JP2013226473A - Ultraviolet irradiation device - Google Patents

Ultraviolet irradiation device Download PDF

Info

Publication number
JP2013226473A
JP2013226473A JP2012098419A JP2012098419A JP2013226473A JP 2013226473 A JP2013226473 A JP 2013226473A JP 2012098419 A JP2012098419 A JP 2012098419A JP 2012098419 A JP2012098419 A JP 2012098419A JP 2013226473 A JP2013226473 A JP 2013226473A
Authority
JP
Japan
Prior art keywords
protective tube
ultraviolet
moth
film
ultraviolet irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012098419A
Other languages
Japanese (ja)
Other versions
JP6035841B2 (en
Inventor
Yasuo Ochi
康夫 越智
Hideo Furukawa
英夫 古川
Kenji Yasui
賢志 安井
Hiroshi Sakurada
寛 櫻田
Ryota Koyama
亮太 小山
Yasuhiko Saito
泰彦 齋藤
Naoki NAGAOKA
尚紀 長岡
Kazutaka Osaki
和隆 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2012098419A priority Critical patent/JP6035841B2/en
Publication of JP2013226473A publication Critical patent/JP2013226473A/en
Application granted granted Critical
Publication of JP6035841B2 publication Critical patent/JP6035841B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Water Treatments (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ultraviolet irradiation device suppressing the reduction of an irradiation amount of ultraviolet rays by reducing the reflection of the ultraviolet rays.SOLUTION: An ultraviolet irradiation device includes: a container 4 formed with an inflow port 2 and an outflow port 3 of a fluid to be treated; a protective tube 5 disposed inside the container 4, and made of quartz glass having ultraviolet transmissivity; and an ultraviolet lamp 6 inserted into the protective tube 5. A reflection prevention structure 7 comprising recessed and projecting faces is formed on the surface of the projective tube 5. The reflection prevention structure 7 is a moth-eye structure formed of silica.

Description

この発明は、バラスト水処理や半導体洗浄水処理に用いる紫外線照射装置に関する。   The present invention relates to an ultraviolet irradiation device used for ballast water treatment and semiconductor cleaning water treatment.

被処理流体の流入口および流出口が設けられた容器と、この容器内に配置され、紫外線透過性を有する石英ガラス製の保護管と、この保護管内に挿入された紫外線ランプとを備え、紫外線の照射量の低下を抑制することを目的として、保護管の表面に凹凸面からなる反射防止構造を形成した紫外線照射装置は、特許文献1にて知られている。   A container provided with an inlet and an outlet for the fluid to be treated; a protective tube made of quartz glass which is disposed in the container and has ultraviolet transparency; and an ultraviolet lamp inserted into the protective tube. An ultraviolet irradiation device in which an antireflection structure including an uneven surface is formed on the surface of a protective tube for the purpose of suppressing a decrease in the amount of irradiation is known from Patent Document 1.

この特許文献1の反射防止構造は、十点平均粗さが23.2μm以下に粗面化処理することにより形成され、凹凸面の先端に向って反射を繰り返すことで、先端に近づくにつれた反射光の入射角を小さくして、正反射と拡散透過の複合として、反射回数を多くすることにより、拡散透過光の総和量を増加させて、紫外線の照射量の低下を抑制するものである。この特許文献1の反射防止構造では、紫外線の照射量の低下の抑制が然程大きくないと考えられる。   The antireflection structure of Patent Document 1 is formed by roughening the ten-point average roughness to 23.2 μm or less, and by reflecting repeatedly toward the tip of the concavo-convex surface, reflection as approaching the tip. By reducing the incident angle of light and increasing the number of reflections as a combination of regular reflection and diffuse transmission, the total amount of diffuse transmitted light is increased, thereby suppressing a decrease in the amount of irradiated ultraviolet light. In the antireflection structure disclosed in Patent Document 1, it is considered that the suppression of the decrease in the irradiation amount of ultraviolet rays is not so large.

一方、ディスプレイにおいて、特許文献2のように、反射防止に効果の大きいモスアイ構造を有する反射防止層を形成する技術が知られている。特許文献1に記載される反射防止構造に代えて、特許文献2のモスアイ構造を採用することで、光の反射量を減らすことができるが、反射防止層が樹脂で形成されているため、紫外線の吸収量が多くなり、結果として、紫外線の照射量の低下を抑制することができないという課題がある。   On the other hand, a technique for forming an antireflection layer having a moth-eye structure that is highly effective in preventing reflection as in Patent Document 2 in a display is known. By adopting the moth-eye structure of Patent Document 2 instead of the antireflection structure described in Patent Document 1, the amount of reflected light can be reduced. However, since the antireflection layer is formed of a resin, ultraviolet light is used. As a result, there is a problem that it is impossible to suppress a decrease in the amount of ultraviolet irradiation.

特開2011−50828号公報JP 2011-50828 A 特開2009−230045号公報JP 2009-230045 A

この発明が解決しようとする課題は、紫外線の反射を低減することにより、紫外線の照射量の低下を抑制することができる紫外線照射装置を提供することである。   The problem to be solved by the present invention is to provide an ultraviolet irradiation device capable of suppressing a decrease in the amount of ultraviolet irradiation by reducing the reflection of ultraviolet rays.

この発明は、前記課題を解決するためになされたもので、請求項1に記載の発明は、被処理流体の入口および出口が設けられた容器と、この容器内に配置され、紫外線透過性を有する石英ガラス製の保護管と、この保護管内に挿入された紫外線ランプとを備え、前記保護管の表面に凹凸面からなる反射防止構造を形成した紫外線照射装置であって、前記反射防止構造は、シリカにて形成されるモスアイ構造であることを特徴としている。   The present invention has been made to solve the above-mentioned problems. The invention according to claim 1 is a container provided with an inlet and an outlet for a fluid to be processed, and is disposed in the container, and has ultraviolet transparency. An ultraviolet irradiation device comprising a protective tube made of quartz glass and an ultraviolet lamp inserted into the protective tube, and having an antireflection structure comprising an uneven surface on the surface of the protective tube, wherein the antireflection structure is The moth-eye structure is formed of silica.

請求項1に記載の発明によれば、前記反射防止構造がモスアイ構造であるので、紫外線の反射量を低減できるとともに、前記反射防止構造がシリカにて形成されているので、特許文献2と比較して紫外線の吸収量を低減でき、結果として、紫外線の照射量の低下を抑制することができるという効果を奏する。   According to the first aspect of the present invention, since the antireflection structure is a moth-eye structure, the amount of reflection of ultraviolet rays can be reduced, and the antireflection structure is formed of silica. As a result, it is possible to reduce the amount of absorbed ultraviolet light, and as a result, it is possible to suppress a decrease in the amount of irradiated ultraviolet light.

請求項2に記載の発明は、請求項1において、前記モスアイ構造は、前記凸部の高さが300〜50nmであり、前記凸部の周期が300から100nmであり、前記凸部の頂部から底部に至る屈折率が連続的に変化するものであることを特徴としている。   The invention according to claim 2 is the invention according to claim 1, wherein the moth-eye structure has a height of the convex portion of 300 to 50 nm, a period of the convex portion of 300 to 100 nm, and a top portion of the convex portion. It is characterized in that the refractive index reaching the bottom changes continuously.

請求項2に記載の発明によれば、請求項1に記載の発明による効果に加えて、前記凸部の高さを300〜50nmとし、前記凸部の周期を300から100nmとしているので、対象となる光の波長領域と同等,若しくは、それ以下の周期で錘形を配列させ、対象となる光波長に対して緩やかに屈折率を変化させることができ、紫外線の反射量を低減できるという効果を奏する。   According to the second aspect of the invention, in addition to the effect of the first aspect of the invention, the height of the convex portion is set to 300 to 50 nm and the period of the convex portion is set to 300 to 100 nm. The effect of being able to reduce the amount of reflected UV light by arranging the cones with a period equal to or less than the wavelength range of the light to be used, and gradually changing the refractive index with respect to the target light wavelength Play.

また、請求項3に記載の発明は、請求項1または請求項2において、前記モスアイ構造は、シリカ微粒子を二次元的に保持するフィルムを前記保護管の表面に貼り付け、その後焼成することにより形成されることを特徴としている。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the moth-eye structure is formed by attaching a film that two-dimensionally holds silica fine particles to the surface of the protective tube and then firing the film. It is characterized by being formed.

請求項3に記載の発明によれば、請求項1または請求項2に記載の発明による効果に加えて、予めフィルムにシリカ粒子を保持させるので、シリカ粒子を前記保護管表面に二次元的に均一に保有させることができるという効果を奏する。また、請求項2の発明によれば、前記保護管の内面にモスアイ構造を形成する場合に、モスアイ構造の形成を容易に行うことができる。   According to the third aspect of the invention, in addition to the effect of the first or second aspect of the invention, since the silica particles are held in advance in the film, the silica particles are two-dimensionally provided on the surface of the protective tube. There is an effect that it can be held uniformly. According to the invention of claim 2, when the moth-eye structure is formed on the inner surface of the protective tube, the moth-eye structure can be easily formed.

この発明によれば、紫外線の反射量の低減により、紫外線の照射量の低下を抑制することができる。   According to this invention, it is possible to suppress a decrease in the amount of irradiation of ultraviolet rays by reducing the amount of reflected ultraviolet rays.

この発明の実施例1の紫外線照射装置の要部縦断面の模式図である。It is a schematic diagram of the principal part longitudinal cross-section of the ultraviolet irradiation device of Example 1 of this invention. 同実施例1の反射防止構造の要部を説明する側面の模式図である。It is a schematic diagram of the side surface explaining the principal part of the reflection preventing structure of the Example 1. 同実施例1の製造方法1の製造工程を説明する要部縦断面の模式図である。It is a schematic diagram of the principal part longitudinal cross-section explaining the manufacturing process of the manufacturing method 1 of the Example 1. FIG. 同製造方法1の他の製造工程を説明する要部縦断面の模式図である。It is a schematic diagram of the principal part longitudinal cross-section explaining the other manufacturing process of the manufacturing method 1. FIG. 同製造方法1の他の製造工程を説明する要部縦断面の模式図である。It is a schematic diagram of the principal part longitudinal cross-section explaining the other manufacturing process of the manufacturing method 1. FIG. 同製造方法1による反射防止構造の一部を説明する側面の模式図である。It is a schematic diagram of the side surface explaining a part of antireflection structure by the manufacturing method 1. 同実施例1の製造方法2の製造工程を説明する要部縦断面の模式図である。It is a schematic diagram of the principal part longitudinal cross-section explaining the manufacturing process of the manufacturing method 2 of the Example 1. FIG. 同製造方法2の他の製造工程を説明する要部縦断面の模式図である。It is a schematic diagram of the principal part longitudinal cross-section explaining the other manufacturing process of the manufacturing method 2. FIG. 同製造方法2の他の製造工程を説明する要部縦断面の模式図である。It is a schematic diagram of the principal part longitudinal cross-section explaining the other manufacturing process of the manufacturing method 2. FIG. 同製造方法2による反射防止構造の一部を説明する側面の模式図である。It is a schematic diagram of the side surface explaining a part of antireflection structure by the manufacturing method 2.

(実施例1の構成)
まず、この発明の実施例1の紫外線照射装置1について、図1および図2に従い説明する。紫外線照射装置1は、被処理流体としての液体を紫外線により殺菌処理する装置である。なお、被処理流体としては、液体に限定されず気体であっても良い。
(Configuration of Example 1)
First, an ultraviolet irradiation apparatus 1 according to Embodiment 1 of the present invention will be described with reference to FIGS. The ultraviolet irradiation device 1 is a device that sterilizes a liquid as a fluid to be treated with ultraviolet rays. Note that the fluid to be processed is not limited to a liquid but may be a gas.

この紫外線照射装置1は、図1に示すように、被処理液の入口2および出口3が設けられた容器4と、この容器4内に配置され、紫外線透過性を有する筒状の石英ガラス製の保護管5と、この保護管5内に挿入された紫外線ランプ6とを備えている。石英ガラスとは、シリカ(SiO)からつくられるガラスで、通常のガラスに比べてシリカの純度が高いものをいい、溶融石英ガラス、合成石英ガラスが含まれる。 As shown in FIG. 1, the ultraviolet irradiation device 1 includes a container 4 provided with an inlet 2 and an outlet 3 for a liquid to be processed, and a cylindrical quartz glass which is disposed in the container 4 and has ultraviolet transparency. Protective tube 5 and an ultraviolet lamp 6 inserted into the protective tube 5. Quartz glass is a glass made from silica (SiO 2 ), which has a higher silica purity than ordinary glass, and includes fused silica glass and synthetic quartz glass.

この実施例1の特徴とするところは、保護管5の表面に形成した凹凸面からなる反射防止構造7にある。この反射防止構造7は、好ましくは、図1に示すように、保護管5の内表面および外表面に形成するが、内表面および外表面のどちらか一方であってもよい。   A feature of the first embodiment resides in an antireflection structure 7 having an uneven surface formed on the surface of the protective tube 5. The antireflection structure 7 is preferably formed on the inner surface and the outer surface of the protective tube 5 as shown in FIG. 1, but may be either the inner surface or the outer surface.

実施例1の反射防止構造7,7は、図2に示すように、シリカにて形成されるモスアイ構造としている。「モスアイ構造」とは、物質の表面に入射電磁波の波長以下の周期を有する突起体を密集させ、その表面の反射率が低減された構造をいう。具体的には、ナノメーターオーダーの凹凸形状が均一配置された構造を有する。言い換えれば、「モスアイ構造」は、入射した光に対する屈折率を連続的に変化させ、屈折率の不連続界面を消失させることによって光の反射を防止するものである。なお、この「モスアイ構造」の定義は、特許文献2や「ガラス成形による反射防止構造の作製」田中康弘,NEW GLASS 23,33(2008)で知られている。   As shown in FIG. 2, the antireflection structures 7 and 7 of the first embodiment have a moth-eye structure formed of silica. The “moth eye structure” refers to a structure in which protrusions having a period equal to or shorter than the wavelength of incident electromagnetic waves are densely packed on the surface of a substance, and the reflectance of the surface is reduced. Specifically, it has a structure in which uneven shapes of nanometer order are uniformly arranged. In other words, the “moth eye structure” prevents light reflection by continuously changing the refractive index of incident light and eliminating the discontinuous interface of the refractive index. The definition of the “moth eye structure” is known from Patent Document 2 and “Preparation of an antireflection structure by glass molding” Yasuhiro Tanaka, NEW GLASS 23, 33 (2008).

そして、この反射防止構造7,7は、凸部(突起と称することができる。)8,8,・・・が均一配置された構造を有する。各凸部8の高さHを300〜50nmとし、各凸部8の周期Pを300から100nmとして、各凸部8の頂部から底部に至る屈折率が空気の屈折率1.0から石英ガラスの紫外線に対する屈折率約1.5まで連続的に変化するように構成している。各凸部8の形状は、図2に示すものに限定されないものであり、円錐形や四角錐形とすることができる。なお、図2では、保護管5の外表面の反射防止構造7のみを示し、内面側の反射防止構造は、図示省略している。   The antireflection structures 7 and 7 have a structure in which convex portions (which can be referred to as protrusions) 8, 8,. The height H of each convex portion 8 is set to 300 to 50 nm, the period P of each convex portion 8 is set to 300 to 100 nm, and the refractive index from the top portion to the bottom portion of each convex portion 8 is changed from the refractive index 1.0 of air to quartz glass. The refractive index with respect to ultraviolet rays is continuously changed to about 1.5. The shape of each convex part 8 is not limited to what is shown in FIG. 2, and can be made into a cone shape or a quadrangular pyramid shape. In FIG. 2, only the antireflection structure 7 on the outer surface of the protective tube 5 is shown, and the antireflection structure on the inner surface side is omitted.

各凸部8の高さHを300〜50nmとし、各凸部8の周期Pを300から100nmとしたのは、対象となる光の波長領域(この実施例1では、250〜300nm)と同等,若しくは、それ以下の周期で錘形を配列させることで、対象となる光波長に対して緩やかに屈折率を変化させるためである。   The height H of each convex portion 8 is set to 300 to 50 nm, and the period P of each convex portion 8 is set to 300 to 100 nm, which is equivalent to the wavelength region of light of interest (250 to 300 nm in this embodiment 1). This is because the refractive index is gradually changed with respect to the target light wavelength by arranging the spindles with a period shorter than that.

図1に戻って、円筒状容器4は、入口2および出口3を設けた筒状体9と、筒状体9の上下端部の開口を塞ぐ上板10および下板11とから構成されている。容器4内には、紫外線を透過する石英製の保護管5が容器4の軸方向に沿って、上板10および下板11を貫通するように配置されている。保護管5内には、紫外線ランプ6が挿入され、この紫外線ランプ6と図示しない電源とはケーブル12により接続されている。符号13は、容器4の上部に設けたカバーである。   Returning to FIG. 1, the cylindrical container 4 includes a cylindrical body 9 provided with an inlet 2 and an outlet 3, and an upper plate 10 and a lower plate 11 that block the openings at the upper and lower ends of the cylindrical body 9. Yes. In the container 4, a protective tube 5 made of quartz that transmits ultraviolet rays is disposed so as to penetrate the upper plate 10 and the lower plate 11 along the axial direction of the container 4. An ultraviolet lamp 6 is inserted into the protective tube 5, and the ultraviolet lamp 6 and a power source (not shown) are connected by a cable 12. Reference numeral 13 denotes a cover provided on the upper portion of the container 4.

(実施例1の効果)
上述のように構成される紫外線照射装置1によれば、反射防止構造7,7をモスアイ構造としているので、反射量を低減し、照射量を向上させることができる。また、反射防止構造7,7を樹脂フィルムにより形成しているものと比較して、紫外線の吸収量を大幅に低減できる。
(Effect of Example 1)
According to the ultraviolet irradiation device 1 configured as described above, since the antireflection structures 7 and 7 have a moth-eye structure, the amount of reflection can be reduced and the amount of irradiation can be improved. In addition, the amount of absorption of ultraviolet rays can be greatly reduced as compared with the case where the antireflection structures 7 and 7 are formed of a resin film.

(実施例1の反射防止構造の製造方法1)
つぎに、反射防止構造7の製造方法1を図3〜図6に従い説明する。この製造方法1は、つぎのステップを含んでいる。
(1)第一ステップ(フィルムによるシリカ微粒子の保持):
直径0.1〜0.3μmのシリカ微粒子13を分散させた水に高分子分散剤を滴下し、シリカ表面に高分子膜を形成する(密に配列させる場合は、高分子分散剤は不要である。)次に、この溶液を第一基板15上に塗布し、水を蒸発させることで、スペーサコート14を表面に施したシリカ微粒子13配列を得る。得られたシリカ微粒子13配列上に、10wt%PVB(ポリビニルブチラール)エタノール溶液に、可塑剤を添加した溶液を塗布、乾燥することで、図3のようにシリカ微粒子13を高分子膜(フィルム)16に均一に配列した状態で埋設する。可塑剤としては、フタル酸エステル等が利用できる。第一基板
15は、たとえばシリコンウエハとするが、シリカ微粒子を配列させる表面が平滑であれば、特別な材質のものに限定されない。
(Manufacturing method 1 of the antireflection structure of Example 1)
Next, the manufacturing method 1 of the antireflection structure 7 will be described with reference to FIGS. This manufacturing method 1 includes the following steps.
(1) First step (retention of silica fine particles by film):
A polymer dispersant is dropped into water in which silica fine particles 13 having a diameter of 0.1 to 0.3 μm are dispersed to form a polymer film on the silica surface (in the case of dense arrangement, the polymer dispersant is unnecessary). Next, this solution is applied onto the first substrate 15 and the water is evaporated to obtain an array of silica fine particles 13 having the spacer coat 14 applied on the surface. By applying and drying a solution obtained by adding a plasticizer to a 10 wt% PVB (polyvinyl butyral) ethanol solution on the obtained silica fine particle 13 array, the silica fine particles 13 are polymerized (film) as shown in FIG. 16 embedded in a uniform array. As the plasticizer, phthalate ester or the like can be used. The first substrate 15 is, for example, a silicon wafer, but is not limited to a special material as long as the surface on which the silica fine particles are arranged is smooth.

(2)第二ステップ(フィルムの剥離):
図4に示すように、シリカ微粒子13を保持したフィルム16を第一基板15から剥がす。
(2) Second step (film peeling):
As shown in FIG. 4, the film 16 holding the silica fine particles 13 is peeled off from the first substrate 15.

(3)第三ステップ(フィルムの保護管への貼り付け):
図5に示すように、剥離したフィルム16を保護管5の表面に可塑剤に由来する粘着性によって貼り付ける。保護管5の外表面へのフィルム16貼り付けは、保護管5にフィルム16を巻きつけることで行う。
(3) Third step (attaching the film to the protective tube):
As shown in FIG. 5, the peeled film 16 is attached to the surface of the protective tube 5 by the adhesiveness derived from the plasticizer. The film 16 is attached to the outer surface of the protective tube 5 by winding the film 16 around the protective tube 5.

また、保護管5の内表面へのフィルム16の貼り付けは、つぎの方法で可能である。第一の方法は、フィルム16を保護管5の内径よりやや小さい外径の筒状に形成する。ついで、表面に接着材を施した筒状フィルム16を保護管5内側に通し、筒状フィルム16の内側に装着した空気袋(図示省略)を膨らませて、筒状フィルム16を保護管5の内面に貼り付ける。第二の方法は、リボン状にしたフィルム16を保護管15内側に、押し付け具(ローラ,ヘラ等)で全周に亘って内面に押し付けて貼り付ける。
なお、第一の方法および第二の方法は、この発明のフィルム16の貼り付けに適用できるだけでなく、モスアイ構造を備える樹脂製反射防止フィルムを種々の管に貼り付ける際にも適用可能である。
The film 16 can be attached to the inner surface of the protective tube 5 by the following method. In the first method, the film 16 is formed in a cylindrical shape having an outer diameter slightly smaller than the inner diameter of the protective tube 5. Next, the tubular film 16 having a surface coated with an adhesive is passed inside the protective tube 5, and an air bag (not shown) attached to the inside of the tubular film 16 is inflated, so that the tubular film 16 is attached to the inner surface of the protective tube 5. Paste to. In the second method, the ribbon-like film 16 is attached to the inner side of the protective tube 15 by being pressed against the inner surface over the entire circumference with a pressing tool (roller, spatula, etc.).
The first method and the second method can be applied not only to the application of the film 16 of the present invention but also to application of a resin antireflection film having a moth-eye structure to various tubes. .

(4)第四ステップ(フィルム付き保護管の焼成):
図5に示すフィルム16を接着した保護管5を700〜1300℃の温度で焼成する。すると、コート14が酸化除去され、シリカ粒子13が保護管に接着して、図6に模式的に示す凸部8が保護管5上に均一配列されたモスアイ構造の反射防止構造7が形成される。なお、図6では、隣接する凸部8,8間の谷間を鋭角的に表現しているが、谷間は凹曲面に形成される。
(4) Fourth step (firing of protective tube with film):
The protective tube 5 to which the film 16 shown in FIG. 5 is bonded is baked at a temperature of 700 to 1300 ° C. Then, the coat 14 is oxidized and removed, the silica particles 13 adhere to the protective tube, and the moth-eye structure antireflection structure 7 in which the convex portions 8 schematically shown in FIG. 6 are uniformly arranged on the protective tube 5 is formed. The In addition, in FIG. 6, although the valley between the adjacent convex parts 8 and 8 is expressed acutely, the valley is formed in a concave curved surface.

(製造方法1の効果)
上述の製造方法1によれば、露光技術とエッチングとの組み合わせによりモスアイ構造を形成する方法と比較して、曲面である保護管5の表面(特に、保護管5の内面)にモスアイ構造を容易に形成することができる。
(Effect of Manufacturing Method 1)
According to the manufacturing method 1 described above, the moth-eye structure can be easily formed on the surface of the protective tube 5 that is a curved surface (particularly, the inner surface of the protective tube 5) as compared with the method of forming the moth-eye structure by a combination of exposure technique and etching. Can be formed.

(実施例1の反射防止構造7の製造方法2の構成)
つぎに、反射防止構造7の製造方法2を図7〜図10に従い説明する。この製造方法2は、つぎのステップを含んでいる。
(1)第一ステップ(基板へのシリカ微粒子の配列):
製造方法2では、図7に示すように、製造方法1と同様に、コート14を施したシリカ微粒子13を第二基板17上に均一に配列して、高分子膜(フィルム)16に均一に配列する。第二基板17も、第一基板15と同様にシリカ微粒子を配列させる表面が平滑であれば、特別な材質のものに限定されない。
(Configuration of Manufacturing Method 2 of Antireflection Structure 7 of Example 1)
Next, the manufacturing method 2 of the antireflection structure 7 will be described with reference to FIGS. This manufacturing method 2 includes the following steps.
(1) First step (arrangement of silica fine particles on the substrate):
In the production method 2, as shown in FIG. 7, as in the production method 1, the silica fine particles 13 provided with the coat 14 are uniformly arranged on the second substrate 17 to uniformly form the polymer film (film) 16. Arrange. Similarly to the first substrate 15, the second substrate 17 is not limited to a special material as long as the surface on which the silica fine particles are arranged is smooth.

(2)第二ステップ(フィルムによる微粒子の保持):
図8に示すように、第二基板17上に均一配列されたシリカ微粒子13を粘着性のあるテープ(フィルムと称することができる)18に付着させて、シリカ微粒子13を保持したテープ18を第二基板17から剥がす。
(2) Second step (retaining fine particles by film):
As shown in FIG. 8, the silica fine particles 13 uniformly arranged on the second substrate 17 are attached to an adhesive tape (which can be referred to as a film) 18, and the tape 18 holding the silica fine particles 13 is attached to the first tape 18. Remove from the second substrate 17.

(3)第三ステップ(フィルムの保護管への貼り付け):
図9に示すように、シリカ微粒子13側を保護管5の表面側として、テープ18を、接
着剤を用いて貼り付ける。接着剤は、PVA(ポリビニルアルコール),PVB(ポリビニルブチラール)などのセラミックバインダとなり得るポリマーを接着剤とする。テープ18の保護管5の表面への貼り付け方法は、製造方法1と同様であるので、その説明を省略する。
(3) Third step (attaching the film to the protective tube):
As shown in FIG. 9, the tape 18 is pasted using an adhesive with the silica fine particle 13 side as the surface side of the protective tube 5. The adhesive is made of a polymer that can be a ceramic binder such as PVA (polyvinyl alcohol) or PVB (polyvinyl butyral). Since the method for attaching the tape 18 to the surface of the protective tube 5 is the same as in the manufacturing method 1, the description thereof is omitted.

(4)第四ステップ(フィルム付き保護管の焼成):
図9に示すテープ18を接着した保護管5を700〜1300℃の温度で焼成する。すると、ポリマー接着剤は、酸化除去され、図10に模式的に示すように、凸部8が保護管5状に均一配列されたモスアイ構造の反射防止構造7が形成される。
(4) Fourth step (firing of protective tube with film):
The protective tube 5 to which the tape 18 shown in FIG. 9 is bonded is fired at a temperature of 700 to 1300 ° C. Then, the polymer adhesive is oxidized and removed, and as shown schematically in FIG. 10, the moth-eye structure antireflection structure 7 in which the convex portions 8 are uniformly arranged in the shape of the protective tube 5 is formed.

(製造方法2の効果)
上述の製造方法2によれば、製造方法1と同様に、曲面である保護管5の表面にモスアイ構造を容易に形成することができる。
(Effect of Manufacturing Method 2)
According to the manufacturing method 2 described above, similarly to the manufacturing method 1, the moth-eye structure can be easily formed on the surface of the protective tube 5 which is a curved surface.

なお、保護管5の表面へのモスアイ構造の製造方法は、好ましくは、前記製造方法1または製造方法2とするが、シリカ微粒子13を分散させた溶液に、保護管5を浸漬し、シリカ微粒子13を保護管5の表面に付着させ、その後、焼成することで均一配列の凸部8を形成することができる。   The method for producing the moth-eye structure on the surface of the protective tube 5 is preferably the production method 1 or the production method 2 described above, but the protective tube 5 is immersed in a solution in which the silica fine particles 13 are dispersed to obtain the silica fine particles. 13 can be attached to the surface of the protective tube 5 and then baked to form the convex portions 8 having a uniform arrangement.

1 紫外線照射装置
2 入口
3 出口
4 容器
5 保護管
6 紫外線ランプ
7 反射防止構造
8 凸部
13 シリカ微粒子
16 フィルム
18 テープ(フィルム)
DESCRIPTION OF SYMBOLS 1 Ultraviolet irradiation apparatus 2 Inlet 3 Outlet 4 Container 5 Protection tube 6 Ultraviolet lamp 7 Antireflection structure 8 Convex part 13 Silica microparticle 16 Film 18 Tape (film)

Claims (3)

被処理流体の入口および出口が設けられた容器と、この容器内に配置され、紫外線透過性を有する石英ガラス製の保護管と、この保護管内に挿入された紫外線ランプとを備え、前記保護管の表面に凹凸面からなる反射防止構造を形成した紫外線照射装置であって、
前記反射防止構造は、シリカにて形成されるモスアイ構造であることを特徴とする紫外線照射装置。
A container provided with an inlet and an outlet for a fluid to be treated; a protective tube made of quartz glass which is disposed in the container and has ultraviolet transparency; and an ultraviolet lamp inserted into the protective tube, and the protective tube An ultraviolet irradiation device in which an antireflection structure comprising an uneven surface is formed on the surface of
The ultraviolet ray irradiation apparatus, wherein the antireflection structure is a moth-eye structure formed of silica.
前記モスアイ構造は、前記凸部の高さが300〜50nmであり、前記凸部の周期が300から100nmであり、前記凸部の頂部から底部に至る屈折率が連続的に変化するものであることを特徴とする請求項1に記載の紫外線照射装置。   In the moth-eye structure, the height of the convex part is 300 to 50 nm, the period of the convex part is 300 to 100 nm, and the refractive index from the top part to the bottom part of the convex part changes continuously. The ultraviolet irradiation device according to claim 1. 前記モスアイ構造は、シリカ微粒子を二次元的に保持したフィルムを前記保護管の表面に貼り付け、その後焼成することにより形成されることを特徴とする請求項1または請求項2に記載の紫外線照射装置。   3. The ultraviolet irradiation according to claim 1, wherein the moth-eye structure is formed by attaching a film holding silica fine particles two-dimensionally to the surface of the protective tube and then baking the film. apparatus.
JP2012098419A 2012-04-24 2012-04-24 UV irradiation equipment Expired - Fee Related JP6035841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098419A JP6035841B2 (en) 2012-04-24 2012-04-24 UV irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098419A JP6035841B2 (en) 2012-04-24 2012-04-24 UV irradiation equipment

Publications (2)

Publication Number Publication Date
JP2013226473A true JP2013226473A (en) 2013-11-07
JP6035841B2 JP6035841B2 (en) 2016-11-30

Family

ID=49674742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098419A Expired - Fee Related JP6035841B2 (en) 2012-04-24 2012-04-24 UV irradiation equipment

Country Status (1)

Country Link
JP (1) JP6035841B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018176068A (en) * 2017-04-13 2018-11-15 株式会社東通研 Protective jacket for uv radiation
WO2019225303A1 (en) * 2018-05-22 2019-11-28 ウシオ電機株式会社 Light transmissive material and lamp, and gas treating device and gas treating method
JP2019209246A (en) * 2018-06-04 2019-12-12 ウシオ電機株式会社 Gas treatment device and method
JP2020074307A (en) * 2014-03-20 2020-05-14 ケーエルエー コーポレイション Light source including antireflection layer having nano structure, system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073605U (en) * 2000-05-29 2000-11-30 東西化学産業株式会社 Fluid ejection device
JP2002025503A (en) * 2000-07-07 2002-01-25 Nippon Photo Science:Kk Treatment device utilizing ultraviolet rays
JP2004249239A (en) * 2003-02-21 2004-09-09 Chiyoda Kohan Co Ltd Ultraviolet irradiation apparatus
JP2006038928A (en) * 2004-07-22 2006-02-09 National Institute Of Advanced Industrial & Technology Nonreflective periodic structural body and manufacturing method thereof
JP2009230045A (en) * 2008-03-25 2009-10-08 Dainippon Printing Co Ltd Anti-reflection layered body
JP2011050828A (en) * 2009-08-31 2011-03-17 Chiyoda Kohan Co Ltd Ultraviolet irradiation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073605U (en) * 2000-05-29 2000-11-30 東西化学産業株式会社 Fluid ejection device
JP2002025503A (en) * 2000-07-07 2002-01-25 Nippon Photo Science:Kk Treatment device utilizing ultraviolet rays
JP2004249239A (en) * 2003-02-21 2004-09-09 Chiyoda Kohan Co Ltd Ultraviolet irradiation apparatus
JP2006038928A (en) * 2004-07-22 2006-02-09 National Institute Of Advanced Industrial & Technology Nonreflective periodic structural body and manufacturing method thereof
JP2009230045A (en) * 2008-03-25 2009-10-08 Dainippon Printing Co Ltd Anti-reflection layered body
JP2011050828A (en) * 2009-08-31 2011-03-17 Chiyoda Kohan Co Ltd Ultraviolet irradiation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020074307A (en) * 2014-03-20 2020-05-14 ケーエルエー コーポレイション Light source including antireflection layer having nano structure, system and method
JP2018176068A (en) * 2017-04-13 2018-11-15 株式会社東通研 Protective jacket for uv radiation
WO2019225303A1 (en) * 2018-05-22 2019-11-28 ウシオ電機株式会社 Light transmissive material and lamp, and gas treating device and gas treating method
CN111919279A (en) * 2018-05-22 2020-11-10 优志旺电机株式会社 Light-transmitting material, lamp, gas processing apparatus, and gas processing method
EP3799109A4 (en) * 2018-05-22 2022-03-02 Ushio Denki Kabushiki Kaisha Light transmissive material and lamp, and gas treating device and gas treating method
CN111919279B (en) * 2018-05-22 2024-02-20 优志旺电机株式会社 Light-transmitting material, light, gas treatment device, and gas treatment method
JP2019209246A (en) * 2018-06-04 2019-12-12 ウシオ電機株式会社 Gas treatment device and method
JP7056386B2 (en) 2018-06-04 2022-04-19 ウシオ電機株式会社 Gas treatment equipment and gas treatment method

Also Published As

Publication number Publication date
JP6035841B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP6035841B2 (en) UV irradiation equipment
JP6197647B2 (en) Optical filter, method for manufacturing the same, and imaging apparatus
JP4964985B2 (en) Method for producing nanoimprint film
Jang et al. Multifunctional moth-eye TiO2/PDMS pads with high transmittance and UV filtering
JP5187495B2 (en) Antireflection film, production method of antireflection film, antireflection film mold, antireflection film obtained using antireflection film mold and antireflection film obtained using replica film
WO2009144970A1 (en) Reflection preventing film and display device
JPWO2009110139A1 (en) Optical element, roller-type nanoimprint apparatus, and mold roll manufacturing method
KR20160043077A (en) Laminate film and manufacturing method thereof, touch panel device, image display device, and mobile device
JP5710236B2 (en) Microstructure laminate
JP2009120835A (en) Transparent aqua-based nano sol-gel coating agent composition which does not lower transmittance of visible ray and solar light through transparent substrate and method for coating it
KR20090071417A (en) Anti-reflection coating, optical member, exchange lens unit and imaging device
JP5940662B2 (en) Method for producing antireflection film
KR102587273B1 (en) Optical laminate with double-sided adhesive layer
JP2009181818A (en) Excimer lamp
JP5856286B2 (en) Mold release processing method and manufacturing method of antireflection film
WO2012124498A1 (en) Die, manufacturing method for die, and manufacturing method for nanoimprinted film
CN110456555B (en) Color filter and preparation method thereof
CN104101923B (en) There is the preparation method of the light diffusing sheet of random micrometer/nanometer mixed structure
JP6877866B2 (en) An optical member having an antireflection film and a method for manufacturing the antireflection film.
JP5260578B2 (en) Application method of laminated film
JPWO2014163041A1 (en) Transfer film and substrate with uneven structure
KR101123821B1 (en) Method for treating a surface of solar cell and solar cell manufactured by the same
JP5766251B2 (en) Method for producing a coating for forming a transparent film
RU2015104005A (en) BUILDING MATERIAL AND METHOD OF ITS PRODUCTION
JP2010281877A (en) Optical element and optical system including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6035841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees