JP2013228289A - Range-finding sensor - Google Patents

Range-finding sensor Download PDF

Info

Publication number
JP2013228289A
JP2013228289A JP2012100702A JP2012100702A JP2013228289A JP 2013228289 A JP2013228289 A JP 2013228289A JP 2012100702 A JP2012100702 A JP 2012100702A JP 2012100702 A JP2012100702 A JP 2012100702A JP 2013228289 A JP2013228289 A JP 2013228289A
Authority
JP
Japan
Prior art keywords
distance measuring
sensor
measuring sensor
reference voltage
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012100702A
Other languages
Japanese (ja)
Inventor
Kimihiro Ishida
公浩 石田
Hiroshi Kondo
博志 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ceramic Co Ltd
Original Assignee
Nippon Ceramic Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ceramic Co Ltd filed Critical Nippon Ceramic Co Ltd
Priority to JP2012100702A priority Critical patent/JP2013228289A/en
Publication of JP2013228289A publication Critical patent/JP2013228289A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical range-finding sensor using a triangle range-finding sensor and capable of determining whether an object present in the detection distance of the range-finding sensor is a moving object (hereinafter, moving body) like a human body or a stationary object.SOLUTION: A range-finding sensor determines whether a detected object is present in a detection distance by comparing an internal output voltage changed according to a distance from the detected object with a threshold voltage based on a pre-installed detection distance. When it is determined that the detected object is present in the detection distance, the range-finding sensor sets a sensor output active and simultaneously monitors whether the internal output voltage stays in a threshold set higher or lower than a fluctuation determination reference voltage value. When the internal output voltage exceeds the threshold value, the internal output voltage is reset as a new fluctuation determination reference voltage value. When the output voltage does not exceed the threshold value for a fixed period, the range-finding sensor determines that the detected object is a stationary object to forcibly set the sensor output negative.

Description

この発明は人体の様に動きのある物体(以下、動体)と静止物体の判別手段を持った三角測距法を用いた測距センサに関する。 The present invention relates to a distance measuring sensor using a triangulation method having a means for discriminating between a moving object (hereinafter referred to as a moving object) such as a human body and a stationary object.

近年、省エネを目的とした人感センサを用いたライトコントロールスイッチが提案されている。一般的にこの様なライトコントロールスイッチには焦電型赤外線素子が多く用いられるが、焦電型赤外線素子は移動する人体の検出には優れるが人体が静止したままの状態では信号が得られず検知が出来ない欠点がある。そのため人体が存在するにもかかわらず照明が消灯してしまう不具合が発生する場合がある。 In recent years, a light control switch using a human sensor for energy saving has been proposed. In general, pyroelectric infrared elements are often used for such light control switches, but pyroelectric infrared elements are excellent for detecting moving human bodies, but signals cannot be obtained when the human body remains stationary. There is a fault that cannot be detected. For this reason, there may be a problem that the illumination is turned off despite the presence of a human body.

そこで三角測距法を用いた測距センサがその欠点を補う目的で使用され得る。すなわち測距センサは人体の移動の有無にかかわらず測距センサの検知範囲内に人体が存在すればセンサ出力を出し続けることが出来る為、人体が静止したままでも照明を点灯させ続けることが可能となる。 Therefore, a distance measuring sensor using a triangulation method can be used for the purpose of compensating for the disadvantage. In other words, the distance measurement sensor can continue to output the sensor output if the human body is within the detection range of the distance measurement sensor regardless of whether the human body moves or not, so that the illumination can be kept on even when the human body is stationary. It becomes.

図1は従来の三角測距法を用いた測距センサ100の構成図である。101の発光素子が照射する赤外線は102の投光レンズで測距センサ前方へ投光される。測距センサから投光された赤外線は検出対象(人体、物体)で反射し測距センサへ戻って来て103の受光レンズで測距センサ内部の104の受光素子の受光面上に集光される。 FIG. 1 is a configuration diagram of a distance measuring sensor 100 using a conventional triangulation method. Infrared rays emitted from the light emitting element 101 are projected forward of the distance measuring sensor by a light projecting lens 102. Infrared light projected from the distance measuring sensor is reflected by the detection target (human body, object), returns to the distance measuring sensor, and is condensed on the light receiving surface of the light receiving element 104 inside the distance measuring sensor by the light receiving lens 103. The

一般的に104の受光センサとしてはPSD(位置検出素子:Position Sensitive Detector)が使用される。PSDは受光面上に光(スポット光)が当たると光電変換された電荷が発生し、それら電荷はPSDの表面の抵抗体を流れて両側電極から電流として出力される。その為各電極からの電流の比率はスポット光位置から電極までの距離に反比例する。 Generally, a PSD (Position Sensitive Detector) is used as the light receiving sensor 104. In the PSD, when light (spot light) hits the light receiving surface, photoelectrically converted charges are generated, and these charges flow through a resistor on the surface of the PSD and are output as current from both electrodes. Therefore, the ratio of the current from each electrode is inversely proportional to the distance from the spot light position to the electrode.

ここで104の受光素子(PSD)の電極間距離をL、104の受光素子の片側端子からスポット光位置までの距離をx、104の受光素子の両端からの出力電流をI1、I2とするとx=L・I2/(I1+I2)となる。102の投光レンズと103の受光レンズの基線長(レンズの光軸間距離)lと103の受光レンズの焦点距離fが既知であることから測距センサ100と検出対象までの距離dは次式d=(l・f)/xで求めることが出来る。すなわち前記した104の受光素子上の片側端子から光スポット光位置までの距離xが分かれば測距センサ100と検出対象までの距離dが求まる。 Here, the distance between electrodes of the light receiving element (PSD) 104 is L, the distance from one terminal of the light receiving element 104 to the spot light position is x, and the output currents from both ends of the light receiving element 104 are I1 and I2. = L · I2 / (I1 + I2). Since the base line length (distance between optical axes of the lens) l of the 102 light projecting lens and the light receiving lens 103 and the focal length f of the light receiving lens 103 are known, the distance d between the distance measuring sensor 100 and the detection target is as follows. It can be obtained by the formula d = (l · f) / x. That is, if the distance x from the one-side terminal on the light receiving element 104 to the light spot light position is known, the distance d between the distance measuring sensor 100 and the detection target can be obtained.

実際のPSDを用いた測距センサではPSDからの電流出力をI−V変換回路によって電圧値に変換した後、信号処理ICによって測距センサと検出対象までの距離に応じた電圧出力を発生させ、その電圧値(以後内部出力電圧)によって検出対象までの距離を知ることが出来る。検出対象の静動に係らず内部出力電圧の変動が発生するため焦電型赤外線素子の欠点を補うことが可能となる。 In a distance measuring sensor using an actual PSD, a current output from the PSD is converted into a voltage value by an IV conversion circuit, and then a voltage output corresponding to the distance from the distance measuring sensor to the detection target is generated by a signal processing IC. The distance to the detection target can be known from the voltage value (hereinafter referred to as internal output voltage). Since the internal output voltage fluctuates regardless of the static motion of the detection target, it is possible to compensate for the disadvantages of the pyroelectric infrared device.

しかしこの測距センサを用いる場合も次のような問題点がある。測距センサは検出対象が人体であっても静止物体であっても同じように信号を発生する。例えばデスクライトの点灯制御の場合、机上に置かれた荷物を検知しセンサ出力をアクティブにすることでデスクライトが点灯しっぱなしとなり本来の省エネの目的を果たすことが出来なくなる。 However, when this distance measuring sensor is used, there are the following problems. The distance measuring sensor generates a signal in the same manner regardless of whether the detection target is a human body or a stationary object. For example, in the case of desk light lighting control, by detecting a load placed on the desk and activating the sensor output, the desk light remains on and the original energy saving purpose cannot be achieved.

特開平10−147207号公報JP 10-147207 A

上記の様に従来の測距センサは検出対象からの距離に応じた内部出力電圧をある閾値電圧と比較してそれらの大小関係により、検出対象が測距センサから例えばAcmの距離の範囲内に存在する、または存在しないという事を判断することが出来る。ここで言う閾値電圧とは予め知られた検出対象と測距センサ間の距離がAcmの場合の内部出力電圧と同値である。 As described above, the conventional distance measuring sensor compares the internal output voltage corresponding to the distance from the detection target with a certain threshold voltage, and the detection target is within a distance of, for example, Acm from the distance measuring sensor due to their magnitude relationship. It can be judged that it exists or does not exist. The threshold voltage here is the same value as the internal output voltage when the distance between the detection target and the distance measuring sensor known in advance is Acm.

この様に検出対象が測距センサの検知距離内に存在する場合にデスクライトを点灯させることは可能である。その検出対象が人体の場合はこの制御は有効であり省エネに貢献出来るが、例えば検出対象がデスクライトのある机の上に置かれた荷物であった場合も測距センサの内部出力電圧は閾値電圧と比較され検出対象が検知範囲内にあると判断される為、デスクライトが不要に点灯されることになる。測距センサは出力電圧と閾値電圧との大小関係のみを判断の対象とするため対象物体が人体であるか静止物体であるかの判断が出来ず、本来不要な静止物体に対してデスクライトを点灯させる動作を起こしてしまうのである。 In this way, it is possible to turn on the desk light when the detection target exists within the detection distance of the distance measuring sensor. When the detection target is a human body, this control is effective and can contribute to energy saving. However, for example, even when the detection target is a baggage placed on a desk with a desk light, the internal output voltage of the ranging sensor is a threshold value. Since it is determined that the detection target is within the detection range as compared with the voltage, the desk light is turned on unnecessarily. Since the distance measuring sensor only determines the magnitude relationship between the output voltage and the threshold voltage, it cannot determine whether the target object is a human body or a stationary object. It causes the operation to light up.

上記課題を解決するため、この発明の測距センサは検出対象までの距離と検知距離の大小を判別するための前記閾値電圧の他に揺らぎ判定基準電圧値と定義される測距センサの内部出力電圧の変動に応じて変動する電圧値を持つことを特徴とする。 In order to solve the above problems, the distance measuring sensor of the present invention is an internal output of the distance measuring sensor defined as a fluctuation determination reference voltage value in addition to the threshold voltage for determining the distance to the detection target and the magnitude of the detection distance. It has a voltage value that fluctuates according to the fluctuation of the voltage.

上記構成の測距センサによれば、内部出力電圧と閾値電圧との比較により検出物体が検知距離内に存在すると判定されるとセンサ出力をアクティブにすると同時に、内部出力電圧が前記揺らぎ判定基準電圧値に対してある幅で上下に設けられた閾値の範囲内に監視時間と定義される一定時間の間継続して停滞しないかを監視し続ける。 According to the distance measuring sensor having the above configuration, when it is determined that the detected object is within the detection distance by comparing the internal output voltage and the threshold voltage, the sensor output is activated, and at the same time, the internal output voltage is the fluctuation determination reference voltage. It continues to monitor whether or not it stagnates continuously for a certain time defined as the monitoring time within a range of threshold values provided above and below with a certain width.

内部出力電圧が監視時間の間継続して前記した閾値の範囲内に停滞した場合、測距センサは検出対象を動体ではなく静止物体であると判定しセンサ出力を強制的に非アクティブな状態に戻す。 If the internal output voltage continues to stay within the threshold range described above for the monitoring time, the ranging sensor determines that the detection target is not a moving object but a stationary object and forcibly sets the sensor output to an inactive state. return.

内部出力電圧が監視時間の中で前記した閾値の範囲内を越えた場合、その内部出力電圧を新規の揺らぎ判定基準電圧値として更新する。そして監視時間は一旦クリアされ、更新された新規揺らぎ判定基準電圧値に対する閾値に対して再度内部出力電圧が停滞しないか監視される。この時内部出力電圧は閾値電圧と比較され検出対象が検知距離以外にあると判定された場合、センサ出力は当然、非アクティブとなる。 When the internal output voltage exceeds the above-mentioned threshold range within the monitoring time, the internal output voltage is updated as a new fluctuation determination reference voltage value. Then, the monitoring time is once cleared, and it is monitored again whether the internal output voltage stagnates against the threshold value for the updated new fluctuation determination reference voltage value. At this time, if the internal output voltage is compared with the threshold voltage and it is determined that the detection target is outside the detection distance, the sensor output is naturally inactive.

この発明により人体と静止物体との判別が測距センサのみを用いることで簡易に尚且つ精度高く実現出来る。 According to the present invention, discrimination between a human body and a stationary object can be realized easily and with high accuracy by using only a distance measuring sensor.

以下この発明を図示の実施の形態により詳細に説明する。 The present invention will be described in detail below with reference to the illustrated embodiments.

動体と静止物体との判別については例えば特開平10−147207号公報に開示されている乗員検出装置で複数の測距センサ、焦電型赤外センサ且つ座席の位置の検出センサを用いる形態が提案されている。この場合測距センサに関してはその信号の経時変化の有無を参照する方式が提案されている。 For discriminating between a moving object and a stationary object, for example, an occupant detection device disclosed in Japanese Patent Laid-Open No. 10-147207 uses a plurality of ranging sensors, pyroelectric infrared sensors, and seat position detection sensors. Has been. In this case, a method for referring to the presence or absence of change in the signal with respect to the distance measuring sensor has been proposed.

しかしながら、そこで示されている測距センサの信号の経時変化に着目した判定方法は具体性に乏しく実際に動体と静止物体とを測距センサのみで簡易に精度良く判別するためには本発明で実践する以下に示す形態が必要となる。 However, the determination method focusing on the change over time of the signal of the distance measuring sensor shown there is not concrete, and in order to determine the moving object and the stationary object with high accuracy simply by the distance measuring sensor in the present invention. The form shown below to practice is required.

図2は測距センサの内部出力電圧の振れ幅(偏差)を示すものである。検出対象の表面色が白色、灰色、黒色と反射率の異なる条件で静止物体に対する内部出力電圧がどれだけばらつくかを示している。図2から分かるように反射率が低くなる程、また距離が遠くなる程、内部出力電圧のばらつきが大きくなることが分かる。 FIG. 2 shows the amplitude (deviation) of the internal output voltage of the distance measuring sensor. It shows how much the internal output voltage varies with respect to a stationary object under the condition that the surface color of the detection target is white, gray, black, and the reflectance is different. As can be seen from FIG. 2, the variation in internal output voltage increases as the reflectivity decreases and the distance increases.

動体と静止物体とを判別する為に信号の経時変化の有無を参照する場合、上記に示した静止物体でも発生する信号のばらつき(以後ここでは揺らぎと記載する)を考慮に入れる必要がある。 When referring to the presence / absence of a change in signal over time in order to discriminate between a moving object and a stationary object, it is necessary to take into account the variation in the signal that occurs even in the stationary object described above (hereinafter referred to as fluctuation).

そこで本発明においては以下に示す処理により内部信号電圧に経時変化があるか否かを判断する。まず本発明の測距センサは内部に揺らぎ判定基準電圧値と呼ばれる電圧値を内蔵する。測距センサに電源が入れられると最初の内部出力電圧が揺らぎ判定基準電圧値の初期値として設定される。 Therefore, in the present invention, it is determined whether or not there is a change with time in the internal signal voltage by the following processing. First, the distance measuring sensor of the present invention incorporates a voltage value called a fluctuation determination reference voltage value. When the distance measuring sensor is turned on, the first internal output voltage is set as the initial value of the fluctuation determination reference voltage value.

その後、測距センサの前方に検知対象が現れ内部出力電圧が前記閾値電圧を超えると測距センサは物体が検知距離内に存在すると判断しセンサ出力をアクティブにする。外部出力がアクティブになって始めて測距センサは以下に示す内部信号電圧に経時変化があるか否かの判断処理を開始する。 Thereafter, when a detection target appears in front of the distance measuring sensor and the internal output voltage exceeds the threshold voltage, the distance measuring sensor determines that the object is within the detection distance and activates the sensor output. Only after the external output becomes active, the distance measuring sensor starts a process for determining whether or not there is a change over time in the internal signal voltage shown below.

センサ出力がアクティブになった後、測距センサは内部出力電圧の測定毎にその内部出力電圧が揺らぎ判定基準電圧値に対して上下にある幅を持った閾値を越えていないかを確認する。ここで図2に示す静止物体でも発生する信号の揺らぎを考慮して、複数回連続して閾値を超えた場合に限り閾値を超えたと判断し、その時の内部出力電圧を新規の揺らぎ判定基準電圧値として以前の値から変更する。こうすることで動きに伴う距離の変動が発生する人体の様な動体の場合は揺らぎ判定基準電圧値が常に更新され、逆に動きのない静止物体の場合は揺らぎ判定基準電圧値が更新され難くなり結果として動体と静止物体との判定の精度を高めることが出来る。 After the sensor output becomes active, the distance measuring sensor checks whether the internal output voltage exceeds a threshold having a width above and below the fluctuation determination reference voltage value every time the internal output voltage is measured. Considering the fluctuation of the signal generated even in the stationary object shown in FIG. 2, it is determined that the threshold is exceeded only when the threshold is exceeded a plurality of times continuously, and the internal output voltage at that time is determined as a new fluctuation judgment reference voltage. Change the value from the previous value. In this way, the fluctuation determination reference voltage value is constantly updated in the case of a moving body such as a human body that varies in distance with movement, and conversely, the fluctuation determination reference voltage value is difficult to update in the case of a stationary object that does not move. As a result, it is possible to increase the accuracy of the determination of the moving object and the stationary object.

次に検出対象が動体であるか静止物体であるかの判定は以下の様に行う。揺らぎ判定基準電圧値が新規に更新されると監視時間と呼ばれるタイマーがクリアされる。時間が経過しても内部出力電圧が前記した閾値を越えない場合はタイマーが更新され続け、ある決められた監視時間に達する。この時、測距センサは検出対象を静止物体と判定しセンサ出力を強制的に非アクティブな状態に戻す。 Next, it is determined as follows whether the detection target is a moving object or a stationary object. When the fluctuation determination reference voltage value is newly updated, a timer called a monitoring time is cleared. If the internal output voltage does not exceed the aforementioned threshold value even after a lapse of time, the timer continues to be updated and reaches a predetermined monitoring time. At this time, the distance measuring sensor determines that the detection target is a stationary object and forcibly returns the sensor output to an inactive state.

ここで定義した監視時間は任意に設定して良い時間である。監視時間を極端に短くした場合は人体であっても時には静止した状態があるため人体を静止物体と誤判定する可能性が出てくる。逆に極端に長くした場合は静止物体と判断するまでの時間が長くなり省エネ効果等が減少する。 The monitoring time defined here is a time that can be arbitrarily set. When the monitoring time is extremely shortened, there is a possibility that the human body is erroneously determined as a stationary object because the human body sometimes remains stationary. On the other hand, if the length is extremely long, the time until it is determined to be a stationary object is lengthened and the energy saving effect is reduced.

また本発明のセンサは以下の特徴も持つ。前記図2で示した様に静止物体に対する内部出力電圧の揺らぎは検出対象からの距離に応じて変動し遠距離になる程揺らぎの量は増加する傾向がある為、そこで揺らぎ判定基準電圧値の上下に設けられる閾値の幅を検出対象の距離に応じた内部出力電圧(揺らぎ判定基準電圧値)の値を参考に可変される。具体的には検出対象が遠距離にある場合には上下の閾値幅を広げ、逆に近距離にある場合には上下の閾値幅を狭める操作を行う。こうすることで動体と静止物体の判定の精度を更に高めることが可能になる。 The sensor of the present invention also has the following characteristics. As shown in FIG. 2, the fluctuation of the internal output voltage with respect to the stationary object fluctuates according to the distance from the detection target, and the amount of fluctuation tends to increase as the distance increases. The threshold width provided above and below is varied with reference to the value of the internal output voltage (fluctuation determination reference voltage value) corresponding to the distance to be detected. Specifically, when the detection target is at a long distance, an operation is performed to widen the upper and lower threshold widths, and conversely, when the detection target is at a short distance, an operation to narrow the upper and lower threshold widths is performed. By doing so, it is possible to further improve the accuracy of determination of moving objects and stationary objects.

一旦検出対象を静止物体と判断してセンサ出力が非アクティブ状態に戻されても測距センサは内部出力電圧が閾値を越えないかの監視を続ける。新たな検出対象(動体)が現われたり、もしくは人体によって静止物体が取り除かれたことによって内部出力電圧が閾値を越え、尚且つ閾値電圧に対して検知対象が検知距離内に存在すると判断された場合、再度センサ出力はアクティブとなる。 Once the detection target is determined to be a stationary object and the sensor output is returned to the inactive state, the distance measuring sensor continues to monitor whether the internal output voltage exceeds the threshold value. When it is determined that a new detection target (moving object) appears or the internal output voltage exceeds the threshold due to removal of a stationary object by the human body, and that the detection target exists within the detection distance with respect to the threshold voltage The sensor output becomes active again.

また上記に記載したセンサ出力のアクティブ状態への復帰は以下の操作によって行われても良い。例えば測距センサと焦電型赤外線センサを組み合わせて使用する場合、一旦非アクティブになったセンサ出力を焦電型赤外線センサの出力で再度アクティブにしても良い。焦電型赤外線センサは人体からの熱線に反応するセンサである為その出力で照明が再点灯しても問題はない。 Further, the return of the sensor output described above to the active state may be performed by the following operation. For example, when a distance measuring sensor and a pyroelectric infrared sensor are used in combination, the sensor output once deactivated may be made active again by the output of the pyroelectric infrared sensor. Since the pyroelectric infrared sensor is a sensor that reacts to heat rays from the human body, there is no problem even if the illumination is re-lighted with the output.

さらに本発明の測距センサは動体と静止物体との判定を特徴とするが、前記した機能により以下に記載する応用例も検討出来る。 Furthermore, although the distance measuring sensor of the present invention is characterized by the determination of a moving object and a stationary object, the application examples described below can also be studied by the function described above.

例えば実際に人体が動きを伴い存在しており揺らぎ検出基準電圧が常に更新されていても仮に突然何らかの事故が発生し人体が動作を止めることも考えられる。その場合当然揺らぎ検出基準電圧の更新は停止し監視時間後にセンサ出力は非アクティブ状態となる。言い換えれば監視時間後には人体に起こった事故の発生を知ることが可能になる。この様な応用例は近年問題となっている老人介護等の監視モニターとしての応用も期待出来ると考えられる。 For example, even if the human body actually exists with movement and the fluctuation detection reference voltage is constantly updated, it is conceivable that a certain accident suddenly occurs and the human body stops operating. In this case, naturally, the update of the fluctuation detection reference voltage is stopped, and the sensor output becomes inactive after the monitoring time. In other words, it becomes possible to know the occurrence of an accident that occurred in the human body after the monitoring time. Such an application example can be expected to be applied as a monitoring monitor for nursing care for the elderly, which has become a problem in recent years.

次に図3に本測距センサを用いたデスクライトのライトコントロールの実施の形態のフローチャートを示す。ライトコントロールの制御には周囲の照度の低下を引き金とする処理が一般的に含まれその為測距センサと照度センサが組み合わされる場合が多い。 Next, FIG. 3 shows a flowchart of an embodiment of light control of a desk light using the distance measuring sensor. The control of the light control generally includes a process triggered by a decrease in ambient illuminance, so that the distance measuring sensor and the illuminance sensor are often combined.

次に図4に本測距センサを用いたトイレ灯のライトコントロールの実施の形態のフローチャートを示す。トイレ灯の制御には前記したデスクライトと同様に照度センサとの組み合わせの他に検出エリアの広い焦電型赤外線センサと組み合わされ場合が多い。この場合静止物体検出後の再復帰は前記した様に焦電型赤外線センサの出力が用いられるのが一般的であると考えられる。 Next, FIG. 4 shows a flowchart of an embodiment of toilet light control using the distance measuring sensor. In many cases, the toilet light is combined with a pyroelectric infrared sensor having a wide detection area in addition to a combination with an illuminance sensor in the same manner as the desk light described above. In this case, the re-restoration after detection of a stationary object is generally considered to use the output of the pyroelectric infrared sensor as described above.

三角測距法を用いた測距センサ構成図Ranging sensor configuration diagram using triangulation 静止物体に対する測距センサの内部出力電圧の一般的特性General characteristics of ranging sensor internal output voltage for stationary objects 本発明の測距センサを用いたデスクライトのライトコントロールの実施の形態(フローチャート一例)Embodiment of Light Control of Desk Light Using Ranging Sensor of the Present Invention (Example of Flowchart) 本発明の測距センサを用いたトイレ灯向けライトコントロールの実施の形態(フローチャート一例)Embodiment of Light Control for Toilet Light Using Ranging Sensor of the Present Invention (Example of Flowchart)

100・・・測距センサ
101・・・発光素子
102・・・投光レンズ
103・・・受光レンズ
104・・・受光素子
100 ... Distance sensor 101 ... Light emitting element 102 ... Projection lens 103 ... Light receiving lens 104 ... Light receiving element

Claims (7)

赤外線発光素子と投光レンズ、受光レンズ、受光素子、受光素子からの信号を処理する信号処理IC、信号処理ICからの信号を処理すると共に測距センサ全体を制御するマイコン、そして外部出力をもった三角測距法を用いた光学式測距センサであって人体の様に動きのある物体(以下動体)と静止物体の判別手段を持つことを特徴とする測距センサ。   Infrared light emitting element, light projecting lens, light receiving lens, light receiving element, signal processing IC that processes signals from the light receiving element, microcomputer that processes the signals from the signal processing IC and controls the entire distance measuring sensor, and external output An optical distance measuring sensor using a triangular distance measuring method, characterized by having a means for discriminating between a moving object (hereinafter referred to as a moving object) and a stationary object like a human body. 請求項1に記載する測距センサにおいて検出物体が検知距離内に存在はしているがそれが静止物体であり動体ではないとの判断を、監視時間と呼ばれる一定時間の間センサの内部出力電圧が揺らぎ判定基準電圧値と呼ばれる時系列に変化する電圧値に対してある幅で上下に設けられた閾値の範囲を超えないことで行うことを特徴とする測距センサ。   2. The distance measuring sensor according to claim 1, wherein a detection object is present within a detection distance but is a stationary object and not a moving object. A distance measuring sensor characterized in that the threshold value is not exceeded the threshold value provided above and below with a certain width with respect to a voltage value that changes in time series called a fluctuation determination reference voltage value. 請求項1に記載する測距センサにおいて請求項2に記載する監視時間の間揺らぎ判定基準電圧値に対してある幅で上下に設けられた閾値の範囲を超えない場合、内部出力電圧から検出対象が測距センサの検知距離以内に存在すると判定される場合であってもその検出対象が動体ではなく静止物体であると判断しセンサ出力を強制的に非アクティブにすることを特徴とする測距センサ。   When the distance measuring sensor according to claim 1 does not exceed the threshold range provided above and below with a certain width with respect to the fluctuation determination reference voltage value during the monitoring time according to claim 2, it is detected from the internal output voltage. Ranging even if it is determined that the sensor is within the detection distance of the distance measuring sensor, the detection target is not a moving object but a stationary object, and the sensor output is forcibly deactivated. Sensor. 請求項2に記載の揺らぎ判定基準電圧値とは測距センサの電源投入時にまず設定され、以後測距センサのセンサ出力がアクティブの間、測距センサの内部出力電圧が請求項2で示した揺らぎ判定基準電圧値に対してある幅で上下に設けられた閾値の範囲を複数回連続して超えた場合に始めて閾値を超えたと判断するチャタリング防止機能を備え、揺らぎ判定基準電圧値は超えた値に更新されて変動する事を特徴とする測距センサ。   The fluctuation determination reference voltage value according to claim 2 is first set when the distance measuring sensor is turned on, and thereafter the internal output voltage of the distance measuring sensor is indicated in claim 2 while the sensor output of the distance measuring sensor is active. Equipped with a chattering prevention function that determines that the threshold has been exceeded for the first time when the threshold range provided above and below the fluctuation judgment reference voltage value is exceeded multiple times in succession, the fluctuation judgment reference voltage value has been exceeded. Ranging sensor that is updated to the value and fluctuates. 請求項2に記載の揺らぎ判定基準電圧値に対して上下に設けられる閾値の範囲は揺らぎ判定基準電圧値に応じて異なることを特徴とする測距センサ。     3. A distance measuring sensor according to claim 2, wherein a range of a threshold value provided above and below the fluctuation determination reference voltage value differs according to the fluctuation determination reference voltage value. 請求項1に記載する測距センサにおいて検出対象を静止物体と判断してセンサ出力を強制的に非アクティブにした後であっても内部出力電圧から検出物体が測距センサの検知距離内であると判定され、なお且つ請求項2で示した揺らぎ判定基準電圧値に対して上下に設けられる閾値を超えた場合にはその検出対象は動体であると判断して再びセンサ出力をアクティブにすることを特徴とする測距センサ。   In the distance measuring sensor according to claim 1, even after the detection target is determined as a stationary object and the sensor output is forcibly made inactive, the detected object is within the detection distance of the distance measuring sensor from the internal output voltage. If the threshold value set above and below the fluctuation determination reference voltage value shown in claim 2 is exceeded, it is determined that the detection target is a moving object and the sensor output is made active again. Ranging sensor characterized by 請求項2に記載する測距センサにおいて検出対象を静止物体と判断してセンサ出力を強制的に非アクティブにした後であっても測距センサに付属する焦電型赤外線素子が出力を発生した場合にはその検出対象は動体(人体)であると判断して再びセンサ出力をアクティブすることを特徴とする測距センサ。   The pyroelectric infrared element attached to the distance measuring sensor generates an output even after the sensor output is forcibly deactivated by determining the detection target as a stationary object in the distance measuring sensor according to claim 2. In this case, the distance measuring sensor determines that the detection target is a moving body (human body) and activates the sensor output again.
JP2012100702A 2012-04-26 2012-04-26 Range-finding sensor Pending JP2013228289A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012100702A JP2013228289A (en) 2012-04-26 2012-04-26 Range-finding sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012100702A JP2013228289A (en) 2012-04-26 2012-04-26 Range-finding sensor

Publications (1)

Publication Number Publication Date
JP2013228289A true JP2013228289A (en) 2013-11-07

Family

ID=49676054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012100702A Pending JP2013228289A (en) 2012-04-26 2012-04-26 Range-finding sensor

Country Status (1)

Country Link
JP (1) JP2013228289A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113076005A (en) * 2021-04-14 2021-07-06 广州南天电脑***有限公司 Detection method for activating computer screen lock

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581575A (en) * 1991-09-25 1993-04-02 Matsushita Electric Works Ltd Ranging type invader detector
JPH0777405A (en) * 1993-09-07 1995-03-20 Copal Co Ltd Photoelectric object sensor
JP2008224528A (en) * 2007-03-14 2008-09-25 Yamagata Chinoo:Kk Human body detection device
JP2010176211A (en) * 2009-01-27 2010-08-12 Nanao Corp Power-saving monitoring device
JP2010237132A (en) * 2009-03-31 2010-10-21 Secom Co Ltd Composite monitoring device
JP2011047740A (en) * 2009-08-26 2011-03-10 Nanao Corp Electronic device with function for discriminating moving body
JP2011080921A (en) * 2009-10-09 2011-04-21 Toto Ltd Sanitary cleansing apparatus
JP2011247633A (en) * 2010-05-24 2011-12-08 Nippon Telegr & Teleph Corp <Ntt> Dynamic body detection device and dynamic body detection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0581575A (en) * 1991-09-25 1993-04-02 Matsushita Electric Works Ltd Ranging type invader detector
JPH0777405A (en) * 1993-09-07 1995-03-20 Copal Co Ltd Photoelectric object sensor
JP2008224528A (en) * 2007-03-14 2008-09-25 Yamagata Chinoo:Kk Human body detection device
JP2010176211A (en) * 2009-01-27 2010-08-12 Nanao Corp Power-saving monitoring device
JP2010237132A (en) * 2009-03-31 2010-10-21 Secom Co Ltd Composite monitoring device
JP2011047740A (en) * 2009-08-26 2011-03-10 Nanao Corp Electronic device with function for discriminating moving body
JP2011080921A (en) * 2009-10-09 2011-04-21 Toto Ltd Sanitary cleansing apparatus
JP2011247633A (en) * 2010-05-24 2011-12-08 Nippon Telegr & Teleph Corp <Ntt> Dynamic body detection device and dynamic body detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113076005A (en) * 2021-04-14 2021-07-06 广州南天电脑***有限公司 Detection method for activating computer screen lock
CN113076005B (en) * 2021-04-14 2022-09-30 广州南天电脑***有限公司 Detection method for activating computer screen lock

Similar Documents

Publication Publication Date Title
JP4773411B2 (en) Current detection circuit and current detection method
KR101931457B1 (en) Apparatus and method for protecting a user from blue light radiation
EP2455776B1 (en) Infrared sensor module
CA2885986A1 (en) Human body detection sensor and automatic faucet
US8748790B2 (en) Proximity sensor using photosensor
US20070075280A1 (en) Optical ranging sensor and electrical equipment
EP3006967A1 (en) Proximity sensor and automatic faucet
JP2008300201A (en) Multi-optical-axis photoelectric sensor
JP2011259011A5 (en)
US11487008B2 (en) Distance measuring device
JP7501289B2 (en) Distance Measuring Device
JP2013228289A (en) Range-finding sensor
US10288454B2 (en) Encoder including an origin position detection function
US20210088658A1 (en) Distance measuring apparatus
JP2004117250A (en) Object detecting method and its device
JP6088306B2 (en) Light receiving circuit
EP4183125A1 (en) Adaptive proximity detection system
JP2009244158A (en) Person sensing detector
JP2015158720A (en) Road surface detector and road surface detection method
US8576072B2 (en) Optoelectronic sensor
US20230314609A1 (en) Proximity sensing
CN112384821B (en) Distance measuring device
JP2018136223A (en) Object detection sensor and electrical equipment unit
JP6858612B2 (en) Fire alarm
JP2008128936A (en) Method and system for regulating detection level of photosensor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140708