point drive amount to the signal processing unit 16, the substrate tilt angle is set to the detailed measurement start point corresponding to the base point drive amount (S160). After that, the reception power measurement result is acquired in the same manner as in the previous S120 (S170), and it is determined whether or not the number of times of measurement has reached a predetermined number of times (S180).

測定回数が指定回数に達していなければ、アクチュエータ駆動量を第2単位駆動量だけシフト方向に変化させる指令を信号処理部16に出力することで、基板傾斜角度を第2角度ピッチだけ変化させ(S190)、S170に戻る。   If the number of times of measurement has not reached the specified number of times, a command for changing the actuator drive amount in the shift direction by the second unit drive amount is output to the signal processing unit 16, thereby changing the substrate tilt angle by the second angle pitch ( S190), the process returns to S170.

これにより、起点駆動量からシフト方向に広がる詳細測定対象範囲(=[第2角度ピッチ]×{[指定回数]−1})の全体に渡って、基板傾斜角度を第2角度ピッチずつ(即ち、アクチュエータ駆動量を第2単位駆動量ずつ)変化させて受信電力を詳細測定した結果(図4の三角印「6」〜「16」で示すグラフ参照)が得られることになる。なお、S130及びS180における指定回数は、同じ値であってもよいし異なる値であってもよい。但し、調整可能角度範囲と比較して詳細測定対象範囲が十分に小さくなるように設定する必要がある。   As a result, the substrate tilt angle is changed by the second angle pitch over the entire detailed measurement target range (= [second angle pitch] × {[specified number of times] −1}) extending in the shift direction from the starting drive amount (that is, As a result, the received power is measured in detail by changing the actuator driving amount by the second unit driving amount (see the graphs indicated by the triangles “6” to “16” in FIG. 4). Note that the specified number of times in S130 and S180 may be the same value or different values. However, it is necessary to set the detailed measurement target range to be sufficiently smaller than the adjustable angle range.

一方、S180にて、測定回数が指定回数に達していると判断した場合、詳細測定の測定結果に基づき、受信電力が最大となるアクチュエータ駆動量を軸調整量(これに対応する基板傾斜角度を調整ポイントという)として抽出する(S200)。なお、詳細測定の際には、受信電力がピークとなる傾斜角度である仮調整ポイントからずらしたポイントに対応するアクチュエータ駆動量を起点駆動量として設定しているため、詳細測定の測定結果には必ず受信電力のピークが現れることになる。   On the other hand, if it is determined in S180 that the number of times of measurement has reached the specified number of times, the actuator drive amount that maximizes the received power is set to the axis adjustment amount (the substrate tilt angle corresponding to this) based on the measurement result of the detailed measurement. (Referred to as adjustment points) (S200). In detail measurement, the actuator drive amount corresponding to the point shifted from the temporary adjustment point, which is the tilt angle at which the received power reaches a peak, is set as the starting point drive amount. A peak in received power will always appear.

最後に、信号処理部16に対して、アクチュエータ駆動量を軸調整量に設定する指令を信号処理部16に出力することで、基板傾斜角度を調整ポイントに設定して(S210)、本処理を終了する。   Finally, a command for setting the actuator drive amount to the axis adjustment amount is output to the signal processing unit 16 to the signal processing unit 16 to set the substrate tilt angle as an adjustment point (S210), and this processing is performed. finish.

この軸調整処理により、調整可能角度範囲の全体に渡って、アクチュエータ103が正常に動作するか否かの動作確認が行われると共に、アンテナのビーム軸が指定方向を向くように基板傾斜角度が調整されることになる。これにより、筐体102が組付対象(車両)に組付誤差等がなく正しく取り付けられた場合に、ビーム軸が所望の方向を向いた状態となる。   Through this axis adjustment process, the operation is checked to see if the actuator 103 operates normally over the entire adjustable angle range, and the substrate tilt angle is adjusted so that the beam axis of the antenna faces the specified direction. Will be. As a result, when the housing 102 is correctly attached to the assembly target (vehicle) without an assembly error or the like, the beam axis is in a desired direction.

<効果>
以上説明したように、本実施形態のビーム軸調整システムによれば、アンテナ基板101の傾斜角度を検出するセンサ等を用いることなく、アンテナのビーム軸を指定方向に向ける調整を行うことができる。しかも、第1調整単位(第1角度ピッチ)毎に測定を行う概略測定を実行後、その概略測定の測定結果から測定対象範囲を絞り込んで第2調整単位(第2角度ピッチ)毎に測定を行う詳細測定を実行し、その詳細測定の測定結果から軸調整量(調整ポイント)を求めているため、精度の高い軸調整量を効率よく求めることができ、その結果、ビーム軸の調整に要する時間を短縮することができる。
<Effect>
As described above, according to the beam axis adjustment system of the present embodiment, the antenna beam axis can be adjusted in the designated direction without using a sensor or the like that detects the tilt angle of the antenna substrate 101. In addition, after executing the rough measurement for measuring each first adjustment unit (first angle pitch), the measurement target range is narrowed down from the measurement result of the rough measurement, and the measurement is performed for each second adjustment unit (second angle pitch). Since the detailed measurement to be performed is performed and the axis adjustment amount (adjustment point) is obtained from the measurement result of the detailed measurement, a highly accurate axis adjustment amount can be efficiently obtained, and as a result, it is necessary for the beam axis adjustment. Time can be shortened.

<他の実施形態>
以上本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく様々な態様で実施することが可能である。
<Other embodiments>
Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment and can be implemented in various modes.

例えば、上記実施形態では、軸調整処理を、出荷前等にレーダ装置1単体に対して実施する場合について説明したが、車体に組み付けられたレーダ装置1に対して実施してもよい。   For example, in the above-described embodiment, the case where the axis adjustment process is performed on the radar apparatus 1 alone before shipment or the like has been described. However, the axis adjustment process may be performed on the radar apparatus 1 assembled to the vehicle body.

この場合、ビーム軸調整システムを構成するレーダ装置1は、図5に示すように、車載LANを構成する電子制御ユニット(ECU)4,5,6…の一つ(例えば走行支援ECU4)からの指令を受けて動作するように構成される。また、車載LANには、検査ツール2を少なくとも含む外部装置を接続するためのコネクタ7が設けられる。   In this case, as shown in FIG. 5, the radar apparatus 1 constituting the beam axis adjustment system is supplied from one of the electronic control units (ECUs) 4, 5, 6. It is configured to operate in response to a command. The in-vehicle LAN is provided with a connector 7 for connecting an external device including at least the inspection tool 2.

なお、ECU4は、コネクタ7,車載LANを介して受信する検査ツール2からの指令をレーダ装置1に転送し、その転送した指令に対するレーダ装置1からの応答を、車載LAN,コネクタ7を介して検査ツール2に転送するように構成される。   The ECU 4 transfers a command from the inspection tool 2 received via the connector 7 and the in-vehicle LAN to the radar device 1, and sends a response from the radar device 1 to the transferred command through the in-vehicle LAN and the connector 7. It is configured to be transferred to the inspection tool 2.

また、この場合の軸調整には、車体を基準としたアンテナのビーム軸の向きが予め定められた指定方向を向いているときに信号処理部16にて測定される受信電力を最大にする位置に設置されたリフレクタ(図示せず)が使用される。   Further, in this case, the axis adjustment is a position that maximizes the received power measured by the signal processing unit 16 when the direction of the beam axis of the antenna with respect to the vehicle body is in a predetermined designated direction. The reflector (not shown) installed in the is used.

そして、車体に組み付けられたレーダ装置1に対して実施する軸調整処理(以下「組付時処理」という)の内容は、レーダ装置1単体に対して実施する軸調整処理(以下「出荷前処理」という)の内容と同様である。   The contents of the axis adjustment process (hereinafter referred to as “assembly process”) performed on the radar apparatus 1 assembled to the vehicle body is the same as the axis adjustment process (hereinafter referred to as “pre-shipment process”) performed on the radar apparatus 1 alone. ")").

但し、出荷前処理の実施前には、基板傾斜角度が不定であるのに対して、組付時処理の実施前には、基板傾斜角度が調整ポイントに設定されているため、S110では、基板傾斜角度の現在ポイントが調整可能角度範囲の中心にあるものとして、調整可能角度範囲の半分に相当する角度だけ現在ポイントからシフトさせたポイント(即ち、調整可能角度範囲の一方の境界)に対応するアクチュエータ駆動量を開始駆動量として設定するようにしてもよい。   However, the substrate tilt angle is indefinite before the pre-shipment process is performed, whereas the substrate tilt angle is set as an adjustment point before the assembly process is performed. Corresponds to a point shifted from the current point by an angle corresponding to half of the adjustable angle range (ie one boundary of the adjustable angle range), assuming that the current point of the tilt angle is at the center of the adjustable angle range The actuator drive amount may be set as the start drive amount.

このような組付時処理を実行することにより、レーダ装置1を車体に組み付けた後であっても、アクチュエータ103の動作確認を行うことができると共に、筐体102を車体に組み付けた時に組付誤差が生じたとしても、その誤差を相殺するように、基板傾斜角度を調整することができる。   By executing such an assembling process, the operation of the actuator 103 can be confirmed even after the radar apparatus 1 is assembled to the vehicle body, and the assembly is performed when the housing 102 is assembled to the vehicle body. Even if an error occurs, the substrate tilt angle can be adjusted so as to cancel the error.

上記実施形態では、軸調整処理を検査ツール2の制御部21が実行するように構成したが、これをレーダ装置1の信号処理部16が実行するように構成してもよい。この場合、検査ツール2は、信号処理部16に対する軸調整処理の起動指示、及び信号処理部16から取得される処理結果の報知を行うように構成すればよい。   In the above embodiment, the axis adjustment process is configured to be executed by the control unit 21 of the inspection tool 2, but this may be configured to be executed by the signal processing unit 16 of the radar apparatus 1. In this case, the inspection tool 2 may be configured to issue an instruction to start the axis adjustment process to the signal processing unit 16 and notify the processing result acquired from the signal processing unit 16.

1…レーダ装置 2…検査ツール 3…リフレクタ 4〜6…電子制御ユニット(ECU) 7…コネクタ 11…送信アンテナ 12…受信アンテナ 13…送受信回路 14…通信I/F 15…駆動部 16…信号処理部 21…制御部 22…通信I/F 23…操作部 24…表示部 101…アンテナ基板 102…筐体 103…アクチュエータ 103…駆動回路 104…付勢部材   DESCRIPTION OF SYMBOLS 1 ... Radar apparatus 2 ... Inspection tool 3 ... Reflector 4-6 ... Electronic control unit (ECU) 7 ... Connector 11 ... Transmission antenna 12 ... Reception antenna 13 ... Transmission / reception circuit 14 ... Communication I / F 15 ... Drive part 16 ... Signal processing Unit 21 ... Control unit 22 ... Communication I / F 23 ... Operation unit 24 ... Display unit 101 ... Antenna substrate 102 ... Case 103 ... Actuator 103 ... Drive circuit 104 ... Biasing member

Claims (4)

筐体(102)と、レーダ波を送受信するアンテナが形成され且つ前記筐体に対する傾斜角度を変更可能なアンテナ基板(101)と、前記アンテナ基板の傾斜角度を変化させることで、前記筐体に対する前記アンテナのビーム軸の向き変化させるアクチュエータ(15、103、104)と、前記アンテナ基板を介してレーダ波を送受信し、受信電力を測定する測定部(13、16)を備えたレーダ装置(1)を対象とし、
前記筐体に対する前記アンテナのビーム軸の向きが予め定められた指定方向を向いているときに前記測定部にて測定される受信電力を最大にするような前記レーダ装置との位置関係を有するリフレクタ(3)を使用して、前記筐体に対する前記アンテナのビーム軸の向きを調整するビーム軸調整方法であって、
前記アクチュエータによる前記アンテナ基板の駆動量を、予め定められた第1単位駆動量ずつ変化させると共に、前記測定部に受信電力を測定させることにより、予め定められた調整可能角度範囲内での前記アンテナ基板の傾斜角度と前記受信電力との関係を、前記第1単位駆動量に対応した角度ピッチで求める第1のステップ(S110〜S140)と、
前記第1のステップでの測定結果から、前記受信電力が最大となる傾斜角度である仮調整ポイントを求める第2のステップ(S150)と、
前記駆動量を、前記第1単位駆動量より小さく設定された第2単位駆動量ずつ変化させると共に、前記測定部に受信電力を測定させることにより、前記第2のステップで求めた前記仮調整ポイントを挟むようにして前記調整可能角度範囲より狭い範囲に設定される詳細測定対象範囲内での前記アンテナ基板の傾斜角度と前記受信電力との関係を、前記第2単位駆動量に対応した角度ピッチで求める第3のステップ(S160〜S190)と、
前記第3のステップでの測定結果から、前記受信電力が最大となる傾斜角度である調整ポイントに対応する前記駆動量を軸調整量として求める第4のステップ(S200)と、
前記駆動量が前記第4のステップで求めた前記軸調整量となるように前記アクチュエータを作動させる第5のステップ(S210)と、
からなることを特徴とするビーム軸調整方法。
A housing (102), an antenna substrate (101) in which an antenna for transmitting and receiving radar waves is formed and the tilt angle with respect to the housing can be changed, and the tilt angle of the antenna substrate is changed, thereby Radar apparatus (1) including an actuator (15, 103, 104) for changing the direction of the beam axis of the antenna, and a measurement unit (13, 16) that transmits and receives radar waves via the antenna substrate and measures received power. )
A reflector having a positional relationship with the radar apparatus that maximizes the received power measured by the measurement unit when the direction of the beam axis of the antenna with respect to the casing is in a predetermined designated direction. A beam axis adjusting method for adjusting the direction of the beam axis of the antenna with respect to the casing using (3),
The antenna within the predetermined adjustable angle range is obtained by changing the driving amount of the antenna substrate by the actuator by a predetermined first unit driving amount and by causing the measuring unit to measure the received power. A first step (S110 to S140) for obtaining a relationship between an inclination angle of the substrate and the received power at an angle pitch corresponding to the first unit driving amount;
From the measurement result in the first step, a second step (S150) for obtaining a temporary adjustment point that is an inclination angle at which the received power is maximized;
The temporary adjustment point obtained in the second step by changing the drive amount by a second unit drive amount set smaller than the first unit drive amount and causing the measurement unit to measure received power. The relationship between the angle of inclination of the antenna board and the received power within the detailed measurement target range set to be narrower than the adjustable angle range with the angle between them is obtained at an angle pitch corresponding to the second unit driving amount. A third step (S160-S190);
A fourth step (S200) for obtaining, as an axis adjustment amount, the drive amount corresponding to the adjustment point that is the inclination angle at which the received power is maximized from the measurement result in the third step;
A fifth step (S210) for operating the actuator so that the drive amount is equal to the axis adjustment amount obtained in the fourth step;
A beam axis adjusting method comprising:
前記第1のステップでは、前記アクチュエータの可動範囲に対応する前記アンテナ基板の傾斜角度の範囲を前記調整可能角度範囲とすることを特徴とする請求項1に記載のビーム軸調整方法。   2. The beam axis adjusting method according to claim 1, wherein in the first step, a range of an inclination angle of the antenna substrate corresponding to a movable range of the actuator is set as the adjustable angle range. 前記第1のステップでは、前記駆動量の現在値に対応する前記アンテナ基板の傾斜角度を中心として予め定められた角度範囲を前記調整可能角度範囲とすることを特徴とする請求項1に記載のビーム軸調整方法。   2. The adjustable angle range according to claim 1, wherein in the first step, a predetermined angle range centering on an inclination angle of the antenna substrate corresponding to a current value of the driving amount is set as the adjustable angle range. Beam axis adjustment method. 筐体(102)と、レーダ波を送受信するアンテナが形成され且つ前記筐体に対する傾斜角度を変更可能なアンテナ基板(101)と、前記アンテナ基板の傾斜角度を変化させることで、前記筐体に対する前記アンテナのビーム軸の向き変化させるアクチュエータ(15、103、104)と、前記アンテナ基板を介してレーダ波を送受信し、受信電力を測定する測定部(13、16)を備えたレーダ装置(1)を対象とし、
前記筐体に対する前記アンテナのビーム軸の向きが予め定められた指定方向を向いているときに前記測定部にて測定される受信電力を最大にするような前記レーダ装置との位置関係を有するリフレクタを使用して、前記筐体に対する前記アンテナのビーム軸の向きを調整するビーム軸調整装置(2)であって、
前記アクチュエータによる前記アンテナ基板の駆動量を予め設定された第1単位駆動量ずつ変化させると共に、前記測定部に受信電力を測定させることにより、予め定められた調整可能角度範囲内での前記アンテナ基板の傾斜角度と前記受信電力との関係を、前記第1単位駆動量に対応した角度ピッチで求める第1測定手段(21、S110〜S140)と、
前記第1測定手段での測定結果から、前記受信電力が最大となる傾斜角度である仮調整ポイントを求める仮調整ポイント抽出手段(21、S150)と、
前記駆動量を前記第1単位駆動量より小さく設定された第2単位駆動量ずつさせると共に、前記測定部に受信電力を測定させることにより、前記仮調整ポイント抽出手段で求めた前記仮調整ポイントを挟むようにして前記調整可能角度範囲より狭い範囲に設定される詳細測定対象範囲内での前記アンテナ基板の傾斜角度と前記受信電力との関係を、前記第2単位駆動量に対応した角度ピッチで求める第2測定手段(21、S160〜S190)と、
前記第2測定手段での測定結果から、前記受信電力が最大となる傾斜角度である調整ポイントに対応する前記駆動量を軸調整量として求める調整量抽出手段(21、S200)と、
前記駆動量が前記調整量抽出手段で求められた前記軸調整量となるように前記アクチュエータを作動させる調整実行手段(21、S210)と、
を備えることを特徴とするビーム軸調整装置。
A housing (102), an antenna substrate (101) in which an antenna for transmitting and receiving radar waves is formed and the tilt angle with respect to the housing can be changed, and the tilt angle of the antenna substrate is changed, thereby Radar apparatus (1) including an actuator (15, 103, 104) for changing the direction of the beam axis of the antenna, and a measurement unit (13, 16) that transmits and receives radar waves via the antenna substrate and measures received power. )
A reflector having a positional relationship with the radar apparatus that maximizes the received power measured by the measurement unit when the direction of the beam axis of the antenna with respect to the casing is in a predetermined designated direction. A beam axis adjusting device (2) for adjusting the direction of the beam axis of the antenna with respect to the housing using
The antenna board within the predetermined adjustable angle range is obtained by changing the driving amount of the antenna board by the actuator by a preset first unit driving amount and by causing the measurement unit to measure the received power. First measuring means (21, S110 to S140) for obtaining the relationship between the tilt angle of the received power and the received power at an angle pitch corresponding to the first unit driving amount;
Temporary adjustment point extraction means (21, S150) for obtaining a temporary adjustment point that is an inclination angle at which the received power is maximized from the measurement result of the first measurement means;
The temporary adjustment point obtained by the temporary adjustment point extracting unit is obtained by causing the driving amount to be a second unit driving amount set smaller than the first unit driving amount and causing the measurement unit to measure received power. A relationship between the inclination angle of the antenna board and the received power within a detailed measurement target range that is set to be narrower than the adjustable angle range so as to be sandwiched is obtained at an angle pitch corresponding to the second unit driving amount. 2 measuring means (21, S160 to S190);
An adjustment amount extraction means (21, S200) for obtaining, as an axis adjustment amount, the drive amount corresponding to an adjustment point that is an inclination angle at which the received power is maximized from the measurement result of the second measurement means;
Adjustment execution means (21, S210) for operating the actuator so that the drive amount becomes the shaft adjustment amount obtained by the adjustment amount extraction means;
A beam axis adjusting device comprising:
JP2012107650A 2012-05-09 2012-05-09 Beam axis adjusting method and apparatus Active JP5983007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107650A JP5983007B2 (en) 2012-05-09 2012-05-09 Beam axis adjusting method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107650A JP5983007B2 (en) 2012-05-09 2012-05-09 Beam axis adjusting method and apparatus

Publications (2)

Publication Number Publication Date
JP2013234923A true JP2013234923A (en) 2013-11-21
JP5983007B2 JP5983007B2 (en) 2016-08-31

Family

ID=49761161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107650A Active JP5983007B2 (en) 2012-05-09 2012-05-09 Beam axis adjusting method and apparatus

Country Status (1)

Country Link
JP (1) JP5983007B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015513A (en) * 2015-06-30 2017-01-19 トヨタ自動車株式会社 Radar device
JP6095022B1 (en) * 2015-12-04 2017-03-15 三菱電機株式会社 Wave energy radiation device
JP6157683B1 (en) * 2016-04-28 2017-07-05 三菱電機株式会社 Wave energy radiation device
JP2019066260A (en) * 2017-09-29 2019-04-25 株式会社デンソーテン Radar device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103753A (en) * 1993-09-30 1995-04-18 Japan Aviation Electron Ind Ltd Optical angle measuring instrument
JP2002131434A (en) * 2000-10-27 2002-05-09 Honda Motor Co Ltd Method for adjusting axis of object detecting device
US20080231514A1 (en) * 2007-03-22 2008-09-25 Omron Corporation Object detector and method of adjusting irradiation axis therefor
JP2010096588A (en) * 2008-10-15 2010-04-30 Fujitsu Ten Ltd Radar device
JP2011254300A (en) * 2010-06-02 2011-12-15 Sumitomo Electric Ind Ltd Communication system and communication device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103753A (en) * 1993-09-30 1995-04-18 Japan Aviation Electron Ind Ltd Optical angle measuring instrument
JP2002131434A (en) * 2000-10-27 2002-05-09 Honda Motor Co Ltd Method for adjusting axis of object detecting device
US20080231514A1 (en) * 2007-03-22 2008-09-25 Omron Corporation Object detector and method of adjusting irradiation axis therefor
JP2008232887A (en) * 2007-03-22 2008-10-02 Omron Corp Object sensing apparatus and irradiation axis adjustment method
JP2010096588A (en) * 2008-10-15 2010-04-30 Fujitsu Ten Ltd Radar device
JP2011254300A (en) * 2010-06-02 2011-12-15 Sumitomo Electric Ind Ltd Communication system and communication device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015513A (en) * 2015-06-30 2017-01-19 トヨタ自動車株式会社 Radar device
JP6095022B1 (en) * 2015-12-04 2017-03-15 三菱電機株式会社 Wave energy radiation device
JP2017103704A (en) * 2015-12-04 2017-06-08 三菱電機株式会社 Wave energy radiating device
JP6157683B1 (en) * 2016-04-28 2017-07-05 三菱電機株式会社 Wave energy radiation device
JP2017200094A (en) * 2016-04-28 2017-11-02 三菱電機株式会社 Wave energy radiating device
JP2019066260A (en) * 2017-09-29 2019-04-25 株式会社デンソーテン Radar device

Also Published As

Publication number Publication date
JP5983007B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5983007B2 (en) Beam axis adjusting method and apparatus
CN107479040B (en) Compact range vehicle-mounted millimeter wave radar test system
CN103797378B (en) Use the calibration steps of the car radar of phased array
US10048096B2 (en) Device for measuring a rotational angle by modifying and measuring the polarization of radio waves and use of said device
WO2013072956A1 (en) Laser radar device, safe landing sensor for planetfall, docking sensor for space apparatus, space debris collection sensor, and vehicle-mounted collision avoidance sensor
CN113330326B (en) Apparatus and method for calibrating a multiple-input multiple-output radar sensor
JP2010127743A (en) Radar system and moving body
JP5853863B2 (en) Radar inspection method and radar inspection apparatus
CN109507671B (en) Radar apparatus for vehicle and method of estimating angle using the same
US11535243B2 (en) Remote parking system
CN112946588B (en) Test platform and channel error determination method
CN111615640A (en) Method and device for operating an acoustic sensor
JP5102403B1 (en) Radar test equipment
JP2008191071A (en) Radar apparatus
JP2012211794A (en) Angular characteristics measuring method and radar apparatus
JP6095022B1 (en) Wave energy radiation device
JP2006064628A (en) Radar system and aerial directivity adjusting method for radar system
JP2010237069A (en) Apparatus for measuring radar reflection cross-section
JP2010122044A (en) Method for measuring beam orientation direction of multi-beam transmitting antenna, and multi-beam transmitting antenna subsystem using the same
WO2008038966A1 (en) Method for measuring antenna characteristics out of operational frequency range of chamber
CN110542374B (en) Angle measuring sensor
JP2010048778A (en) Radar device and measuring method
US20230075303A1 (en) Methods of Evaluating Radar Devices and Radar Devices
US20160011034A1 (en) Radar level detector and method for level measurement of bulk products in tanks
JP7497241B2 (en) Radar Detection Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R151 Written notification of patent or utility model registration

Ref document number: 5983007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250