JP2013224830A - Photosensor and optical rotation detector - Google Patents

Photosensor and optical rotation detector Download PDF

Info

Publication number
JP2013224830A
JP2013224830A JP2012096124A JP2012096124A JP2013224830A JP 2013224830 A JP2013224830 A JP 2013224830A JP 2012096124 A JP2012096124 A JP 2012096124A JP 2012096124 A JP2012096124 A JP 2012096124A JP 2013224830 A JP2013224830 A JP 2013224830A
Authority
JP
Japan
Prior art keywords
light
photosensor
radiation
shielding means
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012096124A
Other languages
Japanese (ja)
Inventor
Shinji Hama
信治 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP2012096124A priority Critical patent/JP2013224830A/en
Priority to PCT/JP2012/066843 priority patent/WO2013157152A1/en
Publication of JP2013224830A publication Critical patent/JP2013224830A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02016Circuit arrangements of general character for the devices
    • H01L31/02019Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/342Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells the sensed object being the obturating part
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4228Photometry, e.g. photographic exposure meter using electric radiation detectors arrangements with two or more detectors, e.g. for sensitivity compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • H01L31/16Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
    • H01L31/161Semiconductor device sensitive to radiation without a potential-jump or surface barrier, e.g. photoresistors
    • H01L31/164Optical potentiometers

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Light Receiving Elements (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Optical Transform (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation-compatible photosensor and an optical rotation detector with the photosensor, which enable accurate detection by eliminating an influence from a radiation environment.SOLUTION: A photosensor 10 includes two photodetectors 1, 2 as receivers. The photosensor 10 is mainly composed of a first photodetector 1, light shield means 4, a second photodetector 2 where incidence of only light to be detected is shielded with the light shield means 4, and a differential circuit 3 to take difference between outputs from the photodetectors. For the photodetectors 1, 2, any types of photodiodes, photo-transistors, photo-ICs, etc. may be used, but the two photodetectors must be completely the same in their types and specifications.

Description

本発明はフォトセンサおよび光学式回転検出器に係り、特に、放射線環境下においてもその影響を除去して、高精度の検出を行うことができるフォトセンサおよび光学式回転検出器に関するものである。   The present invention relates to a photosensor and an optical rotation detector, and more particularly to a photosensor and an optical rotation detector that can perform detection with high accuracy by removing the influence even in a radiation environment.

フォトセンサは発光部と受光部を備え、発光部からの光の変化を受光部で検出して、物体の有無、材質、パルスを検知するセンサであり、光学式エンコーダではパルス検知のために用いられている。   The photosensor is equipped with a light-emitting unit and a light-receiving unit, and detects changes in the light from the light-emitting unit with the light-receiving unit to detect the presence / absence, material, and pulse of an object, and is used for pulse detection in an optical encoder. It has been.

フォトセンサの発光部としては従来、発光ダイオード(LED)が用いられることが多い。一方、受光部としては、光検出器として働く半導体のダイオードであるフォトダイオードや、それより高感度だが応答時間は遅いフォトトランジスタ、さらにフォトIC等の光学素子が従来用いられている。   Conventionally, a light emitting diode (LED) is often used as a light emitting portion of a photosensor. On the other hand, as the light receiving section, a photodiode, which is a semiconductor diode serving as a photodetector, a phototransistor with higher sensitivity but a slower response time, and an optical element such as a photo IC are conventionally used.

特開2009−238813号公報「電気光学装置、光電変換装置及び放射線検出装置」JP 2009-238813 A "Electro-optical device, photoelectric conversion device and radiation detection device" 特開2010−165918号公報「フォトダイオードアレイ及び放射線検出器」JP 2010-165918 A "Photodiode Array and Radiation Detector" 特表2004−502959号公報「光学的な放射線センサーシステム並びに流体の放射線透過率を測定するための方法」JP 2004-502959 A "Optical radiation sensor system and method for measuring radiation transmittance of fluid"

さて近年、光学式エンコーダ等の回転検出・角度検出技術においても、原子力関連施設や宇宙空間といった放射線量の多い環境下(放射線環境下)における需要が高まっている。しかしながら従来のフォトダイオード等の光学素子は、外来光を完全に遮蔽しても、放射線が進入すると誤作動を起こすことがある。したがって、宇宙空間などの放射線環境下では、高精度な光学式エンコーダ等の使用においては放射線を遮蔽する必要があるが、装置重量やサイズの面で重装備となることを避けられず、問題がある。   Nowadays, in the rotation detection / angle detection technology such as an optical encoder, the demand in an environment (radiation environment) with a large radiation dose such as a nuclear facility or a space is increasing. However, even if conventional optical elements such as photodiodes are completely shielded from extraneous light, they may malfunction if radiation enters. Therefore, in a radiation environment such as outer space, it is necessary to shield radiation when using a high-precision optical encoder, etc., but it is inevitable that the equipment will be heavy equipment in terms of weight and size. is there.

また、原子力発電所その他原子力関連施設など地上用途においても同様、放射線環境下では、高精度な光学式エンコーダを使いたい場合でも、放射線を遮蔽できる環境を作らないと誤差動するため、使用することができない。このような問題については、従来、有効な解決手段が示されていない。なお、前掲特許文献開示技術は全て、放射線センサに係るものである。   Similarly, for ground applications such as nuclear power plants and other nuclear facilities, even if you want to use a high-precision optical encoder in a radiation environment, use it because an error occurs unless you create an environment that can shield radiation. I can't. Conventionally, no effective solution has been shown for such a problem. Note that all of the technologies disclosed in the above-mentioned patent documents relate to radiation sensors.

そこで本発明が解決しようとする課題は、かかる従来の問題を踏まえ、放射線環境下においてもその影響を除去して、高精度の検出を行うことができる、いわば放射線対応型フォトセンサ、およびそれを用いた光学式回転検出器を提供することである。   Therefore, the problem to be solved by the present invention is based on such conventional problems, and it is possible to remove the influence even in a radiation environment and perform high-accuracy detection. It is to provide an optical rotation detector used.

本願発明者は上記課題について検討した結果、受光部すなわち光検出素子を二個用い、一方において検出対象の光を入射させない構造を用いることにより課題を解決できることに想到し、本発明に至った。すなわち、上記課題を解決するための手段として本願で特許請求される発明、もしくは少なくとも開示される発明は、以下の通りである。   As a result of studying the above problems, the present inventor has come up with the present invention by conceiving that the problem can be solved by using two light receiving portions, that is, light detection elements, and using a structure that does not allow the detection target light to enter. That is, the invention claimed in the present application, or at least the disclosed invention, as means for solving the above-described problems is as follows.

(1) 光検出素子(以下、「第一の光検出素子」という。)と、光遮蔽手段と、該遮蔽手段によって検出対象の光のみの入射が遮られる第二の光検出素子と、各素子からの出力を差分する差動回路とを備えてなる、フォトセンサ。
(2) 放射線の影響を除去可能な放射線対応型であることを特徴とする、(1)に記載のフォトセンサ。
(3) 前記第二の光検出素子は、前記光遮蔽手段がなければ前記第一の光検出素子と同様に光が入射し得る程度に該第一の光検出素子に近接して設けられていることを特徴とする、(1)または(2)に記載のフォトセンサ。
(4) 検出対象の光の入射方向に対して、前記第一の光検出素子、前記光遮蔽手段、前記第二の光検出素子の順に配置されていることを特徴とする、(1)ないし(3)のいずれかに記載のフォトセンサ。
(5) 前記第二の光検出素子は、前記検出対象の光の入射方向のみならず全方向において当該光から遮蔽されていることを特徴とする、(4)に記載のフォトセンサ。
(6) 前記第一の光検出素子および第二の光検出素子はフォトダイオードまたはフォトトランジスタであることを特徴とする、(1)ないし(5)のいずれかに記載のフォトセンサ。
(7) (1)ないし(6)のいずれかに記載のフォトセンサを用いた、光学式回転検出器。
(1) a light detection element (hereinafter referred to as “first light detection element”), a light shielding means, a second light detection element in which only light to be detected is blocked by the shielding means, A photosensor comprising a differential circuit for subtracting outputs from elements.
(2) The photosensor according to (1), wherein the photosensor is a radiation-compatible type capable of removing the influence of radiation.
(3) The second photodetecting element is provided close to the first photodetecting element to the extent that light can enter as in the case of the first photodetecting element without the light shielding means. The photosensor according to (1) or (2), wherein:
(4) The first light detection element, the light shielding means, and the second light detection element are arranged in this order with respect to the incident direction of the light to be detected. (3) The photosensor according to any one of the above.
(5) The photosensor according to (4), wherein the second photodetecting element is shielded from the light not only in the incident direction of the light to be detected but also in all directions.
(6) The photosensor according to any one of (1) to (5), wherein the first photodetecting element and the second photodetecting element are photodiodes or phototransistors.
(7) An optical rotation detector using the photosensor according to any one of (1) to (6).

本発明のフォトセンサおよび光学式回転検出器は上述のように構成されるため、これによれば、放射線環境下においてもその影響を除去して、高精度の検出を行うことができる。すなわち、放射線対応型フォトセンサとそれを用いた光学式回転検出器を提供することができる。たとえば光学式エンコーダの場合であれば、宇宙環境や原子力環境などの放射線環境下においても、誤作動を起こさない光学式エンコーダを実現することができる。   Since the photosensor and the optical rotation detector of the present invention are configured as described above, according to this, the influence can be removed even in a radiation environment, and highly accurate detection can be performed. That is, it is possible to provide a radiation-compatible photosensor and an optical rotation detector using the photosensor. For example, in the case of an optical encoder, it is possible to realize an optical encoder that does not cause malfunction even in a radiation environment such as a space environment or a nuclear environment.

本発明のフォトセンサの基本的構成を示す説明図である。It is explanatory drawing which shows the basic composition of the photosensor of this invention. 図1において外乱として放射線が存在する場合の本発明フォトセンサの作用をグラフで示す説明図である。It is explanatory drawing which shows the effect | action of this invention photosensor in a graph when radiation exists as a disturbance in FIG. 本発明フォトセンサの別の構成例を示す説明図である。It is explanatory drawing which shows another structural example of this invention photosensor.

以下、図面により本発明を詳細に説明する。
図1は、本発明のフォトセンサの基本的構成を示す説明図である。図示するように本フォトセンサ10は、受光部として二個の光検出素子1、2を備えている。すなわち、第一の光検出素子1と、光遮蔽手段4と、遮蔽手段4によって検出対象の光のみの入射が遮られる第二の光検出素子2と、各素子からの出力を差分する差動回路3とを備えてなることを、主たる構成とする。なお、光検出素子1、2としては、フォトダイオード、フォトトランジスタ、フォトICなど適宜のものを用いることができるが、両者は同一種類・完全に同一仕様のものとする。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing the basic configuration of the photosensor of the present invention. As shown in the drawing, the photosensor 10 includes two light detection elements 1 and 2 as a light receiving portion. That is, the first photodetecting element 1, the light shielding means 4, the second photodetecting element 2 in which only the light to be detected is blocked by the shielding means 4, and the differential that differentiates the output from each element The main configuration is to include the circuit 3. As the photodetecting elements 1 and 2, a suitable one such as a photodiode, a phototransistor, or a photo IC can be used, but both are of the same type and completely the same specification.

本発明における検出対象の光とは、電磁波を波長によって分類する際の「光」、すなわち、波長が1mmから2nm程度であって、波長域によりさらに赤外線・可視光線・紫外線に分類されるところの「光」を指すものとする(以下、「通常光」ともいう)。したがって、検出対象の光の種類によって、それを遮蔽することのできる材質・形態・サイズを備えたものを適宜、光遮蔽手段4として用いることができる。たとえば検出対象の光が可視光であれば、これを透過しない紙であってもよい。   The light to be detected in the present invention is “light” when electromagnetic waves are classified by wavelength, that is, the wavelength is about 1 mm to 2 nm, and is further classified into infrared rays, visible rays, and ultraviolet rays according to the wavelength range. It shall mean “light” (hereinafter also referred to as “normal light”). Therefore, depending on the type of light to be detected, a material having a material, form, and size that can shield it can be used as the light shielding means 4 as appropriate. For example, if the light to be detected is visible light, paper that does not transmit light may be used.

かかる構成により本発明フォトセンサ10においては、第一の光検出素子1においては検出対象の光(通常光)および対象外の光(以下、「外乱」ともいう。)の両方が受光され、一方、第二の光検出素子2においては、光遮蔽手段4によって通常光が遮蔽されるため受光されず、外乱のみが入射する。両光検出素子1、2それぞれでの受光・入射による信号は、差動回路3に入力され、双方の信号の差分が処理されて、検出対象の光(通常光)のみを出力することができる。   With this configuration, in the photosensor 10 of the present invention, both the light to be detected (normal light) and the non-target light (hereinafter also referred to as “disturbance”) are received by the first photodetecting element 1. In the second light detection element 2, the normal light is shielded by the light shielding means 4, so that it is not received and only the disturbance is incident. Signals generated by light reception and incidence at both the light detection elements 1 and 2 are input to the differential circuit 3, and the difference between the two signals is processed to output only the light to be detected (normal light). .

換言すれば本発明のフォトセンサ10では、光検出素子を二個用い、そのうち一つを第一の光検出素子1として通常の光検出を行わしめ、さらに光遮蔽手段4によって通常光を遮蔽した状態に光検出素子を設置してこれを第二の光検出素子2とし、各光検出素子1、2それぞれからの検出信号を差動回路3で処理することにより、両者の出力を差分して、放射線など外乱の影響をキャンセルするものである。   In other words, in the photosensor 10 of the present invention, two light detection elements are used, one of which is the first light detection element 1 for performing normal light detection, and the normal light is shielded by the light shielding means 4. The light detection element is installed in the state to be the second light detection element 2, and the detection signal from each of the light detection elements 1 and 2 is processed by the differential circuit 3, so that the outputs of the two are differentiated. This cancels the influence of disturbance such as radiation.

なお、本発明における「差動回路」としては、2つの入力信号の差分を一定係数(差動利得)で増幅する、いわゆる差動増幅回路を好適に用いることができる。しかし、差分の信号強度が弱い場合には増幅が必要だが、本発明においては、差分の信号強度は差動処理前の信号強度と大差ない場合があり、その場合は敢えて増幅する必要がない。したがって本願においては、増幅処理に限定されない意味で「差動回路」の語を用いる。   As the “differential circuit” in the present invention, a so-called differential amplifier circuit that amplifies the difference between two input signals by a constant coefficient (differential gain) can be suitably used. However, amplification is necessary when the signal strength of the difference is weak, but in the present invention, the signal strength of the difference may not be much different from the signal strength before differential processing, and in that case, it is not necessary to amplify it. Therefore, in the present application, the term “differential circuit” is used in a sense that is not limited to amplification processing.

図2は、図1において外乱として放射線が存在する場合の本発明フォトセンサの作用をグラフで示す説明図である。図1に示すように検出対象の光(通常光V)は、第一の光検出素子1には入射するが、光遮蔽手段4によって光路が遮られるために、第二の光検出素子2には入射しない。一方、放射線Rは、通常光Vのみを遮蔽可能な光遮蔽手段4を貫通するため、第一の光検出素子1にも第二の光検出素子2にも入射する。   FIG. 2 is an explanatory view showing the action of the photosensor of the present invention in the case where radiation is present as disturbance in FIG. As shown in FIG. 1, the light to be detected (normal light V) is incident on the first light detection element 1, but the light path is blocked by the light shielding means 4, so Does not enter. On the other hand, since the radiation R penetrates the light shielding means 4 that can shield only the normal light V, the radiation R enters both the first light detection element 1 and the second light detection element 2.

図2中、(a)は第一の光検出素子1からの信号波形を、(b)は第二の光検出素子2からの信号波形を、そして(c)は差動回路3を経て出力される信号の波形を、それぞれ示す。通常光+放射線による信号(a)と、通常光が遮蔽されて入射せず放射線のみによる信号(b)とが、差動回路3を減ることによって、通常光のみの信号(c)として出力される。このようにして、放射線環境下であっても、それが除去された信号を出力することができる。   2, (a) shows the signal waveform from the first photodetecting element 1, (b) shows the signal waveform from the second photodetecting element 2, and (c) shows the output via the differential circuit 3. The waveforms of the signals to be processed are shown respectively. A signal (a) based on normal light + radiation and a signal (b) based on only radiation without shielding normal light are output as a signal (c) including only normal light by reducing the differential circuit 3. The In this way, even in a radiation environment, a signal from which it has been removed can be output.

なお、放射線とは一般に、放射性元素の崩壊に伴って放出される粒子線、あるいは電磁波のことであり、主としてアルファ線、ベータ線およびガンマ線のことをいうが、これらと同程度のエネルギーを持つ粒子線や宇宙線も、本願の放射線には含むものとする。つまり除去対象を放射線とする場合の本発明のフォトセンサは、一般的な「放射線」の場合、中性子線その他の粒子線を含む場合、一般的な放射線の一部を対象とする場合、宇宙線を対象に含む場合、いずれの場合をも含むものとする。   Radiation is generally a particle beam or electromagnetic wave that is emitted as a radioactive element decays. It mainly refers to alpha rays, beta rays, and gamma rays, but particles with energy similar to these. Rays and cosmic rays are also included in the radiation of the present application. In other words, the photosensor of the present invention when radiation to be removed is a general “radiation”, a neutron beam or other particle beam is included, a part of general radiation is a target, a cosmic ray In any case, it shall include both cases.

図1に示すように、本フォトセンサ10の第二の光検出素子2は、もし光遮蔽手段4がなければ第一の光検出素子1と同等に光が入射し得る程度に第一の光検出素子1に近接して設けるものとすることができる。これにより、第一の光検出素子1の位置における真の検出信号と同等の出力を得ることができる。もっとも、本発明がかかる構成に限定されるものではなく、除去対象の放射線等電磁波が第一の光検出素子と同等に入射するのであれば、フォトセンサ中の他の位置に第二の光検出素子を設ける構成としてもよい。   As shown in FIG. 1, the second photodetecting element 2 of the photosensor 10 has the first light to the extent that light can enter the same as the first photodetecting element 1 if there is no light shielding means 4. It can be provided close to the detection element 1. Thereby, an output equivalent to the true detection signal at the position of the first photodetecting element 1 can be obtained. However, the present invention is not limited to such a configuration. If the electromagnetic wave such as the radiation to be removed is incident in the same manner as the first photodetecting element, the second photodetection is performed at another position in the photosensor. It is good also as a structure which provides an element.

なお、両方の光検出素子を近接して設ける場合は、検出対象の光の入射方向に交差する方向上に並設してもよいが、図示するように入射方向上に前後して設置する構成とすることが、近接させる趣旨に鑑み、より望ましい。つまりこの場合のフォトセンサ10は、図示するように、検出対象の光の入射方向に対して、第一の光検出素子1、光遮蔽手段4、第二の光検出素子3の順に配置された構成となる。   When both photodetecting elements are provided close to each other, they may be arranged side by side in the direction intersecting the incident direction of the light to be detected, but as shown in the figure, they are installed in the incident direction. It is more desirable in view of the purpose of making it close. That is, the photosensor 10 in this case is arranged in the order of the first photodetecting element 1, the light shielding means 4, and the second photodetecting element 3 with respect to the incident direction of the light to be detected, as shown in the figure. It becomes composition.

図3は、本発明フォトセンサの別の構成例を示す説明図である。図示するように本例のフォトセンサ310においては、第二の光検出素子32が、光遮蔽手段34による検出対象の光の入射方向から遮蔽されるのみならず、補助遮蔽手段36によって全方向において当該光から遮蔽された構成である。光遮蔽手段34同様、補助遮蔽手段36としても、検出対象の光の種類によってそれを遮蔽することのできる材質・形態・サイズを備えたものを、適宜用いることができる。たとえば検出対象の光が可視光であれば、これを透過しない紙であってもよい。   FIG. 3 is an explanatory view showing another configuration example of the photosensor of the present invention. As shown in the figure, in the photosensor 310 of this example, the second light detection element 32 is not only shielded from the incident direction of the light to be detected by the light shielding means 34 but also in all directions by the auxiliary shielding means 36. It is the structure shielded from the said light. Similar to the light shielding means 34, as the auxiliary shielding means 36, a material having a material, form, and size capable of shielding the light depending on the type of light to be detected can be appropriately used. For example, if the light to be detected is visible light, paper that does not transmit light may be used.

なお、図示した構成は一例であり、補助遮蔽手段36の具体的な形状やサイズ、材質などの仕様は、適宜のものとすることができる。かかる構成により、第二の光検出手段32への検出対象の光の進入を完全に遮蔽して、一層高精度の信号検出、信号出力を得ることができる。   Note that the illustrated configuration is an example, and the specifications such as the specific shape, size, and material of the auxiliary shielding means 36 can be set appropriately. With such a configuration, it is possible to completely shield the detection target light from entering the second light detection means 32 and obtain more accurate signal detection and signal output.

以上説明したいずれかの本発明フォトセンサを用いた光学式回転検出器、たとえば光学式エンコーダ等も、本発明の範囲内である。   An optical rotation detector using any of the photosensors of the present invention described above, such as an optical encoder, is also within the scope of the present invention.

本発明のフォトセンサおよび光学式回転検出器によれば、放射線環境下のような外乱の存在する環境においても、その影響を除去して、高精度の検出を行うことができる。また、想定する外乱が特に放射線である場合は、放射線対応型フォトセンサとそれを用いた光学式回転検出器を提供することができる。それにより、宇宙環境や原子力環境などの放射線環境下においても、誤作動を起こさない光学式回転検出器を実現することができる。したがって、放射線その他の外乱のある環境下においても高精度の回転検出・角度検出が必要なあらゆる産業分野、技術分野において、産業上利用性が高い発明である。   According to the photosensor and the optical rotation detector of the present invention, the influence can be removed and highly accurate detection can be performed even in an environment where there is a disturbance such as a radiation environment. In addition, when the assumed disturbance is particularly radiation, a radiation-compatible photosensor and an optical rotation detector using the same can be provided. Thereby, it is possible to realize an optical rotation detector that does not cause malfunction even in a radiation environment such as a space environment or a nuclear environment. Therefore, the present invention has high industrial applicability in all industrial fields and technical fields that require highly accurate rotation detection and angle detection even in an environment with radiation and other disturbances.

1、31…第一の光検出素子
2、32…第二の光検出素子
3、33…差動回路
4、34…光遮蔽手段
5、35…筐体
10、310…フォトセンサ
36…補助遮蔽手段
V…検出対象の光(通常光)
R…放射線


DESCRIPTION OF SYMBOLS 1, 31 ... 1st photon detection element 2, 32 ... 2nd photon detection element 3, 33 ... Differential circuit 4, 34 ... Light shielding means 5, 35 ... Case 10, 310 ... Photo sensor 36 ... Auxiliary shielding Means V ... Light to be detected (normal light)
R ... radiation


Claims (7)

光検出素子(以下、「第一の光検出素子」という。)と、光遮蔽手段と、該遮蔽手段によって検出対象の光のみの入射が遮られる第二の光検出素子と、各素子からの出力を差分する差動回路とを備えてなる、フォトセンサ。
A light detection element (hereinafter referred to as “first light detection element”), a light shielding means, a second light detection element in which only the light to be detected is blocked by the shielding means, A photosensor comprising a differential circuit for differentiating outputs.
放射線の影響を除去可能な放射線対応型であることを特徴とする、請求項1に記載のフォトセンサ。
The photosensor according to claim 1, wherein the photosensor is a radiation-compatible type capable of removing the influence of radiation.
前記第二の光検出素子は、前記光遮蔽手段がなければ前記第一の光検出素子と同様に光が入射し得る程度に該第一の光検出素子に近接して設けられていることを特徴とする、請求項1または2に記載のフォトセンサ。
The second photodetecting element is provided close to the first photodetecting element to the extent that light can enter as in the case of the first photodetecting element without the light shielding means. The photosensor according to claim 1, wherein the photosensor is characterized.
検出対象の光の入射方向に対して、前記第一の光検出素子、前記光遮蔽手段、前記第二の光検出素子の順に配置されていることを特徴とする、請求項1ないし3のいずれかに記載のフォトセンサ。
The first light detection element, the light shielding means, and the second light detection element are arranged in this order with respect to the incident direction of light to be detected. The photo sensor according to Crab.
前記第二の光検出素子は、前記検出対象の光の入射方向のみならず全方向において当該光から遮蔽されていることを特徴とする、請求項4に記載のフォトセンサ。
5. The photosensor according to claim 4, wherein the second photodetecting element is shielded from the light not only in the incident direction of the light to be detected but also in all directions.
前記第一の光検出素子および第二の光検出素子はフォトダイオードまたはフォトトランジスタであることを特徴とする、請求項1ないし5のいずれかに記載のフォトセンサ。
6. The photosensor according to claim 1, wherein the first photodetecting element and the second photodetecting element are photodiodes or phototransistors.
請求項1ないし6のいずれかに記載のフォトセンサを用いた、光学式回転検出器。






An optical rotation detector using the photosensor according to claim 1.






JP2012096124A 2012-04-19 2012-04-19 Photosensor and optical rotation detector Pending JP2013224830A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012096124A JP2013224830A (en) 2012-04-19 2012-04-19 Photosensor and optical rotation detector
PCT/JP2012/066843 WO2013157152A1 (en) 2012-04-19 2012-07-02 Photosensor and optical-type rotation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096124A JP2013224830A (en) 2012-04-19 2012-04-19 Photosensor and optical rotation detector

Publications (1)

Publication Number Publication Date
JP2013224830A true JP2013224830A (en) 2013-10-31

Family

ID=49383130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096124A Pending JP2013224830A (en) 2012-04-19 2012-04-19 Photosensor and optical rotation detector

Country Status (2)

Country Link
JP (1) JP2013224830A (en)
WO (1) WO2013157152A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017203699A (en) * 2016-05-11 2017-11-16 国立大学法人京都大学 Imaging plate and camera
JP2018518668A (en) * 2015-05-14 2018-07-12 ケーエルエー−テンカー コーポレイション System and method for reducing radiation-induced false counts in inspection systems
CN108695397A (en) * 2017-04-07 2018-10-23 深圳市乐夷微电子有限公司 A kind of chip technology manufacturing method and photosensitive sensor chip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012218890A1 (en) * 2012-10-17 2014-04-17 Dr. Johannes Heidenhain Gmbh Absolute position measuring device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147923A (en) * 1988-11-30 1990-06-06 Hitachi Ltd Light detection circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018518668A (en) * 2015-05-14 2018-07-12 ケーエルエー−テンカー コーポレイション System and method for reducing radiation-induced false counts in inspection systems
JP2020170019A (en) * 2015-05-14 2020-10-15 ケーエルエー コーポレイション System and method for reducing radiation-induced false count in inspection system
JP7489508B2 (en) 2015-05-14 2024-05-23 ケーエルエー コーポレイション System for reducing radiation induced false counts in an inspection system - Patents.com
JP2017203699A (en) * 2016-05-11 2017-11-16 国立大学法人京都大学 Imaging plate and camera
CN108695397A (en) * 2017-04-07 2018-10-23 深圳市乐夷微电子有限公司 A kind of chip technology manufacturing method and photosensitive sensor chip

Also Published As

Publication number Publication date
WO2013157152A1 (en) 2013-10-24

Similar Documents

Publication Publication Date Title
WO2013157152A1 (en) Photosensor and optical-type rotation detector
CN207318734U (en) A kind of linear array double energy X-ray detector
WO2005116691A8 (en) Gamma ray detectors
KR102132605B1 (en) Radiation detector for detecting and distinguishing type of radiation
US8466417B2 (en) Radiometric level or density measurement
JP4740022B2 (en) Optical sensor and object detection method
JP6917763B2 (en) Atmospheric radioactivity measuring device
CN104267424B (en) X-ray omnidirectional detector
KR20150088607A (en) Radiation detector
RU2308056C1 (en) Scintillation detector
RU177857U1 (en) RING DETECTOR OF THERMAL NEUTRONS
RU2371740C1 (en) Hodoscope
CN219512415U (en) Signal generation system
CN107390255B (en) Novel CT discrete detector
JP2019190857A (en) Position detector
JP5049759B2 (en) Radiation detector
JP5403423B2 (en) High energy X-ray energy discrimination inspection device and inspection method
JP2012026996A (en) Radiation detection apparatus
Kim et al. Design and calibration of a neutral particle analyzer for the KSTAR
JP4351780B2 (en) Radiation detector
KR20100118467A (en) Radiation camera
US9350458B2 (en) Disturbance tolerant optical device
KR20220145540A (en) Radiation Tolerant Flame Detector and the manufacturing method
Zamantzas et al. Architecture of the system for beam loss monitoring and measurements under development for the injector complex at CERN
Iwata et al. Study of 144-ch Hybrid Avalanche Photo-Detector with high density electronics system for Belle-II RICH counter