JP2013234784A - Refrigerator for transportation - Google Patents

Refrigerator for transportation Download PDF

Info

Publication number
JP2013234784A
JP2013234784A JP2012106605A JP2012106605A JP2013234784A JP 2013234784 A JP2013234784 A JP 2013234784A JP 2012106605 A JP2012106605 A JP 2012106605A JP 2012106605 A JP2012106605 A JP 2012106605A JP 2013234784 A JP2013234784 A JP 2013234784A
Authority
JP
Japan
Prior art keywords
heating
internal
chamber
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012106605A
Other languages
Japanese (ja)
Other versions
JP6004734B2 (en
Inventor
Takashi Tanaka
孝史 田中
Tomohiro Nishii
智広 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012106605A priority Critical patent/JP6004734B2/en
Publication of JP2013234784A publication Critical patent/JP2013234784A/en
Application granted granted Critical
Publication of JP6004734B2 publication Critical patent/JP6004734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02331Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • F25B2313/02334Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0234Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements
    • F25B2313/02342Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in series arrangements during defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02791Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using shut-off valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerator for transportation capable of not only resolving a problem of a lack of heating capacity due to a gas-low status in a system but also properly and efficiently warming up each chamber regardless of the setting temperature when multiple chambers are simultaneously warmed up.SOLUTION: A refrigerator-outside unit 3 provided with a compressor 4, a refrigerator-outside heat exchanger 8, a heating-up expansion valve 14, a refrigerator-outside fan 20, and the like is connected in series with multiple refrigerator-inside units 2A and 2B comprising refrigerator-inside heat exchangers 9A and 9B, cooling expansion valves 15A and 15B, refrigerator-inside fans 21A and 21B, and the like. In a refrigerator 1 for transportation capable of cooling or heating up multiple chambers A and B individually provided with the refrigerator-inside units 2A and 2B, the method for heating the multiple chambers A and B is a heat pump heating method which absorbs the heat by the refrigerator-outside heat exchanger 8 to heat up the heat by releasing the heat by the refrigerator-inside heat exchangers 9A and 9B. When each of the chambers A and B is heated up, the respective chambers A and B are individually and alternately switched to heat up the heat.

Description

本発明は、冷凍車等に搭載される輸送用冷凍装置に関するものである。   The present invention relates to a transport refrigeration apparatus mounted on a refrigeration vehicle or the like.

輸送用冷凍装置においては、冷凍車の庫内に積まれる荷物によって、あるいは外気温によって、荷物の品質を維持するため、加温運転が必要な場合がある。一般に、この種輸送用冷凍装置での加温方式には、圧縮機から吐出されたホットガス冷媒を、ホットガスバイパス回路により凝縮器をバイパスさせて直接蒸発器に導入し、そのホットガス冷媒の放熱を利用して加温するホットガスバイパス方式が用いられている。この方式の場合、外気から吸熱することができず、圧縮機の動力分のみが加熱源となるため、能力が小さく、効率が悪い等の問題を有している。   In a transport refrigeration apparatus, a heating operation may be necessary to maintain the quality of the luggage depending on the luggage loaded in the refrigerator or the outside air temperature. Generally, in the heating method in this kind of transport refrigeration system, hot gas refrigerant discharged from a compressor is introduced directly into an evaporator by bypassing a condenser by a hot gas bypass circuit, and the hot gas refrigerant A hot gas bypass method is used in which heat is applied using heat radiation. In the case of this method, heat cannot be absorbed from the outside air, and only the power of the compressor becomes a heating source, so that there are problems such as small capacity and poor efficiency.

そこで、上記問題を克服すべく、輸送用冷凍装置において、ヒートポンプ加温方式を採用したものが特許文献1により提供されている。ヒートポンプ加温方式の場合、外気からの吸熱を利用して加温運転することができることから、加温能力を大きくすることができるとともに、エネルギー効率のよい加温運転を行うことができる。   Thus, in order to overcome the above problem, Patent Document 1 provides a transport refrigeration apparatus that employs a heat pump heating system. In the case of the heat pump heating method, since the heating operation can be performed by utilizing the heat absorption from the outside air, the heating capability can be increased and the energy efficient heating operation can be performed.

一方、冷暖房を行うヒートポンプ式空気調和機において、暖房運転時に停止中の一定以上の容量を有する室内機の熱交換器に液冷媒が溜り込み、ガスロー状態となるのを防止するため、室内膨張弁の開度を所定開度単位で開くようにした技術が特許文献2に示されており、また、暖房運転の停止後、ファンのみを運転することにより、室内熱交換器に残っている熱量(余熱)により暖房するようにした技術が特許文献3に示されている。   On the other hand, in a heat pump air conditioner that performs air conditioning, an indoor expansion valve is used to prevent liquid refrigerant from accumulating in a heat exchanger of an indoor unit that has a capacity greater than a certain level that is stopped during heating operation and entering a gas low state. Patent Document 2 discloses a technique in which the opening degree of each is opened in units of a predetermined opening degree, and after the heating operation is stopped, only the fan is operated, whereby the amount of heat remaining in the indoor heat exchanger ( Patent Document 3 discloses a technique for heating by residual heat).

特開2010−236831号公報JP 2010-236831 A 特許第4100853号公報Japanese Patent No. 4100853 特許第3282719号公報Japanese Patent No. 3282719

しかしながら、輸送用冷凍装置は、主に低温製品の輸送に適用されることから、庫内ユニット側に設けられる庫内熱交換器、すなわち蒸発器に内容積の大きな熱交換器が用いられている。このため、能力が高く、効率のよいヒートポンプ加温方式を用い、内容積の大きい庫内熱交換器を凝縮器として機能させることにより、異なる複数の室内を同時に加温すると、低温設定室側の庫内熱交換器内に液冷媒が溜まり込み、システム内がガスロー状態となり、より大きな能力が必要となる高温設定室側の加温能力が大幅に低下してしまう等の課題が生じる。   However, since the transport refrigeration apparatus is mainly applied to the transport of low-temperature products, an internal heat exchanger provided on the internal unit side, that is, an evaporator having a large internal volume is used. . For this reason, by using a heat pump heating system with high capacity and efficiency, and operating the internal heat exchanger with a large internal volume as a condenser, when heating a plurality of different rooms at the same time, Liquid refrigerant accumulates in the internal heat exchanger, the system becomes in a gas low state, and there arises a problem that the heating capability on the high temperature setting chamber side that requires a greater capability is significantly reduced.

また、圧縮機が吐出されたホットガスを、庫内熱交換器に直接導入して加温するホットガスバイパス方式の加温方式に比べ、ヒートポンプ加温方式の方が、加温能力が大きいことから、設定温度と外気温度とが近い室を加温する際、過暖房となって設定温度をオーバーショートする度合いが大きくなり、温度管理性能が悪化してしまう等の課題があった。   In addition, the heat pump heating method has a larger heating capacity than the hot gas bypass heating method in which the hot gas discharged from the compressor is directly introduced into the internal heat exchanger and heated. Therefore, when heating a room where the set temperature and the outside air temperature are close, there is a problem that the temperature management performance deteriorates due to overheating due to overheating.

本発明は、このような事情に鑑みてなされたものであって、複数の室を同時に加温時、システム内がガスロー状態となって加温能力が不足する問題を解消するとともに、設定温度に係わりなく、各室を適正にかつ効率よく加温することができる輸送用冷凍装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and solves the problem that the system interior is in a gas low state when a plurality of chambers are heated at the same time, and the heating capacity is insufficient. It is an object of the present invention to provide a transport refrigeration apparatus that can heat each chamber appropriately and efficiently.

上記した課題を解決するために、本発明の輸送用冷凍装置は、以下の手段を採用する。
すなわち、本発明にかかる輸送用冷凍装置は、圧縮機、庫外熱交換器、加温用膨張弁および庫外ファン等を備えている庫外ユニットに対して、庫内熱交換器、冷却用膨張弁および庫内ファン等を備えている複数台の庫内ユニットが並列に接続され、前記庫内ユニットが設置されている複数の室が個別に冷却または加温可能とされている輸送用冷凍装置において、前記複数の室の加温が、前記庫外熱交換器で吸熱し、その熱を前記庫内熱交換器で放熱して加温するヒートポンプ加温方式とされ、前記各室の加温運転時、各々の室を個別に交互に切換え加温運転する構成とされていることを特徴とする。
In order to solve the above-described problems, the transport refrigeration apparatus of the present invention employs the following means.
That is, the transport refrigeration apparatus according to the present invention includes a compressor, an external heat exchanger, an expansion valve for heating, an external fan, and the like. Refrigeration for transportation in which a plurality of units in the cabinet having expansion valves and fans in the cabinet are connected in parallel, and a plurality of chambers in which the units in the cabinet are installed can be individually cooled or heated In the apparatus, the heating of the plurality of chambers is a heat pump heating method in which heat is absorbed by the external heat exchanger, and the heat is radiated and heated by the internal heat exchanger. In the temperature operation, each chamber is switched alternately and heated.

本発明によれば、互いに並列に接続されている複数台の庫内ユニットが設置されている複数の室が個別に冷却または加温可能とされている輸送用冷凍装置において、複数の室の加温が、庫外熱交換器で吸熱し、その熱を庫内熱交換器で放熱して加温するヒートポンプ加温方式とされ、各室の加温運転時、各々の室を個別に交互に切換え加温運転する構成とされているため、加温方式をヒートポンプ方式としても、複数の室を個別に交互に切換え加温運転することにより、他の室の設定温度に関係なく、必要な冷媒量を確保して個別に加温運転することができる。従って、複数の室を同時に加温した時、低温設定室側の庫内熱交換器に液冷媒が溜り込んでシステム内がガスロー状態となり、より大きい能力が必要な高温設定室側を加温するための能力が不足してしまう等の問題を解消し、設定温度に係わりなく、各々の室を適正にかつ効率よく加温することができる。   According to the present invention, in a transport refrigeration apparatus in which a plurality of chambers in which a plurality of in-chamber units connected in parallel to each other are installed can be individually cooled or heated, the heating of the plurality of chambers is performed. The heat is absorbed by the external heat exchanger, and the heat is dissipated by the internal heat exchanger to heat the heat pump, and each room is alternately turned on during the heating operation of each room. Because it is configured to perform switching heating operation, even if the heating method is the heat pump method, the necessary refrigerant can be obtained regardless of the set temperature of other chambers by switching and heating multiple chambers alternately. The amount can be secured and the heating operation can be performed individually. Therefore, when several chambers are heated at the same time, liquid refrigerant accumulates in the internal heat exchanger on the low temperature setting chamber side and the system enters a gas low state, heating the high temperature setting chamber side that requires higher capacity. Therefore, it is possible to solve problems such as insufficient capacity for heating and to appropriately and efficiently heat each chamber regardless of the set temperature.

さらに、本発明の輸送用冷凍装置は、上記の輸送用冷凍装置において、前記加温運転時に、前記複数の室の設定温度が異なる場合、個別に交互に運転する運転時間の間隔が、低温設定室側の運転時間よりも高温設定室側の運転時間の方が長くされていることを特徴とする。   Furthermore, in the transport refrigeration apparatus of the present invention, in the transport refrigeration apparatus, when the set temperatures of the plurality of chambers are different at the time of the warming operation, the operation time interval for operating the chambers alternately is set to a low temperature setting. The operation time on the high temperature setting room side is longer than the operation time on the room side.

本発明によれば、加温運転時に、複数の室の設定温度が異なる場合、個別に交互に運転する運転時間の間隔が、低温設定室側の運転時間よりも高温設定室側の運転時間の方が長くされているため、設定温度が異なる複数の室を個別に交互に切換えて加温運転するようにしても、設定温度が高い高温設定室側の方の運転時間を長くすることにより、高温の設定温度まで十分に加温することができる。従って、複数の室を各々の設定温度に応じて適正にかつ効率よく加温することができる。   According to the present invention, when the set temperatures of the plurality of chambers are different during the heating operation, the operation time interval for alternately operating the chambers is set so that the operation time on the high temperature setting chamber side is higher than that on the low temperature setting chamber side. Because the direction is longer, even if you switch the multiple chambers with different set temperatures individually and perform the heating operation, by increasing the operation time on the high temperature setting chamber side where the set temperature is high, It is possible to sufficiently warm up to a high set temperature. Accordingly, the plurality of chambers can be appropriately and efficiently heated according to the respective set temperatures.

さらに、本発明の輸送用冷凍装置は、上述のいずれかの輸送用冷凍装置において、前記複数の室が共にサーモオン時、設定温度と室内温度との温度差が大きい方の室から加温運転を開始する構成とされていることを特徴とする。   Furthermore, the transport refrigeration apparatus of the present invention is the above-described transport refrigeration apparatus, in which the plurality of chambers are both heated from the room having the larger temperature difference between the set temperature and the room temperature when the thermostat is on. It is characterized by being configured to start.

本発明によれば、複数の室が共にサーモオン時、設定温度と室内温度との温度差が大きい方の室から加温運転を開始する構成とされているため、複数の室が共にサーモオンの時には、設定温度の高・低に関係なく、設定温度と室内温度との温度差に基づいて、温度差が大きい方の室がより加温の必要性が高いと判断し、その室を優先して加温運転することができる。従って、複数の室を個別に交互に切換え加温して温度調整する際において、各々の室の温度管理精度を高めることができる。   According to the present invention, when the plurality of chambers are both thermo-on, the heating operation is started from the chamber having the larger temperature difference between the set temperature and the room temperature. Regardless of whether the set temperature is high or low, based on the temperature difference between the set temperature and the room temperature, the room with the larger temperature difference is judged to require more heating, and that room is given priority. Heating operation is possible. Accordingly, when the temperature is adjusted by alternately switching and heating the plurality of chambers individually, the temperature management accuracy of each chamber can be improved.

さらに、本発明の輸送用冷凍装置は、上述のいずれかの輸送用冷凍装置において、前記複数の室の加温切換え時、加温開始される室の前記庫内ユニットをオン状態とするとともに、加温停止される室の前記庫内ユニットに一定時間だけ前記庫内ファンを停止した状態でホットガス冷媒を供給し、前記一定時間が経過後、オフ状態とする構成とされていることを特徴とする。   Furthermore, the transport refrigeration apparatus of the present invention, in any one of the transport refrigeration apparatuses described above, when the heating of the plurality of chambers is switched, the chamber unit of the chamber to start heating is turned on, The hot gas refrigerant is supplied to the internal unit of the chamber in which the heating is stopped while the internal fan is stopped for a predetermined time, and is turned off after the predetermined time has elapsed. And

本発明によれば、複数の室の加温切換え時、加温開始される室の庫内ユニットをオン状態とするとともに、加温停止される室の庫内ユニットに一定時間だけ庫内ファンを停止した状態でホットガス冷媒を供給し、一定時間が経過後、オフ状態とする構成とされているため、複数の室の加温切換え時、加温が停止される室側の庫内ユニットの庫内熱交換器内に保持されている液冷媒を、庫内ファンを停止して一定時間だけホットガス冷媒を供給することにより、システム側に追い出すことができる。従って、加温開始される室側の加温運転に際して、システム内がガスロー状態となり、能力不足に陥る事態を確実に防止することができるとともに、複数の室を加温するために必要な冷媒量を大幅に削減することができる。   According to the present invention, when switching the heating of a plurality of chambers, the unit in the chamber to be heated is turned on, and the fan in the chamber in the chamber to be heated is stopped for a certain period of time. Since the hot gas refrigerant is supplied in a stopped state and turned off after a certain period of time, when the heating is switched between a plurality of chambers, The liquid refrigerant held in the internal heat exchanger can be driven out to the system side by stopping the internal fan and supplying hot gas refrigerant for a predetermined time. Therefore, during the heating operation on the chamber side where heating is started, the system can be reliably prevented from becoming in a gas low state and falling short of capacity, and the amount of refrigerant necessary for heating a plurality of chambers Can be greatly reduced.

さらに、本発明の輸送用冷凍装置は、上述のいずれかの輸送用冷凍装置において、前記複数の室の加温切換え時、加温開始される室の前記庫内ユニットをオン状態とするとともに、加温停止される室の前記庫内ユニットの前記庫内熱交換器内を低圧にバランスする構成とされていることを特徴とする。   Furthermore, the transport refrigeration apparatus of the present invention, in any one of the transport refrigeration apparatuses described above, when the heating of the plurality of chambers is switched, the chamber unit of the chamber to start heating is turned on, The interior of the internal heat exchanger of the internal unit of the chamber whose heating is stopped is configured to be balanced to a low pressure.

本発明によれば、複数の室の加温切換え時、加温開始される室の庫内ユニットをオン状態とするとともに、加温停止される室の庫内ユニットの庫内熱交換器内を低圧にバランスする構成とされているため、複数の室の加温切換え時、加温が停止される室側の庫内ユニットの庫内熱交換器内を低圧にバランスさせることによって、その庫内熱交換器内に保持されている液冷媒を、圧縮機の吸引作用によって徐々に低圧のシステム側に戻すことができる。従って、加温開始される室側の加温運転に際して、システム内がガスロー状態となり、能力不足に陥る事態を確実に防止することができるとともに、複数の室を加温するために必要な冷媒量を大幅に削減することができる。   According to the present invention, when switching the heating of a plurality of chambers, the inside unit of the chamber to be heated is turned on, and the inside of the inside heat exchanger of the inside unit of the chamber to be heated is stopped. Since it is configured to balance to low pressure, when the heating of multiple chambers is switched, the inside of the chamber heat exchanger of the chamber side unit where heating is stopped is balanced to a low pressure, so that the inside of the chamber The liquid refrigerant held in the heat exchanger can be gradually returned to the low-pressure system side by the suction action of the compressor. Therefore, during the heating operation on the chamber side where heating is started, the system can be reliably prevented from becoming in a gas low state and falling short of capacity, and the amount of refrigerant necessary for heating a plurality of chambers Can be greatly reduced.

さらに、本発明の輸送用冷凍装置は、上述のいずれかの輸送用冷凍装置において、前記の加温運転が、前記庫内ファンを停止した状態で前記圧縮機からのホットガス冷媒を循環し、前記庫内熱交換器の温度が上昇後、前記ホットガス冷媒の循環を停止し、前記庫内ファンを運転して前記庫内熱交換器の熱容量のみで加温する構成とされていることを特徴とする。   Furthermore, the transport refrigeration apparatus of the present invention is the above transport refrigeration apparatus, wherein the heating operation circulates hot gas refrigerant from the compressor in a state where the internal fan is stopped, After the temperature of the internal heat exchanger rises, the circulation of the hot gas refrigerant is stopped, and the internal fan is operated to heat only with the heat capacity of the internal heat exchanger. Features.

本発明によれば、加温運転が、庫内ファンを停止した状態で圧縮機からのホットガス冷媒を循環し、庫内熱交換器の温度が上昇後、ホットガス冷媒の循環を停止し、庫内ファンを運転して庫内熱交換器の熱容量のみで加温する構成とされているため、設定温度が外気温度に近い室をヒートポンプ加温方式によって加温すると、能力が大き過ぎ、過暖房となって設定温度をオーバーショートすることがあるが、庫内ファンを止めてホットガス冷媒を循環し、庫内熱交換器の温度が上昇した後、ホットガス冷媒の循環を止め、庫内ファンを運転することにより、庫内熱交換器の熱容量のみを利用して、低能力で加温することができる。従って、過暖房を防止して設定温度の過度なオーバーショートを抑制し、各室の温度管理精度を向上することができる。   According to the present invention, the heating operation circulates the hot gas refrigerant from the compressor with the internal fan stopped, and after the temperature of the internal heat exchanger rises, stops the circulation of the hot gas refrigerant, Since the internal fan is operated to heat only with the heat capacity of the internal heat exchanger, if the room where the set temperature is close to the outside air temperature is heated by the heat pump heating method, the capacity is too large and excessive. The set temperature may be over-shorted due to heating, but the internal fan is turned off to circulate the hot gas refrigerant, and after the internal heat exchanger temperature rises, the hot gas refrigerant is stopped from being circulated. By operating the fan, it is possible to heat with low capacity using only the heat capacity of the internal heat exchanger. Accordingly, it is possible to prevent overheating, suppress an excessive overshort of the set temperature, and improve the temperature management accuracy of each room.

さらに、本発明の輸送用冷凍装置は、上記の輸送用冷凍装置において、前記ホットガス冷媒の循環、停止および前記庫内ファンの運転、停止が、冷媒の圧力または温度もしくは時間の少なくともいずれか1つを検知して交互に断続的に繰り返される構成とされていることを特徴とする。   Furthermore, in the transport refrigeration apparatus of the present invention, in the transport refrigeration apparatus, the circulation or stop of the hot gas refrigerant and the operation or stop of the internal fan are at least one of the refrigerant pressure, temperature or time. It is the structure which detects one and repeats it alternately and intermittently.

本発明によれば、ホットガス冷媒の循環、停止および庫内ファンの運転、停止が、冷媒の圧力または温度もしくは時間の少なくともいずれか1つを検知して交互に断続的に繰り返される構成とされているため、冷媒の圧力または温度もしくは時間の少なくともいずれか1つを検知し、ホットガス冷媒の循環、停止と庫内ファンの運転、停止を交互に断続的に繰り返すことによって、冷凍装置を安定的に継続して運転しながら、加温能力を適正に調整することができる。従って、過暖房を防止し、各々の室の温度管理精度を向上することができる。   According to the present invention, the circulation and stop of the hot gas refrigerant and the operation and stop of the internal fan are configured to be repeated intermittently by detecting at least one of the refrigerant pressure, temperature and time. Therefore, it is possible to stabilize the refrigeration system by detecting at least one of the refrigerant pressure, temperature, or time, and repeating the hot gas refrigerant circulation, stoppage and operation of the internal fan alternately and intermittently. The heating capability can be adjusted appropriately while continuously operating. Therefore, overheating can be prevented and the temperature management accuracy of each room can be improved.

本発明によると、加温方式をヒートポンプ方式としても、複数の室を個別に交互に切換え加温運転することにより、他の室の設定温度に関係なく、必要な冷媒量を確保して個別に加温運転することができるため、複数の室を同時に加温した時、低温設定室側の庫内熱交換器に液冷媒が溜り込んでシステム内がガスロー状態となり、より大きい能力が必要な高温設定室側を加温するための能力が不足してしまう等の問題を解消し、設定温度に係わりなく、各々の室を適正にかつ効率よく加温することができる。   According to the present invention, even if the heating method is a heat pump method, by separately switching and heating a plurality of chambers individually, the necessary amount of refrigerant is secured independently of the set temperature of the other chambers. Because it can be heated, when multiple chambers are heated at the same time, liquid refrigerant accumulates in the internal heat exchanger on the low-temperature setting chamber side, causing the system to go into a gas low state and high temperature that requires greater capacity. Problems such as insufficient ability to heat the set room side are solved, and each room can be heated appropriately and efficiently regardless of the set temperature.

本発明の第1実施形態に係る輸送用冷凍装置の冷媒回路図である。1 is a refrigerant circuit diagram of a transport refrigeration apparatus according to a first embodiment of the present invention. 図1に示す輸送用冷凍装置のA室冷却運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the A room cooling operation of the transport refrigeration apparatus shown in FIG. 図1に示す輸送用冷凍装置のA室加温運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the A room heating operation of the transport refrigeration apparatus shown in FIG. 図1に示す輸送用冷凍装置のA室加温運転からB室加温運転に切換え時の冷媒回路図である。It is a refrigerant circuit figure at the time of switching from the A room heating operation of the transport refrigeration apparatus shown in FIG. 1 to the B room heating operation. 図1に示す輸送用冷凍装置のB室加温運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the B room heating operation of the transport refrigeration apparatus shown in FIG. 図1に示す輸送用冷凍装置のA室加温運転からB室加温運転に切換え時のシーケンス図である。It is a sequence diagram at the time of switching from the A room heating operation of the transport refrigeration apparatus shown in FIG. 1 to the B room heating operation. 本発明の第2実施形態に係る輸送用冷凍装置のA室加温運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the A room heating operation of the transport refrigeration equipment concerning a 2nd embodiment of the present invention. 図7に示す輸送用冷凍装置のB室加温運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the B room heating operation of the transport refrigeration apparatus shown in FIG. 図7に示す輸送用冷凍装置のA室加温運転からB室加温運転に切換え時のシーケンス図である。It is a sequence diagram at the time of switching from A room heating operation to B room heating operation of the transport refrigeration apparatus shown in FIG. 本発明の第3実施形態に係る輸送用冷凍装置のA室加温運転時(ファンを停止してホットガス冷媒を循環)の冷媒回路図である。It is a refrigerant circuit figure at the time of the A room heating operation of the refrigeration equipment for transport concerning a 3rd embodiment of the present invention (a fan is stopped and hot gas refrigerant is circulated). 本発明の第3実施形態に係る輸送用冷凍装置のA室加温運転時(熱交換器の熱容量のみで加温)の冷媒回路図である。It is a refrigerant circuit figure at the time of the A room heating operation (heating only with the heat capacity | capacitance of a heat exchanger) of the transport refrigeration apparatus which concerns on 3rd Embodiment of this invention. 図10および図11に示す輸送用冷凍装置のA室加温運転時のシーケンス図である。It is a sequence diagram at the time of the room A heating operation of the transport refrigeration apparatus shown in FIGS.

以下に、本発明にかかる実施形態について、図面を参照して説明する。
[第1実施形態]
以下、本発明の第1実施形態について、図1ないし図6を用いて説明する。
図1には、本発明の第1実施形態に係る輸送用冷凍装置の冷媒回路図が示されている。
輸送用冷凍装置1は、トラックの荷台側に搭載されるバンボディと称されている荷室内に設置された庫内ユニットと、バンボディの外部に設置される庫外ユニットとから構成されるものである。ここでは、荷室が複数のA室およびB室に区画され、各々の室A,B内に庫内ユニット2A,2Bが設置されるとともに、庫内ユニット2A,2B側に設けられる機器以外の機器類がバンボディの外部に設置される庫外ユニット3側に設けられた構成の輸送用冷凍装置1が示されている。
Embodiments according to the present invention will be described below with reference to the drawings.
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a refrigerant circuit diagram of a transport refrigeration apparatus according to the first embodiment of the present invention.
The transport refrigeration apparatus 1 is composed of an in-compartment unit installed in a cargo room called a van body mounted on the loading platform side of a truck, and an external unit installed outside the van body. . Here, the cargo compartment is divided into a plurality of A rooms and B rooms, and the units 2A and 2B are installed in the respective rooms A and B, and other than the equipment provided on the side of the units 2A and 2B. A transport refrigeration apparatus 1 having a configuration in which equipment is provided on the outside unit 3 side installed outside the van body is shown.

庫外ユニット3側には、トラックの走行用エンジン、冷凍装置専用のサブエンジンあるいは電動モータ等により駆動される圧縮機4が具備されており、この圧縮機4からの冷媒吐出配管5には、電磁弁6M(SV7M)および高圧ガス配管(ホットガスライン)7Mを介して、冷却運転時に凝縮器、加温運転時に蒸発器として機能する庫外熱交換器8が接続されている。同様に、圧縮機4からの吐出配管5には、電磁弁6A,6B(SV7AおよびSV7B)、高圧ガス配管7A,7Bを介して、冷却運転時に蒸発器、加温運転時に凝縮器として機能する庫内熱交換器9A,9Bが互いに並列に接続されている。   On the outside unit 3 side, there is provided a compressor 4 driven by a truck running engine, a sub engine dedicated to a refrigeration system, an electric motor or the like, and a refrigerant discharge pipe 5 from the compressor 4 includes: An external heat exchanger 8 that functions as a condenser during the cooling operation and an evaporator during the heating operation is connected via the solenoid valve 6M (SV7M) and the high-pressure gas pipe (hot gas line) 7M. Similarly, the discharge pipe 5 from the compressor 4 functions as an evaporator during cooling operation and a condenser during heating operation via electromagnetic valves 6A and 6B (SV7A and SV7B) and high-pressure gas pipes 7A and 7B. The internal heat exchangers 9A and 9B are connected in parallel to each other.

また、圧縮機4の吸入配管10には、アキュームレータ11が設けられており、このアキュームレータ11と高圧ガス配管7M,7A,7B中の電磁弁6M,6A,6B(SV7M,SV7A,SV7B)の下流側との間に、各々電磁弁12M,12A,12B(SV6M,SV6A,SV6B)を有する低圧ガス配管(吸入ライン)13M,13A,13Bが接続されている。   Further, an accumulator 11 is provided in the suction pipe 10 of the compressor 4, and the accumulator 11 and the solenoid valves 6M, 6A, 6B (SV7M, SV7A, SV7B) in the high pressure gas pipes 7M, 7A, 7B are downstream. Low pressure gas pipes (suction lines) 13M, 13A, and 13B having solenoid valves 12M, 12A, and 12B (SV6M, SV6A, and SV6B) are connected to the side.

庫外熱交換器8の他端側には、加温用膨張弁14と電磁弁16M(SV1M)との直列回路に逆止弁17Mが並列に接続されている回路を有する液冷媒配管(液ライン)18Mが接続されており、この液冷媒配管(液ライン)18Mの他端側は、レシーバ19に接続されている。更に、庫内熱交換器9A,9Bの他端側には、冷却用膨張弁15A,15Bと電磁弁16A,16B(SV1A,SV1B)との直列回路に逆止弁17A,17Bが並列に接続されている回路を有する液冷媒配管(液ライン)18A,18Bが並列に接続されており、この液冷媒配管(液ライン)18A,18Bの他端側は、レシーバ19に接続されている。   On the other end side of the external heat exchanger 8, a liquid refrigerant pipe (liquid refrigerant) having a circuit in which a check valve 17M is connected in parallel to a series circuit of a heating expansion valve 14 and a solenoid valve 16M (SV1M). Line) 18M is connected, and the other end of the liquid refrigerant pipe (liquid line) 18M is connected to the receiver 19. Further, check valves 17A and 17B are connected in parallel to a series circuit of the expansion valves 15A and 15B for cooling and the solenoid valves 16A and 16B (SV1A and SV1B) on the other end side of the internal heat exchangers 9A and 9B. Liquid refrigerant pipes (liquid lines) 18A and 18B having a connected circuit are connected in parallel, and the other ends of the liquid refrigerant pipes (liquid lines) 18A and 18B are connected to the receiver 19.

上記庫外熱交換器8には、外気を通風する庫外ファン(CF)20が付設されており、また、庫内熱交換器9A,9Bには、A室およびB室内の空気を庫内熱交換器9A,9Bを通して循環する庫内ファン21A,21B(EF−A,EF−B)が付設されている。更に、上記庫内ユニット2A側には、庫内熱交換器9A、冷却用膨張弁15A、電磁弁16A、逆止弁17Aおよび庫内ファン21A等が設けられ、庫内ユニット2B側には、庫内熱交換器9B、冷却用膨張弁15B、電磁弁16B、逆止弁17Bおよび庫内ファン21B等が設けられている。それ以外の機器類は、庫外ユニット3側に設けられ、これら機器類が冷媒配管を介して接続されることにより、公知の如く冷却サイクルおよびヒートポンプ加温サイクルが構成されている。   The outside heat exchanger 8 is provided with an outside fan (CF) 20 that ventilates outside air, and the inside heat exchangers 9A and 9B receive air in the A and B rooms. The internal fans 21A and 21B (EF-A and EF-B) that circulate through the heat exchangers 9A and 9B are attached. Further, the internal heat exchanger 9A, the cooling expansion valve 15A, the electromagnetic valve 16A, the check valve 17A, the internal fan 21A and the like are provided on the internal unit 2A side, and the internal unit 2B side includes An internal heat exchanger 9B, a cooling expansion valve 15B, a solenoid valve 16B, a check valve 17B, an internal fan 21B, and the like are provided. Other devices are provided on the outside unit 3 side, and these devices are connected via a refrigerant pipe to form a cooling cycle and a heat pump heating cycle as is well known.

上記の輸送用冷凍装置1において、冷却運転は、以下のようにして行われる。
図2には、A室の冷却運転時の回路が太線で示されている。なお、図中において、塗潰し電磁弁が通電開、白抜き電磁弁が閉、塗潰しファンがオン、白抜きファンがオフの状態を示さている。
圧縮機4から吐出された高温高圧の冷媒ガスは、開とされている電磁弁6Mを介して高圧ガス配管7Mより庫外熱交換器8に導入され、ここで庫外ファン20により通風される外気と熱交換されて凝縮液化される。
In the transport refrigeration apparatus 1 described above, the cooling operation is performed as follows.
In FIG. 2, the circuit during the cooling operation of the room A is indicated by a thick line. In the figure, the painting solenoid valve is energized, the white solenoid valve is closed, the painting fan is on, and the white fan is off.
The high-temperature and high-pressure refrigerant gas discharged from the compressor 4 is introduced into the external heat exchanger 8 from the high-pressure gas pipe 7M through the opened electromagnetic valve 6M and is ventilated by the external fan 20 here. Heat is exchanged with the outside air to be condensed and liquefied.

この高圧液冷媒は、逆止弁17Mを経てレシーバ19に導入され、いったん貯留されて循環流量が調整される。A室の冷却運転時、電磁弁16Aが開とされているため、レシーバ19に貯留された液冷媒は、電磁弁16Aを経て冷却用膨張弁15Aに導かれ、冷却用膨張弁15Aを通過する過程で断熱膨張されて低圧の気液二相冷媒となり、庫内熱交換器9Aに供給される。庫内熱交換器9Aに供給された冷媒は、庫内ファン21Aにより循環されるA室内の空気と熱交換され、その空気から吸熱して蒸発ガス化された後、電磁弁12Aが開とされていることから、高圧ガス配管7A、低圧ガス配管13A、アキュームレータ11および吸入配管10を経て、圧縮機4に吸入され、再圧縮される。   The high-pressure liquid refrigerant is introduced into the receiver 19 through the check valve 17M, and is temporarily stored to adjust the circulation flow rate. Since the electromagnetic valve 16A is opened during the cooling operation of the A chamber, the liquid refrigerant stored in the receiver 19 is guided to the cooling expansion valve 15A through the electromagnetic valve 16A and passes through the cooling expansion valve 15A. In the process, it is adiabatically expanded to become a low-pressure gas-liquid two-phase refrigerant and supplied to the internal heat exchanger 9A. The refrigerant supplied to the internal heat exchanger 9A exchanges heat with the air in the room A circulated by the internal fan 21A, absorbs heat from the air, and is evaporated and gasified, and then the solenoid valve 12A is opened. Therefore, the refrigerant is sucked into the compressor 4 through the high-pressure gas pipe 7A, the low-pressure gas pipe 13A, the accumulator 11, and the suction pipe 10, and is recompressed.

以下、同様のサイクルを繰り返す。この間、庫内熱交換器9Aで冷媒と熱交換されて冷却されたA室内の空気を、庫内ファン21Aを介してA室内に吹出すことにより、A室内を冷却運転することができる。また、B室を冷却運転する場合、電磁弁16Bおよび12Bを開とするとともに、庫内ファン21Bをオンとし、庫内ユニット2Bに冷媒を流通させることにより、A室の場合と同様、B室を冷却運転することができ、これにより、A室およびB室を同時または個別に冷却運転することができる。   Thereafter, the same cycle is repeated. During this time, the air in the A room can be cooled by blowing the air in the A room cooled by the heat exchange with the refrigerant in the internal heat exchanger 9A through the internal fan 21A. Also, when cooling the B room, the electromagnetic valves 16B and 12B are opened, the internal fan 21B is turned on, and the refrigerant is circulated to the internal unit 2B, so that the B room is the same as in the A room. The room A and the room B can be cooled simultaneously or individually.

一方、A室およびB室の加温運転は、A室およびB室を同時に加温運転すると、設定温度が低い低温設定室側の庫内熱交換器9Aまたは9Bで凝縮した液冷媒が溜り込み、システム内がガスロー状態となって、設定温度が高い高温設定室側での加温能力が不足する事態に陥る場合がある。そこで、本実施形態においては、以下に説明する通り、A室およびB室に設けられている庫内ユニット2A,2Bを個別に交互に切換えて加温運転するようにしている。   On the other hand, in the heating operation of the A chamber and the B chamber, when the A chamber and the B chamber are simultaneously heated, the liquid refrigerant condensed in the internal heat exchanger 9A or 9B on the low temperature setting chamber side where the set temperature is low is accumulated. In some cases, the system becomes in a gas low state, and the heating capability on the high temperature setting chamber side where the set temperature is high is insufficient. Therefore, in the present embodiment, as described below, the internal units 2A and 2B provided in the A room and the B room are individually switched alternately to perform the heating operation.

図3ないし図6を用いて、庫内ユニット2A,2Bを個別に交互に切換えて加温運転する場合の一例を説明する。図3には、A室の加温運転時の回路が太線で示されている。
圧縮機4から吐出された高温高圧の冷媒ガスは、開とされている電磁弁6Aを介して高圧ガス配管7Aより庫内熱交換器9Aに導入され、ここで庫内ファン21Aによって循環されるA室内の空気と熱交換されて凝縮液化される。この熱交換によってA室内の空気は加温され、庫内ファン21Aを介してA室内に吹出されることにより、A室内の加温に供される。
An example in the case of heating operation by switching the in-compartment units 2A and 2B alternately and individually will be described with reference to FIGS. In FIG. 3, the circuit during the heating operation of the room A is indicated by a thick line.
The high-temperature and high-pressure refrigerant gas discharged from the compressor 4 is introduced into the internal heat exchanger 9A from the high-pressure gas pipe 7A via the opened electromagnetic valve 6A, and is circulated by the internal fan 21A. Heat exchange with the air in room A is condensed and liquefied. The air in the A room is heated by this heat exchange, and blown into the A room through the internal fan 21A, thereby being used for heating in the A room.

庫内熱交換器9Aで凝縮液化された高圧液冷媒は、逆止弁17Aを経てレシーバ19に導入され、いったん貯留されて循環流量が調整される。加温運転時、電磁弁16Mが開とされているため、レシーバ19に貯留された液冷媒は、電磁弁16Mを経て加温用膨張弁14に導かれ、この加温用膨張弁14を通過する過程で断熱膨張されて低圧の気液二相冷媒となり、庫外熱交換器8に供給される。庫外熱交換器8に供給された冷媒は、庫外ファン20により通風される外気と熱交換され、外気から吸熱して蒸発ガス化された後、電磁弁12Mが開とされていることから、高圧ガス配管7M、低圧ガス配管13M、アキュームレータ11および吸入配管10を経て、圧縮機4に吸入され、再圧縮される。   The high-pressure liquid refrigerant condensed and liquefied in the internal heat exchanger 9A is introduced into the receiver 19 through the check valve 17A, and is temporarily stored to adjust the circulation flow rate. Since the electromagnetic valve 16M is opened during the heating operation, the liquid refrigerant stored in the receiver 19 is guided to the heating expansion valve 14 through the electromagnetic valve 16M and passes through the heating expansion valve 14. In the process, it is adiabatically expanded to become a low-pressure gas-liquid two-phase refrigerant and supplied to the external heat exchanger 8. Since the refrigerant supplied to the external heat exchanger 8 is heat-exchanged with the external air ventilated by the external fan 20 and absorbs heat from the external air to be evaporated and gasified, the electromagnetic valve 12M is opened. The high pressure gas pipe 7M, the low pressure gas pipe 13M, the accumulator 11 and the suction pipe 10 are sucked into the compressor 4 and recompressed.

以下、同様のサイクルを繰り返す。これによって、庫外熱交換器8で外気から熱を汲み上げ、その熱を庫内熱交換器9AによりA室に放熱してA室を加温するヒートポンプ加温運転を行うことができる。なお、A室の加温運転中、B室側の庫内ユニット2Bは、冷媒の流通が中断され、庫内ファン21Bのみがオンされた停止状態とされている。
この加温運転によりA室内が設定温度に到達した場合あるいはA室の加温運転が設定時間継続された場合、A室の加温運転が終了され、B室の加温運転に切換えられる。この切換え時に一定時間、例えば1分間だけ、庫内熱交換器9A内に溜っている液冷媒をシステム側に追い出す運転を平行して行い、B室の加温運転に切換えるようにしている。
Thereafter, the same cycle is repeated. As a result, heat pump heating operation can be performed in which heat is pumped from outside air by the external heat exchanger 8, and the heat is radiated to the A room by the internal heat exchanger 9A to heat the A room. Note that during the heating operation of the A room, the internal unit 2B on the B room side is in a stopped state in which the refrigerant flow is interrupted and only the internal fan 21B is turned on.
When the room A reaches the set temperature by this heating operation or when the room A heating operation is continued for a set time, the room A heating operation is terminated and switched to the room B heating operation. At the time of this switching, for a certain period of time, for example, only 1 minute, the operation of expelling the liquid refrigerant accumulated in the internal heat exchanger 9A to the system side is performed in parallel, and the operation is switched to the heating operation of the B chamber.

液冷媒の排出運転は、図4の示される回路によって行われる。つまり、A室からB室への加温切換え時、電磁弁6Bを開とすることによって、圧縮機4から吐出された高温高圧の冷媒ガスを電磁弁6Bおよび高圧ガス配管7Bを介して庫内熱交換器9Bに導入する一方で、上記の如く1分間だけ電磁弁6Aを開状態に保持するとともに、庫内ファン21Aをオフ状態として庫内熱交換器9Aに圧縮機4からのホットガス冷媒を供給する。これによって、庫内熱交換器9A内に溜っていた液冷媒は、レシーバ19に追い出され、B室の加温運転に有効に使われるようにしている。   The liquid refrigerant discharge operation is performed by the circuit shown in FIG. That is, when heating is switched from the A chamber to the B chamber, the solenoid valve 6B is opened, so that the high-temperature and high-pressure refrigerant gas discharged from the compressor 4 is stored in the refrigerator via the solenoid valve 6B and the high-pressure gas pipe 7B. While being introduced into the heat exchanger 9B, the solenoid valve 6A is held open for 1 minute as described above, and the internal fan 21A is turned off to supply the hot gas refrigerant from the compressor 4 to the internal heat exchanger 9A. Supply. As a result, the liquid refrigerant accumulated in the internal heat exchanger 9A is driven out by the receiver 19 and is effectively used for the heating operation of the B chamber.

この液冷媒の排出運転中、図4の示されるように、電磁弁6Bが開とされ、B室側の庫内ユニット2Bの庫内熱交換器9Bに圧縮機4から吐出された高温高圧の冷媒ガスが供給されるとともに、庫内ファン21Bがオンとされているため、既にB室の加温運転が開始されている。そして、1分間の液冷媒排出運転が終了すると、図5に示されるように、電磁弁6Aが閉とされ、庫内ユニット2Aは、冷媒流通が中断されるとともに、庫内ファン21Aのみがオンされた停止状態とされる。これによって、B室が図5に示される如くヒートポンプ加温運転されることになる。   During the discharge operation of the liquid refrigerant, as shown in FIG. 4, the electromagnetic valve 6B is opened, and the high temperature and high pressure discharged from the compressor 4 to the internal heat exchanger 9B of the internal unit 2B on the B room side. Since the refrigerant gas is supplied and the internal fan 21B is turned on, the heating operation of the B room has already been started. When the one-minute liquid refrigerant discharge operation is completed, as shown in FIG. 5, the electromagnetic valve 6A is closed, and the internal unit 2A is interrupted by the refrigerant flow and only the internal fan 21A is turned on. Stopped. As a result, the room B is heat-heated as shown in FIG.

図6に、上記のA室およびB室の加温切換え運転と液冷媒の追い出し運転とを組み合わせた制御のシーケンス図が示されている。
A室側の加温運転が終了し、B室側の加温運転に切換える際、電磁弁(SV7B)6Bに通電して開とし、庫内熱交換器9Bにホットガス冷媒を供給開始するとともに、庫内ファン(EF−B)21Bの運転をそのまま継続し、庫内ユニット2Bをオン状態としてB室側の加温運転を開始する。一方、それまで加温運転をしていた庫内ユニット2Aについては、1分間だけ、電磁弁(SV7A)6Aを通電開状態に維持し、その1分間、庫内ファン(EF−A)21Bの運転を停止することにより、庫内熱交換器9Aに溜り込んでいた液冷媒をレシーバ19に追い出す運転を行う。
FIG. 6 shows a control sequence diagram in which the heating switching operation for the A chamber and the B chamber and the liquid refrigerant purge operation are combined.
When the heating operation on the A room side is completed and the heating operation on the B room side is switched, the solenoid valve (SV7B) 6B is energized and opened, and the supply of hot gas refrigerant to the internal heat exchanger 9B is started. Then, the operation of the internal fan (EF-B) 21B is continued as it is, the internal unit 2B is turned on, and the heating operation on the B room side is started. On the other hand, for the in-compartment unit 2A that has been in the warming operation until that time, the solenoid valve (SV7A) 6A is maintained in the energized open state for only one minute, and the in-compartment fan (EF-A) 21B By stopping the operation, the liquid refrigerant that has accumulated in the internal heat exchanger 9A is driven out to the receiver 19.

これによって、B室側の加温運転時に、システム側、すなわちB室を加温するためのヒートポンプ加温サイクル内がガスロー状態となり、加温能力が不足する事態の発生を防止することができるとともに、システム内に充填する冷媒量自体を低減することができる。そして、1分の冷媒追い出す運転が終了すると、電磁弁(SV7A)6Aを閉とするとともに、庫内ファン(EF−A)21Bをオンとして庫内ユニット2Aを停止状態とし、B室側の加温運転をそのまま継続する。   As a result, during the heating operation on the B room side, the system side, that is, the inside of the heat pump heating cycle for heating the B room is in a gas low state, and the occurrence of a situation where the heating capacity is insufficient can be prevented. In addition, the amount of refrigerant itself filled in the system can be reduced. When the operation for expelling the refrigerant for 1 minute is completed, the electromagnetic valve (SV7A) 6A is closed, the internal fan (EF-A) 21B is turned on, the internal unit 2A is stopped, Continue warm operation.

上記の加温運転は、A室およびB室の設定温度に応じて、設定温度が高い方の高温設定室側の運転時間を長く設定し、設定温度が低い方の低温設定室側の運転時間をそれより短く設定して交互に行うようにしている。例えば、A室側の設定温度がB室側の設定温度よりも高い場合、A室側の加温運転時間を、例えば2分に設定し、設定温度が低いB室側の加温運転時間を1分に設定してその時間間隔で交互に運転を行うようにする。ただし、加温運転中に、室内温度が設定温度に到達してサーモオフした場合は、その時点で運転の切換えを行うようにすればよい。   In the above heating operation, the operation time on the high temperature setting chamber side with the higher setting temperature is set longer and the operation time on the low temperature setting chamber side with the lower setting temperature is set according to the setting temperatures of the A room and the B room. Is set to be shorter than that and alternately performed. For example, when the set temperature on the A room side is higher than the set temperature on the B room side, the heating operation time on the A room side is set to, for example, 2 minutes, Set to 1 minute and operate alternately at the time interval. However, if the room temperature reaches the set temperature and the thermo-off occurs during the heating operation, the operation may be switched at that time.

また、A室およびB室がサーモオフ状態から共にサーモオンした時には、設定温度の高低に関係なく、設定温度と室内温度との温度差が大きい方の室を優先して加温運転を開始するようにしている。これは、温度差が大きい室の方が、より加温の必要性が高いと判断されるためであり、設定温度の高低に関係なく、そちらの室を優先的に加温運転する構成としている。   In addition, when both the room A and the room B are thermo-on from the thermo-off state, the heating operation is started with priority on the room having the larger temperature difference between the set temperature and the room temperature regardless of the set temperature. ing. This is because a room with a larger temperature difference is judged to have a higher need for heating, and the room is preferentially heated regardless of the set temperature. .

斯くして、本実施形態によると、以下の作用効果を奏する。
互いに並列に接続されている複数台の庫内ユニット2A,2Bが設置されている複数の室A,Bが個別に冷却または加温可能とされている輸送用冷凍装置1において、複数の室A,Bの加温が、庫外熱交換器8で吸熱し、その熱を庫内熱交換器9A,9Bで放熱して加温するヒートポンプ加温方式とされており、各室A,Bの加温運転時、各々の室A,Bを個別に交互に切換え加温運転する構成とされている。このため、加温方式をヒートポンプ方式としても、複数の室A,Bを個別に交互に切換え加温運転することにより、他の室の設定温度に関係なく、必要な冷媒量を確保して個別に加温運転することができる。
Thus, according to the present embodiment, the following operational effects are obtained.
In the transport refrigeration apparatus 1 in which a plurality of chambers A, B in which a plurality of in-compartment units 2A, 2B connected in parallel to each other are installed can be individually cooled or heated, a plurality of chambers A , B is a heat pump heating system in which heat is absorbed by the external heat exchanger 8, and the heat is radiated and heated by the internal heat exchangers 9A, 9B. At the time of the heating operation, the chambers A and B are individually switched alternately to perform the heating operation. For this reason, even if the heating method is a heat pump method, by separately switching and heating the plurality of chambers A and B individually, the necessary amount of refrigerant can be secured independently of the set temperature of the other chambers. It can be warmed up.

従って、複数の室A,Bを同時に加温した時、低温設定室側の庫内熱交換器9A,9Bに液冷媒が溜り込んでシステム内、すなわちヒートポンプ加温サイクル内がガスロー状態となり、より大きい能力が必要な高温設定室側を加温するための能力が不足してしまう等の問題を解消し、設定温度に係わりなく、各々の室A,Bを適正にかつ効率よく加温することができる。   Therefore, when the plurality of chambers A and B are heated simultaneously, the liquid refrigerant accumulates in the internal heat exchangers 9A and 9B on the low temperature setting chamber side, and the inside of the system, that is, the heat pump heating cycle becomes a gas low state. To solve problems such as insufficient capacity to heat the high temperature setting room side that requires large capacity, and to heat each room A and B appropriately and efficiently regardless of the set temperature. Can do.

また、加温運転時に、複数の室A,Bの設定温度が異なる場合、個別に交互に運転する運転時間の間隔が、低温設定室側の運転時間よりも高温設定室側の運転時間の方が長くされている。このため、設定温度が異なる複数の室を個別に交互に切換えて加温運転するようにしても、設定温度が高い高温設定室側の方の運転時間を長くすることにより、高温の設定温度まで十分に加温することができる。従って、複数の室A,Bを各々の設定温度に応じて適正にかつ効率よく加温することができる。   In addition, if the set temperatures of the multiple chambers A and B are different during the heating operation, the interval between the operation times for alternately operating the chambers is higher for the operation time for the high temperature setting chamber than for the operation time for the low temperature setting chamber. Has been long. For this reason, even if a plurality of chambers with different set temperatures are switched alternately and heated, the operation time on the high temperature set room side with the higher set temperature is increased to increase the temperature to the higher set temperature. It can be heated sufficiently. Therefore, the plurality of chambers A and B can be appropriately and efficiently heated according to the respective set temperatures.

さらに、複数の室A,Bが共にサーモオン時、設定温度と室内温度との温度差が大きい方の室AまたはBから加温運転を開始するようにしているため、複数の室A,Bが共にサーモオンの時には、設定温度の高・低に関係なく、設定温度と室内温度との温度差に基づいて、温度差が大きい方の室AまたはBがより加温の必要性が高いと判断し、その室AまたはBを優先して加温運転することができる。これによって、複数の室A,Bを個別に交互に切換え加温して温度調整する際において、各々の室A,Bの温度管理精度を高めることができる。   Further, when the plurality of chambers A and B are both thermo-on, the heating operation is started from the chamber A or B having the larger temperature difference between the set temperature and the room temperature. When both are thermo-on, it is determined that room A or B with the larger temperature difference is more likely to be heated based on the temperature difference between the set temperature and the room temperature, regardless of whether the set temperature is high or low. The chamber A or B can be preferentially heated. This makes it possible to increase the temperature management accuracy of each of the chambers A and B when the plurality of chambers A and B are alternately and alternately heated to adjust the temperature.

また、本実施形態においては、複数の室A,Bの加温切換え時、加温開始される室AまたはBの庫内ユニット2A,2Bをオン状態とするとともに、加温停止される室AまたはBの庫内ユニット2A,2Bに、一定時間(例えば、1分間)だけ電磁弁6Aまたは6Bを開とし、庫内ファン21Aまたは21Bを停止した状態でホットガス冷媒を供給し、一定時間が経過後、オフ状態とするようにしている。このため、複数の室A,Bの加温切換え時、加温停止される室AまたはBの庫内ユニット2A,2Bの庫内熱交換器9A,9B内に保持されている液冷媒を、庫内ファン21Aまたは21Bを停止して1分間だけホットガス冷媒を供給することにより、システム側に追い出すことができる。   Further, in the present embodiment, when the heating of the plurality of chambers A and B is switched, the chamber A or B in-chamber units 2A and 2B are turned on and the heating is stopped. Alternatively, the solenoid valve 6A or 6B is opened for a certain period of time (for example, 1 minute) and the hot gas refrigerant is supplied to the B interior units 2A and 2B while the interior fan 21A or 21B is stopped. After the elapse of time, it is turned off. For this reason, at the time of heating switching of the plurality of chambers A and B, the liquid refrigerant held in the internal heat exchangers 9A and 9B of the internal units 2A and 2B of the internal chambers 2A and 2B of which the heating is stopped, The internal fan 21A or 21B is stopped and the hot gas refrigerant is supplied for 1 minute, so that it can be driven out to the system side.

これによって、加温開始される室AまたはB側の加温運転に際して、システム内、すなわちヒートポンプ加温サイクル内がガスロー状態となり、能力不足に陥る事態を確実に防止することができるとともに、複数の室A,Bを加温するために必要な冷媒量を大幅に削減することができる。   As a result, in the heating operation on the side of the room A or B where the heating is started, the system, that is, the heat pump heating cycle is in a gas low state, and it is possible to reliably prevent a situation where the capacity is insufficient and The amount of refrigerant required to heat the chambers A and B can be greatly reduced.

[第2実施形態]
次に、本発明の第2実施形態について、図7ないし図9を用いて説明する。
本実施形態は、上記した第1実施形態に対して、加温運転が停止される庫内ユニット側の庫内熱交換器9A,9B内に溜り込んでいる液冷媒の排出の仕方が異なる。その他の点については、第1実施形態と同様であるので説明は省略する。
本実施形態においては、加温運転の切換え時、加温開始される室A,Bの庫内ユニット2A,2Bをオン状態とするとともに、加温停止される室A,Bの庫内ユニット2A,2Bの庫内熱交換器9A,9B内を低圧側にバランスさせる構成とされている。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS.
The present embodiment is different from the first embodiment in the manner of discharging the liquid refrigerant accumulated in the internal heat exchangers 9A and 9B on the internal unit side where the heating operation is stopped. Since other points are the same as those in the first embodiment, description thereof will be omitted.
In the present embodiment, when the heating operation is switched, the chamber units 2A and 2B of the chambers A and B that are started to be heated are turned on, and the chamber units 2A of the chambers A and B that are warmed are stopped. , 2B internal heat exchangers 9A, 9B are balanced to the low pressure side.

図7には、室A内を加温運転している状態が示されている。この場合、電磁弁(SV7A)6A、電磁弁(SV6M)12Mおよび電磁弁(SV1M)16Mが開とされ、圧縮機4から吐出された冷媒は、電磁弁6A、高圧ガス配管7A、庫内熱交換器9A、逆止弁17A、レシーバ19、電磁弁16M、加温用膨張弁14、庫外熱交換器8、高圧ガス配管7M、電磁弁12M、低圧ガス配管13Mおよびアキュームレータ11によって形成されるヒートポンプ加温サイクル内を順次循環する。この間、庫外熱交換器8で外気から吸熱し、その熱を庫内熱交換器9Aで放熱することにより室A内を加温する。   FIG. 7 shows a state in which the inside of the room A is heated. In this case, the solenoid valve (SV7A) 6A, the solenoid valve (SV6M) 12M, and the solenoid valve (SV1M) 16M are opened, and the refrigerant discharged from the compressor 4 is the solenoid valve 6A, the high-pressure gas pipe 7A, the internal heat. It is formed by the exchanger 9A, the check valve 17A, the receiver 19, the electromagnetic valve 16M, the heating expansion valve 14, the external heat exchanger 8, the high pressure gas pipe 7M, the electromagnetic valve 12M, the low pressure gas pipe 13M, and the accumulator 11. It circulates in the heat pump heating cycle sequentially. During this time, the outside heat exchanger 8 absorbs heat from the outside air, and the inside of the chamber A is heated by radiating the heat from the inside heat exchanger 9A.

この室A内の加温運転中、オフ状態とされている室Bに設けられている庫内ユニット2Bの庫内熱交換器9Bは、低圧ガス配管13B中の電磁弁(SV6B)12Bが開とされることにより、低圧側に圧力バランスされるように構成されている。このため、加温運転が停止された時、庫内熱交換器9B内に溜り込んでいた液冷媒は、圧縮機4の吸引作用により、庫内熱交換器9B内から高圧ガス配管7B、電磁弁12B、低圧ガス配管13Bを介してアキュームレータ11内に戻され、室A内を加温するサイクル中に供給されることになる。   During the heating operation in the chamber A, the in-compartment heat exchanger 9B of the in-compartment unit 2B provided in the off-state chamber B has the electromagnetic valve (SV6B) 12B in the low-pressure gas pipe 13B opened. Thus, the pressure is balanced on the low pressure side. For this reason, when the heating operation is stopped, the liquid refrigerant accumulated in the internal heat exchanger 9B is drawn from the internal heat exchanger 9B by the suction action of the compressor 4 to the high-pressure gas pipe 7B, electromagnetic It returns to the accumulator 11 via the valve 12B and the low-pressure gas pipe 13B, and is supplied during the cycle of heating the inside of the chamber A.

一方、室Aの加温運転から、室Bの加温運転に切換え時、図8に示されるように、電磁弁(SV7A)6Aが閉、電磁弁(SV7B)6Bが開とされる。これによって、圧縮機4から吐出された冷媒は、電磁弁6B、高圧ガス配管7B、庫内熱交換器9B、逆止弁17B、レシーバ19、電磁弁16M、加温用膨張弁14、庫外熱交換器8、高圧ガス配管7M、電磁弁12M、低圧ガス配管13Mおよびアキュームレータ11で形成されるヒートポンプ加温サイクル内を順次循環する。この間、庫外熱交換器8で外気から吸熱し、その熱を庫内熱交換器9Bで放熱することにより室B内を加温する。   On the other hand, when switching from the heating operation of the chamber A to the heating operation of the chamber B, as shown in FIG. 8, the solenoid valve (SV7A) 6A is closed and the solenoid valve (SV7B) 6B is opened. Thereby, the refrigerant discharged from the compressor 4 is the solenoid valve 6B, the high-pressure gas pipe 7B, the internal heat exchanger 9B, the check valve 17B, the receiver 19, the electromagnetic valve 16M, the heating expansion valve 14, and the outside of the refrigerator. The heat exchanger 8, the high pressure gas pipe 7 </ b> M, the solenoid valve 12 </ b> M, the low pressure gas pipe 13 </ b> M, and the accumulator 11 are sequentially circulated in the heat pump heating cycle. During this time, the outside heat exchanger 8 absorbs heat from the outside air, and the inside of the room B is heated by radiating the heat with the inside heat exchanger 9B.

同時に、オフ状態とされた庫内ユニット2Aの庫内熱交換器9Aに溜り込んでいる液冷媒は、電磁弁電磁弁(SV6A)12Aが開とされ、庫内熱交換器9Aが低圧側に圧力バランスされることにより、圧縮機4の吸引作用で高圧ガス配管7B、電磁弁12B、低圧ガス配管13Bを介してアキュームレータ11内に戻され、室B内を加温するサイクル中に供給されることになる。図9には、A室からB室への加温切換え運転時、庫内ユニット2Aの庫内熱交換器9Aに溜り込んでいる液冷媒をシステム側に戻すための制御シーケンス図が示されている。   At the same time, the liquid refrigerant accumulated in the internal heat exchanger 9A of the internal unit 2A in the off state is opened by the solenoid valve solenoid valve (SV6A) 12A, and the internal heat exchanger 9A is moved to the low pressure side. By being pressure balanced, the suction action of the compressor 4 returns to the accumulator 11 via the high-pressure gas pipe 7B, the electromagnetic valve 12B, and the low-pressure gas pipe 13B, and is supplied during a cycle for heating the inside of the chamber B. It will be. FIG. 9 shows a control sequence diagram for returning the liquid refrigerant accumulated in the internal heat exchanger 9A of the internal unit 2A to the system side during the heating switching operation from the A room to the B room. Yes.

本実施形態では、図9からも明らかな通り、加温開始するユニット側の高圧ガス配管7A,7B中の電磁弁6A,6Bを開、低圧ガス配管13A,13B中の電磁弁12A,12Bを閉とするとともに、加温停止するユニット側の高圧ガス配管7A,7B中の電磁弁6A,6Bを閉、低圧ガス配管13A,13B中の電磁弁12A,12Bを開とする弁の切換えだけで、オフ状態となる庫内熱交換器9A,9Bへの液冷媒の溜り込みを防止することができる。従って、本実施形態によっても、加温開始される室AまたはBの加温運転に際して、そのヒートポンプ加温サイクル内がガスロー状態となり、能力不足に陥る事態を確実に防止することができるとともに、複数の室A,Bを加温するために必要な冷媒量を大幅に削減することができる。   In this embodiment, as is apparent from FIG. 9, the solenoid valves 6A and 6B in the high-pressure gas pipes 7A and 7B on the unit side where heating is started are opened, and the solenoid valves 12A and 12B in the low-pressure gas pipes 13A and 13B are opened. Only by switching the valve, the solenoid valves 6A and 6B in the high-pressure gas pipes 7A and 7B on the unit side to be heated are closed and the solenoid valves 12A and 12B in the low-pressure gas pipes 13A and 13B are opened. It is possible to prevent liquid refrigerant from accumulating in the internal heat exchangers 9A and 9B that are turned off. Therefore, according to this embodiment, in the heating operation of the chamber A or B that is started to be heated, the inside of the heat pump heating cycle is in a gas low state, and it is possible to reliably prevent a situation where the capacity is insufficient. The amount of refrigerant necessary for heating the chambers A and B can be greatly reduced.

[第3実施形態]
次に、本発明の第3実施形態について、図10ないし図12を用いて説明する。
本実施形態は、上記した第1および第2実施形態に対して、加温運転時の設定温度が外気温度に近い場合の運転の仕方を特定している点で異なる。その他の点については、第1実施形態と同様であるので説明は省略する。
ヒートポンプ加温方式の場合、外気から吸熱して加温できるため、ホットガスバイパス方式に比べて能力が大きく、加温する室A,Bの設定温度が外気温度に近い場合、過暖房となり易く、温度管理性能が悪化する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS.
This embodiment is different from the first and second embodiments described above in that the method of operation when the set temperature during the heating operation is close to the outside air temperature is specified. Since other points are the same as those in the first embodiment, description thereof will be omitted.
In the case of the heat pump heating method, heat can be absorbed from the outside air and heated, so the capacity is larger than the hot gas bypass method, and when the set temperature of the chambers A and B to be heated is close to the outside air temperature, overheating is likely Temperature management performance deteriorates.

本実施形態では、このような場合、例えば室Aの加温に際して、まず図10に示されるように、庫内ユニット2Aの庫内ファン(EF−A)21Aを停止した状態で電磁弁(SV7A)6Aを開とし、圧縮機4から吐出されたホットガス冷媒を庫内熱交換器9Aに供給する。この冷媒は、通常の室Aの加温運転時と同じ加温サイクル内を循環される。庫内熱交換器9A内に供給されたホットガス冷媒は、庫内ファン21Aが停止されていることから、自然放熱により庫内熱交換器9Aを加熱して一部が凝縮されるが、殆どの冷媒はガス状態のまま庫内熱交換器9Aを通過してレシーバ11に至る。これによって、庫内熱交換器9Aは、その熱容量に見合った量の熱を蓄え、加熱された状態となる。   In the present embodiment, in such a case, for example, when the chamber A is heated, first, as shown in FIG. 10, the electromagnetic valve (SV7A) with the internal fan (EF-A) 21A of the internal unit 2A stopped. ) 6A is opened, and the hot gas refrigerant discharged from the compressor 4 is supplied to the internal heat exchanger 9A. This refrigerant is circulated in the same heating cycle as in the normal chamber A heating operation. The hot gas refrigerant supplied into the internal heat exchanger 9A is partially condensed by heating the internal heat exchanger 9A by natural heat dissipation because the internal fan 21A is stopped. The refrigerant passes through the internal heat exchanger 9A in a gas state and reaches the receiver 11. As a result, the internal heat exchanger 9 </ b> A stores an amount of heat commensurate with its heat capacity and is in a heated state.

庫内熱交換器9Aの温度が上昇後、図11に示されるように、電磁弁(SV7A)6Aを閉としてホットガス冷媒の循環を停止するとともに、庫内ファン(EF−A)21Aを運転し、庫内熱交換器9Aに蓄えられていた熱を放熱することにより、庫内熱交換器9Aの熱容量のみで加温する構成としている。図12には、この低能力で加温する際の制御シーケンス図が示されている。つまり、この運転時には、図12に示されるように、電磁弁(SV7A)6Aのオン、オフと、庫内ファン(EF−A)21Aのオン、オフが交互に断続的に繰り返されることなる。   After the temperature of the internal heat exchanger 9A rises, as shown in FIG. 11, the solenoid valve (SV7A) 6A is closed to stop the circulation of the hot gas refrigerant and the internal fan (EF-A) 21A is operated. And it is set as the structure heated only by the heat capacity of the internal heat exchanger 9A by radiating the heat stored in the internal heat exchanger 9A. FIG. 12 shows a control sequence diagram when heating with this low capacity. That is, during this operation, as shown in FIG. 12, the electromagnetic valve (SV7A) 6A is turned on and off and the internal fan (EF-A) 21A is turned on and off alternately.

また、電磁弁6Aおよび庫内ファン21Aのオン、オフ切換えは、吐出冷媒の圧力、温度もしくは時間(例えば、1分間隔でのオン、オフ)等のいずれか1つを検知し、所定のインターバルで交互にオン、オフを繰り返すようにすればよい。なお、室B側を低能力で加温する際も、電磁弁(SV7B)6Bのオン、オフと、庫内ファン(EF−B)21Bのオン、オフを交互に断続的に繰り返すことにより、同様に加温運転することができる。   Further, on / off switching of the electromagnetic valve 6A and the internal fan 21A is performed by detecting any one of the pressure, temperature, time (for example, on / off at one minute intervals) of the discharged refrigerant, and the like. It is sufficient to repeat ON and OFF alternately. In addition, also when heating the chamber B side with low capacity, the solenoid valve (SV7B) 6B is turned on and off, and the internal fan (EF-B) 21B is turned on and off alternately. Similarly, a heating operation can be performed.

斯くして、本実施形態によると、庫内熱交換器9A,9Bの熱容量のみで加温することができるため、冷媒の凝縮熱を放熱することにより加温するものに比べ、加温能力を大幅に低減することができる。従って、過暖房を防止して設定温度の過度なオーバーショートを抑制することにより、各室の温度管理精度を向上することができる。また、冷媒の圧力または温度もしくは時間等のいずれか1つを検知し、ホットガス冷媒の循環、停止と庫内ファン21A,21Bの運転、停止を交互に断続的に繰り返すようにしているため、冷凍装置1を安定的に継続して運転しながら、加温能力を適正に調整することができる。   Thus, according to this embodiment, since heating can be performed only with the heat capacities of the internal heat exchangers 9A and 9B, the heating capability is higher than that of heating by dissipating the heat of condensation of the refrigerant. It can be greatly reduced. Therefore, it is possible to improve the temperature management accuracy of each room by preventing overheating and suppressing an excessive overshort of the set temperature. In addition, since any one of the refrigerant pressure or temperature or time is detected, the circulation and stop of the hot gas refrigerant and the operation and stop of the internal fans 21A and 21B are alternately and repeatedly repeated. While operating the refrigeration apparatus 1 stably and continuously, the heating capacity can be adjusted appropriately.

なお、本発明は、上記実施形態にかかる発明に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。例えば、上記した各実施形態において設定した運転時間等の設定値は、一例であり、本発明は、それに限定されるものでないことは云うまでもなく、設定温度等と共に、実情に合わせて適宜設定すればよい。   In addition, this invention is not limited to the invention concerning the said embodiment, In the range which does not deviate from the summary, it can change suitably. For example, the set values such as the operation time set in each of the above-described embodiments are merely examples, and the present invention is not limited thereto. Needless to say, the set values are set appropriately according to the actual situation together with the set temperature and the like. do it.

1 輸送用冷凍装置
2A,2B 庫内ユニット
3 庫外ユニット
4 圧縮機
6A,6B,6M 電磁弁(SV7A,SV7B,SV7M)
7A,7B,7M 高圧ガス配管
8 庫外熱交換器
9A,9B 庫内熱交換器
12A,12B,12M 電磁弁(SV6A,SV6B,SV7M)
13A,13B,13M 低圧ガス配管
14 加温用膨張弁
15A,15B 冷却用膨張弁
16A,16B,16M 電磁弁(SV1A,SV1B,SV1M)
20 庫外ファン
21A,21B 庫内ファン
A,B 室
DESCRIPTION OF SYMBOLS 1 Refrigeration equipment for transport 2A, 2B Inside unit 3 Outside unit 4 Compressor 6A, 6B, 6M Solenoid valve (SV7A, SV7B, SV7M)
7A, 7B, 7M High pressure gas pipe 8 External heat exchanger 9A, 9B Internal heat exchanger 12A, 12B, 12M Solenoid valve (SV6A, SV6B, SV7M)
13A, 13B, 13M Low-pressure gas piping 14 Expansion valves for heating 15A, 15B Expansion valves for cooling 16A, 16B, 16M Solenoid valves (SV1A, SV1B, SV1M)
20 Outside fan 21A, 21B Inside fan A, B room

Claims (7)

圧縮機、庫外熱交換器、加温用膨張弁および庫外ファン等を備えている庫外ユニットに対して、庫内熱交換器、冷却用膨張弁および庫内ファン等を備えている複数台の庫内ユニットが並列に接続され、前記庫内ユニットが設置されている複数の室が個別に冷却または加温可能とされている輸送用冷凍装置において、
前記複数の室の加温が、前記庫外熱交換器で吸熱し、その熱を前記庫内熱交換器で放熱して加温するヒートポンプ加温方式とされ、
前記各室の加温運転時、各々の室を個別に交互に切換え加温運転する構成とされていることを特徴とする輸送用冷凍装置。
Plural units equipped with an in-compartment heat exchanger, an expansion valve for cooling, an in-compartment fan, etc., for an outside unit equipped with a compressor, an out-of-compartment heat exchanger, a heating expansion valve, an outside fan, etc. In the transport refrigeration apparatus in which the units in the cabinet are connected in parallel, and the plurality of chambers in which the units in the cabinet are installed can be individually cooled or heated,
The heating of the plurality of chambers is a heat pump heating method in which heat is absorbed by the external heat exchanger, and the heat is radiated and heated by the internal heat exchanger,
A transport refrigeration apparatus characterized in that, during the heating operation of each chamber, each chamber is switched alternately and heated.
前記加温運転時に、前記複数の室の設定温度が異なる場合、個別に交互に運転する運転時間の間隔が、低温設定室側の運転時間よりも高温設定室側の運転時間の方が長くされていることを特徴とする請求項1に記載の輸送用冷凍装置。   When the set temperatures of the plurality of chambers are different during the heating operation, the operation time interval for alternately operating the chambers is longer in the operation time in the high temperature setting chamber than in the operation time in the low temperature setting chamber. The transport refrigeration apparatus according to claim 1, wherein 前記複数の室が共にサーモオン時、設定温度と室内温度との温度差が大きい方の室から加温運転を開始する構成とされていることを特徴とする請求項1または2に記載の輸送用冷凍装置。   The transportation device according to claim 1 or 2, wherein the heating operation is started from a chamber having a larger temperature difference between a set temperature and a room temperature when both of the plurality of chambers are thermo-on. Refrigeration equipment. 前記複数の室の加温切換え時、加温開始される室の前記庫内ユニットをオン状態とするとともに、加温停止される室の前記庫内ユニットに一定時間だけ前記庫内ファンを停止した状態でホットガス冷媒を供給し、前記一定時間が経過後、オフ状態とする構成とされていることを特徴とする請求項1ないし3のいずれかに記載の輸送用冷凍装置。   When switching the heating of the plurality of chambers, the internal unit of the chamber to be heated is turned on, and the internal fan is stopped for a certain period of time in the internal unit of the chamber to be heated and stopped. The transport refrigeration apparatus according to any one of claims 1 to 3, wherein hot gas refrigerant is supplied in a state and is turned off after the predetermined time has elapsed. 前記複数の室の加温切換え時、加温開始される室の前記庫内ユニットをオン状態とするとともに、加温停止される室の前記庫内ユニットの前記庫内熱交換器内を低圧にバランスする構成とされていることを特徴とする請求項1ないし3のいずれかに記載の輸送用冷凍装置。   When the heating of the plurality of chambers is switched, the internal unit of the chamber to be heated is turned on, and the internal heat exchanger of the internal unit of the chamber of the chamber to be heated is reduced to a low pressure. 4. The transport refrigeration apparatus according to claim 1, wherein the transport refrigeration apparatus is balanced. 前記の加温運転が、前記庫内ファンを停止した状態で前記圧縮機からのホットガス冷媒を循環し、前記庫内熱交換器の温度が上昇後、前記ホットガス冷媒の循環を停止し、前記庫内ファンを運転して前記庫内熱交換器の熱容量のみで加温する構成とされていることを特徴とする請求項1ないし5のいずれかに記載の輸送用冷凍装置。   The heating operation circulates hot gas refrigerant from the compressor with the internal fan stopped, and after the temperature of the internal heat exchanger rises, stops circulation of the hot gas refrigerant, The transport refrigeration apparatus according to any one of claims 1 to 5, wherein the internal fan is operated to heat only the heat capacity of the internal heat exchanger. 前記ホットガス冷媒の循環、停止および前記庫内ファンの運転、停止が、冷媒の圧力または温度もしくは時間の少なくともいずれか1つを検知して交互に断続的に繰り返される構成とされていることを特徴とする請求項6に記載の輸送用冷凍装置。
Circulation and stop of the hot gas refrigerant and operation and stop of the internal fan are configured to be repeated intermittently by detecting at least one of the refrigerant pressure, temperature or time. The transport refrigeration apparatus according to claim 6, wherein the transport refrigeration apparatus is a refrigeration apparatus.
JP2012106605A 2012-05-08 2012-05-08 Transportation refrigeration equipment Active JP6004734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106605A JP6004734B2 (en) 2012-05-08 2012-05-08 Transportation refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106605A JP6004734B2 (en) 2012-05-08 2012-05-08 Transportation refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2013234784A true JP2013234784A (en) 2013-11-21
JP6004734B2 JP6004734B2 (en) 2016-10-12

Family

ID=49761045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106605A Active JP6004734B2 (en) 2012-05-08 2012-05-08 Transportation refrigeration equipment

Country Status (1)

Country Link
JP (1) JP6004734B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151410A (en) * 2015-02-19 2016-08-22 三菱重工業株式会社 Transport refrigeration unit
CN105937811A (en) * 2015-03-03 2016-09-14 东普雷股份有限公司 Refrigerating plant
WO2019225237A1 (en) * 2018-05-23 2019-11-28 株式会社デンソー Refrigeration device for transportation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631512A (en) * 2017-09-04 2018-01-26 广东美的暖通设备有限公司 Multiple on-line system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272982A (en) * 1993-03-17 1994-09-27 Toshiba Corp Air conditioning controller
JP2002277083A (en) * 2001-03-15 2002-09-25 Matsushita Refrig Co Ltd Refrigerator
JP2004028350A (en) * 2002-06-20 2004-01-29 Matsushita Refrig Co Ltd Refrigerator
JP2010044678A (en) * 2008-08-18 2010-02-25 Kubota Corp Vending machine
JP2010236831A (en) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd Refrigerating device for land transportation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06272982A (en) * 1993-03-17 1994-09-27 Toshiba Corp Air conditioning controller
JP2002277083A (en) * 2001-03-15 2002-09-25 Matsushita Refrig Co Ltd Refrigerator
JP2004028350A (en) * 2002-06-20 2004-01-29 Matsushita Refrig Co Ltd Refrigerator
JP2010044678A (en) * 2008-08-18 2010-02-25 Kubota Corp Vending machine
JP2010236831A (en) * 2009-03-31 2010-10-21 Mitsubishi Heavy Ind Ltd Refrigerating device for land transportation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151410A (en) * 2015-02-19 2016-08-22 三菱重工業株式会社 Transport refrigeration unit
EP3059522A2 (en) 2015-02-19 2016-08-24 Mitsubishi Heavy Industries, Ltd. Transport refrigeration unit
EP3059522A3 (en) * 2015-02-19 2016-12-14 Mitsubishi Heavy Industries, Ltd. Transport refrigeration unit
CN105937811A (en) * 2015-03-03 2016-09-14 东普雷股份有限公司 Refrigerating plant
CN105937811B (en) * 2015-03-03 2020-05-15 东普雷股份有限公司 Refrigerating device
WO2019225237A1 (en) * 2018-05-23 2019-11-28 株式会社デンソー Refrigeration device for transportation
JP2019203646A (en) * 2018-05-23 2019-11-28 株式会社デンソー Refrigeration device for transportation
JP7099046B2 (en) 2018-05-23 2022-07-12 株式会社デンソー Refrigeration equipment for transportation

Also Published As

Publication number Publication date
JP6004734B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6724888B2 (en) Equipment temperature controller
CN111806190B (en) Vehicle-mounted temperature adjusting device
KR101342385B1 (en) Air conditioner for electric vehicle
JP4592617B2 (en) Cooling and heating device
JP2020168950A (en) On-vehicle temperature control device
US20100050669A1 (en) Air conditioning systems and methods having free-cooling pump-protection sequences
CN111688432B (en) Vehicle-mounted temperature adjusting device
JP2020147161A (en) On-vehicle temperature control device
JP5983451B2 (en) Heating system
EP2522934A2 (en) Heat storing apparatus having cascade cycle and control process of the same
JP2010190553A (en) Cooling system for electronic apparatus
KR20110118417A (en) Heat pump type speed heating apparatus
JP2009293839A (en) Exhaust heat utilizing system of refrigerating device
JP6004734B2 (en) Transportation refrigeration equipment
JP2021014201A (en) On-vehicle temperature control device
KR101714459B1 (en) Heat pump system for vehicle
JP5831466B2 (en) Heating system
KR101280211B1 (en) Heat pump system with frost prevention and operating methodology for heat pump system
KR100921211B1 (en) Compressor with vapor injection system
EP3290827A1 (en) Defrosting without reversing refrigerant cycle
JP2019203646A (en) Refrigeration device for transportation
KR100877055B1 (en) Hybrid heat pump type heat and cooling system with feeding steam water
EP3059523A1 (en) Oil line control system
JP5843630B2 (en) Cooling system
KR20090043991A (en) Hot-line apparatus of refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R151 Written notification of patent or utility model registration

Ref document number: 6004734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350