JP2013233573A - Oscillating mold for continuous casting, setting method of preset force for coil spring included by the same, and prevention method of breakout - Google Patents

Oscillating mold for continuous casting, setting method of preset force for coil spring included by the same, and prevention method of breakout Download PDF

Info

Publication number
JP2013233573A
JP2013233573A JP2012107935A JP2012107935A JP2013233573A JP 2013233573 A JP2013233573 A JP 2013233573A JP 2012107935 A JP2012107935 A JP 2012107935A JP 2012107935 A JP2012107935 A JP 2012107935A JP 2013233573 A JP2013233573 A JP 2013233573A
Authority
JP
Japan
Prior art keywords
vibration
mold
coil spring
force
vibrating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012107935A
Other languages
Japanese (ja)
Other versions
JP5829971B2 (en
Inventor
Hirobumi Azuma
博文 東
Masayuki Miyashita
昌幸 宮下
Harumichi Noguchi
晴道 野口
Toshiro Fukuokaya
俊郎 福岡屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Nippon Steel Plant Designing Corp
Original Assignee
NS Plant Designing Corp
Nippon Steel and Sumikin Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NS Plant Designing Corp, Nippon Steel and Sumikin Engineering Co Ltd filed Critical NS Plant Designing Corp
Priority to JP2012107935A priority Critical patent/JP5829971B2/en
Publication of JP2013233573A publication Critical patent/JP2013233573A/en
Application granted granted Critical
Publication of JP5829971B2 publication Critical patent/JP5829971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress generation of breakouts and to reduce costs required in an actuator when carrying out continuous casting by using an oscillating mold including the actuator and a coil spring.SOLUTION: In a setting method of preset force, in an oscillating mold for continuous casting including an oscillating body having a mold body and an oscillating table for mounting the same, and a mold oscillating device having a plate spring and a coil spring holding the oscillating body and an actuator vertically oscillating the oscillating body, the preset force of the coil spring is set such that a minimum value of a load to be applied to the actuator does not become zero or less.

Description

本発明は、連続鋳造用の振動鋳型、これが備えるコイルバネのプリセット力の設定方法及び連続鋳造におけるブレークアウトの防止方法に関する。   The present invention relates to a vibration casting mold for continuous casting, a method for setting a preset force of a coil spring provided therein, and a method for preventing breakout in continuous casting.

鋼の連続鋳造に使用される鋳型(モールド)は、内面に溶鋼が焼き付くのを防止するため、操業中はモールド振動装置によって所定のストローク及びサイクルで上下振動させる必要がある。下記特許文献1には、鋳型本体を上下振動させるときの振動重量を低減して振動駆動装置の負担を軽減する技術が開示されている。具体的には、電磁ブレーキ装置を備える連続鋳造用鋳型において、電磁ブレーキ装置の構成(コア、コイル及びヨーク)から独立して鋳型本体が上下振動する鋳型が開示されている。   In order to prevent molten steel from being seized on the inner surface of a mold (mold) used for continuous casting of steel, it is necessary to vibrate up and down with a predetermined stroke and cycle during operation by a mold vibration device. Patent Document 1 below discloses a technique for reducing the vibration weight when the mold body is vibrated up and down to reduce the burden on the vibration driving device. Specifically, in a continuous casting mold provided with an electromagnetic brake device, a mold is disclosed in which the mold body vibrates up and down independently of the configuration (core, coil, and yoke) of the electromagnetic brake device.

特開2011−177753号公報JP 2011-177753 A

ところで、モールド振動装置は、全体の重量が50トン以上にも及ぶ振動テーブル及びこれに載置される鋳型本体(以下、これらを合わせて「振動体」という。)を、例えば、2〜10mmのストロークであり且つ50〜300回/分のサイクルで上下振動させる必要がある。上下振動の発生源としては、通常、油圧シリンダからなるアクチュエータが使用される。しかし、アクチュエータのみで上記重量の振動体を高速で上下振動させようとした場合、推力が極めて大きく高価なアクチュエータを採用する必要がある。本発明者らはアクチュエータの必要推力を低減するため、アクチュエータとコイルバネとを併用する技術を検討している。コイルバネによるアクチュエータ推力低減の原理は、振動体に対して鉛直下向きに加わる力(例えば、振動体の自重)の一部をコイルバネのバネ力(プリセット力)によって支えるものである。   By the way, the mold vibration device has a vibration table having an overall weight of 50 tons or more and a mold body (hereinafter referred to as “vibration body” collectively) placed on the vibration table, for example, 2 to 10 mm. It is a stroke and needs to vibrate up and down at a cycle of 50 to 300 times / minute. As a source of vertical vibration, an actuator composed of a hydraulic cylinder is usually used. However, when trying to vibrate the vibrating body having the above weight at a high speed only with the actuator, it is necessary to use an expensive actuator having an extremely large thrust. In order to reduce the required thrust of the actuator, the present inventors have studied a technique in which an actuator and a coil spring are used in combination. The principle of actuator thrust reduction by the coil spring is to support a part of the force (for example, the weight of the vibrating body) applied vertically downward to the vibrating body by the spring force (preset force) of the coil spring.

必要最低限の推力を有するアクチュエータを使用してコスト削減をするという観点からは、振動体の自重の全てをバネ力で支持することが最も望ましい。しかし、本発明者らはコイルバネのプリセット力を振動体の自重に極力近づけて連続鋳造を実施したところ、振動体を上下振動させたときに異音が発生し、これに起因して振動波形の乱れが生じる場合があることが判明した。振動波形の乱れによって鋳型本体に横振れが生じたり衝撃が加わったりすると、連続鋳造の操業中にブレークアウトが生じるおそれがある。ブレークアウトとは鋳片表面の凝固箇所が破れて内部の溶鋼が流出する現象をいい、連続鋳造における重大トラブルの一つである。   From the viewpoint of cost reduction by using an actuator having the minimum necessary thrust, it is most desirable to support all of the weight of the vibrating body with a spring force. However, when the present inventors performed continuous casting with the preset force of the coil spring as close as possible to the dead weight of the vibrating body, abnormal noise was generated when the vibrating body was vibrated up and down. It has been found that disturbances may occur. If the mold main body causes a lateral vibration or an impact due to the disturbance of the vibration waveform, a breakout may occur during the continuous casting operation. Breakout is a phenomenon in which the solidified part of the slab surface breaks and the molten steel flows out, and is one of the serious troubles in continuous casting.

本発明は、上記実情に鑑みてなされたものであり、アクチュエータ及びコイルバネを備えた振動鋳型を用いて連続鋳造を行うに際し、ブレークアウトを十分に抑制でき且つアクチュエータに要するコストを削減するのに有用なプリセット力の設定方法を提供することを目的とする。また、本発明は、上記方法によってコイルバネのプリセット力が設定されている振動鋳型を提供するとともに、ブレークアウトの防止方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can be used to sufficiently suppress breakout and reduce the cost required for an actuator when performing continuous casting using a vibration mold having an actuator and a coil spring. An object of the present invention is to provide a method for setting a preset power. Another object of the present invention is to provide a vibration mold in which the preset force of the coil spring is set by the above method, and to provide a breakout prevention method.

本発明者らは、上述のように、コイルバネのプリセット力を振動体の自重に極力近づけて連続鋳造を実施した際、異音及び振動波形の乱れが生じる原因について検討したところ、以下の事実を突き止めた。すなわち、振動体の1回の上下動(1サイクル)において、アクチュエータに対して鉛直下向きに加わる負荷が0以下の値となる振動条件としたとき、上記のような振動波形の乱れが発生することが判明した。アクチュエータに加わる負荷が0以下となると、微小な時間の中で振動体がアクチュエータの動きに追従せず、浮き上がった状態になる。これにより、振動機構又は振動体の連結部に隙間が生じ、その後、再びアクチュエータに加わる負荷がプラスになってこの隙間が消失する際に部材同士が衝突して異音が発生すると推察される(図2(b)の隙間G参照)。かかる知見に基づき、本発明者らは以下の発明を完成させた。   As described above, the inventors examined the cause of abnormal noise and vibration waveform disturbance when continuous casting was performed with the preset force of the coil spring as close as possible to the weight of the vibrating body. I found it. That is, when the vibration condition is such that the load applied vertically downward to the actuator is 0 or less in one up-and-down movement (one cycle) of the vibrating body, the above-described vibration waveform disturbance occurs. There was found. When the load applied to the actuator becomes 0 or less, the vibrating body does not follow the movement of the actuator in a minute time, and is in a floating state. Thereby, it is inferred that a gap is generated in the connecting portion of the vibration mechanism or the vibrating body, and then, when the load applied to the actuator becomes positive again and the gap disappears, the members collide to generate an abnormal noise ( (See the gap G in FIG. 2B). Based on this finding, the present inventors have completed the following invention.

本発明は、以下のコイルバネのプリセット力の設定方法を提供する。すなわち、本発明に係るプリセット力の設定方法は、鋳型本体及びこれが載置される振動テーブルを有する振動体と、この振動体を保持する板バネ及びコイルバネ並びに振動体を上下振動させるアクチュエータを有するモールド振動装置とを備えた連続鋳造用の振動鋳型において、振動体に対して鉛直上向きの力を付与するコイルバネのプリセット力を下記式(1)で表される条件を満たすように設定することを特徴とする。
SO<(−Maωsinωt)+a×(K+Kbarsinωt)+F−F+Mg ・・・(1)
(1)式中の記号は以下のパラメータをそれぞれ示す。
SO:コイルバネのプリセット力(N);
M:振動体の質量(kg・sec/mm);
a:振動体の鉛直方向の振幅(mm);
ω:振動の角速度(rad/sec);
:コイルバネのバネ定数(N/mm);
bar:板バネのバネ定数(N/mm);
t:時間(sec);
:鋳片から振動体に作用する摩擦力(N);
:冷却水から振動体に作用する押上力(N);
g:重力加速度(mm/sec)。
The present invention provides the following method for setting the preset force of a coil spring. In other words, the preset force setting method according to the present invention includes a mold body having a vibration body having a mold body and a vibration table on which the mold body is placed, a plate spring and a coil spring holding the vibration body, and an actuator for vertically vibrating the vibration body. In a continuous casting vibration mold including a vibration device, a preset force of a coil spring that applies a vertically upward force to a vibrating body is set so as to satisfy a condition represented by the following formula (1): And
F SO <(- Maω 2 sinωt ) + a × (K i + K bar sinωt) + F 1 -F 3 + Mg ··· (1)
Symbols in the formula (1) indicate the following parameters, respectively.
F SO : Preset force of coil spring (N);
M: Mass of the vibrating body (kg · sec 2 / mm);
a: vertical amplitude (mm) of the vibrator;
ω: angular velocity of vibration (rad / sec);
K i : Spring constant of coil spring (N / mm);
K bar : spring constant of leaf spring (N / mm);
t: time (sec);
F 1 : frictional force (N) acting on the vibrating body from the slab;
F 3 : Push-up force (N) acting on the vibrating body from the cooling water;
g: Gravitational acceleration (mm / sec 2 ).

上記のプリセット力の設定方法によれば、振動体を下方から支持するアクチュエータに対して常に鉛直下向きに負荷が加わることとなる。これにより、アクチュエータから振動体が浮き上がることに起因する振動波形の乱れを十分に防止できる。なお、振動波形の乱れ、特に鋳型の横振れはブレークアウトの原因となる。このため、通常、鋳型の横方向の振幅は0.2mm以内とすることが好ましい(図4参照)。また、板バネは振動体の横振れを防止する役割を担うものである。本発明においては、板バネと適切なプリセット力が設定されたコイルバネとを併用することで、振動体の横振れをより一層高度に抑制でき、ブレークアウトの発生を十分に防止できる。   According to the preset force setting method, a load is always applied vertically downward to the actuator that supports the vibrating body from below. Thereby, the disturbance of the vibration waveform caused by the vibration body floating from the actuator can be sufficiently prevented. Note that the disturbance of the vibration waveform, particularly the lateral vibration of the mold, causes a breakout. For this reason, it is usually preferable that the lateral amplitude of the mold is within 0.2 mm (see FIG. 4). Further, the leaf spring plays a role of preventing lateral vibration of the vibrating body. In the present invention, by using a leaf spring and a coil spring having an appropriate preset force in combination, the lateral vibration of the vibrating body can be suppressed to a higher level, and the occurrence of breakout can be sufficiently prevented.

本発明は、以下のブレークアウトの防止方法を提供する。すなわち、本発明に係るブレークアウトの防止方法は、鋳型本体及びこれが載置される振動テーブルを有する振動体と、この振動体を保持する板バネ及びコイルバネ並びに振動体を上下振動させるアクチュエータを有する振動装置とを備えた連続鋳造用の振動鋳型において、振動体に対して鉛直上向きの力を付与するコイルバネのプリセット力を上記式(1)で表される条件を満たすように設定することを特徴とする。   The present invention provides the following breakout prevention method. That is, the breakout prevention method according to the present invention includes a vibration body having a mold body and a vibration table on which the mold body is placed, a plate spring and a coil spring that hold the vibration body, and an actuator that vibrates the vibration body up and down. In the continuous casting vibration mold provided with the apparatus, the preset force of the coil spring that applies a vertically upward force to the vibrating body is set so as to satisfy the condition represented by the above formula (1). To do.

上記のブレークアウトの防止方法によれば、振動体を下方から支持するアクチュエータに対して常に鉛直下向きに負荷が加わることとなる。これにより、アクチュエータから振動体が浮き上がることに起因する振動波形の乱れを十分に防止でき、ブレークアウトの発生を十分に防止できる。   According to the breakout prevention method described above, a load is always applied vertically downward to the actuator that supports the vibrating body from below. Thereby, the disturbance of the vibration waveform caused by the vibration body floating from the actuator can be sufficiently prevented, and the occurrence of breakout can be sufficiently prevented.

本発明は、以下の連続鋳造用の振動鋳型を提供する。すなわち、本発明に係る連続鋳造用振動鋳型は、鋳型本体及びこれが載置される振動テーブルを有する振動体と、この振動体を保持する板バネ及びコイルバネ並びに振動体を上下振動させるアクチュエータを有する振動装置とを備え、振動体に対して鉛直上向きの力を付与するコイルバネのプリセット力が上記式(1)で表される条件を満たすように設定されていることを特徴とする。   The present invention provides the following vibration mold for continuous casting. That is, the continuous casting vibration mold according to the present invention includes a vibration body having a mold body and a vibration table on which the mold body is mounted, a plate spring and a coil spring that hold the vibration body, and an actuator that vertically vibrates the vibration body. And a preset force of a coil spring that applies a vertically upward force to the vibrating body is set so as to satisfy the condition expressed by the above formula (1).

上記の振動鋳型によれば、振動体を下方から支持するアクチュエータに対して常に鉛直下向きに負荷が加わることとなる。これにより、アクチュエータから振動体が浮き上がることに起因する振動波形の乱れを十分に防止でき、ブレークアウトの発生を十分に防止できる。   According to the above vibration mold, a load is always applied vertically downward to the actuator that supports the vibration body from below. Thereby, the disturbance of the vibration waveform caused by the vibration body floating from the actuator can be sufficiently prevented, and the occurrence of breakout can be sufficiently prevented.

本発明によれば、アクチュエータ及びコイルバネを備えた振動鋳型を用いて連続鋳造を行うに際し、ブレークアウトを十分に抑制でき且つアクチュエータに要するコストを削減できる。   According to the present invention, when continuous casting is performed using a vibration mold provided with an actuator and a coil spring, breakout can be sufficiently suppressed and the cost required for the actuator can be reduced.

本発明に係る振動鋳型を備える連続鋳造設備の一例を示す模式図である。It is a schematic diagram which shows an example of the continuous casting installation provided with the vibration mold which concerns on this invention. コイルバネのプリセット力が過大であり振動機構内に隙間が発生するケースを示す図である。It is a figure which shows the case where the preset force of a coil spring is excessive and a clearance gap generate | occur | produces in a vibration mechanism. コイルバネのプリセット力が適正であり振動機構内に隙間が発生しないケースを示す図である。It is a figure which shows the case where the preset force of a coil spring is appropriate, and a clearance gap does not generate | occur | produce in a vibration mechanism. (a)は鋳型に横振れが生じている場合の振動波形を示すグラフであり、(b)は適正な振動波形を示すグラフである。(A) is a graph which shows a vibration waveform in case lateral vibration has arisen in the casting_mold | template, (b) is a graph which shows an appropriate vibration waveform. 振動体の1回の上下動において振動体に作用する力の変化を示すグラフである。It is a graph which shows the change of the force which acts on a vibrating body in one up-and-down movement of a vibrating body.

以下、図面を参照しながら、本発明の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

図1に示す連続鋳造設備100は、スラブ用垂直曲げ型のものであり、溶鋼鍋1と、タンディッシュ2と、振動鋳型10とを備える。振動鋳型10から引き出された鋳片5はガイドロール(図示せず)によってガイドされながら徐々に冷却される。   A continuous casting facility 100 shown in FIG. 1 is a slab vertical bending mold, and includes a molten steel pan 1, a tundish 2, and a vibrating mold 10. The slab 5 drawn out from the vibrating mold 10 is gradually cooled while being guided by a guide roll (not shown).

振動鋳型10は、鋳型本体11と、鋳型本体11が載置される振動テーブル12と、振動テーブル12の下方に配置されたコイルバネ14と、振動体(鋳型本体11及び振動テーブル12)の振動動作を安定化させるための板バネ15と、振動体を振動させる油圧アクチュエータ(モールド振動装置)16とを備える。   The vibration mold 10 includes a mold body 11, a vibration table 12 on which the mold body 11 is placed, a coil spring 14 disposed below the vibration table 12, and a vibration operation of the vibration body (the mold body 11 and the vibration table 12). And a hydraulic actuator (mold vibration device) 16 that vibrates the vibrating body.

鋳型本体11はタンディッシュ2からの溶鋼が注がれ、側面が凝固した鋳片5が底から引き出される。鋳型本体11の下方には冷却水を供給するための配管(図示せず)が接続されており、鋳型本体11の内面11aをなす銅板を冷却できるようになっている。振動テーブル12は、特に図示しないが鋳型本体11に冷却水を供給するための配管等が設けられている。   Molten steel from the tundish 2 is poured into the mold body 11, and the slab 5 whose side surface is solidified is pulled out from the bottom. A pipe (not shown) for supplying cooling water is connected to the bottom of the mold body 11 so that the copper plate forming the inner surface 11a of the mold body 11 can be cooled. The vibration table 12 is provided with a pipe or the like for supplying cooling water to the mold body 11 although not particularly shown.

コイルバネ14は、総重量が50トン以上にも及ぶ振動体を保持するためのものである。コイルバネ14が振動体の重量の一部を負担することで、油圧アクチュエータ16にかかる負担を軽減できる。なお、板バネ15は、振動体を振動させた際のガタツキを抑制し、振動動作を安定させるためのものであり、図1に示すように振動しない外部と振動体とを接続している。   The coil spring 14 is for holding a vibrating body having a total weight of 50 tons or more. Since the coil spring 14 bears a part of the weight of the vibrating body, the burden on the hydraulic actuator 16 can be reduced. In addition, the leaf | plate spring 15 is for suppressing the rattling at the time of vibrating a vibrating body, and stabilizing vibration operation, and has connected the vibrating body and the exterior which does not vibrate, as shown in FIG.

油圧アクチュエータ16は、振動体を上下振動させるためのものであり、振動テーブル12の下方に配置されている。油圧アクチュエータ16は、振動テーブル12の下面に設けられたジョイント部12aに延びるシャフト16aを有する。シャフト16aの先端はジョイント部12a内に収容されているものの固定されてはおらず、回転自在となっている。なお、振動体を上下振動させることができる構成であれば、油圧アクチュエータ16の位置及び振動を振動体に伝える機構は上記のものに限定されるものではない。   The hydraulic actuator 16 is for vertically vibrating the vibrating body, and is disposed below the vibration table 12. The hydraulic actuator 16 has a shaft 16 a that extends to a joint portion 12 a provided on the lower surface of the vibration table 12. Although the tip of the shaft 16a is accommodated in the joint portion 12a, it is not fixed but is rotatable. Note that the mechanism for transmitting the position and vibration of the hydraulic actuator 16 to the vibrating body is not limited to the above as long as the vibrating body can be vibrated up and down.

コイルバネ14のバネ力は、振動体の上下動サイクルにおいて、油圧アクチュエータ16のシャフト16aに加わる負荷が0以下とならないように設定される。言い換えると、コイルバネ14のプリセット力は、振動体の上下動サイクルにおいて、コイルバネ14が圧縮される方向の力が加わるように設定される。   The spring force of the coil spring 14 is set so that the load applied to the shaft 16a of the hydraulic actuator 16 does not become 0 or less in the vertical movement cycle of the vibrating body. In other words, the preset force of the coil spring 14 is set so that a force in the direction in which the coil spring 14 is compressed is applied in the vertical movement cycle of the vibrating body.

図2に示すモデルのように、コイルバネ14のプリセット力が過大であると、振動体が上昇から下降の動きに反転した後に、振動体が浮き上がってジョイント部12a内に隙間Sが生じる。その後、再び振動体が降下するとジョイント部12a内においてジョイント部12aの内面とシャフト16aの先端が衝突する。これらの部材の衝突による衝撃は、振動体の振動波形の乱れを招来してブレークアウトの原因となる。図4(a)は鋳型に横振れが生じている場合の振動波形の一例を示すグラフである。ブレークアウトを防止するためには鋳型の横方向の振れを0.2mm以内とすることが望しいところ、このグラフに示すケースではこれを超える横振れが生じている。   If the preset force of the coil spring 14 is excessive as in the model shown in FIG. 2, the vibrating body floats up after the vibrating body is reversed from rising to falling, and a gap S is generated in the joint portion 12 a. Thereafter, when the vibrating body descends again, the inner surface of the joint portion 12a and the tip of the shaft 16a collide with each other in the joint portion 12a. The impact caused by the collision of these members causes disturbance of the vibration waveform of the vibrating body and causes breakout. FIG. 4A is a graph showing an example of a vibration waveform in the case where lateral vibration has occurred in the mold. In order to prevent breakout, it is desirable that the lateral deflection of the mold be within 0.2 mm. In the case shown in this graph, however, lateral deflection exceeding this occurs.

これに対し、図3に示すモデルは、コイルバネ14のプリセット力が適切であり、振動体の上下動サイクルにおいて振動機構内に隙間Sが生じていない場合を示したものである。図4(b)は適正な振動波形を示すグラフであり、鋳型の横方向の振幅が0.2mm以内に収まっている。   On the other hand, the model shown in FIG. 3 shows a case where the preset force of the coil spring 14 is appropriate and no gap S is generated in the vibration mechanism in the vertical motion cycle of the vibrating body. FIG. 4B is a graph showing an appropriate vibration waveform, and the horizontal amplitude of the mold is within 0.2 mm.

本実施形態においては、コイルバネ14のプリセット力を適切なものとするため、以下の式(1)で表される条件を満たすようにコイルバネ14を選択すればよい。
SO<(−Maωsinωt)+a×(K+Kbar×sinωt)+F−F+Mg ・・・(1)
(1)式中の記号は以下のパラメータをそれぞれ示す。
SO:コイルバネのプリセット力(N);
M:振動体の質量(kg・sec/mm);
a:振動体の鉛直方向の振幅(mm);
ω:振動の角速度(rad/sec);
:コイルバネのバネ定数(N/mm);
bar:板バネのバネ定数(N/mm);
t:時間(sec);
:鋳片から振動体に作用する摩擦力(N);
:冷却水から振動体に作用する押上力(N);
g:重力加速度(mm/sec)。
なお、上記パラメータのうち、ω、F1はいずれも時間の関数である。
In the present embodiment, in order to make the preset force of the coil spring 14 appropriate, the coil spring 14 may be selected so as to satisfy the condition represented by the following expression (1).
F SO <(− Maω 2 sin ωt) + a × (K i + K bar × sin ωt) + F 1 −F 3 + Mg (1)
Symbols in the formula (1) indicate the following parameters, respectively.
F SO : Preset force of coil spring (N);
M: Mass of the vibrating body (kg · sec 2 / mm);
a: vertical amplitude (mm) of the vibrator;
ω: angular velocity of vibration (rad / sec);
K i : Spring constant of coil spring (N / mm);
K bar : spring constant of leaf spring (N / mm);
t: time (sec);
F 1 : frictional force (N) acting on the vibrating body from the slab;
F 3 : Push-up force (N) acting on the vibrating body from the cooling water;
g: Gravitational acceleration (mm / sec 2 ).
Of the above parameters, both ω and F1 are functions of time.

図5は、振動体の1回の上下動において振動体に作用する力の変化を示すグラフである。このグラフに示すとおり、振動体に対しては、振動体の慣性力、コイルバネ14による押し上げ力、鋳型本体11の内面11aと鋳片5の摩擦力、油圧アクチュエータ16による押し上げ力、及び、板バネ15による力が作用する。図5のグラフでは、振動体が上限に達した後、下降し始めて振動体の速度(モールド速度V)と、鋳片5の引き出し速度(鋳造速度V)とが同じになったときに油圧アクチュエータ16による押し上げ力(油圧アクチュエータ負荷)が最小になることを示している。つまり、上記式(1)は、コイルバネ14のプリセット力の上限値に関し、油圧アクチュエータ負荷が常に0を超えるようにコイルバネ14のプリセット力を設定すべきことを意味する。 FIG. 5 is a graph showing a change in force acting on the vibrating body in one vertical movement of the vibrating body. As shown in this graph, for the vibrating body, the inertial force of the vibrating body, the pushing force by the coil spring 14, the frictional force between the inner surface 11a of the mold body 11 and the slab 5, the pushing force by the hydraulic actuator 16, and the leaf spring The force by 15 acts. In the graph of FIG. 5, after the vibrating body reaches the upper limit, it starts to descend and the speed of the vibrating body (mold speed V Z ) and the drawing speed of the slab 5 (casting speed V C ) become the same. It shows that the push-up force (hydraulic actuator load) by the hydraulic actuator 16 is minimized. That is, the above formula (1) means that the preset force of the coil spring 14 should be set so that the hydraulic actuator load always exceeds 0 with respect to the upper limit value of the preset force of the coil spring 14.

コイルバネ14のプリセット力の下限値は振動体重量(M×g)の10%程度であることがより好ましい。例えば、コイルバネ14のプリセット力を振動体重量(M×g)の5%程度とした場合、大きな推力を有する高価な油圧アクチュエータ16を使用する必要があり、コストが増大する傾向となる。   The lower limit value of the preset force of the coil spring 14 is more preferably about 10% of the vibrating body weight (M × g). For example, when the preset force of the coil spring 14 is about 5% of the vibrating body weight (M × g), it is necessary to use an expensive hydraulic actuator 16 having a large thrust, and the cost tends to increase.

なお、上記のモールド速度Vと鋳造速度Vが同一となる位相角度をθ(degree)とすると、ωtは下記式(2)で表される。
=a×ω×cos(ωt)=−V
したがって、ωt=arccos((−V)×1000/(a×f×2π))…(2)
ここで、ωt=θ°×π/180、ω=f/60×2π、f:振動数(cpm)、V:モールド速度(mm/sec)、V:鋳造速度(mm/sec)である。
The above mold velocity V Z and casting speed V C is when the phase angle of the same theta (degree), .omega.t is represented by the following formula (2).
V Z = a × ω × cos (ωt) = − V C
Therefore, ωt = arccos ((− V C ) × 1000 / (a × f × 2π)) (2)
Here, ωt = θ ° × π / 180, ω = f / 60 × 2π, f: frequency (cpm), V Z : mold speed (mm / sec), V C : casting speed (mm / sec) is there.

本実施形態に係るプリセット力の設定方法によれば、振動体を下方から支持する油圧アクチュエータ16に対して常に鉛直下向きに負荷が加わることとなる。これにより、油圧アクチュエータ16から振動体が浮き上がることに起因する振動波形の乱れを十分に防止できる。特に、近年、連続鋳造設備の操業は鋳片表面品質の向上(オシレーションマーク低減)の観点から、大重量の電磁力利用装置を装備した鋳型を使用した操業方法が指向されている。本実施形態によれば、大重量の振動体をショートストロークであり且つハイサイクルの条件で振動させても、ブレークアウトの発生を十分に抑制できる。本実施形態においては振動体の重量は、例えば10〜100トンであってもよく、60〜100トンであってもよい。振動ストロークは例えば5〜10mmとすることができる。振動サイクルは例えば50〜300回/分であってもよく、150〜300回/分であってもよい。   According to the preset force setting method according to the present embodiment, a load is always applied vertically downward to the hydraulic actuator 16 that supports the vibrating body from below. Thereby, the disturbance of the vibration waveform caused by the vibration body rising from the hydraulic actuator 16 can be sufficiently prevented. In particular, in recent years, the operation of continuous casting equipment has been directed to an operation method using a mold equipped with a heavy-weight electromagnetic force utilization device from the viewpoint of improving the slab surface quality (reducing the oscillation mark). According to this embodiment, even if a heavy-weight vibrating body is vibrated under a short stroke and high cycle condition, the occurrence of breakout can be sufficiently suppressed. In the present embodiment, the weight of the vibrating body may be, for example, 10 to 100 tons, or 60 to 100 tons. The vibration stroke can be 5 to 10 mm, for example. The vibration cycle may be, for example, 50 to 300 times / minute, or 150 to 300 times / minute.

上記実施形態に係る連続鋳造用の振動鋳型10によれば、油圧アクチュエータ16に対して常に鉛直下向きに負荷が加わることとなる。これにより、油圧アクチュエータ16から振動体が浮き上がることに起因する振動波形の乱れを十分に防止でき、ブレークアウトの発生を十分に防止できる。   According to the vibration casting mold 10 for continuous casting according to the above-described embodiment, a load is always applied vertically downward to the hydraulic actuator 16. Thereby, the disturbance of the vibration waveform caused by the vibration body floating from the hydraulic actuator 16 can be sufficiently prevented, and the occurrence of breakout can be sufficiently prevented.

上記実施形態によれば、ブレークアウトの防止方法が提供される。すなわち、実施形態に係るブレークアウトの防止方法は、振動鋳型10において振動体(鋳型本体11及び振動テーブル12)に対して鉛直上向きの力を付与するコイルバネ14のプリセット力を上記式(1)で表される条件を満たすように設定することを特徴とする。このブレークアウトの防止方法によれば、油圧アクチュエータ16に対して常に鉛直下向きに負荷が加わることとなる。これにより、油圧アクチュエータ16から振動体が浮き上がることに起因する振動波形の乱れを十分に防止でき、ブレークアウトの発生を十分に防止できる。   According to the embodiment, a breakout prevention method is provided. That is, in the breakout prevention method according to the embodiment, the preset force of the coil spring 14 that applies a vertically upward force to the vibrating body (the mold body 11 and the vibration table 12) in the vibration mold 10 is expressed by the above equation (1). It is characterized in that it is set so as to satisfy the conditions expressed. According to this breakout prevention method, a load is always applied vertically downward to the hydraulic actuator 16. Thereby, the disturbance of the vibration waveform caused by the vibration body floating from the hydraulic actuator 16 can be sufficiently prevented, and the occurrence of breakout can be sufficiently prevented.

5…鋳片、10…振動鋳型、11…鋳型本体、12…振動テーブル、14…コイルバネ、15…板バネ、16…油圧アクチュエータ(モールド振動装置)、100…連続鋳造設備、G…隙間。 DESCRIPTION OF SYMBOLS 5 ... Cast slab, 10 ... Vibration mold, 11 ... Mold body, 12 ... Vibration table, 14 ... Coil spring, 15 ... Plate spring, 16 ... Hydraulic actuator (mold vibration device), 100 ... Continuous casting equipment, G ... Gap.

Claims (3)

鋳型本体及びこれが載置される振動テーブルを有する振動体と、前記振動体を保持する板バネ及びコイルバネ並びに前記振動体を上下振動させるアクチュエータを有するモールド振動装置とを備えた連続鋳造用の振動鋳型において、前記振動体に対して鉛直上向きの力を付与する前記コイルバネのプリセット力を下記式(1)で表される条件を満たすように設定することを特徴とするプリセット力の設定方法。
SO<(−Maωsinωt)+a×(K+Kbarsinωt)+F−F+Mg ・・・(1)
(1)式中の記号は以下のパラメータをそれぞれ示す。
SO:コイルバネのプリセット力(N);
M:振動体の質量(kg・sec/mm);
a:振動体の鉛直方向の振幅(mm);
ω:振動の角速度(rad/sec);
:コイルバネのバネ定数(N/mm);
bar:板バネのバネ定数(N/mm);
t:時間(sec);
:鋳片から振動体に作用する摩擦力(N);
:冷却水から振動体に作用する押上力(N);
g:重力加速度(mm/sec)。
A vibration mold for continuous casting, comprising: a vibration body having a mold body and a vibration table on which the mold body is mounted; and a mold vibration device having a plate spring and a coil spring for holding the vibration body and an actuator for vertically vibrating the vibration body. The preset force setting method is characterized in that a preset force of the coil spring that applies a vertically upward force to the vibrating body is set so as to satisfy a condition represented by the following formula (1).
F SO <(- Maω 2 sinωt ) + a × (K i + K bar sinωt) + F 1 -F 3 + Mg ··· (1)
Symbols in the formula (1) indicate the following parameters, respectively.
F SO : Preset force of coil spring (N);
M: Mass of the vibrating body (kg · sec 2 / mm);
a: vertical amplitude (mm) of the vibrator;
ω: angular velocity of vibration (rad / sec);
K i : Spring constant of coil spring (N / mm);
K bar : spring constant of leaf spring (N / mm);
t: time (sec);
F 1 : frictional force (N) acting on the vibrating body from the slab;
F 3 : Push-up force (N) acting on the vibrating body from the cooling water;
g: Gravitational acceleration (mm / sec 2 ).
鋳型本体及びこれが載置される振動テーブルを有する振動体と、前記振動体を保持する板バネ及びコイルバネ並びに前記振動体を上下振動させるアクチュエータを有するモールド振動装置とを備えた連続鋳造用の振動鋳型において、前記振動体に対して鉛直上向きの力を付与する前記コイルバネのプリセット力を下記式(1)で表される条件を満たすように設定することを特徴とするブレークアウトの防止方法。
SO<(−Maωsinωt)+a×(K+Kbarsinωt)+F−F+Mg ・・・(1)
(1)式中の記号は以下のパラメータをそれぞれ示す。
SO:コイルバネのプリセット力(N);
M:振動体の質量(kg・sec/mm);
a:振動体の鉛直方向の振幅(mm);
ω:振動の角速度(rad/sec);
:コイルバネのバネ定数(N/mm);
bar:板バネのバネ定数(N/mm);
t:時間(sec);
:鋳片から振動体に作用する摩擦力(N);
:冷却水から振動体に作用する押上力(N);
g:重力加速度(mm/sec)。
A vibration mold for continuous casting, comprising: a vibration body having a mold body and a vibration table on which the mold body is mounted; and a mold vibration device having a plate spring and a coil spring for holding the vibration body and an actuator for vertically vibrating the vibration body. The breakout prevention method according to claim 1, wherein a preset force of the coil spring that applies a vertically upward force to the vibrating body is set so as to satisfy a condition represented by the following formula (1).
F SO <(- Maω 2 sinωt ) + a × (K i + K bar sinωt) + F 1 -F 3 + Mg ··· (1)
Symbols in the formula (1) indicate the following parameters, respectively.
F SO : Preset force of coil spring (N);
M: Mass of the vibrating body (kg · sec 2 / mm);
a: vertical amplitude (mm) of the vibrator;
ω: angular velocity of vibration (rad / sec);
K i : Spring constant of coil spring (N / mm);
K bar : spring constant of leaf spring (N / mm);
t: time (sec);
F 1 : frictional force (N) acting on the vibrating body from the slab;
F 3 : Push-up force (N) acting on the vibrating body from the cooling water;
g: Gravitational acceleration (mm / sec 2 ).
鋳型本体及びこれが載置される振動テーブルを有する振動体と、前記振動体を保持する板バネ及びコイルバネ並びに前記振動体を上下振動させるアクチュエータを有するモールド振動装置とを備えた連続鋳造用の振動鋳型であって、前記振動体に対して鉛直上向きの力を付与する前記コイルバネのプリセット力が下記式(1)で表される条件を満たすように設定されていることを特徴とする振動鋳型。
SO<(−Maωsinωt)+a×(K+Kbarsinωt)+F−F+Mg ・・・(1)
(1)式中の記号は以下のパラメータをそれぞれ示す。
SO:コイルバネのプリセット力(N);
M:振動体の質量(kg・sec/mm);
a:振動体の鉛直方向の振幅(mm);
ω:振動の角速度(rad/sec);
:コイルバネのバネ定数(N/mm);
bar:板バネのバネ定数(N/mm);
t:時間(sec);
:鋳片から振動体に作用する摩擦力(N);
:冷却水から振動体に作用する押上力(N);
g:重力加速度(mm/sec)。
A vibration mold for continuous casting, comprising: a vibration body having a mold body and a vibration table on which the mold body is mounted; and a mold vibration device having a plate spring and a coil spring for holding the vibration body and an actuator for vertically vibrating the vibration body. The vibration mold is set such that a preset force of the coil spring that applies a vertically upward force to the vibrating body satisfies a condition represented by the following formula (1).
F SO <(- Maω 2 sinωt ) + a × (K i + K bar sinωt) + F 1 -F 3 + Mg ··· (1)
Symbols in the formula (1) indicate the following parameters, respectively.
F SO : Preset force of coil spring (N);
M: Mass of the vibrating body (kg · sec 2 / mm);
a: vertical amplitude (mm) of the vibrator;
ω: angular velocity of vibration (rad / sec);
K i : Spring constant of coil spring (N / mm);
K bar : spring constant of leaf spring (N / mm);
t: time (sec);
F 1 : frictional force (N) acting on the vibrating body from the slab;
F 3 : Push-up force (N) acting on the vibrating body from the cooling water;
g: Gravitational acceleration (mm / sec 2 ).
JP2012107935A 2012-05-09 2012-05-09 Vibrating mold for continuous casting, method for setting preset force of coil spring provided therein, and method for preventing breakout in continuous casting Active JP5829971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012107935A JP5829971B2 (en) 2012-05-09 2012-05-09 Vibrating mold for continuous casting, method for setting preset force of coil spring provided therein, and method for preventing breakout in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012107935A JP5829971B2 (en) 2012-05-09 2012-05-09 Vibrating mold for continuous casting, method for setting preset force of coil spring provided therein, and method for preventing breakout in continuous casting

Publications (2)

Publication Number Publication Date
JP2013233573A true JP2013233573A (en) 2013-11-21
JP5829971B2 JP5829971B2 (en) 2015-12-09

Family

ID=49760120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012107935A Active JP5829971B2 (en) 2012-05-09 2012-05-09 Vibrating mold for continuous casting, method for setting preset force of coil spring provided therein, and method for preventing breakout in continuous casting

Country Status (1)

Country Link
JP (1) JP5829971B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190082337A (en) * 2017-12-26 2019-07-10 주식회사 포스코 Apparatus for oscilating mold
JP2021186822A (en) * 2020-05-28 2021-12-13 山田 榮子 Method of measuring frictional force between mold and slab in continuous casting

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127549A (en) * 1981-01-30 1982-08-07 Mitsubishi Heavy Ind Ltd Oscillator for mold
JPS57190760A (en) * 1981-05-18 1982-11-24 Mitsubishi Heavy Ind Ltd Foreseeing method for breakout
JPS60148645A (en) * 1984-01-12 1985-08-05 Kawasaki Steel Corp Oscillating device for continuous casting mold
WO2006010762A2 (en) * 2004-07-28 2006-02-02 Danieli & C. Officine Meccaniche S.P.A. Oscillating table

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57127549A (en) * 1981-01-30 1982-08-07 Mitsubishi Heavy Ind Ltd Oscillator for mold
JPS57190760A (en) * 1981-05-18 1982-11-24 Mitsubishi Heavy Ind Ltd Foreseeing method for breakout
JPS60148645A (en) * 1984-01-12 1985-08-05 Kawasaki Steel Corp Oscillating device for continuous casting mold
WO2006010762A2 (en) * 2004-07-28 2006-02-02 Danieli & C. Officine Meccaniche S.P.A. Oscillating table

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190082337A (en) * 2017-12-26 2019-07-10 주식회사 포스코 Apparatus for oscilating mold
KR102020421B1 (en) * 2017-12-26 2019-09-10 주식회사 포스코 Apparatus for oscilating mold
JP2021186822A (en) * 2020-05-28 2021-12-13 山田 榮子 Method of measuring frictional force between mold and slab in continuous casting
JP6995290B2 (en) 2020-05-28 2022-01-31 山田 榮子 Method of measuring frictional force between mold and slab in continuous casting

Also Published As

Publication number Publication date
JP5829971B2 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
JP5829971B2 (en) Vibrating mold for continuous casting, method for setting preset force of coil spring provided therein, and method for preventing breakout in continuous casting
CN208457104U (en) A kind of centrifugal casting device with shock-absorbing function
JP6874528B2 (en) Continuous casting method of slabs
JP6249099B2 (en) How to operate a continuous casting machine
JP6171863B2 (en) Continuous casting mold and continuous casting method using the same
JP2018061966A (en) Side seal device, twin roll type continuous casting apparatus, and method for producing thin slab
JP3651447B2 (en) Operation method of continuous casting machine
US20030041999A1 (en) Method and apparatus for improving internal quality of continuously cast steel sections
JP6733336B2 (en) Continuous casting machine and continuous casting method
JP5712685B2 (en) Continuous casting method
JP6318848B2 (en) Vibration apparatus for continuous casting mold and continuous casting method
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP5796149B1 (en) Continuous casting mold
JP2015096269A (en) Up-drawing continuous casting apparatus and up-drawing continuous casting method
JP5794259B2 (en) Pull-up type continuous casting apparatus and pull-up type continuous casting method
JP6623826B2 (en) Electromagnetic force generator, continuous casting method and continuous casting machine
KR101832729B1 (en) Mold vivratde apparatus for continuous casting machine
JPH05115952A (en) Production of continuously cast slab having excellent surface characteristic
KR101235766B1 (en) Apparatus compensating vibration of mold oscillator in continuous caster
RU1792796C (en) Method of continuous metal casting and machine for performing the same
JP4764715B2 (en) Continuous casting method
JPH03210942A (en) Method for continuously casting steel
KR20160078808A (en) Oscillation guiding apparatus
JP2944473B2 (en) Electromagnetic brake device for continuous casting mold
KR101080195B1 (en) Vibrator for Continuous-Caster

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151023

R150 Certificate of patent or registration of utility model

Ref document number: 5829971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350