JP2013228128A - Cryogenic refrigeration device - Google Patents

Cryogenic refrigeration device Download PDF

Info

Publication number
JP2013228128A
JP2013228128A JP2012099674A JP2012099674A JP2013228128A JP 2013228128 A JP2013228128 A JP 2013228128A JP 2012099674 A JP2012099674 A JP 2012099674A JP 2012099674 A JP2012099674 A JP 2012099674A JP 2013228128 A JP2013228128 A JP 2013228128A
Authority
JP
Japan
Prior art keywords
valve
low
pressure
stem
rotating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012099674A
Other languages
Japanese (ja)
Other versions
JP5939433B2 (en
Inventor
Yoshisuke Shu
淑亮 周
Yoshimasa Ohashi
義正 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2012099674A priority Critical patent/JP5939433B2/en
Publication of JP2013228128A publication Critical patent/JP2013228128A/en
Application granted granted Critical
Publication of JP5939433B2 publication Critical patent/JP5939433B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Temperature-Responsive Valves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cryogenic refrigeration device advantageous for suppressing wearing of a contact surface which presses the leading end of a stem.SOLUTION: A leading end 41 of a stem 40 of a valve body 4 slid into contact with the contact surface 50 of a valve driving member includes a rotor 44. The rotor 44 is rotated to reduce friction resistance between the leading end 41 and the contact surface 50, thereby suppressing wearing of the contact surface 50.

Description

本発明は高圧バルブおよび低圧バルブを持つ低温冷凍装置に関する。   The present invention relates to a low temperature refrigeration apparatus having a high pressure valve and a low pressure valve.

特許文献1は、極低温冷凍機に使用される高圧バルブ装置が開示されている。この高圧バルブ装置では、カムの回転運動を弁体の直線運動に変換し、カムにより決まる規定のタイミングで弁体を直線運動させることで弁口を開閉する技術を開示している。特許文献1に開示されている高圧バルブ装置においては、旋回可能に設けられたレバーの旋回に伴い、レバーの表面によって弁体の先端部を離接可能に押圧し、弁体を開弁方向に移動させている。レバーは弁体を開弁方向に駆動するための弁駆動部材として機能している。   Patent Document 1 discloses a high-pressure valve device used in a cryogenic refrigerator. In this high-pressure valve device, a technique is disclosed in which the rotational movement of a cam is converted into a linear movement of a valve body, and the valve opening is opened and closed by linearly moving the valve body at a predetermined timing determined by the cam. In the high-pressure valve device disclosed in Patent Document 1, the tip of the valve body is detachably pressed by the surface of the lever in accordance with the turning of the lever provided to be able to turn, and the valve body is moved in the valve opening direction. It is moved. The lever functions as a valve drive member for driving the valve body in the valve opening direction.

特公平04−080311号公報Japanese Patent Publication No. 04-080311

ところで、特許文献1に開示されている高圧バルブ装置においては、弁体の先端部がレバーの表面(弁駆動部材の接触面と呼ぶ)に接触することで、弁体が開弁方向に直線移動する。この接触面はカムの回動に従動するため、接触面のなかで弁体の先端部に接触する点もまた移動する。したがって、弁体の先端部と接触面との間には摩擦力が生じる。このため、弁体の先端部や接触面には摩耗が生じる可能性がある。弁体の先端部や接触面が大きく摩耗すると、弁の開閉タイミングに影響が生じるおそれがある。弁が望み通りのタイミングで開閉しなければ、冷凍機の性能も劣化するおそれがある。   By the way, in the high pressure valve device disclosed in Patent Document 1, the valve body linearly moves in the valve opening direction when the tip of the valve body contacts the surface of the lever (referred to as the contact surface of the valve drive member). To do. Since this contact surface follows the rotation of the cam, the point of contact with the tip of the valve element also moves within the contact surface. Therefore, a frictional force is generated between the tip of the valve body and the contact surface. For this reason, there is a possibility that wear will occur on the tip and contact surface of the valve body. If the tip of the valve body or the contact surface is worn significantly, the opening / closing timing of the valve may be affected. If the valve does not open and close at the desired timing, the performance of the refrigerator may also deteriorate.

本発明は上記した実情に鑑みてなされたものであり、弁体の先端部、および、弁駆動部材における接触面の摩耗を抑制するのに有利な低温冷凍装置を提供することを課題とする。   This invention is made | formed in view of the above-mentioned situation, and makes it a subject to provide the low-temperature freezing apparatus advantageous in suppressing abrasion of the front-end | tip part of a valve body, and the contact surface in a valve drive member.

本発明は上記課題を解決すべくなされた発明である。本発明の低温冷凍装置は、高圧ガスを吐出させる高圧側の吐出ポートと低圧ガスを吸い込む低圧側の吸込ポートとを持つ圧縮機と、冷媒ガスを膨張させて寒冷を発生させる冷凍機と、前記圧縮機の高圧側の前記吐出ポートと前記冷凍機とを連絡させ且つ前記圧縮機の吐出ポートから吐出された高圧の冷媒ガスを開弁により前記冷凍機に供給させる高圧バルブと、前記圧縮機の低圧側の前記吸込ポートと前記冷凍機とを連絡させ且つ前記冷凍機の冷媒ガスを開弁により前記圧縮機の前記吸込ポートに帰還させる低圧バルブとを具備する低温冷凍装置であって、
前記高圧バルブおよび前記低圧バルブのうちの少なくとも一方は、
前記弁口を形成する弁座と軸孔を形成する軸受とを持つ基部と、
直線方向に沿って往復直動可能に前記軸受の前記軸孔に保持されているステムと、前記ステムに連設され前記弁口を開閉させる弁部と、を持つ弁体と、
前記弁部が前記弁座に着座する方向に前記弁体を付勢する付勢バネと、
回動軸を中心として回動するカムと、前記カムの回動に従動し前記カムによって決まる規定のタイミングで前記ステムの先端部に摺接しつつ前記先端部を開弁方向に押圧することで前記弁体を開弁方向に移動させる接触面と、を持つ弁駆動部材と、を具備し、
前記ステムの前記先端部は、前記接触面に接触する回転体と、前記回転体を回転可能に保持する保持部と、で構成されているものである。
The present invention has been made to solve the above problems. A low-temperature refrigeration apparatus of the present invention includes a compressor having a high-pressure side discharge port for discharging high-pressure gas and a low-pressure side suction port for sucking low-pressure gas, a refrigerator that expands refrigerant gas to generate cold, and A high-pressure valve that connects the discharge port on the high-pressure side of the compressor and the refrigerator, and supplies the high-pressure refrigerant gas discharged from the discharge port of the compressor to the refrigerator by opening the valve; and A low-temperature refrigeration apparatus comprising a low-pressure valve that connects the suction port on the low-pressure side and the refrigerator, and returns the refrigerant gas of the refrigerator to the suction port of the compressor by opening the valve,
At least one of the high pressure valve and the low pressure valve is
A base having a valve seat that forms the valve port and a bearing that forms a shaft hole;
A valve body having a stem that is held in the shaft hole of the bearing so as to be capable of reciprocating linearly along a linear direction, and a valve portion that is connected to the stem and opens and closes the valve port;
A biasing spring that biases the valve body in a direction in which the valve portion is seated on the valve seat;
A cam that rotates about a rotation axis, and the distal end portion is pressed in the valve opening direction while being in sliding contact with the distal end portion of the stem at a predetermined timing determined by the cam following the rotation of the cam. A valve drive member having a contact surface for moving the valve body in the valve opening direction;
The distal end portion of the stem includes a rotating body that contacts the contact surface and a holding portion that rotatably holds the rotating body.

本発明の低温冷凍装置においては、ステムの先端部のなかで接触面に接触(摺接)する部分を回転体で構成し、先端部の他の一部(保持部)によってこの回転体を回転可能に保持している。接触面とステムの先端部とが摺接すると、ステムの先端部の一部である回転体が回転する。このため接触面に作用する摩擦力が緩和され、接触面が摩耗し難くなる。また、ステムの先端部(つまり回転体)自体に作用する摩擦力もまた緩和され、ステムの先端部もまた摩耗し難くなる。したがって、本発明の低温冷凍装置によると、接触面の摩耗を抑制可能である。   In the low-temperature refrigeration apparatus of the present invention, a portion that contacts (slidably contacts) the contact surface in the tip portion of the stem is constituted by a rotating body, and the rotating body is rotated by the other part (holding portion) of the tip portion. Hold it possible. When the contact surface and the distal end portion of the stem are in sliding contact, the rotating body that is a part of the distal end portion of the stem rotates. For this reason, the frictional force which acts on a contact surface is relieved, and a contact surface becomes difficult to wear. In addition, the frictional force acting on the distal end portion of the stem (that is, the rotating body) itself is also alleviated, and the distal end portion of the stem is not easily worn. Therefore, according to the low-temperature refrigeration apparatus of the present invention, wear on the contact surface can be suppressed.

本発明の低温冷凍装置は、以下の(1)〜(3)の何れかを備えるのが好ましく、複数を備えるのがより好ましい。
(1)前記回転体は球体である。
(2)前記基部は前記回転体の一部を収容する収容部を持ち、前記収容部には、前記回転体とともに潤滑剤が収容されている。
(3)前記収容部は前記基部の内部に開口する。
The low-temperature refrigeration apparatus of the present invention preferably includes any one of the following (1) to (3), and more preferably includes a plurality.
(1) The rotating body is a sphere.
(2) The base has a housing portion that houses a part of the rotating body, and the housing portion contains a lubricant together with the rotating body.
(3) The housing portion opens inside the base portion.

本発明の低温冷凍装置においては、ステムの先端部を回転体で構成することで、接触面の摩耗を抑制することが可能である。   In the low-temperature refrigeration apparatus of the present invention, it is possible to suppress wear on the contact surface by configuring the tip of the stem with a rotating body.

実施形態1に係り、極低温冷凍装置を模式的に示す図である。It is a figure which concerns on Embodiment 1 and shows a cryogenic refrigeration apparatus typically. 実施形態1に係り、極低温冷凍装置に使用される高圧バルブ付近を模式的に示す断面図である。It is sectional drawing which concerns on Embodiment 1 and shows typically the high pressure valve vicinity used for a cryogenic refrigeration apparatus. 実施形態1に係り、高圧バルブのステムが開弁方向に移動するときのステムの先端部付近を模式的に示す要部拡大図である。FIG. 4 is an enlarged view of a main part schematically showing the vicinity of the tip of the stem when the stem of the high-pressure valve moves in the valve opening direction according to the first embodiment. 実施形態1に係り、低圧バルブのステムが開弁方向に移動するときのステムの先端部付近を模式的に示す要部拡大図である。FIG. 4 is an enlarged view of a main part schematically showing the vicinity of the tip of the stem when the stem of the low-pressure valve moves in the valve opening direction according to the first embodiment. 実施形態1に係り、弁体におけるステムの先端部を製造している様子を模式的に表す説明図である。It is explanatory drawing which represents typically a mode that it concerns on Embodiment 1 and the front-end | tip part of the stem in a valve body is manufactured. 実施形態2に係り、極低温冷凍装置を模式的に示す説明図である。It is explanatory drawing which concerns on Embodiment 2 and shows a cryogenic refrigeration apparatus typically. 実施形態2に係り、極低温冷凍装置に使用される高圧バルブ付近を模式的に示す説明図である。It is explanatory drawing which shows typically the high pressure valve vicinity which concerns on Embodiment 2 and is used for a cryogenic refrigeration apparatus. 実施形態2に係り、高圧バルブのステムが開弁方向に移動するときのステムの先端部付近を模式的に示す要部拡大図である。FIG. 10 is an enlarged view of a main part schematically showing the vicinity of the tip of the stem when the stem of the high-pressure valve moves in the valve opening direction according to the second embodiment. 実施形態2に係り、低圧バルブのステムが開弁方向に移動するときのステムの先端部付近を模式的に示す要部拡大図である。FIG. 10 is an enlarged view of a main part schematically showing the vicinity of the tip of the stem when the stem of the low-pressure valve moves in the valve opening direction according to the second embodiment. 実施形態3に係り、極低温冷凍装置に使用される高圧バルブ付近を模式的に示す説明図である。It is explanatory drawing which concerns on Embodiment 3 and shows typically the high pressure valve vicinity used for a cryogenic refrigeration apparatus. 実施形態3に係り、極低温冷凍装置に使用される低圧バルブ付近を模式的に示す説明図である。It is explanatory drawing which concerns on Embodiment 3 and shows typically the low pressure valve vicinity used for a cryogenic refrigeration apparatus. 実施形態4に係り、高圧バルブのステムが開弁方向に移動し、かつ、低圧バルブのステムが閉弁位置に配置されているときのステムの先端部付近を模式的に示す要部拡大図である。FIG. 10 is an enlarged view of a main part schematically showing the vicinity of the tip end portion of the stem when the stem of the high pressure valve moves in the valve opening direction and the stem of the low pressure valve is arranged at the valve closing position according to the fourth embodiment. is there. 実施形態5に係り、高圧バルブのステムが開弁方向に移動するときのステムの先端部付近を模式的に示す要部拡大図である。FIG. 10 is an enlarged view of a main part schematically showing the vicinity of the distal end portion of the stem when the stem of the high pressure valve moves in the valve opening direction according to the fifth embodiment. 実施形態5に係り、低圧バルブのステムが開弁方向に移動するときのステムの先端部付近を模式的に示す要部拡大図である。FIG. 10 is an enlarged view of a main part schematically showing the vicinity of the tip of the stem when the stem of the low-pressure valve moves in the valve opening direction according to the fifth embodiment.

本発明の低温冷凍装置は、GM(ギフォードマクマホン)サイクル冷凍機、パルス管冷凍機、ソルベイサイクル冷凍機等の公知の冷凍機に適用できる。本発明の低温冷凍装置における接触面(つまり、弁駆動部材のなかでステムの先端部と摺接する面)は、カムの外周面そのものであっても良いし、或いは、カムとステムとの間に介在する何らかの部材の表面であっても良い。カムとステムとの間に介在する部材は、カムの回動に従動し、カムによって決まる規定のタイミングでステムの先端部に摺接する必要がある。そして、この部材は、当該規定のタイミングでステムの先端部を開弁方向に押圧し、このときの押圧力で弁体を開弁方向に移動させる必要がある。このような部材のなかでステムの先端部に摺接する面が本発明の低温冷凍装置における接触面に相当する。このようにカムとステムとの間に介在する部材としては、カムおよびステムに対して任意の軸を中心として旋回あるいは揺動する部材、例えばレバーが挙げられる。   The low-temperature refrigeration apparatus of the present invention can be applied to known refrigerators such as a GM (Gifford McMahon) cycle refrigerator, a pulse tube refrigerator, and a Solvay cycle refrigerator. The contact surface in the low-temperature refrigeration apparatus of the present invention (that is, the surface in sliding contact with the tip of the stem in the valve drive member) may be the outer peripheral surface of the cam itself, or between the cam and the stem. It may be the surface of some intervening member. A member interposed between the cam and the stem is required to be in sliding contact with the tip of the stem at a predetermined timing determined by the cam, following the rotation of the cam. And this member needs to press the front-end | tip part of a stem in the valve opening direction at the said specific timing, and needs to move a valve body in the valve opening direction with the pressing force at this time. Of these members, the surface that is in sliding contact with the tip of the stem corresponds to the contact surface in the low-temperature refrigeration apparatus of the present invention. As a member interposed between the cam and the stem in this manner, a member that pivots or swings around an arbitrary axis with respect to the cam and the stem, for example, a lever can be cited.

(実施形態1)
図1は実施形態1の概念を示す。低温冷凍装置の代表例である極低温冷凍装置は、圧縮機1、冷凍機2、高圧バルブ3および低圧バルブ7を持つ。圧縮機1は、高圧の冷媒ガスを吐出する高圧側の吐出ポート11と、低圧の冷媒ガスを吸い込む低圧側の吸込ポート12と、を持つ。冷凍機2は、高圧の冷媒ガスが膨張し寒冷(冷熱エネルギー)が発生する膨張室となる中空室20を持つ。高圧バルブ3は、圧縮機1の高圧側の吐出ポート11と冷凍機2の中空室20とを連絡し、開弁することにより高圧の冷媒ガスを中空室20に送込むためのバルブである。低圧バルブ7は、開弁することにより冷媒ガスを圧縮機1の吸込ポート12に帰還させるためのバルブである。
(Embodiment 1)
FIG. 1 shows the concept of the first embodiment. A cryogenic refrigeration apparatus, which is a typical example of a low temperature refrigeration apparatus, includes a compressor 1, a refrigerator 2, a high pressure valve 3, and a low pressure valve 7. The compressor 1 has a high-pressure side discharge port 11 that discharges high-pressure refrigerant gas and a low-pressure side suction port 12 that sucks low-pressure refrigerant gas. The refrigerator 2 has a hollow chamber 20 serving as an expansion chamber in which high-pressure refrigerant gas expands to generate cold (cold energy). The high-pressure valve 3 is a valve for sending high-pressure refrigerant gas into the hollow chamber 20 by connecting the discharge port 11 on the high-pressure side of the compressor 1 and the hollow chamber 20 of the refrigerator 2 and opening the valve. The low pressure valve 7 is a valve for returning the refrigerant gas to the suction port 12 of the compressor 1 by opening the valve.

冷凍機2はGM(ギフォードマクマホン)サイクル冷凍機であり、シリンダ21、ディスプレーサ22、シールリング23および蓄冷器24を持つ。シリンダ21には、高温部20aおよび低温部20cを持つ中空室20が形成されている。ディスプレーサ22は、シリンダ21の内部を往復動(図1中矢印X1,X2方向)可能である。シールリング23は、ディスプレーサ22の外周部に設けられ、シリンダ21の内周面とディスプレーサ22の外周面との間をシールする。蓄冷器24は、ディスプレーサ22の内部に設けられ、後述する冷媒ガスが流通する。なお、ディスプレーサ22は、高圧バルブ3および低圧バルブ7のバルブ開閉タイミングと位相差をもって、矢印X1,X2方向に往復移動する。つまり、高圧バルブ3および低圧バルブ7のバルブ開閉タイミングと、ディスプレーサ22の往復動タイミングとは、ずれている。   The refrigerator 2 is a GM (Gifford McMahon) cycle refrigerator, and includes a cylinder 21, a displacer 22, a seal ring 23, and a regenerator 24. A hollow chamber 20 having a high temperature part 20a and a low temperature part 20c is formed in the cylinder 21. The displacer 22 can reciprocate inside the cylinder 21 (in the directions of arrows X1 and X2 in FIG. 1). The seal ring 23 is provided on the outer peripheral portion of the displacer 22 and seals between the inner peripheral surface of the cylinder 21 and the outer peripheral surface of the displacer 22. The regenerator 24 is provided inside the displacer 22, and refrigerant gas to be described later circulates. The displacer 22 reciprocates in the directions of the arrows X1 and X2 with the phase difference between the opening and closing timings of the high pressure valve 3 and the low pressure valve 7. That is, the valve opening / closing timings of the high pressure valve 3 and the low pressure valve 7 and the reciprocation timing of the displacer 22 are deviated.

まず、ディスプレーサ22が矢印X1方向に移動して低温部20c側に移動している状態において、低圧バルブ7が閉弁し高圧バルブ3が開弁する。これにより圧縮機1の吐出ポート11から供給された高圧の冷媒ガスは、高圧バルブ3、高圧通路81を介して冷凍機2の中空室20の高温部20aおよび低温部20cに供給され、高温部20aおよび低温部20cは高圧となる。この状態で、他の駆動源に駆動されて、ディスプレーサ22が中空室20の低温部20c側の容積を増加させる方向、つまり、矢印X2方向に移動する。すると、高温部20aの冷媒ガスは蓄冷器24で冷却されながら低温部20cに流れる。更にディスプレーサ22の矢印X2方向の移動により、低温部20cが最大容積となる。次に、高圧バルブ3が閉弁し、低圧バルブ7が開弁する。すると、冷媒ガスが膨張し、温度が下がり、蓄冷器24を冷却し蓄冷させつつ、蓄冷器24を通過し低圧通路82に供給される。この状態で、ディスプレーサ22が中空室20の低温部20cの容積を減少させる方向に、つまり、矢印X1方向に移動すると、低温部20cに存在する低温の冷媒ガスは蓄冷器24を冷却して蓄冷器24を蓄冷させつつ、低圧通路82に供給される。低圧バルブ7が開弁しているため、冷媒ガスは低圧バルブ7を介して低圧室38に供給され、ひいては吸込ポート12から圧縮機1に吸い込まれ、再び高圧ガスとなる。このような動作が繰り返されることで、冷凍機2の中空室20に存在する低温部20cにおいて温度が低下して冷凍出力(寒冷)が得られる。   First, in a state where the displacer 22 moves in the direction of the arrow X1 and moves toward the low temperature part 20c, the low pressure valve 7 is closed and the high pressure valve 3 is opened. As a result, the high-pressure refrigerant gas supplied from the discharge port 11 of the compressor 1 is supplied to the high-temperature part 20a and the low-temperature part 20c of the hollow chamber 20 of the refrigerator 2 through the high-pressure valve 3 and the high-pressure passage 81. 20a and the low temperature part 20c become a high voltage | pressure. In this state, driven by another drive source, the displacer 22 moves in the direction of increasing the volume of the hollow chamber 20 on the low temperature part 20c side, that is, in the direction of the arrow X2. Then, the refrigerant gas in the high temperature portion 20a flows to the low temperature portion 20c while being cooled by the regenerator 24. Furthermore, the displacement of the displacer 22 in the direction of the arrow X2 makes the low temperature portion 20c the maximum volume. Next, the high pressure valve 3 is closed and the low pressure valve 7 is opened. Then, the refrigerant gas expands, the temperature decreases, and the regenerator 24 is cooled and stored, while passing through the regenerator 24 and supplied to the low pressure passage 82. In this state, when the displacer 22 moves in the direction of decreasing the volume of the low temperature portion 20c of the hollow chamber 20, that is, in the direction of the arrow X1, the low temperature refrigerant gas existing in the low temperature portion 20c cools the regenerator 24 to store the cold. The container 24 is supplied to the low-pressure passage 82 while storing the cold. Since the low-pressure valve 7 is opened, the refrigerant gas is supplied to the low-pressure chamber 38 via the low-pressure valve 7, and is then sucked into the compressor 1 from the suction port 12 and becomes high-pressure gas again. By repeating such an operation, the temperature is lowered in the low temperature portion 20c existing in the hollow chamber 20 of the refrigerator 2, and a refrigeration output (cold) is obtained.

次いで本実施形態の低温冷凍装置における高圧バルブ3について、図1、2を参照しつつさらに詳しく説明する。   Next, the high-pressure valve 3 in the low-temperature refrigeration apparatus of this embodiment will be described in more detail with reference to FIGS.

高圧バルブ3は、基部30と、弁体4と、閉弁用の付勢バネ47と、旋回部材5と、カム6とを有する。このうち旋回部材5およびカム6は、本発明の低温冷凍装置における弁駆動部材に相当する。したがって旋回部材5の表面(より具体的には後述する加圧領域50、50C)は本発明の低温冷凍装置における接触面に相当する。   The high pressure valve 3 includes a base 30, a valve body 4, a valve closing biasing spring 47, a turning member 5, and a cam 6. Among these, the turning member 5 and the cam 6 correspond to a valve driving member in the low-temperature refrigeration apparatus of the present invention. Therefore, the surface of the turning member 5 (more specifically, pressurization regions 50 and 50C described later) corresponds to the contact surface in the low-temperature refrigeration apparatus of the present invention.

基部30は、高圧ガス室31と、弁座33と、軸受35と、中間圧室36とを持つ。高圧ガス室31は基部30の内部に区画形成されている。高圧ガス室31は圧縮機1の吐出ポート11(高圧側)に連絡しているため、高圧ガス室31には吐出ポート11から高圧の冷媒ガスが供給される。中間圧室36もまた基部30の内部に区画形成されている。中間圧室36は高圧通路81を介して冷凍機2の中空室20に連絡している。高圧ガス室31と中間圧室36とは弁座33によって隔てられている。弁座33には開口状の弁口32が形成されており、高圧ガス室31と中間圧室36とは弁口32を介して連絡している。軸受35は中間圧室36を挟んで弁座33の反対側に配置されている。軸受35には開口状の軸孔34が形成されている。   The base 30 has a high-pressure gas chamber 31, a valve seat 33, a bearing 35, and an intermediate pressure chamber 36. The high-pressure gas chamber 31 is defined in the base 30. Since the high pressure gas chamber 31 communicates with the discharge port 11 (high pressure side) of the compressor 1, high pressure refrigerant gas is supplied to the high pressure gas chamber 31 from the discharge port 11. An intermediate pressure chamber 36 is also defined in the base 30. The intermediate pressure chamber 36 communicates with the hollow chamber 20 of the refrigerator 2 through a high pressure passage 81. The high pressure gas chamber 31 and the intermediate pressure chamber 36 are separated by a valve seat 33. An opening-like valve port 32 is formed in the valve seat 33, and the high-pressure gas chamber 31 and the intermediate pressure chamber 36 communicate with each other via the valve port 32. The bearing 35 is disposed on the opposite side of the valve seat 33 with the intermediate pressure chamber 36 interposed therebetween. An opening-shaped shaft hole 34 is formed in the bearing 35.

弁体4は、棒状をなすステム40と、ステム40の基端部43に連接されている弁部42とを持つ。ステム40の中心軸線Pは一直線状をなす。弁部42の外径はステム40の外径よりも大径であり、かつ、弁口32の孔径よりも大径である。弁部42は高圧ガス室31内に配置されている。ステム40の基端部43側(弁部42側)の部分は弁座33の弁口32に挿通され、かつ、ステム40の先端部41側(弁部42とは逆側の端部)の部分は軸受35の軸孔34に挿通されている。したがって弁体4は、基部30によって、直線方向(矢印A1,A2方向)に沿って往復直動可能に支持されている。さらに、弁部47は、弁口32に対面する円錐面42kを持つ。付勢バネ47は、弾性により、弁部42が弁座33に着座して弁口32を閉鎖するように、弁体4を閉弁方向(矢印A2方向)に付勢している。したがって、付勢バネ47の一端部は基部30の着座面30aに着座し、付勢バネ47の他端部は弁部42の着座面42aに着座している。   The valve body 4 has a stem 40 having a rod shape and a valve portion 42 connected to a proximal end portion 43 of the stem 40. The central axis P of the stem 40 forms a straight line. The outer diameter of the valve portion 42 is larger than the outer diameter of the stem 40 and larger than the hole diameter of the valve port 32. The valve portion 42 is disposed in the high pressure gas chamber 31. A portion of the stem 40 on the base end portion 43 side (valve portion 42 side) is inserted through the valve port 32 of the valve seat 33, and the stem 40 has a tip portion 41 side (an end portion opposite to the valve portion 42). The portion is inserted into the shaft hole 34 of the bearing 35. Therefore, the valve body 4 is supported by the base 30 so as to be capable of reciprocating linearly along the linear direction (arrow A1, A2 direction). Further, the valve portion 47 has a conical surface 42 k that faces the valve port 32. The urging spring 47 urges the valve body 4 in the valve closing direction (arrow A2 direction) so that the valve portion 42 is seated on the valve seat 33 and closes the valve port 32 due to elasticity. Accordingly, one end portion of the biasing spring 47 is seated on the seating surface 30 a of the base portion 30, and the other end portion of the biasing spring 47 is seated on the seating surface 42 a of the valve portion 42.

なお、基部30の一部(具体的には軸受35の一部)、弁体4の一部(具体的にはステム40の先端部41側の部分)、旋回部材5およびカム6は低圧室38に配置されている。基部30の一部である軸受35は低圧室38と外部との境界に位置する。   A part of the base 30 (specifically, a part of the bearing 35), a part of the valve body 4 (specifically, a part on the distal end 41 side of the stem 40), the turning member 5 and the cam 6 are in a low pressure chamber. 38. The bearing 35 which is a part of the base 30 is located at the boundary between the low pressure chamber 38 and the outside.

図3は、高圧バルブ3のステム40が閉弁位置から開弁方向に直線移動するときにおけるステム40の先端部41付近を模式的に示す図である。具体的には、図3は、ステム40の先端部41付近を、旋回部材5の旋回方向(矢印B1,B2方向)に沿いかつステム40の中心軸線Pに沿って切断した様子を模式的に表す断面図である。   FIG. 3 is a diagram schematically showing the vicinity of the distal end portion 41 of the stem 40 when the stem 40 of the high-pressure valve 3 linearly moves in the valve opening direction from the valve closing position. Specifically, FIG. 3 schematically shows a state in which the vicinity of the distal end portion 41 of the stem 40 is cut along the turning direction (arrow B1, B2 direction) of the turning member 5 and along the central axis P of the stem 40. It is sectional drawing to represent.

図3に示すように、ステム40の先端部41は回転体44と保持部45とによって構成されている。具体的には、ステム40の先端部41には、空洞状の収容部46が穿設されている。この収容部46には略球状をなす回転体44が収容保持されている。ステム40における先端部41以外の部分に連続し、かつ、収容部46を区画する部分が保持部45である。収容部46はステム40の先端側に開口している。収容部46の開口径は、収容部46の最大孔径よりも小さく、回転体44の直径よりも小さい。したがって、回転体44は保持部45のなかで収容部46の開口周縁部46aを構成する部分に対して回転可能に係合し、保持部45から脱落し難い。   As shown in FIG. 3, the distal end portion 41 of the stem 40 is constituted by a rotating body 44 and a holding portion 45. Specifically, a hollow accommodating portion 46 is formed in the distal end portion 41 of the stem 40. The accommodating portion 46 accommodates and holds a rotating body 44 having a substantially spherical shape. A portion that is continuous with the portion other than the tip portion 41 in the stem 40 and that partitions the accommodating portion 46 is a holding portion 45. The accommodating portion 46 is open on the distal end side of the stem 40. The opening diameter of the housing portion 46 is smaller than the maximum hole diameter of the housing portion 46 and smaller than the diameter of the rotating body 44. Therefore, the rotating body 44 is rotatably engaged with a portion of the holding portion 45 that constitutes the opening peripheral edge portion 46 a of the housing portion 46, and is difficult to fall off the holding portion 45.

先端部41を製造する方法の一例としては、図5に示す方法が挙げられる。図5に示すように、先ず柱状のステム40の先端41aにドリル等の切削工具99によって孔状の収容予定部46xを穿設し、収容予定部46xに回転体44を挿入する。そして、回転体44の一部が収容予定部46xの開口46yを経て外部に露出した状態で収容予定部46xの先端41a側をカシメることで、回転体44の一部を収容する収容部46を形成できる。そして収容部46を持つ保持部45によって、回転体44を回転可能に保持できる。なお回転体44の一部は、収容部46の外部に露出したままである。収容部46の外部に露出している回転体44の一部は、後述する接触面(加圧領域50)に接触(摺接)し、回転体44が回転するのに伴って収容部46の内部に入る。つまり回転体44は、加圧領域50との摩擦力によって回転する。   An example of a method for manufacturing the tip portion 41 is the method shown in FIG. As shown in FIG. 5, first, a hole-like accommodation planned portion 46x is drilled at the tip 41a of the columnar stem 40 by a cutting tool 99 such as a drill, and the rotating body 44 is inserted into the accommodation planned portion 46x. And the accommodating part 46 which accommodates a part of rotating body 44 by crimping the front-end | tip 41a side of the accommodating part 46x in the state exposed to the exterior through the opening 46y of the accommodating part 46x of the accommodating part 46x. Can be formed. The rotating body 44 can be rotatably held by the holding portion 45 having the accommodating portion 46. A part of the rotating body 44 remains exposed to the outside of the accommodating portion 46. A part of the rotating body 44 exposed to the outside of the accommodating portion 46 comes into contact (sliding contact) with a contact surface (pressurizing region 50) described later, and the rotating portion 44 rotates as the rotating body 44 rotates. Enter inside. That is, the rotating body 44 rotates due to the frictional force with the pressure region 50.

回転体44と保持部45とは同材料であっても良いし異材料であっても良い。また、回転体44および保持部45の硬度は特に限定しない。例えば、本実施形態においては、ステム40、40Cにおける回転体44以外の部分(ステム40の本体と呼ぶ)、および、旋回部材5、5Cは何れも機械構造用炭素鋼の一種であるS45C(炭素鋼全体の質量100質量%に対して0.45質量%の炭素を含む)を焼入れ・焼き戻し処理、高周波焼入れ焼き戻し等の熱処理をしたものを用いている。回転体44の材料は、このようなステム40の本体や旋回部材5等と同じ材料を用いても良いし、これらと異なる材料を用いても良い。なお、接触面の摩耗を抑制するためには、回転体44の材料として、ステム40の本体や旋回部材5(つまり、保持部45や接触面50)よりも硬度の高い材料を選択することが好ましい。具体的には、HRc(ロックウェル硬さ)50〜60程度の高硬度材や、炭化ケイ素等のセラミックス等が好ましく用いられる。   The rotating body 44 and the holding part 45 may be made of the same material or different materials. Further, the hardness of the rotating body 44 and the holding portion 45 is not particularly limited. For example, in this embodiment, the portions other than the rotating body 44 in the stems 40 and 40C (referred to as the main body of the stem 40) and the swiveling members 5 and 5C are all S45C (carbon) that is a kind of carbon steel for mechanical structures. Steel containing 0.45% by mass of carbon with respect to 100% by mass of the whole steel) is subjected to heat treatment such as quenching / tempering treatment, induction quenching / tempering and the like. As the material of the rotating body 44, the same material as the main body of the stem 40, the turning member 5 or the like may be used, or a material different from these may be used. In order to suppress wear of the contact surface, a material having a hardness higher than that of the main body of the stem 40 and the turning member 5 (that is, the holding portion 45 and the contact surface 50) may be selected as the material of the rotating body 44. preferable. Specifically, a high hardness material having an HRc (Rockwell hardness) of about 50 to 60, ceramics such as silicon carbide, and the like are preferably used.

図1、2に示すように、高圧バルブ3の高圧ガス室31には、圧縮機1の吐出ポート11を通じて高圧の冷媒ガスが供給されている。高圧バルブ3の弁口32が開弁すると、高圧ガス室31に存在する高圧の冷媒ガスは、弁口32を経て中間圧室36に至り、さらに、高圧通路81を介して冷凍機2の中空室20に供給される。このように高圧バルブ3が開弁することで、圧縮機1の高圧側の吐出ポート11と冷凍機2の中空室20とが通じ、高圧ガス(例えば1.5〜2.5MPa程度,これに限定されるものではない)を冷凍機2の中空室20に供給する。なお、高圧バルブ3の中間圧室36は、高圧通路81および低圧通路82を介して低圧バルブの中間圧室36Cに連絡している。   As shown in FIGS. 1 and 2, high-pressure refrigerant gas is supplied to the high-pressure gas chamber 31 of the high-pressure valve 3 through the discharge port 11 of the compressor 1. When the valve port 32 of the high-pressure valve 3 is opened, the high-pressure refrigerant gas existing in the high-pressure gas chamber 31 reaches the intermediate pressure chamber 36 through the valve port 32, and further passes through the high-pressure passage 81 to hollow the refrigerator 2. Supplied to the chamber 20. By opening the high-pressure valve 3 in this way, the discharge port 11 on the high-pressure side of the compressor 1 and the hollow chamber 20 of the refrigerator 2 communicate with each other, and high-pressure gas (for example, about 1.5 to 2.5 MPa, (Not limited) is supplied to the hollow chamber 20 of the refrigerator 2. The intermediate pressure chamber 36 of the high pressure valve 3 communicates with the intermediate pressure chamber 36C of the low pressure valve via a high pressure passage 81 and a low pressure passage 82.

図2に示すように、旋回部材5は旋回中心55を持ち、旋回中心55を中心として一方向(矢印B1方向,開弁方向)および逆方向(矢印B2方向)に旋回(揺動)可能である。旋回部材5は、ステム40に対向する対向面58と、カム6の偏芯カム部60に対向するカム従動面59とを持つ。旋回部材5の対向面58は、ステム40の先端部41に接触して先端部41を押圧する加圧領域50を持つ。図1に示すように、カム6は、回転中心60を中心として回転する回転部61と、回転部61に設けられた偏芯カム部62とを持つ。カム6の回転中心60は偏心カム部62に対して偏心しているため、偏心カム部62の周面62aと旋回部材5のカム従動面59との最短距離は、カム6の回転に伴って変化する。したがってカム6は、規定の開放タイミングで旋回部材5のカム従動面59に近づき、これを押圧する。つまりカム6は旋回部材5をこれの旋回中心55を中心として一方向(矢印B1方向)に旋回させる。この結果、旋回部材5は、加圧領域50によってステム40の先端部41をこれの中心軸線Pに沿って直線方向(開弁方向、矢印A1方向)に加圧する。このため弁体4は開弁方向(矢印A1方向)に直線移動し、弁部42が弁座33から離脱して弁口32が開弁する。つまりこのとき高圧バルブ3が開弁する。このとき加圧領域50は、旋回中心55を中心とする円弧上を位置変化する。このため加圧領域50はステム40の先端部41を構成する回転体44に対して相対的に位置変化する。したがって加圧領域50と回転体44とは摺接し、両者の間には摩擦力が生じる。しかし回転体44はステム40の先端部41を構成する他の部分(つまり保持部45)に対して回転可能であるため、摩擦力が作用した回転体44は回転し、ステム40の先端部41と加圧領域50との摩擦抵抗は増大し難い。つまり、実施形態1の低温冷凍装置によると、ステム40の先端部41と加圧領域50(以下、必要に応じて接触面50と呼ぶ)との摩擦抵抗の増大を抑制することで、ステム40の先端部41および加圧領域50の摩耗を抑制できる。   As shown in FIG. 2, the turning member 5 has a turning center 55, and can turn (swing) in one direction (arrow B1 direction, valve opening direction) and in the opposite direction (arrow B2 direction) around the turning center 55. is there. The turning member 5 has a facing surface 58 that faces the stem 40 and a cam driven surface 59 that faces the eccentric cam portion 60 of the cam 6. The facing surface 58 of the turning member 5 has a pressurizing region 50 that contacts the tip portion 41 of the stem 40 and presses the tip portion 41. As shown in FIG. 1, the cam 6 has a rotating part 61 that rotates about a rotation center 60 and an eccentric cam part 62 provided on the rotating part 61. Since the rotation center 60 of the cam 6 is eccentric with respect to the eccentric cam portion 62, the shortest distance between the circumferential surface 62 a of the eccentric cam portion 62 and the cam driven surface 59 of the turning member 5 changes as the cam 6 rotates. To do. Therefore, the cam 6 approaches the cam driven surface 59 of the turning member 5 at a specified opening timing and presses it. That is, the cam 6 turns the turning member 5 in one direction (arrow B1 direction) around the turning center 55 thereof. As a result, the turning member 5 pressurizes the tip end portion 41 of the stem 40 along the central axis P in the linear direction (the valve opening direction, the direction of the arrow A1) by the pressurizing region 50. For this reason, the valve body 4 linearly moves in the valve opening direction (arrow A1 direction), the valve portion 42 is detached from the valve seat 33, and the valve port 32 is opened. That is, at this time, the high-pressure valve 3 is opened. At this time, the pressure region 50 changes its position on an arc centered on the turning center 55. For this reason, the position of the pressurizing region 50 changes relative to the rotating body 44 constituting the distal end portion 41 of the stem 40. Therefore, the pressurizing region 50 and the rotating body 44 are in sliding contact with each other, and a frictional force is generated between them. However, since the rotating body 44 can rotate with respect to other parts (that is, the holding portion 45) constituting the distal end portion 41 of the stem 40, the rotating body 44 to which the frictional force is applied rotates and the distal end portion 41 of the stem 40 is rotated. And the pressure resistance 50 are unlikely to increase in frictional resistance. That is, according to the low-temperature refrigeration apparatus of the first embodiment, the stem 40 is suppressed by suppressing an increase in frictional resistance between the distal end portion 41 of the stem 40 and the pressure region 50 (hereinafter referred to as the contact surface 50 as necessary). The wear of the tip 41 and the pressure region 50 can be suppressed.

なお、高圧バルブ3の開弁後には、カム6の偏芯カム部62が旋回部材5のカム従動面59から退避するため、カム6による旋回部材5への押圧力が解除される。したがって、付勢バネ47の閉弁方向(矢印A2方向)の付勢力により、弁体4は閉弁方向(矢印A2方向)に付勢され、弁部42が弁座33に着座して弁口32を閉鎖する。つまり高圧バルブ3が閉弁する。   Since the eccentric cam portion 62 of the cam 6 is retracted from the cam driven surface 59 of the turning member 5 after the high pressure valve 3 is opened, the pressing force applied to the turning member 5 by the cam 6 is released. Therefore, the urging force of the urging spring 47 in the valve closing direction (arrow A2 direction) urges the valve body 4 in the valve closing direction (arrow A2 direction), and the valve portion 42 is seated on the valve seat 33 and the valve opening. 32 is closed. That is, the high pressure valve 3 is closed.

本実施形態においては、ステム40の先端部41(すなわち回転体44)と接触面50とは離接可能であり、高圧バルブ3の開弁時(つまり回転体44と加圧領域50とが接触しているとき)に両者は摺接する。また、高圧バルブ3の閉弁時には両者は離間する。接触面50の摩耗抑制を考慮すると、高圧バルブ3の閉弁時には回転体44と接触面50とが離間するのが好ましい。しかし本発明の低温冷凍装置における回転体44および接触面50の態様はこれに限定されない。例えば、回転体44と接触面50とは常に摺接していても良い。そして接触面50は、所定のタイミングで回転体44を開弁方向に強く押圧して弁体4を開弁方向に移動させ、それ以外の時には回転体44を僅かに(弁部42が弁座33に着座し続ける程度に)開弁方向に押圧していても良い。   In the present embodiment, the distal end portion 41 (that is, the rotating body 44) of the stem 40 and the contact surface 50 can be separated from each other, and the high pressure valve 3 is opened (that is, the rotating body 44 and the pressurizing region 50 are in contact). The two are in sliding contact with each other. Further, when the high pressure valve 3 is closed, they are separated from each other. In consideration of wear suppression of the contact surface 50, it is preferable that the rotating body 44 and the contact surface 50 are separated when the high-pressure valve 3 is closed. However, the aspect of the rotating body 44 and the contact surface 50 in the low-temperature refrigeration apparatus of the present invention is not limited to this. For example, the rotating body 44 and the contact surface 50 may always be in sliding contact. The contact surface 50 strongly presses the rotating body 44 in the valve opening direction at a predetermined timing to move the valve body 4 in the valve opening direction. In other cases, the rotating body 44 is slightly changed (the valve portion 42 is the valve seat). It may be pressed in the valve opening direction (to the extent that it continues to be seated on 33).

次に、低圧バルブ7について説明する。低圧バルブ7は高圧バルブ3と基本的には同様の構造を持つ。図1に示すように、低圧バルブ7は、基部30Cと、軸受35Cと、弁体4Cと、閉弁用の付勢バネ47Cと、旋回部材5Cとを有する。基部30Cは、冷凍機2の中空室20から冷媒ガスが供給される中間圧室36Cと、弁口32Cを形成する弁座33Cと、軸孔34Cを持つ軸受35Cとを有する。低圧バルブ7の中間圧室36Cは、低圧通路82を介して冷凍機2の中空室20に連絡するとともに、弁口32Cを介して低圧室38に連絡する。低圧バルブ7の基部30Cは中間圧室36Cを持ち、中間圧室36Cの内部には弁体4Cの弁部42Cが配置されている。中間圧室36は弁座33Cにより区画されている。弁座33Cの弁口32Cにはステム40の基端部43C側の部分が挿通されている。弁体4Cは弁体4と略同形状であり、弁体4と同様に、付勢バネ47Cによって閉弁方向(図1中矢印A4方向)に付勢されている。また、ステム40Cの先端部41C側の部分は、基部30Cとは別体であり基部30Cと離間配置されている軸受35Cの軸孔34Cに挿通されている。軸受35Cは基部30Cと旋回部材5Cとの間に配置されている。なお、基部30Cの一部(具体的には弁座33Cの一部)、弁体4Cの一部(具体的にはステム40Cの先端部41C側の部分)、軸受35C、旋回部材5Cは低圧室38に配置されている。弁座33Cは低圧室38と外部との境界に位置する。   Next, the low pressure valve 7 will be described. The low-pressure valve 7 has basically the same structure as the high-pressure valve 3. As shown in FIG. 1, the low pressure valve 7 has a base 30C, a bearing 35C, a valve body 4C, a biasing spring 47C for valve closing, and a turning member 5C. The base 30C includes an intermediate pressure chamber 36C to which refrigerant gas is supplied from the hollow chamber 20 of the refrigerator 2, a valve seat 33C that forms a valve port 32C, and a bearing 35C having a shaft hole 34C. The intermediate pressure chamber 36C of the low pressure valve 7 communicates with the hollow chamber 20 of the refrigerator 2 through the low pressure passage 82 and also communicates with the low pressure chamber 38 through the valve port 32C. The base 30C of the low pressure valve 7 has an intermediate pressure chamber 36C, and the valve portion 42C of the valve body 4C is disposed inside the intermediate pressure chamber 36C. The intermediate pressure chamber 36 is partitioned by a valve seat 33C. A portion of the stem 40 on the base end portion 43C side is inserted through the valve port 32C of the valve seat 33C. The valve body 4C has substantially the same shape as the valve body 4, and is urged in the valve closing direction (in the direction of arrow A4 in FIG. 1) by the urging spring 47C in the same manner as the valve body 4. Further, a portion of the stem 40C on the side of the distal end portion 41C is inserted into a shaft hole 34C of a bearing 35C that is separate from the base portion 30C and is spaced from the base portion 30C. The bearing 35C is disposed between the base 30C and the turning member 5C. Note that a part of the base 30C (specifically, part of the valve seat 33C), a part of the valve body 4C (specifically, a part on the tip end 41C side of the stem 40C), the bearing 35C, and the turning member 5C are low pressure. It is arranged in the chamber 38. The valve seat 33C is located at the boundary between the low pressure chamber 38 and the outside.

低圧バルブ7が開弁すると、低圧バルブ7の中間圧室36Cの冷媒ガスは、弁口32Cを介して低圧室38に至り、更に圧縮機1の吸込ポート12に吸い込まれる。このように低圧バルブ7の開弁により、冷凍機2の中空室20は、低圧通路82、低圧バルブ7の弁口32C、および低圧室38を介して、圧縮機1の低圧側の吸込ポート12に通じる。吸込ポート12に吸い込まれた冷媒ガスは、圧縮機1により圧縮され、再び高圧の冷媒ガスとして高圧バルブ3の高圧ガス室31に供給される。   When the low pressure valve 7 is opened, the refrigerant gas in the intermediate pressure chamber 36 </ b> C of the low pressure valve 7 reaches the low pressure chamber 38 through the valve port 32 </ b> C, and is further sucked into the suction port 12 of the compressor 1. Thus, by opening the low pressure valve 7, the hollow chamber 20 of the refrigerator 2 passes through the low pressure passage 82, the valve port 32 </ b> C of the low pressure valve 7, and the low pressure chamber 38, and the suction port 12 on the low pressure side of the compressor 1. Leads to The refrigerant gas sucked into the suction port 12 is compressed by the compressor 1 and supplied again to the high pressure gas chamber 31 of the high pressure valve 3 as a high pressure refrigerant gas.

上記した低圧バルブ7において、弁体4Cは、軸受35Cの軸孔34Cに挿通され、直線方向(矢印A3,A4方向)に沿って往復直動可能に支持されている。弁体4Cは、上述したように、弁体4と略同形状であり、弁体4と同様のステム40C、および、ステム40Cの基端部43Cに連設されている弁部42Cを有する。付勢バネ47Cは、弁体4Cを閉弁方向(矢印A4方向)、すなわち、弁部42Cが弁座33Cに着座して弁口32Cを閉鎖する方向に付勢する。旋回部材5Cの対向面58Cは、ステム40Cの先端部41Cに接触して先端部41Cを加圧する加圧領域50Cを有する。加圧領域50Cは、加圧領域50と同様に、本発明の低温冷凍装置における接触面に相当する。以下、必要に応じて加圧領域50Cを接触面50Cと呼ぶ。   In the low-pressure valve 7 described above, the valve body 4C is inserted into the shaft hole 34C of the bearing 35C and supported so as to be capable of reciprocating linearly along the linear direction (arrow A3, A4 direction). As described above, the valve body 4C has substantially the same shape as the valve body 4, and includes the stem 40C similar to the valve body 4 and the valve portion 42C connected to the base end portion 43C of the stem 40C. The urging spring 47C urges the valve body 4C in the valve closing direction (arrow A4 direction), that is, the direction in which the valve portion 42C is seated on the valve seat 33C and the valve port 32C is closed. The facing surface 58C of the turning member 5C has a pressurizing region 50C that contacts the tip portion 41C of the stem 40C and pressurizes the tip portion 41C. The pressurizing region 50C corresponds to the contact surface in the low-temperature refrigeration apparatus of the present invention, like the pressurizing region 50. Hereinafter, the pressure region 50C is referred to as a contact surface 50C as necessary.

旋回部材5Cは旋回中心55Cを持ち、旋回中心55Cを中心として一方向(矢印B3方向,開弁方向)および逆方向(矢印B4方向)に旋回可能である。旋回部材5Cが一方向(矢印B3方向)へ旋回すると、旋回部材5Cの加圧領域50Cは、弁体4Cのステム40Cの先端部41Cと接触した状態で、先端部41Cを開弁方向(矢印A3方向)に加圧する。これにより弁部42Cはステム40Cの中心軸線PCに沿って直線移動し、弁座33Cから離脱する。したがって弁口32Cが開弁する。図4に示すように、ステム40Cの先端部41Cは回転体44Cと、収容部46Cを持つ保持部45Cとで構成されている。回転体44Cは、加圧領域50Cとの摩擦力によって回転する。このためステム40Cの先端部41Cと加圧領域50Cとの摩擦抵抗を小さくでき、ステム40Cの先端部41Cおよび加圧領域50Cの摩耗を抑制できる。なお、低圧バルブ7の開弁後には、カム6の回転に伴い、カム6の偏芯カム部62による旋回部材5Cのカム従動面59Cへの押圧力が解除される。したがって、付勢バネ47Cの付勢力により弁体4Cは閉弁方向(矢印A4方向)に付勢され、弁部42Cが弁座33Cに着座して、弁口32Cを閉鎖させる。つまり低圧バルブ7が閉弁する。   The turning member 5C has a turning center 55C, and can turn in one direction (arrow B3 direction, valve opening direction) and the opposite direction (arrow B4 direction) around the turning center 55C. When the turning member 5C turns in one direction (arrow B3 direction), the pressurizing region 50C of the turning member 5C contacts the tip portion 41C of the stem 40C of the valve body 4C while opening the tip portion 41C in the valve opening direction (arrow). (A3 direction). As a result, the valve portion 42C moves linearly along the central axis PC of the stem 40C and leaves the valve seat 33C. Accordingly, the valve port 32C is opened. As shown in FIG. 4, the distal end portion 41C of the stem 40C is composed of a rotating body 44C and a holding portion 45C having an accommodating portion 46C. The rotating body 44C rotates by a frictional force with the pressurizing region 50C. For this reason, the frictional resistance between the tip portion 41C of the stem 40C and the pressure region 50C can be reduced, and wear of the tip portion 41C of the stem 40C and the pressure region 50C can be suppressed. In addition, after the low pressure valve 7 is opened, as the cam 6 rotates, the pressing force applied to the cam driven surface 59C of the turning member 5C by the eccentric cam portion 62 of the cam 6 is released. Therefore, the valve body 4C is urged in the valve closing direction (arrow A4 direction) by the urging force of the urging spring 47C, and the valve portion 42C is seated on the valve seat 33C to close the valve port 32C. That is, the low pressure valve 7 is closed.

実施形態1においては、二つの弁体4、4Cにおいて、ステム40、40Cの先端部41、41Cを回転体44、44Cと保持部45、45Cとで構成したが、一方のステム40の先端部41のみを回転体44と保持部45とで構成しても良い。または、他方のステム40Cの先端部41Cのみを回転体44Cと保持部45Cとで構成しても良い。この場合においても、接触面50と接触面50Cとの何れかにおいて摩耗抑制効果が発揮される。   In the first embodiment, in the two valve bodies 4 and 4C, the tip portions 41 and 41C of the stems 40 and 40C are configured by the rotating bodies 44 and 44C and the holding portions 45 and 45C. Only 41 may be constituted by the rotating body 44 and the holding portion 45. Alternatively, only the tip portion 41C of the other stem 40C may be constituted by the rotating body 44C and the holding portion 45C. Even in this case, the wear suppression effect is exhibited in either the contact surface 50 or the contact surface 50C.

(実施形態2)
図6は実施形態2の概念を示す。図7は実施形態2の低温冷凍装置における高圧バルブ付近を模式的に示す断面図である。図8は高圧バルブ3のステム40が閉弁位置から開弁方向に直線移動するときにおけるステム40の先端部41付近を模式的に示す図である。図9は低圧バルブ7のステム40Cが閉弁位置から開弁方向に直線移動するときにおけるステム40Cの先端部41C付近を模式的に示す図である。
(Embodiment 2)
FIG. 6 shows the concept of the second embodiment. FIG. 7 is a cross-sectional view schematically showing the vicinity of the high-pressure valve in the low-temperature refrigeration apparatus of the second embodiment. FIG. 8 is a diagram schematically showing the vicinity of the tip 41 of the stem 40 when the stem 40 of the high-pressure valve 3 linearly moves in the valve opening direction from the valve closing position. FIG. 9 is a diagram schematically showing the vicinity of the tip portion 41C of the stem 40C when the stem 40C of the low pressure valve 7 linearly moves in the valve opening direction from the valve closing position.

実施形態2におけるステム40、40Cは実施形態1におけるステム40、40Cと異なっている。具体的には、図7および図8に示すように、ステム40の先端部41は実施形態1と同様に回転体44および保持部45によって構成されているが、保持部45の内部に形成されている収容部46はステム40の長手方向に沿って延びる長溝状をなす。なおかつ、収容部46の内部には回転体44とともに潤滑剤48が収容されている。図9に示すように、ステム40Cに関しても同様である。潤滑剤48の種類は特に限定しないが、フッ素系グリース、カルシウム石鹸基グリース、カルシウム複合石鹸基グリース、リチウム石鹸基グリース、シリコングリース等が好ましく用いられ、特に蒸気圧が低い材料を用いるのが好ましい。収容部46に、回転体44とともに潤滑剤48を収容したことで、回転体44と保持部45との摩擦抵抗が低減され、回転体44が回転し易くなる。このため接触面50とステム40の先端部41との摩擦抵抗がより信頼性高く軽減される。また、回転体44には収容部46中の潤滑剤48が付着するため、接触面50と回転体44との間には潤滑剤48が少しずつ供給される。つまり、接触面50と回転体44との間には比較的長期間にわたって潤滑剤48が供給され続け、潤滑剤48によるステム40の先端部41および接触面50の摩耗低減効果が比較的長期間維持される。これは、ステム40Cの先端部41Cに関しても同様であり、接触面50Cと回転体44Cとの間には比較的長期間にわたって潤滑剤48が供給され続け、潤滑剤48Cによるステム40Cの先端部41Cおよび接触面50Cの摩耗低減効果が比較的長期間維持される。なお、本実施形態の収容部46は、実施形態1の収容部46と同様に切削工具99によって穿設することもできる。あるいは、ステム40の材料として金属管を用い、金属管内部に予め形成されている空洞を収容部46として利用することもできる。収容部46の形成方法はこの限りではない。実施形態2においては、収容部46、46Cは所定長さ直進し、奥側(弁部42、42C側)において屈曲している。このためステム40、40Cの側面には小さな開口が形成されている。この開口は中空圧室36に開口する通気口49である。   The stems 40 and 40C in the second embodiment are different from the stems 40 and 40C in the first embodiment. Specifically, as shown in FIGS. 7 and 8, the distal end portion 41 of the stem 40 is configured by the rotating body 44 and the holding portion 45 as in the first embodiment, but is formed inside the holding portion 45. The accommodating portion 46 has a long groove shape extending along the longitudinal direction of the stem 40. In addition, a lubricant 48 is housed together with the rotating body 44 in the housing portion 46. The same applies to the stem 40C as shown in FIG. The type of the lubricant 48 is not particularly limited, but fluorine-based grease, calcium soap base grease, calcium composite soap base grease, lithium soap base grease, silicon grease and the like are preferably used, and it is particularly preferable to use a material having a low vapor pressure. . By accommodating the lubricant 48 together with the rotating body 44 in the housing portion 46, the frictional resistance between the rotating body 44 and the holding portion 45 is reduced, and the rotating body 44 is easily rotated. For this reason, the frictional resistance between the contact surface 50 and the tip portion 41 of the stem 40 is reduced more reliably. Further, since the lubricant 48 in the accommodating portion 46 adheres to the rotating body 44, the lubricant 48 is supplied little by little between the contact surface 50 and the rotating body 44. That is, the lubricant 48 continues to be supplied between the contact surface 50 and the rotating body 44 for a relatively long time, and the effect of reducing the wear of the tip portion 41 of the stem 40 and the contact surface 50 by the lubricant 48 is relatively long. Maintained. The same applies to the tip portion 41C of the stem 40C, and the lubricant 48 is continuously supplied between the contact surface 50C and the rotating body 44C for a relatively long period of time, and the tip portion 41C of the stem 40C by the lubricant 48C. Further, the effect of reducing the wear on the contact surface 50C is maintained for a relatively long time. In addition, the accommodating part 46 of this embodiment can also be drilled with the cutting tool 99 similarly to the accommodating part 46 of Embodiment 1. FIG. Alternatively, a metal tube can be used as the material of the stem 40 and a cavity formed in advance inside the metal tube can be used as the accommodating portion 46. The formation method of the accommodating part 46 is not this limitation. In the second embodiment, the accommodating portions 46 and 46C go straight for a predetermined length and bend on the back side (the valve portions 42 and 42C side). For this reason, small openings are formed on the side surfaces of the stems 40 and 40C. This opening is a vent 49 that opens into the hollow pressure chamber 36.

ところで、図6に示すように、実施形態2における冷凍機2Eは、高圧バルブ3および低圧バルブ7を介して圧縮機1に連絡するパルス管冷凍機である。この冷凍機2Eには、蓄冷材を持つ蓄冷器24と、中空室90を持つパルス管91とが並設されている。圧縮機1、高圧バルブ3及び低圧バルブ7は、パルス管冷凍機2Eに供給する冷媒ガスの圧力波形を発生させる圧力波形発生装置として機能する。蓄冷器24は、高圧通路81を介して高圧バルブ3に連絡し、かつ、低圧通路82を介して低圧バルブ7に連絡する。パルス管91は高温端91aと低温端91cとを持つ。高温端91a側には位相制御機構95が配置されている。位相制御機構95は、蓄冷器24の高温端24a、パルス管91の高温端91aと高圧通路81および低圧通路82との間に配置されており、パルス管91の中空室90に供給される冷媒ガスの流れと圧力間の位相差を調整する。位相制御機構95は開閉バルブ、バッファタンク又はイナータンスチューブ機構で形成できる。   By the way, as shown in FIG. 6, the refrigerator 2E in Embodiment 2 is a pulse tube refrigerator which communicates with the compressor 1 through the high pressure valve 3 and the low pressure valve 7. In this refrigerator 2E, a regenerator 24 having a regenerator material and a pulse tube 91 having a hollow chamber 90 are juxtaposed. The compressor 1, the high pressure valve 3, and the low pressure valve 7 function as a pressure waveform generator that generates a pressure waveform of the refrigerant gas supplied to the pulse tube refrigerator 2E. The regenerator 24 communicates with the high pressure valve 3 via the high pressure passage 81 and communicates with the low pressure valve 7 via the low pressure passage 82. The pulse tube 91 has a high temperature end 91a and a low temperature end 91c. A phase control mechanism 95 is disposed on the high temperature end 91a side. The phase control mechanism 95 is disposed between the high temperature end 24 a of the regenerator 24, the high temperature end 91 a of the pulse tube 91, the high pressure passage 81 and the low pressure passage 82, and is supplied to the hollow chamber 90 of the pulse tube 91. Adjust the phase difference between gas flow and pressure. The phase control mechanism 95 can be formed by an open / close valve, a buffer tank, or an inertance tube mechanism.

まず、低圧バルブ7が閉弁し高圧バルブ3が開弁する。これにより圧縮機1の吐出ポート11から供給された高圧の冷媒ガスは、高圧バルブ3、高圧通路81を介して、蓄冷器24の高温端24a及び位相制御機構95に至り、蓄冷器24を経て蓄冷器24の低温端24c、パルス管91の高温端91aから中空室90に供給される。その後、高圧バルブ3が閉弁し、低圧バルブ7が開弁する。この状態で、パルス管91の中空室90の低温端91c側の冷媒ガスは蓄冷器24に接触して冷熱を蓄冷器24に蓄冷させるとともに、低圧通路82を経て低圧バルブ7に供給される。低圧バルブ7が開弁すると、冷媒ガスは、低圧バルブ7を介して低圧室38に供給され、ひいては吸込ポート12から圧縮機1に吸い込まれ、再び高圧ガスとなる。このような動作が繰り返されて冷凍機2Eのパルス管91の低温端91cにおいて寒冷が発生する。   First, the low pressure valve 7 is closed and the high pressure valve 3 is opened. As a result, the high-pressure refrigerant gas supplied from the discharge port 11 of the compressor 1 reaches the high-temperature end 24 a of the regenerator 24 and the phase control mechanism 95 via the high-pressure valve 3 and the high-pressure passage 81, and passes through the regenerator 24. The hollow chamber 90 is supplied from the low temperature end 24 c of the regenerator 24 and the high temperature end 91 a of the pulse tube 91. Thereafter, the high pressure valve 3 is closed and the low pressure valve 7 is opened. In this state, the refrigerant gas on the low temperature end 91 c side of the hollow chamber 90 of the pulse tube 91 contacts the regenerator 24 to store the cold heat in the regenerator 24 and is supplied to the low pressure valve 7 through the low pressure passage 82. When the low-pressure valve 7 is opened, the refrigerant gas is supplied to the low-pressure chamber 38 via the low-pressure valve 7 and is then sucked into the compressor 1 from the suction port 12 and becomes high-pressure gas again. Such an operation is repeated to generate cold at the low temperature end 91c of the pulse tube 91 of the refrigerator 2E.

(実施形態3)
図10は実施形態3の低温冷凍装置における高圧バルブ付近を模式的に示す断面図である。図11は実施形態3の低温冷凍装置における低圧バルブ付近を模式的に示す断面図である。
(Embodiment 3)
FIG. 10 is a cross-sectional view schematically showing the vicinity of the high-pressure valve in the low-temperature refrigeration apparatus of Embodiment 3. FIG. 11 is a cross-sectional view schematically showing the vicinity of a low-pressure valve in the low-temperature refrigeration apparatus of Embodiment 3.

図10、11に示すように、弁体4、4Cには、実施形態2と同様に長溝状の収容部46、46Cが設けられている。収容部46、46Cには回転体44、44Cとともに潤滑剤48、48Cが収容されている。実施形態3においては、収容部46、46Cはステム40の基端部43に向けて延び、通気口49、49Cを介して基部30、30Cの内部に開口している。より具体的には、弁体4における弁部42よりもさらに端側の部分には、収容部46に連絡し高圧ガス室31に開口する通気口49が設けられている。弁体4Cにもまた、収容部46Cに連絡し中間圧室36に開口する通気口49Cが設けられている。   As shown in FIGS. 10 and 11, the valve bodies 4, 4 </ b> C are provided with long groove-like accommodation portions 46, 46 </ b> C as in the second embodiment. Lubricants 48 and 48C are accommodated in the accommodating portions 46 and 46C together with the rotating bodies 44 and 44C. In the third embodiment, the accommodating portions 46 and 46C extend toward the base end portion 43 of the stem 40, and open to the inside of the base portions 30 and 30C through the vent holes 49 and 49C. More specifically, a vent 49 that communicates with the accommodating portion 46 and opens into the high-pressure gas chamber 31 is provided in a portion further on the end side than the valve portion 42 in the valve body 4. The valve body 4 </ b> C is also provided with a vent 49 </ b> C that communicates with the accommodating portion 46 </ b> C and opens into the intermediate pressure chamber 36.

上述したように、弁体4の収容部46は通気口49を介して高圧ガス室31に連絡し、弁体4Cの収容部46Cは通気口49Cを介して中間圧室36に連絡している。高圧バルブ3の開弁時において、高圧ガス室31内のガス圧は低圧室38内のガス圧よりも高い。このため、収容部46内の潤滑剤48は、冷媒ガスによって、低圧室38方向(つまりステム40の先端部41よりも外側)に押圧される。換言すると、潤滑剤48は冷媒ガスによって押し出され易い。このため、実施形態3の低温冷凍装置においては、収容部46に潤滑剤48が詰まり難く、ステム40の先端部41と接触面50との間に潤滑剤48が安定して供給され易い。したがって実施形態3の低温冷凍装置によると、回転体44が安定して回転し易く、ステム40の先端部41および接触面50の摩耗を抑制できる。また、比較的流動性の低い潤滑剤48を用いることも可能である。   As described above, the accommodating portion 46 of the valve body 4 communicates with the high-pressure gas chamber 31 via the vent 49, and the accommodating portion 46C of the valve body 4C communicates with the intermediate pressure chamber 36 via the vent 49C. . When the high pressure valve 3 is opened, the gas pressure in the high pressure gas chamber 31 is higher than the gas pressure in the low pressure chamber 38. For this reason, the lubricant 48 in the accommodating portion 46 is pressed toward the low-pressure chamber 38 (that is, outside the tip portion 41 of the stem 40) by the refrigerant gas. In other words, the lubricant 48 is easily pushed out by the refrigerant gas. For this reason, in the low temperature refrigeration apparatus of the third embodiment, the lubricant 48 is unlikely to be clogged in the housing portion 46, and the lubricant 48 is easily supplied stably between the distal end portion 41 of the stem 40 and the contact surface 50. Therefore, according to the low temperature refrigeration apparatus of the third embodiment, the rotating body 44 can easily rotate stably, and wear of the tip portion 41 of the stem 40 and the contact surface 50 can be suppressed. It is also possible to use a lubricant 48 having a relatively low fluidity.

同様に、低圧バルブ7の開弁時において、中間圧室36内のガス圧は低圧室38内のガス圧よりも高い。このため収容部46C内の潤滑剤48Cは、冷媒ガスによって、低圧室38方向に押圧される。したがってステム40Cの先端部41Cと接触面50Cとの間に潤滑剤48が安定して供給され易く、回転体44Cが安定して回転し易い。ひいては、ステム40Cの先端部41Cおよび接触面50Cの摩耗を抑制できる。   Similarly, when the low pressure valve 7 is opened, the gas pressure in the intermediate pressure chamber 36 is higher than the gas pressure in the low pressure chamber 38. For this reason, the lubricant 48C in the accommodating portion 46C is pressed toward the low pressure chamber 38 by the refrigerant gas. Therefore, the lubricant 48 is easily supplied stably between the tip portion 41C of the stem 40C and the contact surface 50C, and the rotating body 44C is easily rotated stably. As a result, wear of the tip portion 41C and the contact surface 50C of the stem 40C can be suppressed.

なお、高圧バルブ3の開弁時において、中間圧室36内の圧力および弁口32内の圧力もまた、低圧室38内の圧力よりも高い。このため、通気口49が中間圧室36または弁口32に開口する場合にも、同様に、潤滑剤48の押出し効果が発揮される。つまり、通気口49は基部30の内部に開口すれば良く、その位置は特に限定しない。また、低圧バルブ3の開弁時において、弁口32C内の圧力は低圧室38内の圧力よりも高い。このため、通気口49Cが弁口32Cに開口する場合にも、同様に、潤滑剤48の押出し効果が発揮される。つまり、通気口49Cもまた基部30Cの内部に開口すれば良く、その位置は特に限定しない。   When the high pressure valve 3 is opened, the pressure in the intermediate pressure chamber 36 and the pressure in the valve port 32 are also higher than the pressure in the low pressure chamber 38. For this reason, even when the vent 49 opens to the intermediate pressure chamber 36 or the valve port 32, the push-out effect of the lubricant 48 is similarly exhibited. That is, the vent 49 may be opened inside the base 30 and the position thereof is not particularly limited. Further, when the low pressure valve 3 is opened, the pressure in the valve port 32C is higher than the pressure in the low pressure chamber 38. For this reason, even when the vent 49C opens to the valve port 32C, the push-out effect of the lubricant 48 is similarly exhibited. That is, the vent 49C may also be opened inside the base 30C, and the position thereof is not particularly limited.

(実施形態4)
図12は高圧バルブ3のステム40が閉弁位置から開弁方向に直線移動し、かつ、低圧バルブ7のステム40Cが閉弁位置に配置されているときにおけるステム40の先端部41付近、および、ステム40Cの先端部41C付近を模式的に示す図である。実施形態4の低温冷凍装置は、旋回部材5、5Cを持たないこと、高圧バルブ3、低圧バルブ7およびカム6の位置関係、弁体4、4Cの形状およびカム6の形状以外は実施形態1と同じものである。
(Embodiment 4)
FIG. 12 shows the vicinity of the tip 41 of the stem 40 when the stem 40 of the high pressure valve 3 moves linearly from the valve closing position in the valve opening direction and the stem 40C of the low pressure valve 7 is arranged at the valve closing position. FIG. 4 is a diagram schematically showing the vicinity of a tip portion 41C of a stem 40C. The low temperature refrigeration apparatus of the fourth embodiment is the same as that of the first embodiment except that the rotating members 5 and 5C are not provided, the positional relationship between the high pressure valve 3, the low pressure valve 7 and the cam 6, the shape of the valve bodies 4 and 4C, and the shape of the cam 6. Is the same.

カム6は2つの偏心カム部62a、62bを持つ。カム6の回転中心60は、偏心カム部62aおよび62bの両方に対して偏心している。また、2つの偏心カム部62a、62bは互いに偏心している。   The cam 6 has two eccentric cam portions 62a and 62b. The rotation center 60 of the cam 6 is eccentric with respect to both the eccentric cam portions 62a and 62b. The two eccentric cam portions 62a and 62b are eccentric from each other.

弁体4は、カム6の回転軸60に直交する方向に往復移動可能である。また、弁体4のステム40の先端部41は、偏心カム62aの周面50に対して離接可能であるように配置されている。弁体4Cのステム40Cの先端部41Cは、偏心カム62bの周面50Cに対して離接可能であるように配置されている。2つの基部30、30Cは互いに隣接している。基部30には弁体4が往復直動可能に支持されている。基部30Cおよび軸受35Cには、弁体4Cが往復直動可能に支持されている。偏心カム62aと偏心カム62bとは互いに偏心しているため、偏心カム62aの周面50が弁体4におけるステム40の先端部41に接触(摺接)している間は偏心カム62bの周面50Cは弁体4Cにおけるステム40Cの先端部41Cと離間する。また、偏心カム62bの周面50Cが弁体4Cにおけるステム40Cの先端部41Cに接触(摺接)している間は偏心カム62aの周面50は弁体4におけるステム40の先端部41と離間する。つまり、カム6は偏心カム62aの周面50と、偏心カム62bの周面50Cとによって、弁体4と弁体4Cとを交互に押圧する。このため高圧バルブ3と低圧バルブ7とは、実施形態1の低温冷凍装置と同様に、交互に開閉する。なお、実施形態3の低温冷凍装置における偏心カム62aの周面50および偏心カム62bの周面50Cは、本発明の低温冷凍装置における接触面に相当する。   The valve body 4 can reciprocate in a direction orthogonal to the rotation shaft 60 of the cam 6. Moreover, the front-end | tip part 41 of the stem 40 of the valve body 4 is arrange | positioned so that it can detach | separate with respect to the surrounding surface 50 of the eccentric cam 62a. The distal end portion 41C of the stem 40C of the valve body 4C is disposed so as to be detachable from the peripheral surface 50C of the eccentric cam 62b. The two base portions 30 and 30C are adjacent to each other. The valve body 4 is supported by the base 30 so that reciprocation is possible. The valve body 4C is supported by the base 30C and the bearing 35C so as to be capable of reciprocating linearly. Since the eccentric cam 62a and the eccentric cam 62b are eccentric from each other, the peripheral surface of the eccentric cam 62b is in contact with the peripheral surface 50 of the eccentric cam 62a while being in contact (sliding contact) with the tip 41 of the stem 40 of the valve body 4. 50C is separated from the tip portion 41C of the stem 40C in the valve body 4C. Further, while the peripheral surface 50C of the eccentric cam 62b is in contact (sliding contact) with the tip portion 41C of the stem 40C in the valve body 4C, the peripheral surface 50 of the eccentric cam 62a is in contact with the tip portion 41 of the stem 40 in the valve body 4. Separate. That is, the cam 6 presses the valve body 4 and the valve body 4C alternately by the peripheral surface 50 of the eccentric cam 62a and the peripheral surface 50C of the eccentric cam 62b. For this reason, the high-pressure valve 3 and the low-pressure valve 7 open and close alternately as in the low-temperature refrigeration apparatus of the first embodiment. Note that the peripheral surface 50 of the eccentric cam 62a and the peripheral surface 50C of the eccentric cam 62b in the low-temperature refrigeration apparatus of Embodiment 3 correspond to contact surfaces in the low-temperature refrigeration apparatus of the present invention.

実施形態4の低温冷凍装置においては、偏心カム62a、62bによって接触面50、50Cを交互に押圧して高圧バルブ3と低圧バルブ7とを交互に開閉する。このような場合にも、弁体4、4Cのステム40、40Cの先端部41、41Cを回転体44、44Cで構成することで、実施形態1の低温冷凍装置と同様に、先端部41、41Cと接触面50、50Cとの摩擦抵抗を低減でき、ステム40、40Cの先端部41、41Cおよび接触面50、50Cの摩耗を抑制できる。   In the low temperature refrigeration apparatus of the fourth embodiment, the contact surfaces 50 and 50C are alternately pressed by the eccentric cams 62a and 62b to open and close the high pressure valve 3 and the low pressure valve 7 alternately. Even in such a case, by configuring the tip portions 41 and 41C of the stems 40 and 40C of the valve bodies 4 and 4C with the rotating bodies 44 and 44C, the tip portion 41 and The frictional resistance between 41C and the contact surfaces 50, 50C can be reduced, and wear of the tip portions 41, 41C of the stems 40, 40C and the contact surfaces 50, 50C can be suppressed.

(実施形態5)
図13は高圧バルブ3のステム40が閉弁位置から開弁方向に直線移動するときにおけるステム40の先端部41付近を模式的に示す図である。図14は低圧バルブ7のステム40Cが閉弁位置から開弁方向に直線移動するときにおけるステム40Cの先端部41C付近を模式的に示す図である。実施形態5の低温冷凍装置は、ステム40の先端部41およびステム40Cの先端部41Cの形状以外は、実施形態1と同じものである。
(Embodiment 5)
FIG. 13 is a view schematically showing the vicinity of the distal end portion 41 of the stem 40 when the stem 40 of the high-pressure valve 3 linearly moves in the valve opening direction from the valve closing position. FIG. 14 is a diagram schematically showing the vicinity of the tip portion 41C of the stem 40C when the stem 40C of the low pressure valve 7 linearly moves in the valve opening direction from the valve closing position. The low-temperature refrigeration apparatus of the fifth embodiment is the same as that of the first embodiment except for the shapes of the distal end portion 41 of the stem 40 and the distal end portion 41C of the stem 40C.

図13に示すように、弁体4におけるステム40の先端部41は、ローラー状の回転体44と、回転体44を保持する保持部45とで構成されている。回転体44は一対の回転軸44aを持つ。回転軸44aは凸状をなし、保持部45に貫通形成されている一対の軸支孔45aに挿入されている。回転体44の一部は収容部46に収容され、他の一部は収容部46の外部に露出している。なお、実施形態4の低温冷凍装置においては、収容部46は潤滑剤48を収容していない。図14に示すように、弁体4Cにおけるステム40Cの先端部41Cもまた、ローラー状の回転体44Cと、回転体44Cを保持する保持部45Cとで構成されている。回転体44Cは回転体44と略同形状であり、保持部45Cもまた保持部45と略同形状である。収容部46Cは収容部46と同様に潤滑剤48を収容していない。   As shown in FIG. 13, the distal end portion 41 of the stem 40 in the valve body 4 includes a roller-like rotating body 44 and a holding portion 45 that holds the rotating body 44. The rotating body 44 has a pair of rotating shafts 44a. The rotating shaft 44 a has a convex shape and is inserted into a pair of shaft support holes 45 a that are formed through the holding portion 45. A part of the rotating body 44 is accommodated in the accommodating part 46, and the other part is exposed to the outside of the accommodating part 46. In the low-temperature refrigeration apparatus of the fourth embodiment, the storage unit 46 does not store the lubricant 48. As shown in FIG. 14, the tip portion 41C of the stem 40C in the valve body 4C is also configured by a roller-like rotating body 44C and a holding portion 45C that holds the rotating body 44C. The rotating body 44C has substantially the same shape as the rotating body 44, and the holding portion 45C also has substantially the same shape as the holding portion 45. The housing portion 46 </ b> C does not contain the lubricant 48 like the housing portion 46.

実施形態5の低温冷凍装置における回転体44、44Cは、球状でなくローラー状であるが、回転軸44a、44bを中心として回転可能である。図1に示す低温冷凍装置と同様に、実施形態4の回転体44、44Cは一定の往復方向(図13中B1方向およびB2方向、または、図14中B3方向およびB4方向)の力を受けるだけである。このため回転体44、44Cは、回転軸44a、44bを中心として回転可能であれば、弁駆動部材(実施形態4においては旋回部材5、5C)の接触面50、50Cと摺接する際に回転可能である。このため実施形態4においてもステム40、40Cの先端部41、41Cおよび接触面50、50Cの摩耗を抑制できる。   The rotating bodies 44 and 44C in the low-temperature refrigeration apparatus of Embodiment 5 are not spherical but roller-shaped, but can rotate around the rotation shafts 44a and 44b. As in the low-temperature refrigeration apparatus shown in FIG. 1, the rotating bodies 44 and 44C of the fourth embodiment receive a force in a certain reciprocating direction (the B1 direction and B2 direction in FIG. 13 or the B3 direction and B4 direction in FIG. 14). Only. For this reason, if the rotating bodies 44 and 44C can rotate around the rotating shafts 44a and 44b, the rotating bodies 44 and 44C rotate when they are in sliding contact with the contact surfaces 50 and 50C of the valve drive member (the turning members 5 and 5C in the fourth embodiment). Is possible. For this reason, also in Embodiment 4, abrasion of the front-end | tip parts 41 and 41C of the stems 40 and 40C and the contact surfaces 50 and 50C can be suppressed.

(その他)カムは上記構造に限定されず、要するに、規定のタイミングで2つの弁体を交互に押圧し(または一方の弁体を間欠的に押圧し)て開弁させ得るものであれば良い。本発明の低温冷凍装置は極低温冷凍装置に限定されず、低温冷凍装置であれば良い。本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。   (Others) The cam is not limited to the above-described structure. In short, any cam may be used as long as it can open two valve bodies alternately (or intermittently press one valve body) at a specified timing. . The low-temperature refrigeration apparatus of the present invention is not limited to a cryogenic refrigeration apparatus, and may be any low-temperature refrigeration apparatus. The present invention is not limited to the embodiments described above and shown in the drawings, and can be implemented with appropriate modifications within the scope not departing from the gist.

1は圧縮機、11は吐出ポート、12は吸込ポート、2は冷凍機、20は中空室、22はディスプレーサ、3は高圧バルブ、30は基部、31は高圧ガス室、32は弁口、33は弁座、34は軸孔、35は軸受、36は中間圧室、4は弁体、40はステム、41は先端部、42は弁部、44は回転体、45は保持部、46は収容部、47は付勢バネ、48は潤滑剤、49は通気口、5は旋回部材、50は接触面(加圧領域)、51は第1領域、52は第2領域、53は第3領域、55は旋回中心、6はカム、60は回転中心、61は回転部、62は偏芯カム部、7は低圧バルブ、90は中空室、91はパルス管、Pは中心軸線を示す。   1 is a compressor, 11 is a discharge port, 12 is a suction port, 2 is a refrigerator, 20 is a hollow chamber, 22 is a displacer, 3 is a high pressure valve, 30 is a base, 31 is a high pressure gas chamber, 32 is a valve port, 33 Is a valve seat, 34 is a shaft hole, 35 is a bearing, 36 is an intermediate pressure chamber, 4 is a valve body, 40 is a stem, 41 is a tip portion, 42 is a valve portion, 44 is a rotating body, 45 is a holding portion, 46 is Housing part, 47 biasing spring, 48 lubricant, 49 vent, 5 swivel member, 50 contact surface (pressurizing area), 51 first area, 52 second area, 53 third The region, 55 is a turning center, 6 is a cam, 60 is a rotation center, 61 is a rotating portion, 62 is an eccentric cam portion, 7 is a low pressure valve, 90 is a hollow chamber, 91 is a pulse tube, and P is a central axis.

Claims (4)

高圧ガスを吐出させる高圧側の吐出ポートと低圧ガスを吸い込む低圧側の吸込ポートとを持つ圧縮機と、冷媒ガスを膨張させて寒冷を発生させる冷凍機と、前記圧縮機の高圧側の前記吐出ポートと前記冷凍機とを連通させ且つ前記圧縮機の吐出ポートから吐出された高圧の冷媒ガスを開弁により前記冷凍機に供給させる高圧バルブと、前記圧縮機の低圧側の前記吸込ポートと前記冷凍機とを連通させ且つ前記冷凍機の冷媒ガスを開弁により前記圧縮機の前記吸込ポートに帰還させる低圧バルブとを具備する低温冷凍装置であって、
前記高圧バルブおよび前記低圧バルブのうちの少なくとも一方は、
前記弁口を形成する弁座と軸孔を形成する軸受とを持つ基部と、
直線方向に沿って往復直動可能に前記軸受の前記軸孔に保持されているステムと、前記ステムに連設され前記弁口を開閉させる弁部と、を持つ弁体と、
前記弁部が前記弁座に着座する方向に前記弁体を付勢する付勢バネと、
回動軸を中心として回動するカムと、前記カムの回動に従動し前記カムによって決まる規定のタイミングで前記ステムの先端部に摺接しつつ前記先端部を開弁方向に押圧することで前記弁体を開弁方向に移動させる接触面と、を持つ弁駆動部材と、を具備し、
前記ステムの前記先端部は、前記接触面に接触する回転体と、前記回転体を回転可能に保持する保持部と、で構成されている低温冷凍装置。
A compressor having a high-pressure side discharge port for discharging high-pressure gas and a low-pressure side suction port for sucking low-pressure gas; a refrigerator that expands refrigerant gas to generate cold; and the discharge on the high-pressure side of the compressor A high-pressure valve that communicates the port with the refrigerator and supplies the high-pressure refrigerant gas discharged from the discharge port of the compressor to the refrigerator by opening the valve; the suction port on the low-pressure side of the compressor; A low-temperature refrigeration apparatus comprising a low-pressure valve for communicating with a refrigerator and returning the refrigerant gas of the refrigerator to the suction port of the compressor by opening the valve;
At least one of the high pressure valve and the low pressure valve is
A base having a valve seat that forms the valve port and a bearing that forms a shaft hole;
A valve body having a stem that is held in the shaft hole of the bearing so as to be capable of reciprocating linearly along a linear direction, and a valve portion that is connected to the stem and opens and closes the valve port;
A biasing spring that biases the valve body in a direction in which the valve portion is seated on the valve seat;
A cam that rotates about a rotation axis, and the distal end portion is pressed in the valve opening direction while being in sliding contact with the distal end portion of the stem at a predetermined timing determined by the cam following the rotation of the cam. A valve drive member having a contact surface for moving the valve body in the valve opening direction;
The tip portion of the stem is a low-temperature refrigeration apparatus including a rotating body that contacts the contact surface and a holding portion that rotatably holds the rotating body.
前記回転体は球体である請求項1記載の低温冷凍装置。   The low-temperature refrigeration apparatus according to claim 1, wherein the rotating body is a sphere. 前記基部は前記回転体の一部を収容する収容部を持ち、
前記収容部には、前記回転体とともに潤滑剤が収容されている請求項1または請求項2に記載の低温冷凍装置。
The base has an accommodating portion for accommodating a part of the rotating body,
The low-temperature refrigeration apparatus according to claim 1 or 2, wherein a lubricant is accommodated together with the rotating body in the accommodating portion.
前記収容部は前記基部の内部に開口する請求項1〜請求項3の何れか一項に記載の低温冷凍装置。   The low-temperature refrigeration apparatus according to any one of claims 1 to 3, wherein the housing portion opens into the base portion.
JP2012099674A 2012-04-25 2012-04-25 Low temperature refrigeration equipment Expired - Fee Related JP5939433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012099674A JP5939433B2 (en) 2012-04-25 2012-04-25 Low temperature refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012099674A JP5939433B2 (en) 2012-04-25 2012-04-25 Low temperature refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2013228128A true JP2013228128A (en) 2013-11-07
JP5939433B2 JP5939433B2 (en) 2016-06-22

Family

ID=49675925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012099674A Expired - Fee Related JP5939433B2 (en) 2012-04-25 2012-04-25 Low temperature refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5939433B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668987B1 (en) * 2015-12-14 2016-10-25 현민지브이티 주식회사 Cryocooler having valve opening and closing device and cryopump having the same
JP2017161146A (en) * 2016-03-09 2017-09-14 アイシン精機株式会社 Gm freezer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123956A (en) * 1987-11-10 1989-05-16 Sanyo Electric Co Ltd Suction exhaust device for cryogenic refrigerator
JPH0248762U (en) * 1988-09-30 1990-04-04
JPH04268167A (en) * 1991-02-21 1992-09-24 Aisin Seiki Co Ltd Pulsation pipe type freezer
JPH0561401U (en) * 1992-01-29 1993-08-13 マツダ株式会社 Valve mechanism of internal combustion engine
JP2002228288A (en) * 2001-01-29 2002-08-14 Aisin Seiki Co Ltd Pulse pipe refrigerating machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01123956A (en) * 1987-11-10 1989-05-16 Sanyo Electric Co Ltd Suction exhaust device for cryogenic refrigerator
JPH0248762U (en) * 1988-09-30 1990-04-04
JPH04268167A (en) * 1991-02-21 1992-09-24 Aisin Seiki Co Ltd Pulsation pipe type freezer
JPH0561401U (en) * 1992-01-29 1993-08-13 マツダ株式会社 Valve mechanism of internal combustion engine
JP2002228288A (en) * 2001-01-29 2002-08-14 Aisin Seiki Co Ltd Pulse pipe refrigerating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101668987B1 (en) * 2015-12-14 2016-10-25 현민지브이티 주식회사 Cryocooler having valve opening and closing device and cryopump having the same
JP2017161146A (en) * 2016-03-09 2017-09-14 アイシン精機株式会社 Gm freezer

Also Published As

Publication number Publication date
JP5939433B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
JP4197341B2 (en) Regenerator type refrigerator
JP4898162B2 (en) Hermetic compressor and refrigeration cycle apparatus
JP5939433B2 (en) Low temperature refrigeration equipment
JP2017115889A (en) Slide member, refrigerant compressor using the same, refrigerator and air conditioner
JP2010271029A (en) Cooling storage type refrigerating machine, method of manufacturing rotary valve for the cooling storage type refrigerating machine and method of manufacturing the cooling storage type refrigerating machine
CN100378332C (en) Refrigerant compressor, and refrigerating machine using the same
JP2013002687A (en) Cold storage refrigerator
KR20130009840A (en) Cryogenic refrigerator
JPWO2011115201A1 (en) Displacer, manufacturing method thereof, and regenerator type refrigerator
JP2015055374A (en) Ultra-low temperature freezer
JP2008248800A (en) Liquid pump
JPWO2010087180A1 (en) Rotary compressor
JP5017217B2 (en) Switching valve and regenerative refrigerator
JP6305287B2 (en) Cryogenic refrigerator
JP2008267251A (en) Compressor
US9512830B2 (en) Reciprocating compressor
JP5761562B2 (en) Low temperature refrigeration equipment
JP2007255734A (en) Cold head
CN112119270B (en) Rotary valve for cryogenic refrigerator and cryogenic refrigerator
CN102022852A (en) Cooling storage type refrigerating machine, method of manufacturing rotary valve for the cooling storage type refrigerating machine and method of manufacturing the cooling storage type refrigerating machine
JP5437974B2 (en) Bearing device and regenerator type refrigerator
JP2007271144A (en) Stirling engine
EP2435703A2 (en) Reciprocating compressor wrist pin bearing and lubrication passageway
CN103047108A (en) Variable-aperture cylinder seat applied to refrigeration compressors
CN208294585U (en) Long-life abrasion-resistant valve rocker component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160504

R151 Written notification of patent or utility model registration

Ref document number: 5939433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees