JP2013233493A - Method of manufacturing slurry for denitration catalyst and waste gas denitration device - Google Patents

Method of manufacturing slurry for denitration catalyst and waste gas denitration device Download PDF

Info

Publication number
JP2013233493A
JP2013233493A JP2012106575A JP2012106575A JP2013233493A JP 2013233493 A JP2013233493 A JP 2013233493A JP 2012106575 A JP2012106575 A JP 2012106575A JP 2012106575 A JP2012106575 A JP 2012106575A JP 2013233493 A JP2013233493 A JP 2013233493A
Authority
JP
Japan
Prior art keywords
slurry
denitration catalyst
denitration
viscosity
silica sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012106575A
Other languages
Japanese (ja)
Other versions
JP5883718B2 (en
Inventor
Susumu Hizuya
進 日数谷
Naoe Hino
なおえ 日野
Seigo Yamamoto
誠吾 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2012106575A priority Critical patent/JP5883718B2/en
Publication of JP2013233493A publication Critical patent/JP2013233493A/en
Application granted granted Critical
Publication of JP5883718B2 publication Critical patent/JP5883718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing slurry for denitration catalysts which does not become high in viscosity with time without using any additives such as an ammonia aqueous solution, and a waste gas denitration device including a honeycomb structure supporting a stable support amount of a denitration catalyst using the slurry for denitration catalyst manufactured by the method.SOLUTION: In a method for manufacturing slurry for denitration catalysts that includes a first process of suspending titania particles in silica sol, a second process of adding powder of ammonium metavanadate to the slurry obtained in the first process, and a third process of further adding a solution or powder of ammonium metatungstate to the slurry obtained in the second process, water is added to the slurry containing the silica sold and titania particles obtained in the first process after irradiation with an ultrasonic wave before the second process, or water is added to the slurry containing the silica sol, the titania particles and the powder of ammonium metavanadate obtained in the second process after irradiation with an ultrasonic wave before the third process.

Description

本発明は、発電用ガスタービン、石炭焚きボイラー、各種化学プラント、廃棄物焼却炉等から出る排ガスの脱硝処理用触媒を製造する際に用いられる脱硝触媒用スラリーの製造方法、およびこの方法により製造された脱硝触媒用スラリーを用いて脱硝触媒を担持させたハニカム構造体を具備する排ガス脱硝装置に関するものである。   The present invention relates to a method for producing a denitration catalyst slurry used for producing a denitration catalyst for exhaust gas emitted from a power generation gas turbine, coal-fired boiler, various chemical plants, waste incinerators, and the like, and produced by this method. The present invention relates to an exhaust gas denitration apparatus comprising a honeycomb structure that supports a denitration catalyst using the denitration catalyst slurry.

本出願人は、下記の特許文献1において、セラミック繊維製ハニカム構造体を、シリカゾルにチタニア微粒子と、バナジウムおよび/ またはタングステンとを含む脱硝触媒用スラリーに浸漬し、これを取り出した後、焼成することにより脱硝触媒を製造する方法を開示した。   In the following Patent Document 1, the present applicant immerses a ceramic fiber honeycomb structure in a slurry for denitration catalyst containing titania fine particles and vanadium and / or tungsten in silica sol, and after taking it out, fires it. Thus, a method for producing a denitration catalyst has been disclosed.

また、下記の特許文献2では、シリカゾルと、チタニア粒子と、メタバナジン酸アンモニウムおよび/ またはメタタングステン酸アンモニウムとを含む脱硝触媒用スラリーであって、アンモニア水溶液によりそのpHを3.5〜6.0に調整した脱硝触媒スラリーを開示した。   Further, in Patent Document 2 below, a slurry for a denitration catalyst containing silica sol, titania particles, and ammonium metavanadate and / or ammonium metatungstate, the pH is adjusted to 3.5 to 6.0 with an aqueous ammonia solution. A denitration catalyst slurry adjusted to 1 was disclosed.

特開2008−155132号公報JP 2008-155132 A 特開2008−296100号公報JP 2008-296100 A

しかしながら、特許文献1に記載の脱硝触媒の製造方法では、時間の経過とともに脱硝触媒用スラリーの粘度が高くなり、その結果、ハニカム基材に担持される触媒量が時間の経過とともに増加し、安定した担持量の脱硝触媒を担持させたハニカム構造体を製造することが難しいという問題があった。   However, in the method for producing a denitration catalyst described in Patent Document 1, the viscosity of the slurry for the denitration catalyst increases with the passage of time, and as a result, the amount of catalyst supported on the honeycomb substrate increases with the passage of time and is stable. There is a problem that it is difficult to manufacture a honeycomb structure on which the supported amount of denitration catalyst is supported.

また、特許文献2に記載の脱硝触媒スラリーによれば、アンモニア水溶液の取り扱いに注意が必要であり、アンモニア水溶液などの添加剤を使用しない方法が望まれていた。   In addition, according to the denitration catalyst slurry described in Patent Document 2, care must be taken in handling the aqueous ammonia solution, and a method that does not use an additive such as an aqueous ammonia solution has been desired.

そこで、本発明の目的は、アンモニア水溶液などの添加剤を使用せずに、しかも時間の経過によっても脱硝触媒用スラリーの粘度が高くならない脱硝触媒用スラリーの製造方法を提供すること、およびこの方法により製造された脱硝触媒用スラリーを用いて、安定した担持量の脱硝触媒を担持させたハニカム構造体を具備する排ガス脱硝装置を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a slurry for a denitration catalyst that does not use an additive such as an aqueous ammonia solution and the viscosity of the slurry for a denitration catalyst does not increase over time, and this method It is an object of the present invention to provide an exhaust gas denitration apparatus including a honeycomb structure on which a denitration catalyst having a stable loading amount is loaded using the slurry for denitration catalyst manufactured by the above.

上記の目的を達成するために、請求項1の脱硝触媒用スラリーの製造方法の発明は、シリカゾルにチタニア粒子を懸濁させる第1工程と、ついで第1工程からのスラリーにメタバナジン酸アンモニウム粉末を添加する第2工程と、第2工程からのスラリーに、さらにメタタングステン酸アンモニウム水溶液または粉末を添加する第3工程とを具備する脱硝触媒用スラリーの製造方法であって、第1工程からのシリカゾルおよびチタニア粒子を含むスラリーに対し、上記第2工程の前において超音波を照射した後に水を添加するか、または第2工程からのシリカゾル、チタニア粒子およびメタバナジン酸アンモニウム粉末を含むスラリーに対し、上記第3工程の前において超音波を照射した後に水を添加することを特徴としている。   In order to achieve the above object, the invention of the method for producing a slurry for a denitration catalyst according to claim 1 includes a first step of suspending titania particles in silica sol, and an ammonium metavanadate powder in the slurry from the first step. A method for producing a slurry for a denitration catalyst comprising: a second step to be added; and a third step in which an ammonium metatungstate aqueous solution or powder is further added to the slurry from the second step, wherein the silica sol from the first step And for the slurry containing titania particles, water is added after ultrasonic irradiation before the second step, or for the slurry containing silica sol, titania particles and ammonium metavanadate powder from the second step, It is characterized by adding water after irradiating ultrasonic waves before the third step.

請求項2に記載の排ガス脱硝装置の発明は、請求項1に記載の脱硝触媒用スラリーの製造方法により製造された脱硝触媒用スラリーを用いて脱硝触媒を担持させたハニカム構造体を具備することを特徴としている。   The invention of the exhaust gas denitration device according to claim 2 comprises a honeycomb structure in which the denitration catalyst is carried using the slurry for denitration catalyst produced by the method for producing slurry for denitration catalyst according to claim 1. It is characterized by.

本発明の脱硝触媒用スラリーの製造方法によれば、アンモニア水溶液などの添加剤を使用せずに、しかも時間の経過によっても脱硝触媒用スラリーの粘度が高くならない脱硝触媒用スラリーを製造することができ、ひいてはこの方法により製造された脱硝触媒用スラリーを用いて、安定した担持量の脱硝触媒を担持させたハニカム構造体を具備する排ガス脱硝装置を提供することができるという効果を奏する。   According to the method for producing a slurry for a denitration catalyst of the present invention, it is possible to produce a slurry for a denitration catalyst that does not increase the viscosity of the slurry for a denitration catalyst over time without using an additive such as an aqueous ammonia solution. As a result, it is possible to provide an exhaust gas denitration apparatus having a honeycomb structure on which a desupporting catalyst having a stable load is supported by using the slurry for denitration catalyst produced by this method.

触媒の脱硝性能試験装置を示すフローシートである。2 is a flow sheet showing a catalyst denitration performance test apparatus.

つぎに、本発明の実施の形態を、図面を参照して説明するが、本発明はこれらに限定されるものではない。   Next, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

本発明者らは、脱硝触媒の製造方法として、先に、上記特許文献1などに記載の発明を開示しているが、本発明者らは、さらに鋭意研究を重ねた結果、シリカゾルにチタニア粒子を懸濁させる第1工程と、ついで第1工程からのスラリーにメタバナジン酸アンモニウム粉末を添加する第2工程と、第2工程からのスラリーに、さらにメタタングステン酸アンモニウム水溶液または粉末を添加する第3工程とを具備する脱硝触媒用スラリーの製造方法であって、第1工程からのシリカゾルおよびチタニア粒子を含むスラリーに対し、上記第2工程の前において超音波を照射した後に水を添加するか、または第2工程からのシリカゾル、チタニア粒子およびメタバナジン酸アンモニウム粉末を含むスラリーに対し、上記第3工程の前において超音波を照射した後に水を添加することで、脱硝触媒用スラリーの高粘度化を抑制できることを見出した。   The present inventors have previously disclosed the invention described in Patent Document 1 as a method for producing a denitration catalyst. However, as a result of further earnest research, the present inventors have made further studies on titania particles in silica sol. A second step of adding ammonium metavanadate powder to the slurry from the first step, and a third step of further adding an aqueous ammonium metatungstate solution or powder to the slurry from the second step. A slurry for a denitration catalyst comprising a step, wherein water is added to the slurry containing silica sol and titania particles from the first step after irradiation with ultrasonic waves before the second step, or Alternatively, for the slurry containing silica sol, titania particles and ammonium metavanadate powder from the second step, an ultrasonic wave is applied before the third step. By adding water after the irradiation was found to be able to suppress the viscosity increase of the denitration catalyst slurry.

本発明における超音波の照射を、出力50W以上120W以下、周波数28kHz以上100kHz以下の条件で、照射時間30分以上2時間以下、行うことが好ましい。   In the present invention, it is preferable that the irradiation with ultrasonic waves be performed for 30 minutes to 2 hours under conditions of an output of 50 W to 120 W and a frequency of 28 kHz to 100 kHz.

ここで、本発明の脱硝触媒用スラリーの製造方法の最大の特徴である、シリカゾルにチタニア粒子を懸濁させる第1工程の後のスラリーに超音波を照射することで、分散の効果が得られ、時間が経過しても脱硝触媒用スラリー中の脱硝触媒粒子の再凝縮を抑制することができ、脱硝触媒用スラリーの高粘度化を抑制できるものと考えられる。   Here, the effect of dispersion can be obtained by irradiating the slurry after the first step of suspending titania particles in silica sol, which is the most characteristic feature of the method for producing a slurry for a denitration catalyst of the present invention. Even if time elapses, it is considered that recondensation of the denitration catalyst particles in the denitration catalyst slurry can be suppressed, and the increase in viscosity of the denitration catalyst slurry can be suppressed.

また、本発明において超音波を照射した後のスラリーに水を添加することで、脱硝触媒用スラリーの粘度を調整することができる。   Moreover, the viscosity of the slurry for a denitration catalyst can be adjusted by adding water to the slurry after being irradiated with ultrasonic waves in the present invention.

また同様に、シリカゾル、チタニア粒子およびメタバナジン酸アンモニウム粉末を含む第2工程の後のスラリーに超音波を照射することで、分散の効果が得られ、時間が経過しても脱硝触媒用スラリー中の脱硝触媒粒子の再凝縮を抑制することができ、脱硝触媒用スラリーの高粘度化を抑制できるものと考えられる。   Similarly, by irradiating the slurry after the second step containing silica sol, titania particles and ammonium metavanadate powder with ultrasonic waves, a dispersion effect can be obtained. It is considered that recondensation of the denitration catalyst particles can be suppressed, and the increase in viscosity of the slurry for the denitration catalyst can be suppressed.

そして、本発明において超音波を照射した後のスラリーに水を添加することで、脱硝触媒用スラリーの粘度を調整することができる。   In the present invention, the viscosity of the denitration catalyst slurry can be adjusted by adding water to the slurry after being irradiated with ultrasonic waves.

ここで、超音波を照射した後のスラリーに水を添加することで、脱硝触媒用スラリーの粘度を、50〜100mPa・sに調整することが好ましい。   Here, it is preferable to adjust the viscosity of the slurry for a denitration catalyst to 50 to 100 mPa · s by adding water to the slurry after being irradiated with ultrasonic waves.

そして、このように粘度調整された脱硝触媒用スラリーは、時間が経過しても脱硝触媒用スラリーの高粘度化を抑制することができる。   And the slurry for denitration catalyst adjusted in viscosity in this way can suppress the increase in viscosity of the slurry for denitration catalyst even if time passes.

さらに、本発明の排ガス脱硝装置は、上記の本発明の脱硝触媒用スラリーの製造方法により製造された脱硝触媒用スラリーを用いて、安定した担持量の脱硝触媒を担持させたハニカム構造体を具備することを特徴としている。   Further, the exhaust gas denitration device of the present invention comprises a honeycomb structure in which a denitration catalyst slurry produced by the above-described method for producing a denitration catalyst slurry of the present invention is used to carry a stable supported amount of the denitration catalyst. It is characterized by doing.

ここで、ハニカム構造体としては、セラミック繊維シートやガラス繊維、シリカ繊維、アルミナ繊維、およびロックウールなどの無機繊維シートを素材とするものを利用することができる。   Here, as the honeycomb structure, a ceramic fiber sheet, a glass fiber, a silica fiber, an alumina fiber, and an inorganic fiber sheet such as rock wool can be used.

つぎに、本発明の実施例を比較例と共に説明するが、本発明は、これらの実施例に限定されるものではない。   Next, examples of the present invention will be described together with comparative examples, but the present invention is not limited to these examples.

(実施例1)
まず、波板加工したセラミック繊維シートと平板状のセラミック繊維シートを交互に積層してハニカム構造体を形成した。
Example 1
First, a honeycomb structure was formed by alternately laminating corrugated ceramic fiber sheets and flat ceramic fiber sheets.

つぎに、シリカゾルにチタニア微粒子を懸濁させたスラリー(固形分比率;45重量% 、シリカとチタニアの比率;20:80)を調整した。   Next, a slurry (solid content ratio: 45% by weight, ratio of silica and titania; 20:80) in which titania fine particles are suspended in silica sol was prepared.

そして、このスラリー1Kgに対して、超音波の照射を、出力80W、周波数40kHzの条件で、60分間行った。ついで、超音波照射後のスラリーに対し、1Kgの水を添加して粘度の調整を行った。   Then, 1 kg of this slurry was irradiated with ultrasonic waves for 60 minutes under the conditions of an output of 80 W and a frequency of 40 kHz. Then, 1 kg of water was added to the slurry after ultrasonic irradiation to adjust the viscosity.

さらに、スラリーに対して、メタバナジン酸アンモニウム粉末を50g添加、攪拌後に、脱硝触媒用スラリーに対して3.88mol/lのメタタングステン酸アンモニウム水溶液を56ml添加して、最終的に、粘度84mPa・sの脱硝触媒用スラリーを製造した。   Furthermore, 50 g of ammonium metavanadate powder was added to the slurry, and after stirring, 56 ml of 3.88 mol / l ammonium metatungstate aqueous solution was added to the slurry for the denitration catalyst, and finally the viscosity was 84 mPa · s. A slurry for a denitration catalyst was produced.

(実施例2)
まず、波板加工したセラミック繊維シートと平板状のセラミック繊維シートを交互に積層してハニカム構造体を形成した。
(Example 2)
First, a honeycomb structure was formed by alternately laminating corrugated ceramic fiber sheets and flat ceramic fiber sheets.

つぎに、シリカゾルにチタニア微粒子を懸濁させたスラリー(固形分比率;45重量% 、シリカとチタニアの比率;20:80)を調整した。   Next, a slurry (solid content ratio: 45% by weight, ratio of silica and titania; 20:80) in which titania fine particles are suspended in silica sol was prepared.

そして、このスラリー1Kgに対して、メタバナジン酸アンモニウム粉末を50g添加して、脱硝触媒用スラリーの攪拌を行った。   Then, 50 g of ammonium metavanadate powder was added to 1 kg of the slurry, and the slurry for the denitration catalyst was stirred.

さらに、このスラリー1Kgに対して、超音波の照射を、出力80W、周波数40kHzの条件で、60分間行った。ついで、超音波照射後のスラリーに対し、1Kgの水を添加して粘度の調整を行った。   Furthermore, 1 kg of this slurry was irradiated with ultrasonic waves for 60 minutes under the conditions of an output of 80 W and a frequency of 40 kHz. Then, 1 kg of water was added to the slurry after ultrasonic irradiation to adjust the viscosity.

つぎに、このスラリーに対して、3.88mol/lのメタタングステン酸アンモニウム水溶液を56ml添加して、最終的に、粘度80mPa・sの脱硝触媒用スラリーを製造した。   Next, 56 ml of a 3.88 mol / l aqueous ammonium metatungstate solution was added to the slurry to finally produce a slurry for a denitration catalyst having a viscosity of 80 mPa · s.

(比較例1)
比較のために、上記実施例2の場合と同様にして、脱硝触媒用スラリーを製造するが、上記実施例2の場合と異なる点は、メタバナジン酸アンモニウム粉末を添加したスラリーに対して、超音波の照射を行なかった点にある。そして、その他の点は上記実施例2の場合と同様にして、脱硝触媒用スラリーを製造したところ、脱硝触媒用スラリーの粘度は、30mPa・sであった。
(Comparative Example 1)
For comparison, a slurry for a denitration catalyst is produced in the same manner as in Example 2. The difference from Example 2 is that ultrasonic slurry is applied to the slurry to which ammonium metavanadate powder is added. It is in the point that was irradiated. And when the slurry for a denitration catalyst was manufactured similarly to the case of the said Example 2 except for the other points, the viscosity of the slurry for a denitration catalyst was 30 mPa · s.

(脱硝触媒用スラリーの粘度の安定性の評価試験)
つぎに、上記実施例1と2、および比較例1で製造した脱硝触媒用スラリーについて、製造初期の粘度、および脱硝触媒の製造2日後の粘度をそれぞれ計測して、各脱硝触媒用スラリーの粘度の安定性を評価した。各脱硝触媒用スラリーの粘度の計測値を下記の表1に示した。

Figure 2013233493
(Evaluation test of viscosity stability of slurry for denitration catalyst)
Next, for the denitration catalyst slurry produced in Examples 1 and 2 and Comparative Example 1, the initial viscosity of the production and the viscosity after 2 days of production of the denitration catalyst were measured, and the viscosity of each denitration catalyst slurry. The stability of was evaluated. The measured value of the viscosity of each denitration catalyst slurry is shown in Table 1 below.
Figure 2013233493

上記の表1の結果から明らかなように、実施例1と2で製造した脱硝触媒用スラリーの製造2日後の粘度は、製造初期の粘度から変化しておらず、非常に安定で、高粘度化が抑制されていることが分かる。これに対し、比較例1で製造した従来の脱硝触媒用スラリーの製造2日後の粘度は、製造初期の粘度に比べ大幅に変化しており、安定していないことが分かる。   As is clear from the results in Table 1 above, the viscosity of the denitration catalyst slurry produced in Examples 1 and 2 after 2 days of production was not changed from the initial viscosity of the production, and was very stable and highly viscous. It can be seen that conversion is suppressed. On the other hand, it can be seen that the viscosity after 2 days of production of the conventional slurry for denitration catalyst produced in Comparative Example 1 has changed significantly compared to the viscosity at the beginning of production and is not stable.

(実施例3)
上記実施例1と2、および比較例1で製造した脱硝触媒用スラリーを用いて脱硝触媒を担持させたハニカム構造体を具備する排ガス脱硝装置について、触媒の脱硝性能試験を図1に示す装置を用いて実施した。ここで、図1中のMFCは、マスフローコントローラーを意味する。
(Example 3)
The exhaust gas denitration apparatus having a honeycomb structure in which a denitration catalyst is supported using the denitration catalyst slurry produced in Examples 1 and 2 and Comparative Example 1 above, the apparatus shown in FIG. Implemented. Here, MFC in FIG. 1 means a mass flow controller.

触媒の脱硝性能試験の条件は、下記の表2に示す通りである。そして、各排ガス脱硝装置について、得られた脱硝率の結果を下記の表3に示した。

Figure 2013233493
Figure 2013233493
The conditions of the catalyst denitration performance test are as shown in Table 2 below. The results of the denitration rate obtained for each exhaust gas denitration apparatus are shown in Table 3 below.
Figure 2013233493
Figure 2013233493

上記の表3の結果から明らかなように、上記実施例1と2で製造した脱硝触媒用スラリーを用いて脱硝触媒を担持させたハニカム構造体を具備する排ガス脱硝装置では、比較例1で製造した従来の脱硝触媒用スラリーを用いて脱硝触媒を担持させたハニカム構造体を具備する排ガス脱硝装置に比べて、脱硝率が上昇していることが分かる。   As is clear from the results in Table 3 above, the exhaust gas denitration apparatus having the honeycomb structure carrying the denitration catalyst using the denitration catalyst slurry produced in Examples 1 and 2 is manufactured in Comparative Example 1. It can be seen that the denitration rate is increased as compared with the exhaust gas denitration apparatus having the honeycomb structure in which the denitration catalyst is supported using the conventional slurry for denitration catalyst.

Claims (2)

シリカゾルにチタニア粒子を懸濁させる第1工程と、ついで第1工程からのスラリーにメタバナジン酸アンモニウム粉末を添加する第2工程と、第2工程からのスラリーに、さらにメタタングステン酸アンモニウム水溶液または粉末を添加する第3工程とを具備する脱硝触媒用スラリーの製造方法であって、第1工程からのシリカゾルおよびチタニア粒子を含むスラリーに対し、上記第2工程の前において超音波を照射した後に水を添加するか、または第2工程からのシリカゾル、チタニア粒子およびメタバナジン酸アンモニウム粉末を含むスラリーに対し、上記第3工程の前において超音波を照射した後に水を添加することを特徴とする、脱硝触媒用スラリーの製造方法。   A first step of suspending titania particles in silica sol, a second step of adding ammonium metavanadate powder to the slurry from the first step, and an aqueous ammonium metatungstate solution or powder to the slurry from the second step A slurry for denitration catalyst comprising a third step to be added, wherein the slurry containing silica sol and titania particles from the first step is irradiated with ultrasonic waves before the second step and water is added thereto. Or a slurry containing silica sol, titania particles and ammonium metavanadate powder from the second step, and adding water after irradiating ultrasonic waves before the third step. Slurry manufacturing method. 請求項1に記載の脱硝触媒用スラリーの製造方法により製造された脱硝触媒用スラリーを用いて脱硝触媒を担持させたハニカム構造体を具備することを特徴とする、排ガス脱硝装置。   An exhaust gas denitration apparatus comprising a honeycomb structure that supports a denitration catalyst using the denitration catalyst slurry produced by the method for producing a denitration catalyst slurry according to claim 1.
JP2012106575A 2012-05-08 2012-05-08 Method for producing slurry for denitration catalyst, and exhaust gas denitration device Active JP5883718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012106575A JP5883718B2 (en) 2012-05-08 2012-05-08 Method for producing slurry for denitration catalyst, and exhaust gas denitration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012106575A JP5883718B2 (en) 2012-05-08 2012-05-08 Method for producing slurry for denitration catalyst, and exhaust gas denitration device

Publications (2)

Publication Number Publication Date
JP2013233493A true JP2013233493A (en) 2013-11-21
JP5883718B2 JP5883718B2 (en) 2016-03-15

Family

ID=49760049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012106575A Active JP5883718B2 (en) 2012-05-08 2012-05-08 Method for producing slurry for denitration catalyst, and exhaust gas denitration device

Country Status (1)

Country Link
JP (1) JP5883718B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500145A (en) * 1988-06-29 1991-01-17 クラフトアンラーゲン アクチエンゲゼルシヤフト Method for producing a plate-like support for a catalytic compound
JP2006281155A (en) * 2005-04-04 2006-10-19 Denso Corp Catalyst body
JP2008514410A (en) * 2004-09-30 2008-05-08 ポール・コーポレーション Catalytically active porous element
JP2008155132A (en) * 2006-12-25 2008-07-10 Hitachi Zosen Corp Manufacturing method of denitration catalyst
JP2008296100A (en) * 2007-05-30 2008-12-11 Hitachi Zosen Corp Slurry for manufacturing denitration catalyst, method for manufacturing denitration catalyst by using the slurry, and denitration catalyst manufactured by the method
JP2010247079A (en) * 2009-04-16 2010-11-04 Denso Corp Method for manufacturing exhaust gas-cleaning catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03500145A (en) * 1988-06-29 1991-01-17 クラフトアンラーゲン アクチエンゲゼルシヤフト Method for producing a plate-like support for a catalytic compound
JP2008514410A (en) * 2004-09-30 2008-05-08 ポール・コーポレーション Catalytically active porous element
JP2006281155A (en) * 2005-04-04 2006-10-19 Denso Corp Catalyst body
JP2008155132A (en) * 2006-12-25 2008-07-10 Hitachi Zosen Corp Manufacturing method of denitration catalyst
JP2008296100A (en) * 2007-05-30 2008-12-11 Hitachi Zosen Corp Slurry for manufacturing denitration catalyst, method for manufacturing denitration catalyst by using the slurry, and denitration catalyst manufactured by the method
JP2010247079A (en) * 2009-04-16 2010-11-04 Denso Corp Method for manufacturing exhaust gas-cleaning catalyst

Also Published As

Publication number Publication date
JP5883718B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
JP5401049B2 (en) Slurry for producing denitration catalyst, method for producing the slurry, method for producing denitration catalyst using the slurry, and denitration catalyst produced by the method
JP4852475B2 (en) Slurry for denitration catalyst production
JP5921252B2 (en) End treatment method of catalyst supporting honeycomb structure in exhaust gas denitration apparatus
JP2013244469A (en) Method for producing denitration catalyst
CN106362736A (en) Low-load palladium-platinum core-shell structure catalyst and preparation method and application thereof
JPWO2011042953A1 (en) Denitration catalyst for high temperature exhaust gas and method for producing the same, high temperature exhaust gas denitration method
JP7257483B2 (en) Catalyst-carrying structure and manufacturing method thereof
KR101843214B1 (en) Exhaust gas purification catalyst and production method therefor, and method for purifying nitrogen oxide in exhaust gas
KR102168261B1 (en) Catalyst for oxidation reaction of metallic mercury and reduction reaction of nitrogen oxides, and exhaust gas purification method
JP2015174023A (en) Catalyst for exhaust gas purification
JP5883718B2 (en) Method for producing slurry for denitration catalyst, and exhaust gas denitration device
JP5022697B2 (en) Method for producing denitration catalyst
JP5723646B2 (en) Method for preparing denitration catalyst
JP5081420B2 (en) Catalyst production method and catalyst produced by the method
JP5215990B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2014061476A (en) Oxide of titanium/silicon/tungsten, denitration catalyst obtained by using the oxide, method for preparing the oxide, and denitration method
JP2009226238A (en) Method of treating exhaust gas and catalyst
JPH02187147A (en) Denitration catalyst with ceramic paper utilized therefor
US9463453B2 (en) Method for producing NOx removal catalyst for high-temperature exhaust gas
JP2013078768A (en) Denitration catalyst for high-temperature exhaust gas, method for producing the catalyst, and method for denitrating high-temperature exhaust gas
JP2014144424A (en) Catalyst for decomposing ammonia
JP6153841B2 (en) Diesel particulate collection filter catalyst
DK180289B1 (en) Monolithic honeycomb oxidation catalyst and process for its preparation
WO2020149313A1 (en) Catalyst for exhaust gas purification use
JP2011140005A (en) Method for preparing denitration catalyst, and catalyst prepared by the same method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5883718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150