JP2013224417A - Aqueous resin dispersion, method for producing the same, and conductive film - Google Patents

Aqueous resin dispersion, method for producing the same, and conductive film Download PDF

Info

Publication number
JP2013224417A
JP2013224417A JP2013055212A JP2013055212A JP2013224417A JP 2013224417 A JP2013224417 A JP 2013224417A JP 2013055212 A JP2013055212 A JP 2013055212A JP 2013055212 A JP2013055212 A JP 2013055212A JP 2013224417 A JP2013224417 A JP 2013224417A
Authority
JP
Japan
Prior art keywords
polymer
resin dispersion
aqueous resin
thiophene
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013055212A
Other languages
Japanese (ja)
Other versions
JP5923049B2 (en
Inventor
Toru Yumoto
徹 湯本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2013055212A priority Critical patent/JP5923049B2/en
Publication of JP2013224417A publication Critical patent/JP2013224417A/en
Application granted granted Critical
Publication of JP5923049B2 publication Critical patent/JP5923049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aqueous resin dispersion which is excellent in polymerization stability of a thiophene polymer and can produce a conductive film with satisfactory conductivity, and a method for producing the same.SOLUTION: An aqueous resin dispersion includes polymer particles dispersed in water. The polymer particles include a sulfonic acid-based emulsifier and a thiophene polymer. The average particle size of the polymer particles is 10-5,000 nm. The aqueous resin dispersion has conductivity of 0.05-5,000 S/cm when made into a film by a casting method.

Description

本発明は、水性樹脂分散体及びその製造方法、並びに、該水性樹脂分散体から作製される導電膜に関するものである。   The present invention relates to an aqueous resin dispersion, a method for producing the same, and a conductive film produced from the aqueous resin dispersion.

導電性高分子の活用が、タッチパネルや有機EL、有機薄膜太陽電池といった様々な分野で検討されている。導電性高分子としては、ポリアセチレンやポリ(3,4−エチレンジオキシチオフェン)(PEDOT)がよく知られている。ポリアセチレンはドープすることで、導電性が数万S/cmとなるが、空気中で不安定という問題を有している。一方、PEDOTは空気中で安定であり、広く市販・利用されているが、PEDOT自体は不溶・不融という性質を持っており、単独での溶液化ならびに薄膜化が困難である。また、PEDOT単独では導電性が発現せず、何らかのドーパントが必要である。よって、PEDOTに分散性・製膜性・導電性を付与するため、通常、ポリスチレンスルホン酸(PSS)を混合する方法が用いられている(特許文献1、非特許文献1)。   Utilization of conductive polymers has been studied in various fields such as touch panels, organic EL, and organic thin film solar cells. As the conductive polymer, polyacetylene and poly (3,4-ethylenedioxythiophene) (PEDOT) are well known. When polyacetylene is doped, the conductivity becomes tens of thousands S / cm, but it has a problem of being unstable in the air. On the other hand, PEDOT is stable in the air and is widely marketed and used. However, PEDOT itself has insoluble and infusible properties, and it is difficult to make a solution and a thin film by itself. Further, PEDOT alone does not exhibit conductivity, and some kind of dopant is necessary. Therefore, in order to impart dispersibility, film-forming property, and conductivity to PEDOT, a method of mixing polystyrene sulfonic acid (PSS) is usually used (Patent Document 1, Non-Patent Document 1).

一方、導電性高分子の水分散性や加工性を向上させるため、導電性高分子の粒子構造を制御する試みも検討されている。例えば、特許文献2では、シード微粒子表面にポリピロール層が設けられた導電性微粒子が開示されている。また、特許文献3には、アニリンを用いた導電性のコポリマー組成物を調製する方法が開示されている。   On the other hand, in order to improve the water dispersibility and processability of the conductive polymer, an attempt to control the particle structure of the conductive polymer has also been studied. For example, Patent Document 2 discloses conductive fine particles in which a polypyrrole layer is provided on the surface of seed fine particles. Patent Document 3 discloses a method for preparing a conductive copolymer composition using aniline.

特許2636968号公報Japanese Patent No. 2636968 特開2004−241132号公報JP 2004-241132 A 特開2001−31745号公報JP 2001-31745 A

「最新 導電性高分子全集」 技術情報協会発行 2007年 第47頁"The latest collection of conductive polymers" Published by Technical Information Association 2007, page 47

PSS自体は絶縁性のためPEDOTに対してなるべく少ない方が好ましく、PSSの割合いが多いと、膜としたときの分散状態はPEDOTが島(PSSが海)となってしまい、PEDOT本来の性能が発現し難くなる。また、PEDOT/PSSは、基板との密着性や成膜性が十分でない場合があり、剛直な膜としても知られている。また、ポリピロール層が設けられた導電性微粒子は、透明性に劣ることに加え、抵抗が高くなる傾向にあるため導電性材料として活用範囲が限られる。さらに、アニリンを用いた導電性コポリマーは、粒子径が大きくなり易く、薄膜を作製し難いことに加え、抵抗が高くなり十分な導電性が得られないことがある。   Since PSS itself is insulative, it should be as small as possible with respect to PEDOT. If the proportion of PSS is large, the dispersion state when the film is formed becomes PEDOT islands (PSS is the sea), and PEDOT's original performance Becomes difficult to express. PEDOT / PSS is also known as a rigid film because adhesion to a substrate and film formability may not be sufficient. Moreover, since the conductive fine particles provided with the polypyrrole layer tend to have high resistance in addition to being inferior in transparency, the range of utilization as a conductive material is limited. Furthermore, the conductive copolymer using aniline tends to have a large particle size, making it difficult to produce a thin film, and the resistance is high, so that sufficient conductivity may not be obtained.

本発明は、導電性高分子であるチオフェン系ポリマーの重合安定性に優れ、導電性が良好な導電膜を作製できる水性樹脂分散体及びその製造方法を提供することを目的とする。また、本発明は、高い導電性を有するチオフェン系ポリマーを含む導電膜を提供することを目的とする。   An object of this invention is to provide the aqueous resin dispersion which can produce the electrically conductive film which is excellent in the polymerization stability of the thiophene-type polymer which is an electroconductive polymer, and has favorable electroconductivity, and its manufacturing method. Moreover, an object of this invention is to provide the electrically conductive film containing the thiophene-type polymer which has high electroconductivity.

本発明者らは、上記のような問題を解決するために鋭意研究を重ねた結果、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have completed the present invention.

すなわち、本発明は、以下に関する。
[1]ポリマー粒子が水に分散した水性樹脂分散体であって、ポリマー粒子が、スルホン酸系乳化剤及びチオフェン系ポリマーを含み、ポリマー粒子の平均粒子径が10nm〜5000nmであり、水性樹脂分散体をキャスト法で膜とした場合の導電率が0.05S/cm〜5000S/cmである、水性樹脂分散体。
[2]下記式(1)で表される水性樹脂分散体中のポリマー成分におけるチオフェン系モノマーに由来するユニットの含有量(X)が30質量%〜80質量%である、[1]に記載の水性樹脂分散体。
X=100×α/(α+β+γ) (1)
(式中、αはチオフェン系モノマーの仕込み量を示し、βはチオフェン系以外のモノマーの仕込み量を示し、γはスルホン酸系乳化剤の仕込み量を示す。)
[3]ポリマー粒子が、ガラス転移温度が30℃以下のポリマーを更に含む、[1]又は[2]に記載の水性樹脂分散体。
[4]ポリマー粒子がコア/シェル構造を有し、シェルが、スルホン酸系乳化剤及びチオフェン系ポリマーを含む、[1]〜[3]のいずれかに記載の水性樹脂分散体。
[5]ポリマー粒子の平均粒子径が10nm〜180nmである、[1]〜[4]のいずれかに記載の水性樹脂分散体。
[6]ガラス転移温度が30℃以下のポリマーが、(メタ)アクリル酸エステルを含むモノマーを重合したアクリルポリマーを含有する、[3]〜[5]のいずれかに記載の水性樹脂分散体。
[7](メタ)アクリル酸エステルが、アクリル酸2−エチルヘキシルを含む、[6]に記載の水性樹脂分散体。
[8]アクリルポリマーが、(メタ)アクリル酸エステル及び多官能の(メタ)アクリレートを含むモノマーを重合した架橋型アクリルポリマーである、[6]又は[7]に記載の水性樹脂分散体。
[9]多官能の(メタ)アクリレートが、トリメチロールプロパントリ(メタ)クリレートを含む、[8]に記載の水性樹脂分散体。
[10]チオフェン系ポリマーが、ポリ(3,4−エチレンジオキシチオフェン)である、[1]〜[9]のいずれかに記載の水性樹脂分散体。
[11]スルホン酸系乳化剤が、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、スチレンスルホン酸、スチレンスルホン酸ナトリウム、トルエンスルホン酸及びトルエンスルホン酸ナトリウムからなる群より選ばれる少なくとも1種を含む、[1]〜[10]のいずれかに記載の水性樹脂分散体。
[12]チオフェン系ポリマーと、該チオフェン系ポリマー以外のポリマーと、スルホン酸系乳化剤とを含み、海島構造を形成している導電膜であり、チオフェン系ポリマー以外のポリマーが島状に分散し、チオフェン系ポリマーが海状に連続体を形成し、チオフェン系ポリマー以外のポリマーの平均粒子径が5nm〜80nmであり、膜中のチオフェン系ポリマーの含有量が膜全体に対し30質量%〜80質量%である、導電膜。
[13]チオフェン系ポリマーと、チオフェン系ポリマー以外のポリマーと、スルホン酸系乳化剤とを含む導電膜であって、導電率が0.05S/cm〜5000S/cmであり、粒径0.1μm以上の粒子が10個/mm以下である、導電膜。
[14]下記式(3)で表される導電膜中のチオフェン系モノマーに由来するユニットの含有量(Z)が30質量%〜80質量%である、[12]又は[13]に記載の導電膜。
Z=100×α/(α+β+γ) (3)
(式中、αはチオフェン系モノマーの仕込み量を示し、βはチオフェン系以外のモノマーの仕込み量を示し、γはスルホン酸系乳化剤の仕込み量を示す。)
[15]チオフェン系ポリマーが、ポリ(3,4−エチレンジオキシチオフェン)である、[12]〜[14]のいずれかに記載の導電膜。
[16]チオフェン系ポリマー以外のポリマーのガラス転移温度が30℃以下である、[12]〜[15]のいずれかに記載の導電膜。
[17]チオフェン系ポリマー以外のポリマーが、(メタ)アクリル酸エステルを含むモノマーを重合したアクリルポリマーである、[12]〜[16]のいずれかに記載の導電膜。
[18]アクリルポリマーが、(メタ)アクリル酸エステル及び多官能の(メタ)アクリレートを含むモノマーを重合した架橋型アクリルポリマーである、[17]に記載の導電膜。
[19](メタ)アクリル酸エステルが、アクリル酸2−エチルヘキシルを含む、[17]又は[18]に記載の導電膜。
[20]多官能の(メタ)アクリレートが、トリメチロールプロパントリメタクリレートを含む、[18]又は[19]に記載の導電膜。
[21]スルホン酸系乳化剤が、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、スチレンスルホン酸、スチレンスルホン酸ナトリウム、トルエンスルホン酸及びトルエンスルホン酸ナトリウムからなる群より選ばれる少なくとも1種を含む、[12]〜[20]のいずれかに記載の導電膜。
[22]ポリマー粒子が水に分散した水性樹脂分散体を製造する方法であって、スルホン酸系乳化剤、チオフェン系モノマー及び水を含む第1の乳化液を調製する工程と、スルホン酸系乳化剤、前記チオフェン系モノマー以外のモノマー及び水を含む第2の乳化液を調製し、該第2の乳化液を重合してコア粒子を作製する工程と、コア粒子の存在下、第1の乳化液を重合してポリマー粒子を作製する工程と、を備え、コア粒子の平均粒子径が5nm〜80nmであり、ポリマー粒子の平均粒子径が10nm〜5000nmである、水性樹脂分散体の製造方法。
[23]下記式(2)で表されるポリマー成分におけるチオフェン系モノマーに由来するユニットの仕込み量(Y)が30質量%〜80質量%である、[22]に記載の水性樹脂分散体の製造方法。
Y=100×α/(α+β+γ) (2)
(式中、αはチオフェン系モノマーの仕込み量を示し、βはチオフェン系以外のモノマーの仕込み量を示し、γはスルホン酸系乳化剤の仕込み量を示す。)
[24]ポリマー粒子の平均粒子径が10nm〜180nmである、[22]又は[23]に記載の水性樹脂分散体の製造方法。
[25]第1の乳化液及び第2の乳化液が、過硫酸アンモニウムを更に含む、[22]〜[24]のいずれかに記載の水性樹脂分散体の製造方法。
[26]チオフェン系モノマーが、3,4−エチレンジオキシチオフェンである、[22]〜[25]のいずれかに記載の水性樹脂分散体の製造方法。
[27]チオフェン系モノマー以外のモノマーを重合して得られるポリマーのガラス転移温度が30℃以下である、[22]〜[26]のいずれかに記載の水性樹脂分散体の製造方法。
[28]チオフェン系モノマー以外のモノマーが、(メタ)アクリル酸エステルを含む、[22]〜[26]のいずれか1項に記載の水性樹脂分散体の製造方法。
[29](メタ)アクリル酸エステルが、アクリル酸2−エチルヘキシルを含む、[28]に記載の水性樹脂分散体の製造方法。
[30]チオフェン系モノマー以外のモノマーが、(メタ)アクリル酸エステル及び多官能の(メタ)アクリレートを含む、[22]〜[29]のいずれかに記載の水性樹脂分散体の製造方法。
[31]多官能の(メタ)アクリレートが、トリメチロールプロパントリメタクリレートを含む、[30]に記載の水性樹脂分散体の製造方法。
[32]スルホン酸系乳化剤が、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、スチレンスルホン酸、スチレンスルホン酸ナトリウム、トルエンスルホン酸及びトルエンスルホン酸ナトリウムからなる群より選ばれる少なくとも1種を含む、[22]〜[31]のいずれか一項に記載の水性樹脂分散体の製造方法。
[33]第1の乳化液を調製する際の温度が20℃〜60℃である、[22]〜[32]のいずれかに記載の水性樹脂分散体の製造方法。
That is, the present invention relates to the following.
[1] An aqueous resin dispersion in which polymer particles are dispersed in water, the polymer particles include a sulfonic acid emulsifier and a thiophene polymer, and the average particle diameter of the polymer particles is 10 nm to 5000 nm. A water-based resin dispersion having a conductivity of 0.05 S / cm to 5000 S / cm when a film is formed by casting.
[2] The content (X) of a unit derived from a thiophene monomer in the polymer component in the aqueous resin dispersion represented by the following formula (1) is 30% by mass to 80% by mass, according to [1]. An aqueous resin dispersion.
X = 100 × α / (α + β + γ) (1)
(In the formula, α represents the charged amount of the thiophene monomer, β represents the charged amount of the monomer other than the thiophene monomer, and γ represents the charged amount of the sulfonic acid emulsifier.)
[3] The aqueous resin dispersion according to [1] or [2], wherein the polymer particles further include a polymer having a glass transition temperature of 30 ° C. or lower.
[4] The aqueous resin dispersion according to any one of [1] to [3], wherein the polymer particles have a core / shell structure, and the shell includes a sulfonic acid emulsifier and a thiophene polymer.
[5] The aqueous resin dispersion according to any one of [1] to [4], wherein the polymer particles have an average particle diameter of 10 nm to 180 nm.
[6] The aqueous resin dispersion according to any one of [3] to [5], wherein the polymer having a glass transition temperature of 30 ° C. or lower contains an acrylic polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester.
[7] The aqueous resin dispersion according to [6], wherein the (meth) acrylic acid ester contains 2-ethylhexyl acrylate.
[8] The aqueous resin dispersion according to [6] or [7], wherein the acrylic polymer is a cross-linked acrylic polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester and a polyfunctional (meth) acrylate.
[9] The aqueous resin dispersion according to [8], wherein the polyfunctional (meth) acrylate includes trimethylolpropane tri (meth) acrylate.
[10] The aqueous resin dispersion according to any one of [1] to [9], wherein the thiophene-based polymer is poly (3,4-ethylenedioxythiophene).
[11] The sulfonic acid-based emulsifier contains at least one selected from the group consisting of dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, styrenesulfonic acid, sodium styrenesulfonate, toluenesulfonic acid, and sodium toluenesulfonate. The aqueous resin dispersion according to any one of [1] to [10].
[12] A conductive film comprising a thiophene polymer, a polymer other than the thiophene polymer, and a sulfonic acid emulsifier, forming a sea-island structure, wherein the polymer other than the thiophene polymer is dispersed in an island shape, The thiophene polymer forms a continuum in the shape of a sea, the average particle diameter of the polymer other than the thiophene polymer is 5 nm to 80 nm, and the content of the thiophene polymer in the film is 30% by mass to 80% by mass with respect to the entire film. % Conductive film.
[13] A conductive film comprising a thiophene polymer, a polymer other than a thiophene polymer, and a sulfonic acid emulsifier, having an electrical conductivity of 0.05 S / cm to 5000 S / cm, and a particle size of 0.1 μm or more A conductive film having 10 particles / mm 2 or less.
[14] The content (Z) of a unit derived from a thiophene monomer in the conductive film represented by the following formula (3) is 30% by mass to 80% by mass, according to [12] or [13] Conductive film.
Z = 100 × α / (α + β + γ) (3)
(In the formula, α represents the charged amount of the thiophene monomer, β represents the charged amount of the monomer other than the thiophene monomer, and γ represents the charged amount of the sulfonic acid emulsifier.)
[15] The conductive film according to any one of [12] to [14], wherein the thiophene-based polymer is poly (3,4-ethylenedioxythiophene).
[16] The conductive film according to any one of [12] to [15], wherein a glass transition temperature of a polymer other than the thiophene-based polymer is 30 ° C. or lower.
[17] The conductive film according to any one of [12] to [16], wherein the polymer other than the thiophene polymer is an acrylic polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester.
[18] The conductive film according to [17], wherein the acrylic polymer is a crosslinked acrylic polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester and a polyfunctional (meth) acrylate.
[19] The conductive film according to [17] or [18], wherein the (meth) acrylic acid ester contains 2-ethylhexyl acrylate.
[20] The conductive film according to [18] or [19], wherein the polyfunctional (meth) acrylate includes trimethylolpropane trimethacrylate.
[21] The sulfonic acid-based emulsifier includes at least one selected from the group consisting of dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, styrenesulfonic acid, sodium styrenesulfonate, toluenesulfonic acid, and sodium toluenesulfonate. The conductive film according to any one of [12] to [20].
[22] A method for producing an aqueous resin dispersion in which polymer particles are dispersed in water, the step of preparing a first emulsion containing a sulfonic acid-based emulsifier, a thiophene monomer and water, a sulfonic acid-based emulsifier, Preparing a second emulsion containing water other than the thiophene monomer and water, polymerizing the second emulsion to produce core particles, and in the presence of the core particles, the first emulsion And a step of polymerizing to produce polymer particles, wherein the average particle diameter of the core particles is 5 nm to 80 nm, and the average particle diameter of the polymer particles is 10 nm to 5000 nm.
[23] The aqueous resin dispersion according to [22], wherein the charged amount (Y) of a unit derived from a thiophene monomer in the polymer component represented by the following formula (2) is 30% by mass to 80% by mass. Production method.
Y = 100 × α / (α + β + γ) (2)
(In the formula, α represents the charged amount of the thiophene monomer, β represents the charged amount of the monomer other than the thiophene monomer, and γ represents the charged amount of the sulfonic acid emulsifier.)
[24] The method for producing an aqueous resin dispersion according to [22] or [23], wherein the average particle diameter of the polymer particles is 10 nm to 180 nm.
[25] The method for producing an aqueous resin dispersion according to any one of [22] to [24], wherein the first emulsion and the second emulsion further contain ammonium persulfate.
[26] The method for producing an aqueous resin dispersion according to any one of [22] to [25], wherein the thiophene monomer is 3,4-ethylenedioxythiophene.
[27] The method for producing an aqueous resin dispersion according to any one of [22] to [26], wherein a glass transition temperature of a polymer obtained by polymerizing a monomer other than a thiophene monomer is 30 ° C. or lower.
[28] The method for producing an aqueous resin dispersion according to any one of [22] to [26], wherein the monomer other than the thiophene monomer includes (meth) acrylic acid ester.
[29] The method for producing an aqueous resin dispersion according to [28], wherein the (meth) acrylic acid ester contains 2-ethylhexyl acrylate.
[30] The method for producing an aqueous resin dispersion according to any one of [22] to [29], wherein the monomer other than the thiophene monomer includes a (meth) acrylic acid ester and a polyfunctional (meth) acrylate.
[31] The method for producing an aqueous resin dispersion according to [30], wherein the polyfunctional (meth) acrylate contains trimethylolpropane trimethacrylate.
[32] The sulfonic acid-based emulsifier contains at least one selected from the group consisting of dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, styrenesulfonic acid, sodium styrenesulfonate, toluenesulfonic acid, and sodium toluenesulfonate. 22]-[31] The manufacturing method of the aqueous resin dispersion as described in any one of.
[33] The method for producing an aqueous resin dispersion according to any one of [22] to [32], wherein the temperature when preparing the first emulsion is 20 ° C to 60 ° C.

本発明によれば、チオフェン系ポリマーの重合安定性に優れ、導電性が良好な導電膜を作製できる水性樹脂分散体及びその製造方法を提供することができる。また、本発明は、高い導電性を有するチオフェン系ポリマーを含む導電膜を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the aqueous resin dispersion which can produce the electrically conductive film excellent in the polymerization stability of a thiophene-type polymer and favorable electroconductivity, and its manufacturing method can be provided. Moreover, this invention can provide the electrically conductive film containing the thiophene-type polymer which has high electroconductivity.

以下、本発明を実施するための最良の形態について詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

[水性樹脂分散体]
本実施形態の水性樹脂分散体は、スルホン酸系乳化剤及びチオフェン系ポリマーを含むポリマー粒子が水に分散した水性樹脂分散体であって、ポリマー粒子の平均粒子径が10nm〜5000nmであり、水性樹脂分散体からなる膜の導電率が0.05S/cm〜5000S/cmであることを特徴とする。また、水性樹脂分散体の全固形分のポリマー成分中、チオフェン系ポリマーの含有量は30質量%〜80質量%であることが好ましい。
[Aqueous resin dispersion]
The aqueous resin dispersion of the present embodiment is an aqueous resin dispersion in which polymer particles containing a sulfonic acid emulsifier and a thiophene polymer are dispersed in water, and the average particle diameter of the polymer particles is 10 nm to 5000 nm. The conductivity of the film made of the dispersion is from 0.05 S / cm to 5000 S / cm. Moreover, it is preferable that content of a thiophene-type polymer is 30 mass%-80 mass% in the polymer component of the total solid of an aqueous resin dispersion.

ポリマー粒子の平均粒子径は、分散安定性の観点から、10〜3000nmが好ましく、50〜2500nmがより好ましい。また、成膜性の観点から、ポリマー粒子の平均粒子径は、10nm〜180nmが好ましく、20〜150nmがより好ましく、50〜120nmが更に好ましい。   From the viewpoint of dispersion stability, the average particle size of the polymer particles is preferably 10 to 3000 nm, and more preferably 50 to 2500 nm. Further, from the viewpoint of film formability, the average particle size of the polymer particles is preferably 10 nm to 180 nm, more preferably 20 to 150 nm, and even more preferably 50 to 120 nm.

本実施形態に係るポリマー粒子は、後述するようにコア粒子を形成した後、その存在下でチオフェン系モノマーを重合することで作製することができる。ポリマー粒子の構造としては、コア粒子の内部にチオフェン系モノマーが入り込みながら重合して組成に偏りがない均一な構造を有してもよく、コア粒子の表面でチオフェン系モノマーが重合してシェルを形成したコア/シェル構造を有していてもよい。導電性及び成膜性の観点から、ポリマー粒子は、導電性高分子であるチオフェン系ポリマーがシェルとなるコア/シェル構造を有するとよい。水性樹脂分散体を用いて導電膜を成膜する過程にて、水が蒸発すると同時にポリマー粒子が最密充填構造をとるため、シェル同士が必ず接する構造をとり、導電性高分子がシェルであれば、導電性高分子が接した連続膜を形成できるためである。コア/シェル構造の有無は、小角X線散乱法により確認することができる。   The polymer particles according to the present embodiment can be produced by forming core particles as described later and then polymerizing a thiophene monomer in the presence thereof. The polymer particles may have a uniform structure in which the thiophene monomer is polymerized while entering the core particle and the composition is not biased. The thiophene monomer is polymerized on the surface of the core particle to form a shell. It may have a formed core / shell structure. From the viewpoints of conductivity and film formability, the polymer particles may have a core / shell structure in which a thiophene polymer that is a conductive polymer serves as a shell. In the process of forming a conductive film using an aqueous resin dispersion, the polymer particles have a close-packed structure at the same time as the water evaporates, so the shell must be in contact with each other, and the conductive polymer should be a shell. This is because a continuous film in contact with the conductive polymer can be formed. The presence / absence of the core / shell structure can be confirmed by a small angle X-ray scattering method.

ポリマー粒子がコア/シェル構造を有する場合、上記シェルが、スルホン酸系乳化剤及びチオフェン系ポリマーを含み、水性樹脂分散体中の全固形分のポリマー成分中、チオフェン系ポリマーの含有量が30質量%〜80質量%であり、ポリマー粒子の平均粒子径が10nm〜180nmであることが好ましい。   When the polymer particles have a core / shell structure, the shell contains a sulfonic acid emulsifier and a thiophene polymer, and the content of the thiophene polymer is 30% by mass in the total solid polymer component in the aqueous resin dispersion. It is preferable that the average particle diameter of the polymer particles is 10 nm to 180 nm.

チオフェン系ポリマーは、チオフェン系モノマーを重合することにより得ることができる。チオフェン系モノマーとしては、例えば、チオフェン、3−アルキルチオフェン、3,4−ジメトキシチオフェン、3,4−エチレンジオキシチオフェン等が挙げられる。特に製膜した際の導電性の観点から3,4−エチレンジオキシチオフェンが好ましい。   The thiophene polymer can be obtained by polymerizing a thiophene monomer. Examples of the thiophene monomer include thiophene, 3-alkylthiophene, 3,4-dimethoxythiophene, 3,4-ethylenedioxythiophene, and the like. In particular, 3,4-ethylenedioxythiophene is preferable from the viewpoint of conductivity when the film is formed.

水性樹脂分散体において、下記式(1)で表される水性樹脂分散体中のポリマー成分におけるチオフェン系モノマーに由来するユニットの含有量(X)は30質量%〜80質量%が好ましく、分散性、製膜性、製膜した際の導電性の観点から、30質量%〜75質量%が好ましく、30質量%〜70質量%が好ましく、35質量%〜60質量%がより好ましい。
X=100×α/(α+β+γ) (1)
α:チオフェン系モノマーの仕込み量
β:チオフェン系以外のモノマーの仕込み量
γ:スルホン酸系乳化剤の仕込み量
In the aqueous resin dispersion, the content (X) of the unit derived from the thiophene monomer in the polymer component in the aqueous resin dispersion represented by the following formula (1) is preferably 30% by mass to 80% by mass, and dispersibility From the viewpoints of film forming properties and conductivity at the time of film formation, 30% by mass to 75% by mass is preferable, 30% by mass to 70% by mass is preferable, and 35% by mass to 60% by mass is more preferable.
X = 100 × α / (α + β + γ) (1)
α: Charge of thiophene monomer β: Charge of monomer other than thiophene γ: Charge of sulfonic acid emulsifier

スルホン酸系乳化剤としては、例えば、スチレンスルホン酸、スチレンスルホン酸ナトリウム、トルエンスルホン酸、トルエンスルホン酸ナトリウム、オクチルベンゼンスルホン酸、オクチルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、ステアリルベンゼンスルホン酸、ステアリルベンゼンスルホン酸ナトリウム、リノレインベンゼンスルホン酸等の飽和及び不飽和アルキルベンゼンスルホン酸とその塩類;オクチルナフタレンスルホン酸、ドデシルナフタレンベンゼンスルホン酸等の飽和及び不飽和アルキルナフタレンスルホン酸とその塩類;ビニルスルホン酸、ビニルスルホン酸ナトリウム、ラウリルスルホン酸、ラウリルスルホン酸ナトリウム、ステアリルスルホン酸等の飽和及び不飽和アルキルスルホン酸とその塩類;ポリオキシエチレンラウリルエーテルスルホン酸等のポリアルキレンアルキルエーテルスルホン酸とその塩類;(メタ)アクリルアミドメチルプロパンスルホン酸とその塩類が挙げられる。また、スルホン酸系乳化剤は、ポリスチレンスルホン酸、ポリビニルスルホン酸、及びそれらの共重合体等のポリスルホン酸系化合物であってもよい。   Examples of the sulfonic acid-based emulsifier include styrene sulfonic acid, sodium styrene sulfonate, toluene sulfonic acid, sodium toluene sulfonate, octyl benzene sulfonic acid, sodium octyl benzene sulfonate, dodecyl benzene sulfonic acid, sodium dodecyl benzene sulfonate, stearyl. Saturated and unsaturated alkyl benzene sulfonic acids such as benzene sulfonic acid, sodium stearyl benzene sulfonate, linolein benzene sulfonic acid and their salts; Vinyl sulfonic acid, sodium vinyl sulfonate, lauryl sulfonic acid, sodium lauryl sulfonate, stearyl sulfonic acid, etc. Its salts and sum and unsaturated alkyl sulfonic acids; polyalkylene alkyl ether sulfonic acids such as polyoxyethylene lauryl ether sulfonic acid and salts thereof; and (meth) acrylamide methyl propane sulfonic acid salts thereof can be mentioned. The sulfonic acid emulsifier may be a polysulfonic acid compound such as polystyrene sulfonic acid, polyvinyl sulfonic acid, and a copolymer thereof.

スルホン酸系乳化剤は、ポリマー粒子の安定性に重要であり、さらに製膜した際に導電性を付与するためにも必要である。特に重合安定性と、製膜した際の導電性付与の観点からドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、スチレンスルホン酸、スチレンスルホン酸ナトリウム、トルエンスルホン酸又はトルエンスルホン酸ナトリウムが好ましい。   The sulfonic acid-based emulsifier is important for the stability of the polymer particles, and is also necessary for imparting conductivity when the film is formed. In particular, dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, styrenesulfonic acid, sodium styrenesulfonate, toluenesulfonic acid, or sodium toluenesulfonate are preferred from the viewpoints of polymerization stability and imparting electrical conductivity during film formation.

スルホン酸系乳化剤の使用量は、特に限定はされないが、例えば、ポリマー粒子の作製に使用する全重合性モノマー成分の合計使用量に対して、0.5質量%〜70質量%が好ましい。乳化剤の使用量を多くすると重合安定性が向上し、少なくすると耐水性が向上する。ドーパントとしての効果の観点から、1質量%〜60質量%がより好ましく、2質量%〜55質量%がさらに好ましく、5質量%〜50質量%が特に好ましい。   Although the usage-amount of a sulfonic acid type emulsifier is not specifically limited, For example, 0.5 mass%-70 mass% are preferable with respect to the total usage-amount of all the polymerizable monomer components used for preparation of a polymer particle. When the amount of the emulsifier used is increased, the polymerization stability is improved, and when it is decreased, the water resistance is improved. From a viewpoint of the effect as a dopant, 1 mass%-60 mass% are more preferable, 2 mass%-55 mass% are further more preferable, and 5 mass%-50 mass% are especially preferable.

また、ポリマー粒子がコア/シェル構造の場合、スルホン酸系乳化剤の使用量は、シェル部分を形成する際に使用する全重合性モノマー成分の合計使用量に対して、0.5質量%〜70質量%が好ましい。   When the polymer particles have a core / shell structure, the amount of the sulfonic acid-based emulsifier used is 0.5% by mass to 70% with respect to the total amount of all polymerizable monomer components used in forming the shell portion. Mass% is preferred.

ポリマー粒子を構成するポリマーとして、チオフェン系ポリマーとそれ以外のポリマーを併用して用いることができる。また、ポリマー粒子がコア/シェル構造を有する場合、チオフェン系ポリマーがシェルを構成し、チオフェン系ポリマーとは異なるポリマーがコアを構成するとよい。   As a polymer constituting the polymer particles, a thiophene polymer and another polymer can be used in combination. Further, when the polymer particles have a core / shell structure, the thiophene polymer may constitute the shell, and a polymer different from the thiophene polymer may constitute the core.

チオフェン系ポリマー以外のポリマーのガラス転移温度(Tg)は、製膜性及び膜の柔軟性の観点から30℃以下が好ましく、20℃以下がより好ましい。なお、Tgの下限値は−80℃程度である。本実施形態において、水性樹脂分散体のコアのガラス転移温度Tg(K:絶対温度)は、次のFOX式を用いて計算されるものをいう。
1/Tg=W1/Tg1+W2/Tg2+・・・+Wi/Tgi+・・・Wn/Tgn
[上記FOX式は、n種の単量体からなる重合体を構成する各モノマーのホモポリマーのガラス転移温度をTgi(K)とし、各モノマーの重量分率をWiとしており、(W1+W2+・・・+Wi+・・・+Wn=1)である。]
The glass transition temperature (Tg) of the polymer other than the thiophene polymer is preferably 30 ° C. or less, and more preferably 20 ° C. or less from the viewpoint of film forming property and film flexibility. In addition, the lower limit of Tg is about −80 ° C. In the present embodiment, the glass transition temperature Tg (K: absolute temperature) of the core of the aqueous resin dispersion refers to that calculated using the following FOX equation.
1 / Tg = W1 / Tg1 + W2 / Tg2 + ... + Wi / Tgi + ... Wn / Tgn
[In the FOX formula, the glass transition temperature of the homopolymer of each monomer constituting the polymer composed of n types of monomers is Tgi (K), the weight fraction of each monomer is Wi, and (W1 + W2 + + Wi +... + Wn = 1). ]

本実施形態のチオフェン系モノマー以外のモノマーとしては特に限定はなく、例えば、(メタ)アクリル酸エステル、スチレン、アニリン、ビニルトルエン等の芳香族単量体、酢酸ビニル、プロピオン酸ビニル、パーチサック酸ビニル等のビニルエステル類、(メタ)アクリロニトリル等のシアン化ビニル類、塩化ビニル、塩化ビニリデン等のハロゲン化ビニル類、ブタジエン等や、(メタ)アクリルアミド、ダイアセトンアクリルアミド、ビニルピロリドン、(メタ)アクリル酸グリシジル、N−メチロールアクリルアミド、N−ブトキシメチルアクリルアミド、ジビニルベンゼン、メチルビニルケトン等の官能性単量体、及び、多官能の(メタ)アクリレートが挙げられる。製膜性及び膜の柔軟性の観点から、チオフェン系モノマー以外のモノマーとして(メタ)アクリル酸エステルが含まれることが好ましい。また、コア/シェル構造を有するポリマー粒子を作製する場合、コアの形成に多官能の(メタ)アクリレートを使用することが好ましい。   The monomer other than the thiophene monomer of the present embodiment is not particularly limited. For example, aromatic monomers such as (meth) acrylic acid ester, styrene, aniline, vinyltoluene, vinyl acetate, vinyl propionate, vinyl persuccinate Vinyl esters such as (meth) acrylonitrile, vinyl halides such as vinyl chloride and vinylidene chloride, butadiene, etc., (meth) acrylamide, diacetone acrylamide, vinyl pyrrolidone, (meth) acrylic acid Examples thereof include functional monomers such as glycidyl, N-methylolacrylamide, N-butoxymethylacrylamide, divinylbenzene, and methyl vinyl ketone, and polyfunctional (meth) acrylates. From the viewpoint of film forming property and film flexibility, it is preferable that a (meth) acrylic acid ester is contained as a monomer other than the thiophene monomer. Moreover, when producing the polymer particle which has a core / shell structure, it is preferable to use polyfunctional (meth) acrylate for formation of a core.

(メタ)アクリル酸エステルとしては、例えば、アルキル部の炭素数が1〜18の(メタ)アクリル酸アルキルエステル、エチレンオキサイド基の数が1〜100個の(ポリ)オキシエチレンモノ(メタ)アクリレート、プロピレンオキサイド基の数が1〜100個の(ポリ)オキシプロピレンモノ(メタ)アクリレート、アルキル部の炭素数が1〜18の(メタ)アクリル酸ヒドロキシアルキルエステル、エチレンオキサイド基の数が1〜100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。   Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl esters having 1 to 18 carbon atoms in the alkyl portion and (poly) oxyethylene mono (meth) acrylates having 1 to 100 ethylene oxide groups. , (Poly) oxypropylene mono (meth) acrylate having 1 to 100 propylene oxide groups, (meth) acrylic acid hydroxyalkyl ester having 1 to 18 carbon atoms in the alkyl portion, and 1 to 1 ethylene oxide groups 100 (poly) oxyethylene di (meth) acrylate and the like can be mentioned.

(メタ)アクリル酸アルキルエステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ドデシル等が挙げられる。特に重合安定性、膜の基材との密着性の観点から、アクリル酸2−エチルヘキシル、アクリル酸ブチル、メタクリル酸ブチル又はアクリル酸エチルを含むことが好ましい。   Specific examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (Meth) acrylic acid dodecyl etc. are mentioned. In particular, from the viewpoint of polymerization stability and adhesion to the film substrate, it is preferable to contain 2-ethylhexyl acrylate, butyl acrylate, butyl methacrylate, or ethyl acrylate.

それぞれのホモポリマーのガラス転移温度は、アクリル酸2−エチルヘキシルが−70℃、アクリル酸ブチルが−55℃、メタクリル酸ブチルが20℃、アクリル酸エチルが−20℃である。疎水性のアクリル酸2−エチルヘキシルを用いることで、後から重合するチオフェン系モノマーがシェルとなるコア/シェル構造を作製する上で好ましい。   The glass transition temperatures of the respective homopolymers are -70 ° C for 2-ethylhexyl acrylate, -55 ° C for butyl acrylate, 20 ° C for butyl methacrylate, and -20 ° C for ethyl acrylate. The use of hydrophobic 2-ethylhexyl acrylate is preferable in producing a core / shell structure in which a thiophene monomer that is polymerized later becomes a shell.

(メタ)アクリル酸エステルの割合は、重合安定性の観点から、ポリマー粒子の原料となる全モノマー量の10質量%〜70質量%が好ましい。さらに膜にしたときの柔軟性、基材との密着性の観点から20質量%〜70質量%がより好ましく、30質量%〜60質量%が更に好ましい。また、ポリマー粒子がコア/シェル構造を有する場合、絶縁性のコアの割合は、製膜性、膜の柔軟性、膜の導電性の観点から、コアとシェルとを合わせた全質量に対して20質量%〜70質量%が好ましく、20質量%〜65質量%がより好ましく、25質量%〜60質量%が更に好ましい。   The proportion of (meth) acrylic acid ester is preferably 10% by mass to 70% by mass with respect to the total amount of monomers used as the raw material for the polymer particles from the viewpoint of polymerization stability. Furthermore, 20% by mass to 70% by mass is more preferable, and 30% by mass to 60% by mass is more preferable from the viewpoints of flexibility when formed into a film and adhesion to the substrate. Further, when the polymer particles have a core / shell structure, the ratio of the insulating core is based on the total mass of the core and the shell in terms of film forming property, film flexibility, and film conductivity. 20 mass%-70 mass% is preferable, 20 mass%-65 mass% is more preferable, and 25 mass%-60 mass% is still more preferable.

多官能の(メタ)アクリレートの具体例としては、エトキシ化イソシアヌル酸トリアクリレート、ε−カプロラクトン変性トリス−(2−アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールポリアクリレート、ジペンタエリスリトールヘキサアクリレート及びトリメチロールプロパントリメタクリレートが挙げられる。特に重合安定性の観点からトリメチロールプロパントリアクリレート又はトリメチロールプロパントリメタクリレートを含むことが好ましい。   Specific examples of polyfunctional (meth) acrylates include ethoxylated isocyanuric acid triacrylate, ε-caprolactone modified tris- (2-acryloxyethyl) isocyanurate, pentaerythritol triacrylate, trimethylolpropane triacrylate, ditrimethylolpropane. Examples include tetraacrylate, ethoxylated pentaerythritol tetraacrylate, pentaerythritol tetraacrylate, dipentaerythritol polyacrylate, dipentaerythritol hexaacrylate, and trimethylolpropane trimethacrylate. In particular, from the viewpoint of polymerization stability, it is preferable to contain trimethylolpropane triacrylate or trimethylolpropane trimethacrylate.

多官能の(メタ)アクリレートの割合は、重合安定性やコア/シェル構造を確立する観点から、ポリマー粒子を形成するため、モノマー量の1質量%〜40質量%以下が好ましく、2質量%〜30質量%がより好ましい。   From the viewpoint of establishing polymerization stability and a core / shell structure, the proportion of the polyfunctional (meth) acrylate is preferably 1% by mass to 40% by mass and preferably 2% by mass to less than the monomer amount in order to form polymer particles. 30 mass% is more preferable.

チオフェン系ポリマー以外のポリマーは、(メタ)アクリル酸エステル及び多官能の(メタ)アクリレートを含むモノマーを重合した架橋型ポリマーであることが、ポリマー粒子の安定性及び導電性の観点から好ましい。   The polymer other than the thiophene polymer is preferably a cross-linked polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester and a polyfunctional (meth) acrylate, from the viewpoint of the stability and conductivity of the polymer particles.

本実施形態では、(メタ)アクリル酸エステル以外のモノマーとして、アルコキシシラン基含有重合性モノマーが挙げられる。   In this embodiment, an alkoxysilane group containing polymerizable monomer is mentioned as monomers other than (meth) acrylic acid ester.

アルコキシシラン基含有重合性モノマーとして具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン等が挙げられ、これらの群から選ばれた1以上を使用できる。中でも、γ−メタクリロキシプロピルトリメトキシシラン及びγ−メタクリロキシプロピルトリエトキシシランが特に好ましい。   Specific examples of the alkoxysilane group-containing polymerizable monomer include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (β-methoxyethoxy) silane, vinylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, and γ-methacryloxy. Propylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-acryloxypropyltrimethoxysilane, γ-acryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldiethoxysilane 1 or more selected from these groups can be used. Among these, γ-methacryloxypropyltrimethoxysilane and γ-methacryloxypropyltriethoxysilane are particularly preferable.

ポリマー粒子がコア/シェル構造を有する場合、コアにスルホン酸系乳化剤を含むことが好ましい。コアに含まれるスルホン酸系乳化剤としては、シェルに含まれるスルホン酸系乳化剤と同様のものが挙げられる。   When the polymer particles have a core / shell structure, the core preferably contains a sulfonic acid-based emulsifier. Examples of the sulfonic acid emulsifier contained in the core include the same sulfonic acid emulsifier contained in the shell.

コアに含まれるスルホン酸系乳化剤はポリマー粒子の安定性に重要であり、重合安定性の観点からドデシルベンゼンスルホン酸又はドデシルベンゼンスルホン酸ナトリウムが好ましい。   The sulfonic acid-based emulsifier contained in the core is important for the stability of the polymer particles, and dodecylbenzenesulfonic acid or sodium dodecylbenzenesulfonate is preferable from the viewpoint of polymerization stability.

コアに含まれるスルホン酸系乳化剤の含有量は、特に限定はされないが、例えば、コア部分を形成する際に使用する全重合性モノマー成分の合計含有量に対して、0.1質量%〜70質量%が好ましい。乳化剤の含有量を多くすると重合安定性が向上し、少なくすると耐水性が向上する。ドーパントとしての効果の観点から、0.5質量%〜60質量%がより好ましく、1質量%〜55質量%がさらに好ましく、2質量%〜50質量%が特に好ましい。   The content of the sulfonic acid-based emulsifier contained in the core is not particularly limited. For example, the content is 0.1% by mass to 70% with respect to the total content of all polymerizable monomer components used in forming the core part. Mass% is preferred. When the content of the emulsifier is increased, the polymerization stability is improved, and when it is decreased, the water resistance is improved. From a viewpoint of the effect as a dopant, 0.5 mass%-60 mass% are more preferable, 1 mass%-55 mass% are further more preferable, and 2 mass%-50 mass% are especially preferable.

本実施形態の水性樹脂分散体の耐光性を向上させる観点から、アルコキシシラン基含有重合性モノマーとは別に、ケイ素含有化合物を、コアを形成する成分として使用することができる。ケイ素含有化合物としては、環状シラン及び下記式(I)で表される化合物を挙げることができる。   From the viewpoint of improving the light resistance of the aqueous resin dispersion of the present embodiment, a silicon-containing compound can be used as a component for forming the core, separately from the alkoxysilane group-containing polymerizable monomer. Examples of the silicon-containing compound include cyclic silanes and compounds represented by the following formula (I).

(R−Si−(R4−n (I)
式中、nは0〜3の整数であり、Rは水素原子、炭素数1〜16の脂肪族炭化水素基、炭素数5〜10のアリール基又は炭素数5〜6のシクロアルキル基を示す。nが2又は3の場合、複数存在するRはそれぞれ同一でも異なっていてもよい。Rは炭素数1〜8のアルコキシ基、アセトキシ基又は水酸基を示す。nが0〜2の場合、複数存在するRはそれぞれ同一でも異なっていてもよい。
(R 1) n -Si- (R 2) 4-n (I)
In the formula, n is an integer of 0 to 3, and R 1 represents a hydrogen atom, an aliphatic hydrocarbon group having 1 to 16 carbon atoms, an aryl group having 5 to 10 carbon atoms, or a cycloalkyl group having 5 to 6 carbon atoms. Show. When n is 2 or 3, a plurality of R 1 may be the same or different. R 2 represents an alkoxy group having 1 to 8 carbon atoms, an acetoxy group or a hydroxyl group. When n is 0 to 2, a plurality of R 2 may be the same or different.

ケイ素化合物は、式(I)においてnが0であるシラン(I)及びnが1であるシラン(II)から選ばれる少なくとも1種を含んでいることが好ましく、良好な水分散体の重合安定性を得るためにはシラン(II)を含んでいることがより好ましい。シラン(I)のRとしては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基又は水酸基が好ましい。シラン(I)の好ましい具体例として、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。 The silicon compound preferably contains at least one selected from silane (I) in which n is 0 and silane (II) in which n is 1 in the formula (I). In order to obtain properties, it is more preferable that silane (II) is contained. As R 2 of silane (I), a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a methoxyethoxy group or a hydroxyl group is preferable. Preferable specific examples of silane (I) include tetramethoxysilane and tetraethoxysilane.

シラン(II)のRとしてはメチル基又はフェニル基が好ましく、Rは、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、メトキシエトキシ基又は水酸基が好ましい。シラン(II)の好ましい具体例としては、メチルトリメトシキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリエトキシシラン、イソブチルトリメトキシシラン等が挙げられる。 R 1 of silane (II) is preferably a methyl group or a phenyl group, and R 2 is preferably a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a methoxyethoxy group or a hydroxyl group. Preferable specific examples of silane (II) include methyltrimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, phenyltriethoxysilane, isobutyltrimethoxysilane and the like.

また、水性樹脂分散体から形成される導電膜に柔軟性を付与する場合には、ケイ素含有化合物が、環状シラン及び式(I)においてnが2であるシラン(III)からなる群より選ばれる少なくとも1種を用いることが好ましい。これは、環状シラン及びシラン(III)からなる群より選ばれる化合物のうち少なくとも1種を用いることより、ケイ素含有化合物が形成するシリコーン重合体の架橋密度を低くし、膜に柔軟性を付与することができるためであり、シラン(II)と併用した場合に特に好ましい。   In addition, when imparting flexibility to the conductive film formed from the aqueous resin dispersion, the silicon-containing compound is selected from the group consisting of cyclic silane and silane (III) in which n is 2 in formula (I). It is preferable to use at least one kind. This uses at least one compound selected from the group consisting of cyclic silane and silane (III), thereby lowering the crosslink density of the silicone polymer formed by the silicon-containing compound and imparting flexibility to the film. This is particularly preferable when used in combination with silane (II).

環状シランの具体例としては、オクタメチルシクロテトラシロキサン、オクタフェニルシクロシロキサン、ヘキサメチルシクロトリシロキサン、デカメチルシクロペンタシロキサン等が挙げられる。   Specific examples of the cyclic silane include octamethylcyclotetrasiloxane, octaphenylcyclosiloxane, hexamethylcyclotrisiloxane, decamethylcyclopentasiloxane and the like.

シラン(III)の具体例として、ジメチルジメトキシシラン、ジフェニルジメトキシシラン、ジメチルジエトキシシラン、ジフェニルジエトキシシラン及びメチルフェニルシランが挙げられる。   Specific examples of silane (III) include dimethyldimethoxysilane, diphenyldimethoxysilane, dimethyldiethoxysilane, diphenyldiethoxysilane, and methylphenylsilane.

さらに、ケイ素含有化合物には、加水分解基を有する線状シロキサン、アルコシシシランオリゴマー及び式(I)においてnが3であるシラン(IV)からなる群より選ばれる少なくとも1種を含んでもよい。   Furthermore, the silicon-containing compound may include at least one selected from the group consisting of linear siloxane having a hydrolyzable group, an alkoxysilane oligomer, and silane (IV) in which n is 3 in formula (I).

シラン(IV)の具体例として、トリフェニルエトキシシラン、トリメチルメトキシシラン等が挙げられる。   Specific examples of silane (IV) include triphenylethoxysilane and trimethylmethoxysilane.

ポリマー粒子の平均粒子径は、膜の導電性を向上する観点から10nm以上であり、製膜性と安定性との観点から180nm以下であり、製膜性の観点から150nm以下がさらに好ましく、膜の導電性をより一層向上する観点から、120nm以下が特に好ましい。本実施形態に係る平均粒子径は、動的光散乱法による個数換算粒子径の累積50%値(d50)から得られるものとする。   The average particle diameter of the polymer particles is 10 nm or more from the viewpoint of improving the conductivity of the film, 180 nm or less from the viewpoint of film forming property and stability, and more preferably 150 nm or less from the viewpoint of film forming property. From the viewpoint of further improving the electrical conductivity, 120 nm or less is particularly preferable. The average particle diameter according to the present embodiment is obtained from the cumulative 50% value (d50) of the number-converted particle diameter by the dynamic light scattering method.

本実施形態の水性樹脂分散体の固形分濃度は、保存安定性の観点から0.1質量%〜30質量%が好ましい。   The solid content concentration of the aqueous resin dispersion of the present embodiment is preferably 0.1% by mass to 30% by mass from the viewpoint of storage stability.

[水性樹脂分散体の製造方法]
本実施形態の水性樹脂分散体は、例えば、以下の方法により製造することができる。
[Method for producing aqueous resin dispersion]
The aqueous resin dispersion of the present embodiment can be produced, for example, by the following method.

すなわち、本実施形態の水性樹脂分散体の製造方法は、スルホン酸系乳化剤、チオフェン系モノマー及び水を含む第1の乳化液Aを調製する工程と、スルホン酸系乳化剤、チオフェン系モノマー以外のモノマー及び水を含む第2の乳化液Bを調製し、第2の乳化液Bを重合してコア粒子を作製する工程と、コア粒子の存在下、第1の乳化液Aを重合して、ポリマー粒子を作製する工程と、を備え、コア粒子の平均粒子径が5nm〜80nmであり、ポリマー粒子の平均粒子径が10nm〜5000nmであることを特徴とする。   That is, the method for producing an aqueous resin dispersion of the present embodiment includes a step of preparing a first emulsion A containing a sulfonic acid emulsifier, a thiophene monomer and water, and a monomer other than the sulfonic acid emulsifier and thiophene monomer. A second emulsion B containing water and water, polymerizing the second emulsion B to produce core particles, and polymerizing the first emulsion A in the presence of the core particles to form a polymer And a step of producing particles, wherein the average particle diameter of the core particles is 5 nm to 80 nm, and the average particle diameter of the polymer particles is 10 nm to 5000 nm.

本実施形態のコア/シェル構造を有するポリマー粒子が水に分散した水性樹脂分散体の製造方法は、スルホン酸系乳化剤、チオフェン系モノマー及び水を含む第1の乳化液Aを調製する工程と、スルホン酸系乳化剤、チオフェン系モノマー以外のモノマー及び水を含む第2の乳化液Bを調製し、第2の乳化液Bを重合してコアとなるコア粒子を作製する工程と、コア粒子の存在下、第1の乳化液Aを重合して、コア粒子を覆うシェルを形成する工程と、を備え、コア粒子の平均粒子径が5nm〜80nmであり、ポリマー粒子の平均粒子径が10nm〜180nmであることを特徴とする。前記第1の乳化液Aを調製する工程は、前記コア粒子を作製する工程より先に行っても、後で行っても構わない。   The method for producing an aqueous resin dispersion in which polymer particles having a core / shell structure according to the present embodiment are dispersed in water includes a step of preparing a first emulsion A containing a sulfonic acid emulsifier, a thiophene monomer, and water; A step of preparing a second emulsion B containing a sulfonic acid emulsifier, a monomer other than a thiophene monomer, and water, polymerizing the second emulsion B to produce core particles, and the presence of the core particles And a step of polymerizing the first emulsion A to form a shell covering the core particles, wherein the average particle diameter of the core particles is 5 nm to 80 nm, and the average particle diameter of the polymer particles is 10 nm to 180 nm. It is characterized by being. The step of preparing the first emulsion A may be performed before or after the step of preparing the core particles.

本実施形態においては、使用するモノマーの組み合わせや種類によって、ポリマー粒子が均一構造又はコア/シェル構造となる。乳化液Bに親水性のスチレンスルホン酸ナトリウムを用いた場合、均一構造のポリマー粒子となる傾向がある。また、乳化液Bに(メタ)アクリル酸アルキルエステルや多官能の(メタ)アクリレートを用いた場合、コア/シェル構造のポリマー粒子となる傾向がある。   In this embodiment, the polymer particles have a uniform structure or a core / shell structure depending on the combination and type of monomers used. When hydrophilic sodium styrenesulfonate is used for the emulsion B, it tends to be polymer particles having a uniform structure. Moreover, when (meth) acrylic-acid alkylester and polyfunctional (meth) acrylate are used for the emulsion B, it tends to become a polymer particle of a core / shell structure.

本実施形態に係るポリマー粒子の作製は、モノマーと水と乳化剤とを予め、ホモジナイザー等を用いて、混合乳化しておき、これらを連続滴下又は一括添加するプレエマルション法で行うことが重合安定性の観点から重要である。   Preparation of the polymer particles according to the present embodiment is performed by a pre-emulsion method in which a monomer, water, and an emulsifier are mixed and emulsified in advance using a homogenizer or the like, and these are continuously dripped or collectively added. Is important from the point of view.

チオフェン系モノマーを重合する際、コア粒子をアクリルポリマーとし、コア粒子の存在下で重合することで、重合安定性がより良好となり、分散安定性がより良好な水分散体を作製することができる。よって、アクリルポリマーをコアとすることで、チオフェン系モノマーが重合されたポリマー粒子の重合安定性や分散安定性にも寄与していると考えられる。また、コア粒子存在下で、チオフェン系モノマーを重合することで、導電性向上にも寄与している。   When the thiophene monomer is polymerized, the core particle is an acrylic polymer, and polymerization is performed in the presence of the core particle, so that an aqueous dispersion having better polymerization stability and better dispersion stability can be produced. . Therefore, it is considered that the acrylic polymer as a core contributes to the polymerization stability and dispersion stability of the polymer particles obtained by polymerizing the thiophene monomer. Further, by polymerizing the thiophene monomer in the presence of the core particles, it contributes to the improvement of conductivity.

導電膜の製造方法において、下記式(2)で表されるポリマー成分におけるチオフェン系モノマーに由来するユニットの仕込み量(Y)は30質量%〜80質量%であることが好ましく、導電性と成膜性の観点から、30質量%〜70質量%であることがより好ましく、35質量%〜60質量%であることが更に好ましい。
Y=100×α/(α+β+γ) (2)
α:チオフェン系モノマーの仕込み量
β:チオフェン系以外のモノマーの仕込み量
γ:スルホン酸系乳化剤の仕込み量
In the method for producing a conductive film, the charged amount (Y) of the unit derived from the thiophene monomer in the polymer component represented by the following formula (2) is preferably 30% by mass to 80% by mass. From the viewpoint of film properties, it is more preferably 30% by mass to 70% by mass, and further preferably 35% by mass to 60% by mass.
Y = 100 × α / (α + β + γ) (2)
α: Charge of thiophene monomer β: Charge of monomer other than thiophene γ: Charge of sulfonic acid emulsifier

本実施形態の水性樹脂分散体を作製する工程では、スルホン酸系乳化剤及びチオフェン系モノマーを含む混合液を乳化させて、第1の乳化液Aを調製する工程を有する。また、スルホン酸系乳化剤及びチオフェン系モノマー以外のモノマーを含む混合液を乳化させて第2の乳化液Bを調製した後、第2の乳化液Bを水中で重合させてポリマー粒子のコア部となるコア粒子を作製する工程を有する。そして、コア粒子の存在下で、第1の乳化剤Aに含まれるチオフェン系モノマーを重合させてポリマー粒子を作製する工程を有する。   The step of preparing the aqueous resin dispersion of the present embodiment includes a step of preparing a first emulsion A by emulsifying a mixed solution containing a sulfonic acid emulsifier and a thiophene monomer. Moreover, after emulsifying the liquid mixture containing monomers other than a sulfonic acid type emulsifier and a thiophene type monomer to prepare the second emulsion B, the second emulsion B is polymerized in water to form a core part of the polymer particles. The process of producing the core particle which becomes. And it has the process of polymerizing the thiophene-type monomer contained in the 1st emulsifier A in presence of a core particle, and producing a polymer particle.

第1の乳化液Aを調製する工程におけるチオフェン系モノマーの使用量は、第1の乳化液A全体に対し、0.1質量%〜50.0質量%が好ましく、0.3質量%〜35.0質量%がより好ましく、さらに0.3質量%〜10.0質量%より好ましい。また、第1の乳化液Aを調製する工程におけるスルホン酸系乳化剤の使用量は、第1の乳化液A全体に対し、0.001質量%〜10.0質量%が好ましく、0.005質量%〜8.0質量%がより好ましい。   The amount of the thiophene monomer used in the step of preparing the first emulsion A is preferably 0.1% by mass to 50.0% by mass, and 0.3% by mass to 35% with respect to the entire first emulsion A. 0.0 mass% is more preferable, and 0.3 mass% to 10.0 mass% is more preferable. Moreover, the usage-amount of the sulfonic acid type emulsifier in the process of preparing the 1st emulsion A is 0.001 mass%-10.0 mass% with respect to the 1st emulsion A whole, 0.005 mass is preferable. % To 8.0% by mass is more preferable.

コア粒子を作製する工程において、チオフェン系以外のモノマーの使用量は、第2の乳化液B全体に対し0.1質量%〜50.0質量%が好ましく、0.3質量%〜35.0質量%がより好ましい。また、コア粒子を作製する工程におけるスルホン酸系乳化剤の使用量は、第2の乳化液全体に対し、0.001質量%〜10.0質量%が好ましく、0.005質量%〜8.0質量%がより好ましい。   In the step of preparing the core particles, the amount of the monomer other than the thiophene-based monomer is preferably 0.1% by mass to 50.0% by mass with respect to the entire second emulsion B, and is 0.3% by mass to 35.0%. The mass% is more preferable. Moreover, 0.001 mass%-10.0 mass% are preferable with respect to the whole 2nd emulsion liquid, and the usage-amount of the sulfonic acid type emulsifier in the process of producing core particle | grains is 0.005 mass%-8.0. The mass% is more preferable.

第1の乳化液Aを調製する工程における温度は、乳化液の安定性の観点から20℃〜60℃であることが好ましい。   The temperature in the step of preparing the first emulsion A is preferably 20 ° C. to 60 ° C. from the viewpoint of the stability of the emulsion.

第1の乳化液Aを重合する際及び第2の乳化液Bを重合する際に、第1及び第2の乳化液は、それぞれ重合開始剤又は酸化剤を含んでいてもよい。重合開始剤又は酸化剤としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム、塩化鉄、過マンガン酸カリウム、過酸化水素、過塩素酸銅、有機酸鉄(III)等が挙げられる。有機酸鉄(III)としては、ベンゼンスルホン酸鉄(III)、アルキルベンゼンスルホン酸鉄(III)、トルエンスルホン酸鉄(III)が挙げられる。これらの中でも過硫酸アンモニウムが好ましい。   When polymerizing the first emulsion A and when polymerizing the second emulsion B, the first and second emulsions may each contain a polymerization initiator or an oxidizing agent. Examples of the polymerization initiator or oxidizing agent include ammonium persulfate, sodium persulfate, potassium persulfate, iron chloride, potassium permanganate, hydrogen peroxide, copper perchlorate, and organic acid iron (III). Examples of the organic acid iron (III) include iron (III) benzenesulfonate, iron (III) alkylbenzenesulfonate, and iron (III) toluenesulfonate. Among these, ammonium persulfate is preferable.

また、必要に応じて、第1の乳化液Aを重合する際及び第2の乳化液Bを重合する際に触媒を用いることもできる。触媒の例として、鉄イオン(II)、鉄イオン(III)といった遷移金属イオン類が挙げられる。   Further, if necessary, a catalyst can be used when the first emulsion A is polymerized and when the second emulsion B is polymerized. Examples of the catalyst include transition metal ions such as iron ion (II) and iron ion (III).

上述の方法により得られた水性樹脂分散体は、必要に応じて精製処理を施すことができる。水性樹脂分散体の精製方法として、陽イオン交換樹脂及び/又は陰イオン交換樹脂とを接触させることによりイオン交換することが挙げられる。その温度は、一般的に0〜100℃で行うことができるが、イオン交換樹脂の耐熱性を考慮すると、5〜50℃で行うことが好ましい。陽イオン交換樹脂としては、特に限定されるものではなく、公知の各種陽イオン交換樹脂を用いることができるが、水素型強酸性陽イオン交換樹脂が好ましい。陰イオン交換樹脂としても、特に限定されるものではなく、公知の各種陰イオン交換樹脂を用いることができるが、水酸基型強塩基性陰イオン交換樹脂が好ましい。   The aqueous resin dispersion obtained by the above-described method can be subjected to purification treatment as necessary. Examples of the method for purifying the aqueous resin dispersion include ion exchange by bringing a cation exchange resin and / or an anion exchange resin into contact with each other. The temperature can be generally 0-100 ° C., but it is preferably 5-50 ° C. considering the heat resistance of the ion exchange resin. The cation exchange resin is not particularly limited, and various known cation exchange resins can be used, but a hydrogen-type strongly acidic cation exchange resin is preferable. The anion exchange resin is not particularly limited, and various known anion exchange resins can be used, but a hydroxyl group strongly basic anion exchange resin is preferable.

水性樹脂分散体の後処理として、重合後にホモジナイザーを用いて、粒子径の微細化を行ってもよい。ホモジナイザーによって、凝集体を1次粒子に分散させることで、得られる水性樹脂分散体を用いて製膜した導電膜の導電性の向上が期待される。ホモジナイザーによる分散時にスルホン酸系乳化剤を用いるとより保存安定性の向上が期待される。   As a post-treatment of the aqueous resin dispersion, the particle size may be refined using a homogenizer after polymerization. By dispersing the aggregates in the primary particles with a homogenizer, the conductivity of the conductive film formed using the resulting aqueous resin dispersion is expected to be improved. When a sulfonic acid emulsifier is used at the time of dispersion by a homogenizer, further improvement in storage stability is expected.

本実施形態の製造方法により作製される水性樹脂分散体は、同一ポリマー粒子内に絶縁材料と導電材料を有しており、粒子形態は、絶縁材料と導電材料が均一に混ざり合った構造、又は、絶縁材料がコア、導電材料がシェルとなるコア/シェル構造をとることができる。コア部となるコア粒子の平均粒子径は、粒子の安定性や製膜性、耐水性の観点から、5nm〜80nmであり、5nm〜70nmが好ましい。また、ポリマー粒子の平均粒子径(コア/シェル構造の場合は全体の粒子径)は、得られる水性樹脂分散体を用いて作製する導電膜の導電性の観点から10nm以上であり、安定性の観点から5000nm以下であり、3000nm以下が好ましく、2500nm以下がより好ましい。さらに製膜性と安定性の観点から180nm以下が好ましい。さらに、水性樹脂分散体の製膜性をより向上する観点から150nm以下がさらに好ましく、導電性の観点から、120nm以下が特に好ましい。コア粒子及びポリマー粒子の平均粒子径は、動的光散乱法による個数換算粒子径の累積50%値(d50)から得られるものとする。   The aqueous resin dispersion produced by the production method of the present embodiment has an insulating material and a conductive material in the same polymer particle, and the particle form has a structure in which the insulating material and the conductive material are uniformly mixed, or A core / shell structure in which the insulating material is the core and the conductive material is the shell can be employed. The average particle diameter of the core particles serving as the core part is 5 nm to 80 nm, preferably 5 nm to 70 nm, from the viewpoints of particle stability, film-forming property, and water resistance. In addition, the average particle size of the polymer particles (the total particle size in the case of the core / shell structure) is 10 nm or more from the viewpoint of the conductivity of the conductive film prepared using the obtained aqueous resin dispersion, and is stable. From the viewpoint, it is 5000 nm or less, preferably 3000 nm or less, and more preferably 2500 nm or less. Furthermore, 180 nm or less is preferable from a viewpoint of film forming property and stability. Furthermore, 150 nm or less is more preferable from the viewpoint of further improving the film forming property of the aqueous resin dispersion, and 120 nm or less is particularly preferable from the viewpoint of conductivity. The average particle diameter of the core particles and the polymer particles is obtained from a cumulative 50% value (d50) of the number-converted particle diameter by the dynamic light scattering method.

本実施形態の水性樹脂分散体、又は本実施形態の水性樹脂分散体の製造方法により得られる水性樹脂分散体を塗布して乾燥することで、高い導電性を有する導電膜を得ることができる。   By applying and drying the aqueous resin dispersion of the present embodiment or the aqueous resin dispersion obtained by the method for producing the aqueous resin dispersion of the present embodiment, a conductive film having high conductivity can be obtained.

水性樹脂分散体の塗布方法としては、キャスト法、スピンコート法、インクジェット法、浸漬法、スプレー法、凸版印刷法、グラビア印刷法、グラビアオフセット印刷法、スクリーン印刷法等が挙げられる。塗布後、50℃以上の熱をかけることで、水が揮発するのを早めることができる。   Examples of the application method of the aqueous resin dispersion include a casting method, a spin coating method, an ink jet method, an immersion method, a spray method, a relief printing method, a gravure printing method, a gravure offset printing method, a screen printing method, and the like. After application, the volatilization of water can be accelerated by applying heat of 50 ° C. or higher.

また、膜質を向上させるために、塗布する前に水以外の有機溶媒を水性樹脂分散体に添加してもよい。具体的な有機溶媒の例として、エタノール、2−プロパノール、ジメチルスルホキシド、ジメチルホルムアミド、ジエチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、エチレングリコールモノ2−エチルヘキシルエーテル、2,2,4−トリメチル−1,3−ブタンジオールイソブチレート、グルタル酸ジイソプロピル、プロピレングリコールn−ブチルエーテル、ジプロピレングリコールn−ブチルエーテル、トリプロピレングリコールn−ブチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル等が挙げられる。   In order to improve the film quality, an organic solvent other than water may be added to the aqueous resin dispersion before coating. Specific examples of organic solvents include ethanol, 2-propanol, dimethyl sulfoxide, dimethylformamide, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol dibutyl ether, ethylene glycol mono 2-ethylhexyl ether, 2,2, 4-trimethyl-1,3-butanediol isobutyrate, diisopropyl glutarate, propylene glycol n-butyl ether, dipropylene glycol n-butyl ether, tripropylene glycol n-butyl ether, dipropylene glycol methyl ether, tripropylene glycol methyl ether, etc. Is mentioned.

塗布する基板としては、ガラス基板、PET(ポリエチレンテレフタレート)、PC(ポリカーボネート)、PP(ポリプロピレン)のようなプラスチックの基板、アルミ基板、ステンレス(SUS)基板、紙基板等の通常用いられるあらゆる基板が挙げられる。   As a substrate to be applied, any commonly used substrate such as a glass substrate, a plastic substrate such as PET (polyethylene terephthalate), PC (polycarbonate), PP (polypropylene), an aluminum substrate, a stainless steel (SUS) substrate, and a paper substrate can be used. Can be mentioned.

[導電膜]
本実施形態の導電膜は、チオフェン系ポリマーと、チオフェン系ポリマー以外のポリマーと、スルホン酸系乳化剤とを含み、均一構造もしくは海島構造を形成している導電膜である。また、該導電膜の導電率は、0.05S/cm〜5000S/cmである。
[Conductive film]
The conductive film of the present embodiment is a conductive film that includes a thiophene polymer, a polymer other than the thiophene polymer, and a sulfonic acid emulsifier, and forms a uniform structure or a sea-island structure. The conductivity of the conductive film is 0.05 S / cm to 5000 S / cm.

均一構造とは、導電膜中、0.1μm以上の粒径を有する粒子が10個/mm以下であることを指す。評価方法としては、TEM観察を用いて、Sを酢酸ウラニルでウラン染色することで、観察できる。そして、1mmの導電膜を測定し、0.1μm以上の粒径を有する粒子の個数を評価する方法があげられる。ここで粒径とは、一次粒子の最大長径のことを指す。また、粒径0.1μm以上の粒子は、チオフェン系ポリマー及び/又はチオフェン系ポリマー以外のポリマーに由来する粒子である。 The uniform structure means that the number of particles having a particle diameter of 0.1 μm or more is 10 / mm 2 or less in the conductive film. As an evaluation method, S can be observed by uranium staining with Uranyl acetate using TEM observation. A method of measuring a 1 mm 2 conductive film and evaluating the number of particles having a particle diameter of 0.1 μm or more is given. Here, the particle size refers to the maximum major axis of the primary particles. Further, particles having a particle size of 0.1 μm or more are particles derived from a polymer other than a thiophene polymer and / or a thiophene polymer.

導電性の観点から海島構造がよく、その場合、チオフェン系ポリマー以外のポリマーが島状に分散し、チオフェン系ポリマーが海状に連続体を形成し、チオフェン系ポリマー以外のポリマーの平均粒子径が5nm〜80nmであることを特徴とする。さらに、導電膜中のチオフェン系ポリマーの含有量が膜全体に対し30質量%〜80質量%であることを特徴する。   From the viewpoint of conductivity, the sea-island structure is good, in which case polymers other than the thiophene polymer are dispersed in islands, the thiophene polymer forms a sea-like continuum, and the average particle size of the polymer other than the thiophene polymer is 5 nm to 80 nm. Furthermore, the content of the thiophene polymer in the conductive film is 30% by mass to 80% by mass with respect to the entire film.

本実施形態の導電膜は、上述した水性樹脂分散体を用いて作製することができる。水性樹脂分散体に分散しているポリマー粒子がコア/シェル構造を有する場合、膜中の島相は、ポリマー粒子のコアに由来する成分から構成される。膜中の海相は、ポリマー粒子のシェルに由来する成分から構成される。膜を構成するチオフェン系ポリマー、チオフェン系ポリマー以外のポリマー及びスルホン酸系乳化剤の具体例は、水性樹脂分散体について例示したものと同じである。   The electrically conductive film of this embodiment can be produced using the aqueous resin dispersion described above. When the polymer particles dispersed in the aqueous resin dispersion have a core / shell structure, the island phase in the film is composed of components derived from the core of the polymer particles. The sea phase in the membrane is composed of components derived from the shell of polymer particles. Specific examples of the thiophene polymer, the polymer other than the thiophene polymer, and the sulfonic acid emulsifier constituting the membrane are the same as those exemplified for the aqueous resin dispersion.

チオフェン系ポリマー以外のポリマーの平均粒子径は、膜の柔軟性、製膜性の観点から5nm〜80nmが好ましく、5〜70nmがより好ましい。ここで、チオフェン系ポリマー以外のポリマーの平均粒子径は、動的光散乱法による個数換算粒子径の累積50%値(d50)から得られる値である。   The average particle size of the polymer other than the thiophene polymer is preferably 5 nm to 80 nm, more preferably 5 to 70 nm, from the viewpoint of film flexibility and film forming property. Here, the average particle diameter of the polymer other than the thiophene-based polymer is a value obtained from the cumulative 50% value (d50) of the number-converted particle diameter by the dynamic light scattering method.

下記式(3)で表される導電膜中のチオフェン系モノマーに由来するユニットの含有量(Z)は、膜全体に対し、30質量%〜80質量%であることが好ましく、導電性と成膜性の観点から、膜全体に対し、30質量%〜70質量%がより好ましく、35質量%〜60質量%以下が更に好ましい。
Z=100×α/(α+β+γ) (3)
α:チオフェン系モノマーの仕込み量
β:チオフェン系以外のモノマーの仕込み量
γ:スルホン酸系乳化剤の仕込み量
The content (Z) of the unit derived from the thiophene-based monomer in the conductive film represented by the following formula (3) is preferably 30% by mass to 80% by mass with respect to the entire film. From the viewpoint of film properties, it is more preferably 30% by mass to 70% by mass, and still more preferably 35% by mass to 60% by mass with respect to the entire film.
Z = 100 × α / (α + β + γ) (3)
α: Charge of thiophene monomer β: Charge of monomer other than thiophene γ: Charge of sulfonic acid emulsifier

本実施形態の導電膜を製造する方法は特に限定されず、適宜公知の方法を用いることができる。一例として、上述の水性樹脂分散体を基板に塗布して、熱をかけて乾燥する方法が挙げられる。水性樹脂分散体の塗布方法としては、上述の水性樹脂分散体の実施形態で挙げた方法を適用することができる。   The method for producing the conductive film of the present embodiment is not particularly limited, and a known method can be used as appropriate. As an example, there is a method in which the above-mentioned aqueous resin dispersion is applied to a substrate and dried by applying heat. As a coating method of the aqueous resin dispersion, the methods described in the above-described embodiment of the aqueous resin dispersion can be applied.

以上、本発明の好適な実施形態を説明したが、本発明は上記実施形態に何ら限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、具体的な実施例により、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail by way of specific examples.

[調製例1]
(水溶液1の調製)
撹拌機、還流冷却器、滴下槽及び温度計を取り付けた反応容器に、水3000質量部、過硫酸アンモニウム0.6質量部及びドデシルベンゼンスルホン酸ナトリウム6質量部を投入し、反応容器中の温度を80℃に上げて、10分間攪拌し、水溶液1を調製した。
[Preparation Example 1]
(Preparation of aqueous solution 1)
In a reaction vessel equipped with a stirrer, a reflux condenser, a dropping tank and a thermometer, 3000 parts by mass of water, 0.6 part by mass of ammonium persulfate and 6 parts by mass of sodium dodecylbenzenesulfonate were added, and the temperature in the reaction vessel was adjusted. The mixture was raised to 80 ° C. and stirred for 10 minutes to prepare an aqueous solution 1.

[調製例2]
(水溶液2の調製)
撹拌機、還流冷却器、滴下槽及び温度計を取り付けた反応容器に、水3500質量部、過硫酸アンモニウム0.6質量部及びドデシルベンゼンスルホン酸ナトリウム20質量部を投入し、反応容器中の温度を80℃に上げて、10分間攪拌し、水溶液2を調製した。
[Preparation Example 2]
(Preparation of aqueous solution 2)
In a reaction vessel equipped with a stirrer, a reflux condenser, a dropping tank and a thermometer, 3500 parts by mass of water, 0.6 part by mass of ammonium persulfate and 20 parts by mass of sodium dodecylbenzenesulfonate were added, and the temperature in the reaction vessel was adjusted. The solution was raised to 80 ° C. and stirred for 10 minutes to prepare an aqueous solution 2.

[調製例3]
(水溶液3の調製)
反応容器中の温度を50℃とした以外は調製例2と同様にして、水溶液3を調製した。
[Preparation Example 3]
(Preparation of aqueous solution 3)
An aqueous solution 3 was prepared in the same manner as in Preparation Example 2, except that the temperature in the reaction vessel was 50 ° C.

[実施例1]
(水性樹脂分散体の作製)
アクリル酸2−エチルヘキシル600質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部、過硫酸アンモニウム1.4質量部及び水1500質量部をホモジナイザーで乳化し、乳化液B−1を得た。乳化液B−1を滴下槽より45分かけて、水溶液1に滴下した。滴下中は反応容器の温度を80℃に保ち、滴下終了後、反応容器の温度を80℃のまま45分間攪拌し、その後、50℃に保った。これにより、コア粒子1を含む反応液1を得た。
次に、3,4−エチレンジオキシチオフェン400質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部、過硫酸アンモニウム100質量部及び水10000質量部をホモジナイザーで乳化し、乳化液A−1を得た。その乳化液A−1を50℃に保った反応液1に混合した後、さらに水13930質量部を加えて、8時間重合した。その後、降温し、水性樹脂分散体1を回収した。回収時に重合残渣がないことを確認した。水性樹脂分散体1の固形分濃度は3.5質量%であった。また、チオフェン系モノマーに由来するユニットの含有量(X)は、38.2質量%であった。
[Example 1]
(Preparation of aqueous resin dispersion)
Emulsified liquid B-1 was obtained by emulsifying 600 parts by mass of 2-ethylhexyl acrylate, 20 parts by mass of sodium dodecylbenzenesulfonate, 1.4 parts by mass of ammonium persulfate and 1500 parts by mass of water with a homogenizer. Emulsion B-1 was dropped into the aqueous solution 1 over 45 minutes from the dropping tank. During the dropping, the temperature of the reaction vessel was kept at 80 ° C., and after the dropping, the temperature of the reaction vessel was stirred for 45 minutes with the temperature kept at 80 ° C., and then kept at 50 ° C. Thereby, the reaction liquid 1 containing the core particle 1 was obtained.
Next, 400 parts by mass of 3,4-ethylenedioxythiophene, 20 parts by mass of sodium dodecylbenzenesulfonate, 100 parts by mass of ammonium persulfate and 10000 parts by mass of water were emulsified with a homogenizer to obtain an emulsion A-1. The emulsified liquid A-1 was mixed with the reaction liquid 1 maintained at 50 ° C., and 13930 parts by mass of water was further added, followed by polymerization for 8 hours. Thereafter, the temperature was lowered, and the aqueous resin dispersion 1 was recovered. It was confirmed that there was no polymerization residue at the time of recovery. The solid content concentration of the aqueous resin dispersion 1 was 3.5% by mass. Further, the content (X) of the unit derived from the thiophene monomer was 38.2% by mass.

(導電膜の作製)
水性樹脂分散体1をガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。
(Preparation of conductive film)
The aqueous resin dispersion 1 was applied to a glass substrate and dried at 120 ° C. for 10 minutes to produce a conductive film.

[実施例2]
(水性樹脂分散体の作製)
アクリル酸2−エチルヘキシル400質量部、スチレンスルホン酸ナトリウム100質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部、過硫酸アンモニウム1.2質量部及び水1600質量部をホモジナイザーで乳化し、乳化液B−2を得た。その乳化液B−2を滴下槽より45分かけて、水溶液2に滴下した。滴下中は反応容器の温度を80℃に保ち、滴下終了後、過硫酸アンモニウム0.2質量部及び水250質量部を加え、反応容器の温度を80℃のまま45分間攪拌し、その後、50℃に保った。ここに水を3000部加え、室温まで温度を下げた。この水分散液を陽イオン交換樹脂のビーズを入れ撹拌し、ビーズをろ過することで、コア粒子2を含む反応液2を得た。
次に、3,4−エチレンジオキシチオフェン500質量部、ドデシルベンゼンスルホン酸40質量部、及び水5000質量部をホモジナイザーで乳化し、乳化液A−2を得た。その乳化液A−2を50℃にした反応液2に混合した。さらに15000質量部の水を加えた。次に滴下ロートに過硫酸アンモニウム1000質量部、水20000部を混合したものを5時間かけて滴下し、重合した。滴下終了後さらに3時間重合した。その後、1657質量部の水を加え、さらに降温し、水性樹脂分散体2を回収した。回収時に重合残渣が反応器の壁面に付着していることを確認した。水性樹脂分散体2の固形分濃度は約3.9質量%であった。また、チオフェン系モノマーに由来するユニットの含有量(X)は、46.3質量%であった。
[Example 2]
(Preparation of aqueous resin dispersion)
Emulsified solution B-2 was emulsified with a homogenizer of 400 parts by mass of 2-ethylhexyl acrylate, 100 parts by mass of sodium styrenesulfonate, 20 parts by mass of sodium dodecylbenzenesulfonate, 1.2 parts by mass of ammonium persulfate and 1600 parts by mass of water. Obtained. The emulsion B-2 was dropped into the aqueous solution 2 over 45 minutes from the dropping tank. During the dropping, the temperature of the reaction vessel is kept at 80 ° C., and after completion of the dropping, 0.2 part by mass of ammonium persulfate and 250 parts by mass of water are added, and the temperature of the reaction vessel is kept at 80 ° C. for 45 minutes. Kept. To this, 3000 parts of water was added and the temperature was lowered to room temperature. Cation exchange resin beads were added to this aqueous dispersion and stirred, and the beads were filtered to obtain reaction solution 2 containing core particles 2.
Next, 500 parts by mass of 3,4-ethylenedioxythiophene, 40 parts by mass of dodecylbenzenesulfonic acid, and 5000 parts by mass of water were emulsified with a homogenizer to obtain an emulsion A-2. The emulsified liquid A-2 was mixed with the reaction liquid 2 brought to 50 ° C. An additional 15000 parts by weight of water was added. Next, a mixture of 1000 parts by mass of ammonium persulfate and 20000 parts of water was added dropwise to the dropping funnel over 5 hours to polymerize. Polymerization was continued for 3 hours after the completion of the dropwise addition. Thereafter, 1657 parts by mass of water was added, the temperature was further lowered, and the aqueous resin dispersion 2 was recovered. It was confirmed that the polymerization residue adhered to the wall surface of the reactor at the time of recovery. The solid content concentration of the aqueous resin dispersion 2 was about 3.9% by mass. Moreover, content (X) of the unit derived from a thiophene-type monomer was 46.3 mass%.

(導電膜の作製)
水性樹脂分散体2に陰イオン交換樹脂のビーズを入れて撹拌し、ビーズを除去した後の液をガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。
(Preparation of conductive film)
An anion exchange resin bead was added to the aqueous resin dispersion 2 and stirred, and the liquid after removing the bead was applied to a glass substrate and dried at 120 ° C. for 10 minutes to produce a conductive film.

[実施例3]
(水性樹脂分散体の作製)
アクリル酸2−エチルヘキシル400質量部、スチレンスルホン酸ナトリウム100質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部、過硫酸アンモニウム1.2質量部及び水1600質量部をホモジナイザーで乳化し、乳化液B−3を得た。その乳化液B−3を滴下槽より45分かけて、水溶液2に滴下した。滴下中は反応容器の温度を80℃に保ち、滴下終了後、過硫酸アンモニウム0.2質量部及び水250質量部を加え、反応容器の温度を80℃のまま45分間攪拌し、その後、50℃に保った。ここに水を3000部加え、コア粒子3を含む反応液3を得た。
次に、3,4−エチレンジオキシチオフェン500質量部、ドデシルベンゼンスルホン酸ナトリウム40質量部、及び水5000質量部をホモジナイザーで乳化し、乳化液A−3を得た。その乳化液A−3を50℃にした反応液3に混合した。さらに15000質量部の水を加えた。次に滴下ロートに過硫酸アンモニウム1000質量部、水20000部を混合したものを5時間かけて滴下し、重合した。滴下終了後さらに3時間重合した。その後、1657質量部の水を加え、さらに降温し、水性樹脂分散体3を回収した。回収時に重合残渣がないことを確認した。水性樹脂分散体3の固形分濃度は約4質量%であった。また、チオフェン系モノマーに由来するユニットの含有量(X)は、46.3質量%であった。
[Example 3]
(Preparation of aqueous resin dispersion)
Emulsified solution B-3 was emulsified with a homogenizer of 400 parts by mass of 2-ethylhexyl acrylate, 100 parts by mass of sodium styrenesulfonate, 20 parts by mass of sodium dodecylbenzenesulfonate, 1.2 parts by mass of ammonium persulfate and 1600 parts by mass of water. Obtained. The emulsion B-3 was dropped into the aqueous solution 2 over 45 minutes from the dropping tank. During the dropping, the temperature of the reaction vessel is kept at 80 ° C., and after completion of the dropping, 0.2 part by mass of ammonium persulfate and 250 parts by mass of water are added, and the temperature of the reaction vessel is kept at 80 ° C. for 45 minutes. Kept. To this, 3000 parts of water was added to obtain reaction liquid 3 containing core particles 3.
Next, 500 parts by mass of 3,4-ethylenedioxythiophene, 40 parts by mass of sodium dodecylbenzenesulfonate, and 5000 parts by mass of water were emulsified with a homogenizer to obtain an emulsion A-3. The emulsified liquid A-3 was mixed with the reaction liquid 3 brought to 50 ° C. An additional 15000 parts by weight of water was added. Next, a mixture of 1000 parts by mass of ammonium persulfate and 20000 parts of water was added dropwise to the dropping funnel over 5 hours to polymerize. Polymerization was continued for 3 hours after the completion of the dropwise addition. Thereafter, 1657 parts by mass of water was added, the temperature was further lowered, and the aqueous resin dispersion 3 was recovered. It was confirmed that there was no polymerization residue at the time of recovery. The solid content concentration of the aqueous resin dispersion 3 was about 4% by mass. Moreover, content (X) of the unit derived from a thiophene-type monomer was 46.3 mass%.

(導電膜の作製)
水性樹脂分散体3をガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。水性樹脂分散体3は非常に成膜性が高く、ガラス基板にスピンコート法で200nmの薄膜を作製することができた。島津製作所製のUV2500を用いて、550nm波長の光の透過率を測定した所、透過率が90%と非常に高い値を示した。
(Preparation of conductive film)
The aqueous resin dispersion 3 was applied to a glass substrate and dried at 120 ° C. for 10 minutes to produce a conductive film. The aqueous resin dispersion 3 was very high in film formability, and a 200 nm thin film could be produced on a glass substrate by spin coating. When the transmittance of light having a wavelength of 550 nm was measured using UV2500 manufactured by Shimadzu Corporation, the transmittance was as high as 90%.

[実施例4]
(水性樹脂分散体の作製)
3,4−エチレンジオキシチオフェン500質量部、ドデシルベンゼンスルホン酸ナトリウム40質量部及び水5000質量部をホモジナイザーで乳化し、乳化液A−4を得た。その乳化液A−4を50℃にした反応液2に混合した。さらに15000質量部の水を加えた。次に滴下ロートに過硫酸アンモニウム1000質量部、水20000部を混合したものを5時間かけて滴下し、重合した。滴下終了後さらに3時間重合した。その後、1657質量部の水を加え、さらに降温し、水性樹脂分散体4を回収した。回収時に重合残渣が反応器の壁面に付着していることを確認した。水性樹脂分散体4の固形分濃度は約4質量%であった。また、チオフェン系モノマーに由来するユニットの含有量(X)は、46.9質量%であった。
[Example 4]
(Preparation of aqueous resin dispersion)
Emulsified liquid A-4 was obtained by emulsifying 500 parts by mass of 3,4-ethylenedioxythiophene, 40 parts by mass of sodium dodecylbenzenesulfonate, and 5000 parts by mass of water with a homogenizer. The emulsified liquid A-4 was mixed with the reaction liquid 2 brought to 50 ° C. An additional 15000 parts by weight of water was added. Next, a mixture of 1000 parts by mass of ammonium persulfate and 20000 parts of water was added dropwise to the dropping funnel over 5 hours to polymerize. Polymerization was continued for 3 hours after the completion of the dropwise addition. Thereafter, 1657 parts by mass of water was added, the temperature was further lowered, and the aqueous resin dispersion 4 was recovered. It was confirmed that the polymerization residue adhered to the wall surface of the reactor at the time of recovery. The solid content concentration of the aqueous resin dispersion 4 was about 4% by mass. Moreover, content (X) of the unit derived from a thiophene-type monomer was 46.9 mass%.

(導電膜の作製)
水性樹脂分散体4に陰イオン交換樹脂のビーズを入れて撹拌し、ビーズを除去した後の液をガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。
(Preparation of conductive film)
An anion exchange resin bead was added to the aqueous resin dispersion 4 and stirred, and the liquid after removing the bead was applied to a glass substrate and dried at 120 ° C. for 10 minutes to prepare a conductive film.

[実施例5]
(水性樹脂分散体の作製)
アクリル酸2−エチルヘキシル500質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部、過硫酸アンモニウム1.2質量部及び水1600質量部をホモジナイザーで乳化し、乳化液B−5を得た。その乳化液B−5を滴下槽より45分かけて、水溶液2に滴下した。滴下中は反応容器の温度を80℃に保ち、滴下終了後、過硫酸アンモニウム0.2質量部及び水250質量部を加え、反応容器の温度を80℃のまま45分間攪拌し、その後、50℃に保った。ここに水を3000部加え、室温まで温度を下げ、コア粒子5を含む反応液5を得た。
次に、3,4−エチレンジオキシチオフェン500質量部、ドデシルベンゼンスルホン酸ナトリウム40質量部、トルエンスルホン酸150質量部、及び水5000質量部をホモジナイザーで乳化し、乳化液A−5を得た。その乳化液A−5を50℃にした反応液5に混合した。さらに15000質量部の水を加えた。次に滴下ロートに過硫酸アンモニウム1500質量部、水40000部を混合したものを5時間かけて滴下し、重合した。滴下終了後さらに3時間重合した。その後、2150質量部の水を加え、さらに降温し、水性樹脂分散体5を回収した。回収時に重合残渣がないことを確認した。水性樹脂分散体5の固形分濃度は約3.7質量%であった。また、チオフェン系モノマーに由来するユニットの含有量(X)は、40.7質量%であった。
[Example 5]
(Preparation of aqueous resin dispersion)
Emulsified solution B-5 was obtained by emulsifying 500 parts by mass of 2-ethylhexyl acrylate, 20 parts by mass of sodium dodecylbenzenesulfonate, 1.2 parts by mass of ammonium persulfate and 1600 parts by mass of water with a homogenizer. The emulsion B-5 was dropped into the aqueous solution 2 over 45 minutes from the dropping tank. During the dropping, the temperature of the reaction vessel is kept at 80 ° C., and after completion of the dropping, 0.2 part by mass of ammonium persulfate and 250 parts by mass of water are added, and the temperature of the reaction vessel is kept at 80 ° C. for 45 minutes, and then 50 ° C. Kept. 3000 parts of water was added thereto, the temperature was lowered to room temperature, and a reaction liquid 5 containing core particles 5 was obtained.
Next, 500 parts by mass of 3,4-ethylenedioxythiophene, 40 parts by mass of sodium dodecylbenzenesulfonate, 150 parts by mass of toluenesulfonic acid, and 5000 parts by mass of water were emulsified with a homogenizer to obtain an emulsion A-5. . The emulsified liquid A-5 was mixed with the reaction liquid 5 at 50 ° C. An additional 15000 parts by weight of water was added. Next, a mixture of 1500 parts by mass of ammonium persulfate and 40000 parts of water was added dropwise to the dropping funnel over 5 hours and polymerized. Polymerization was continued for 3 hours after the completion of the dropwise addition. Thereafter, 2150 parts by mass of water was added, the temperature was further lowered, and the aqueous resin dispersion 5 was recovered. It was confirmed that there was no polymerization residue at the time of recovery. The solid content concentration of the aqueous resin dispersion 5 was about 3.7% by mass. Moreover, content (X) of the unit derived from a thiophene-type monomer was 40.7 mass%.

(導電膜の作製)
水性樹脂分散体5に陰イオン交換樹脂のビーズを入れて撹拌し、ビーズを除去した後の液をガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。また、水性樹脂分散体5は非常に成膜性が高く、ガラス基板にスピンコート法で200nmの薄膜を作製することができた。
(Preparation of conductive film)
An anion exchange resin bead was added to the aqueous resin dispersion 5 and stirred, and the liquid after removing the bead was applied to a glass substrate and dried at 120 ° C. for 10 minutes to produce a conductive film. In addition, the aqueous resin dispersion 5 was very high in film formability, and a 200 nm thin film could be produced on a glass substrate by spin coating.

[実施例6]
(水性樹脂分散体の作製)
アクリル酸2−エチルヘキシル450質量部、トリメチロールプロパントリメタクリレート50質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部、過硫酸アンモニウム1.2質量部及び水1600質量部をホモジナイザーで乳化し、乳化液B−6を得た。その乳化液B−6を滴下槽より45分かけて、水溶液2に滴下した。滴下中は反応容器の温度を80℃に保ち、滴下終了後、過硫酸アンモニウム0.2質量部及び水250質量部を加え、反応容器の温度を80℃のまま45分間攪拌し、その後、50℃に保った。ここに水を3000部加え、室温まで温度を下げ、コア粒子6を含む反応液6を得た。
次に、乳化液A−5を50℃にした反応液6に混合した。さらに15000質量部の水を加えた。次に滴下ロートに過硫酸アンモニウム1500質量部、水40000部を混合したものを5時間かけて滴下し、重合した。滴下終了後さらに3時間重合した。その後、2150質量部の水を加え、さらに降温し、水性樹脂分散体6を回収した。回収時に重合残渣が反応容器壁面に付着していることを確認した。水性樹脂分散体6の固形分濃度は約3.7質量%であった。また、チオフェン系モノマーに由来するユニットの含有量(X)は、40.7質量%であった。
[Example 6]
(Preparation of aqueous resin dispersion)
An emulsion B-6 was emulsified with 450 parts by weight of 2-ethylhexyl acrylate, 50 parts by weight of trimethylolpropane trimethacrylate, 20 parts by weight of sodium dodecylbenzenesulfonate, 1.2 parts by weight of ammonium persulfate and 1600 parts by weight of water using a homogenizer. Got. The emulsion B-6 was dropped into the aqueous solution 2 over 45 minutes from the dropping tank. During the dropping, the temperature of the reaction vessel is kept at 80 ° C., and after completion of the dropping, 0.2 part by mass of ammonium persulfate and 250 parts by mass of water are added, and the temperature of the reaction vessel is kept at 80 ° C. for 45 minutes, and then 50 ° C. Kept. To this, 3000 parts of water was added, the temperature was lowered to room temperature, and a reaction liquid 6 containing core particles 6 was obtained.
Next, the emulsified liquid A-5 was mixed with the reaction liquid 6 at 50 ° C. An additional 15000 parts by weight of water was added. Next, a mixture of 1500 parts by mass of ammonium persulfate and 40000 parts of water was added dropwise to the dropping funnel over 5 hours and polymerized. Polymerization was continued for 3 hours after the completion of the dropwise addition. Thereafter, 2150 parts by mass of water was added, the temperature was further lowered, and the aqueous resin dispersion 6 was recovered. It was confirmed that the polymerization residue adhered to the reaction vessel wall surface during the recovery. The solid content concentration of the aqueous resin dispersion 6 was about 3.7% by mass. Moreover, content (X) of the unit derived from a thiophene-type monomer was 40.7 mass%.

(導電膜の作製)
水性樹脂分散体6をガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。
(Preparation of conductive film)
The aqueous resin dispersion 6 was applied to a glass substrate and dried at 120 ° C. for 10 minutes to produce a conductive film.

[実施例7]
(水性樹脂分散体の作製)
アクリル酸2−エチルヘキシル350質量部、スチレンスルホン酸ナトリウム100質量部、トリメチロールプロパントリメタクリレート50質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部、過硫酸アンモニウム1.2質量部及び水1600質量部をホモジナイザーで乳化し、乳化液B−7を得た。その乳化液B−7を滴下槽より45分かけて、水溶液2に滴下した。滴下中は反応容器の温度を80℃に保ち、滴下終了後、過硫酸アンモニウム0.2質量部及び水250質量部を加え、反応容器の温度を80℃のまま45分間攪拌し、その後、50℃に保った。ここに水を3000部加え、室温まで温度を下げ、コア粒子7を含む反応液7を得た。
次に、3,4−エチレンジオキシチオフェン500質量部、ドデシルベンゼンスルホン酸ナトリウム40質量部、トルエンスルホン酸150質量部及び水5000質量部をホモジナイザーで乳化し、乳化液A−7を得た。その乳化液A−7を50℃にした反応液7に混合した。さらに15000質量部の水を加えた。次に滴下ロートに過硫酸アンモニウム1500質量部、水40000部を混合したものを5時間かけて滴下し、重合した。滴下終了後さらに3時間重合した。その後、2150質量部の水を加え、さらに降温し、水性樹脂分散体7を回収した。回収時に重合残渣が反応容器壁面に付着していることを確認した。また、チオフェン系モノマーに由来するユニットの含有量(X)は、40.7質量%であった。
[Example 7]
(Preparation of aqueous resin dispersion)
A homogenizer containing 350 parts by mass of 2-ethylhexyl acrylate, 100 parts by mass of sodium styrenesulfonate, 50 parts by mass of trimethylolpropane trimethacrylate, 20 parts by mass of sodium dodecylbenzenesulfonate, 1.2 parts by mass of ammonium persulfate and 1600 parts by mass of water. The mixture was emulsified to obtain an emulsion B-7. The emulsion B-7 was dropped into the aqueous solution 2 over 45 minutes from the dropping tank. During the dropping, the temperature of the reaction vessel is kept at 80 ° C., and after completion of the dropping, 0.2 part by mass of ammonium persulfate and 250 parts by mass of water are added, and the temperature of the reaction vessel is kept at 80 ° C. for 45 minutes, and then 50 ° C. Kept. To this, 3000 parts of water was added, the temperature was lowered to room temperature, and a reaction liquid 7 containing core particles 7 was obtained.
Next, 500 parts by mass of 3,4-ethylenedioxythiophene, 40 parts by mass of sodium dodecylbenzenesulfonate, 150 parts by mass of toluenesulfonic acid, and 5000 parts by mass of water were emulsified with a homogenizer to obtain an emulsion A-7. The emulsion A-7 was mixed with the reaction solution 7 brought to 50 ° C. An additional 15000 parts by weight of water was added. Next, a mixture of 1500 parts by mass of ammonium persulfate and 40000 parts of water was added dropwise to the dropping funnel over 5 hours and polymerized. Polymerization was continued for 3 hours after the completion of the dropwise addition. Thereafter, 2150 parts by mass of water was added, the temperature was further lowered, and the aqueous resin dispersion 7 was recovered. It was confirmed that the polymerization residue adhered to the reaction vessel wall surface during the recovery. Moreover, content (X) of the unit derived from a thiophene-type monomer was 40.7 mass%.

(導電膜の作製)
水性樹脂分散体7をガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。
(Preparation of conductive film)
The aqueous resin dispersion 7 was applied to a glass substrate and dried at 120 ° C. for 10 minutes to produce a conductive film.

[実施例8]
(水性樹脂分散体の作製)
アクリル酸2−エチルヘキシル500質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部、過硫酸アンモニウム1.2質量部及び水1600質量部をホモジナイザーで乳化し、乳化液B−8を得た。その乳化液B−8を滴下槽より45分かけて、水溶液2に滴下した。滴下中は反応容器の温度を80℃に保ち、滴下終了後、過硫酸アンモニウム0.2質量部及び水250質量部を加え、反応容器の温度を80℃のまま45分間攪拌し、その後、50℃に保った。ここに水を3000部加え、室温まで温度を下げ、コア粒子8を含む反応液8を得た。
[Example 8]
(Preparation of aqueous resin dispersion)
An emulsion B-8 was obtained by emulsifying 500 parts by mass of 2-ethylhexyl acrylate, 20 parts by mass of sodium dodecylbenzenesulfonate, 1.2 parts by mass of ammonium persulfate and 1600 parts by mass of water with a homogenizer. The emulsion B-8 was dropped into the aqueous solution 2 over 45 minutes from the dropping tank. During the dropping, the temperature of the reaction vessel is kept at 80 ° C., and after completion of the dropping, 0.2 part by mass of ammonium persulfate and 250 parts by mass of water are added, and the temperature of the reaction vessel is kept at 80 ° C. for 45 minutes. Kept. To this, 3000 parts of water was added, the temperature was lowered to room temperature, and a reaction liquid 8 containing core particles 8 was obtained.

次に、3,4−エチレンジオキシチオフェン500質量部、ドデシルベンゼンスルホン酸ナトリウム40質量部、トルエンスルホン酸150質量部、及び水5000質量部をホモジナイザーで乳化し、乳化液A−8を得た。その乳化液A−8を50℃にした反応液8に混合した。さらに15000質量部の水を加えた。次に滴下ロートに過硫酸アンモニウム1500質量部、水40000部を混合したものを5時間かけて滴下し、重合した。滴下終了後さらに3時間重合した。その後、2150質量部の水を加え、さらに降温し、水性樹脂分散体8を回収した。回収時に重合残渣がないことを確認した。水性樹脂分散体8の固形分濃度は約3.7質量%であった。また、チオフェン系モノマーに由来するユニットの含有量(X)は、40.7質量%であった。   Next, 500 parts by mass of 3,4-ethylenedioxythiophene, 40 parts by mass of sodium dodecylbenzenesulfonate, 150 parts by mass of toluenesulfonic acid, and 5000 parts by mass of water were emulsified with a homogenizer to obtain an emulsion A-8. . The emulsion A-8 was mixed with the reaction liquid 8 brought to 50 ° C. An additional 15000 parts by weight of water was added. Next, a mixture of 1500 parts by mass of ammonium persulfate and 40000 parts of water was added dropwise to the dropping funnel over 5 hours and polymerized. Polymerization was continued for 3 hours after the completion of the dropwise addition. Thereafter, 2150 parts by mass of water was added, the temperature was further lowered, and the aqueous resin dispersion 8 was recovered. It was confirmed that there was no polymerization residue at the time of recovery. The solid content concentration of the aqueous resin dispersion 8 was about 3.7% by mass. Moreover, content (X) of the unit derived from a thiophene-type monomer was 40.7 mass%.

(導電膜の作製)
水性樹脂分散体8をガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。また、水性樹脂分散体8は非常に成膜性が高く、ガラス基板にスピンコート法で200nmの薄膜を作製することができた。
(Preparation of conductive film)
The aqueous resin dispersion 8 was applied to a glass substrate and dried at 120 ° C. for 10 minutes to produce a conductive film. In addition, the aqueous resin dispersion 8 was very high in film formability, and a 200 nm thin film could be produced on a glass substrate by spin coating.

[比較例1]
撹拌機、還流冷却器、温度計を取り付けた反応容器に水3000質量部を投入し、反応容器中の温度を50℃に上げた。次に、3,4−エチレンジオキシチオフェン400質量部、ドデシルベンゼンスルホン酸ナトリウム26質量部、過硫酸アンモニウム100質量部及び水7094質量部をホモジナイザーで乳化し、乳化液A−1’を得た。その乳化液A−1’を50℃に保った上記反応容器に投入し、さらに水16834質量部を加えて、8時間重合した。その後、降温し、反応液を回収したが、回収時に粒径が大きなポリマー粒子による重合残渣が多数発生し、ポリマー粒子が分散した水性樹脂分散体は得られなかった。該ポリマー粒子は凝集しているため、粒子径を測定することは出来なかった。また、回収したポリマーは膜にはならなかった。
[Comparative Example 1]
To a reaction vessel equipped with a stirrer, a reflux condenser, and a thermometer, 3000 parts by mass of water was charged, and the temperature in the reaction vessel was raised to 50 ° C. Next, 400 parts by mass of 3,4-ethylenedioxythiophene, 26 parts by mass of sodium dodecylbenzenesulfonate, 100 parts by mass of ammonium persulfate and 7094 parts by mass of water were emulsified with a homogenizer to obtain an emulsion A-1 ′. The emulsion A-1 ′ was charged into the reaction vessel maintained at 50 ° C., and 16834 parts by mass of water was further added, followed by polymerization for 8 hours. Thereafter, the temperature was lowered and the reaction solution was recovered, but a large number of polymerization residues due to polymer particles having a large particle size were generated during the recovery, and an aqueous resin dispersion in which the polymer particles were dispersed could not be obtained. Since the polymer particles were agglomerated, the particle size could not be measured. Further, the recovered polymer did not form a film.

[比較例2]
3,4−エチレンジオキシチオフェン500質量部、ドデシルベンゼンスルホン酸ナトリウム20質量部及び水5000質量部をホモジナイザーで乳化し、乳化液A−2’を得た。その乳化液A−2’を50℃にした水溶液3に混合した後、15000質量部の水を加えた。次に滴下ロートに過硫酸アンモニウム1000質量部、水40000部を混合したものを5時間かけて滴下し、重合した。滴下終了後、さらに3時間重合した後、2150質量部の水を加え、降温した。しかし、ポリマー粒子が凝集し、多数沈殿しポリマー粒子が分散した水性樹脂分散体は得られなかった。該ポリマー粒子は凝集しているため、粒子径を測定することは出来なかった。沈殿物を採取し、成膜を試みたが、膜にはならなかった。
[Comparative Example 2]
Emulsified liquid A-2 ′ was obtained by emulsifying 500 parts by mass of 3,4-ethylenedioxythiophene, 20 parts by mass of sodium dodecylbenzenesulfonate, and 5000 parts by mass of water with a homogenizer. The emulsion A-2 ′ was mixed with the aqueous solution 3 brought to 50 ° C., and 15000 parts by mass of water was added. Next, a mixture of 1000 parts by mass of ammonium persulfate and 40000 parts of water was added dropwise to the dropping funnel over 5 hours to polymerize. After completion of the dropwise addition, the mixture was further polymerized for 3 hours, and 2150 parts by mass of water was added to lower the temperature. However, it was not possible to obtain an aqueous resin dispersion in which polymer particles were aggregated, precipitated in large numbers, and polymer particles were dispersed. Since the polymer particles were agglomerated, the particle size could not be measured. The precipitate was collected and an attempt was made to form a film, but no film was formed.

[比較例3]
22.2質量部のポリスチレンスルホン酸を含む2012質量部の水溶液中に、49質量部の1%硫酸鉄(III)水溶液、8.8質量部の3,4−エチレンジオキシチオフェン及び17.4質量部のペルオキソ二硫酸ナトリウムを加えた混合物を20℃で、23時間攪拌し、水性樹脂分散体を得た。水性樹脂分散体9の固形分濃度は約2.3質量%であった。
[Comparative Example 3]
49 parts by mass of 1% iron (III) sulfate aqueous solution, 8.8 parts by mass of 3,4-ethylenedioxythiophene and 17.4 in 2012 parts by mass of an aqueous solution containing 22.2 parts by mass of polystyrenesulfonic acid The mixture to which part by mass of sodium peroxodisulfate was added was stirred at 20 ° C. for 23 hours to obtain an aqueous resin dispersion. The solid content concentration of the aqueous resin dispersion 9 was about 2.3% by mass.

[評価方法]
(1)コア粒子及びポリマー粒子の平均粒子径の測定
反応液中に含まれるコア粒子の平均粒子径、及び、水性樹脂分散体に含まれるポリマー粒子の平均粒子径を、大塚電子株式会社製の製品名「ELSZ−2」を用いた光散乱法により測定した。
[Evaluation method]
(1) Measurement of average particle diameter of core particles and polymer particles The average particle diameter of the core particles contained in the reaction solution and the average particle diameter of the polymer particles contained in the aqueous resin dispersion are determined by Otsuka Electronics Co., Ltd. It was measured by a light scattering method using a product name “ELSZ-2”.

(2)重合安定性
重合安定性とは、重合後の水性樹脂分散体に含まれるポリマー粒子の分散安定性のことである。
○:重合残渣が全くなく、ポリマー粒子が均一に分散している状態。
△:重合残渣が発生するが、ポリマー粒子が均一に分散している状態。
×:ポリマー粒子が凝集し、均一に分散していない状態。
(2) Polymerization stability The polymerization stability is the dispersion stability of polymer particles contained in the aqueous resin dispersion after polymerization.
○: There is no polymerization residue and the polymer particles are uniformly dispersed.
Δ: Polymerization residue is generated, but polymer particles are uniformly dispersed.
X: State in which polymer particles are aggregated and not uniformly dispersed.

(3)成膜性
水性樹脂分散体をキャスト法又はスピンコート法を用いて成膜性を評価した。成膜性とは、均一膜が作製できる状態のことである。
(キャスト法)
水性樹脂分散体を、ピペットを用いて滴下することで、ガラス基板に塗布し、120℃、10分間乾燥させることで、導電膜を作製した。
(スピンコート法)
水性樹脂分散体を、ピペットを用いて滴下することで、ガラス基板に塗布し、スピンコーター(ミカサ株式会社製)を用いて、1500rpm、30秒の条件で成膜した。そして、その膜を120℃、10分間乾燥させることで、導電膜を作製した。
○:均一な膜が作製できる状態。
△:膜にはなるが、均一ではなく、凹凸や一部割れがある状態。
×:膜にならない状態。
(3) Film formability The film formability of the aqueous resin dispersion was evaluated using a cast method or a spin coat method. The film formability is a state where a uniform film can be produced.
(Cast method)
The aqueous resin dispersion was dropped onto a glass substrate by using a pipette and dried at 120 ° C. for 10 minutes to produce a conductive film.
(Spin coating method)
The aqueous resin dispersion was dropped by using a pipette to apply to a glass substrate, and a film was formed using a spin coater (manufactured by Mikasa Co., Ltd.) at 1500 rpm for 30 seconds. And the electrically conductive film was produced by drying the film | membrane for 10 minutes at 120 degreeC.
○: A state where a uniform film can be produced.
Δ: A film is formed, but is not uniform and has unevenness and partial cracks.
X: The state which does not become a film.

(4)導電性
水性樹脂分散体1mLをガラス基板に塗布(滴下)し、120℃、10分間乾燥するキャスト法で、導電膜を作製した。導電膜の導電性を、三菱化学アナリテック社製のロレスターにて測定した。測定条件は、24℃とした。
(4) Conductivity A conductive film was produced by a casting method in which 1 mL of an aqueous resin dispersion was applied (dropped) onto a glass substrate and dried at 120 ° C. for 10 minutes. The conductivity of the conductive film was measured with a Lorester manufactured by Mitsubishi Chemical Analytech. The measurement conditions were 24 ° C.

作製した水性樹脂分散体及び導電膜についての評価結果を表1にまとめて示す。   Table 1 summarizes the evaluation results for the produced aqueous resin dispersion and conductive film.

Figure 2013224417
Figure 2013224417

なお、実施例におけるポリマー粒子の粒子径の違いについては、以下のように推測している。粒子径は、光散乱法により水中で測定している。乳化剤の末端基がスルホン酸である場合、親水性のため水と作用し、粒径が大きくなる傾向がある。また、水性樹脂分散体のイオン交換の操作をすることで、Na塩の場合でも、イオン交換され、Naが水素に置換されるので、スルホン酸の場合と同様に粒径が大きくなる傾向がある。さらに、第2の乳化液中のモノマーとして疎水性のアクリル酸2−エチルヘキシルのみを用いた場合も、粒径が小さくなる傾向があると考えられる。   In addition, about the difference in the particle diameter of the polymer particle in an Example, it estimates as follows. The particle diameter is measured in water by the light scattering method. When the terminal group of the emulsifier is a sulfonic acid, it acts with water due to its hydrophilic property and tends to increase the particle size. Further, by performing ion exchange operation of the aqueous resin dispersion, even in the case of Na salt, ion exchange is performed and Na is replaced with hydrogen, so that the particle size tends to increase as in the case of sulfonic acid. . Furthermore, it is considered that the particle size tends to decrease when only hydrophobic 2-ethylhexyl acrylate is used as the monomer in the second emulsion.

本発明によれば、チオフェン系ポリマーの重合安定性に優れ、導電性が良好な導電膜を作製できる水性樹脂分散体及びその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the aqueous resin dispersion which can produce the electrically conductive film excellent in the polymerization stability of a thiophene-type polymer and favorable electroconductivity, and its manufacturing method can be provided.

Claims (33)

ポリマー粒子が水に分散した水性樹脂分散体であって、
前記ポリマー粒子が、スルホン酸系乳化剤及びチオフェン系ポリマーを含み、
前記ポリマー粒子の平均粒子径が10nm〜5000nmであり、
前記水性樹脂分散体をキャスト法で膜とした場合の導電率が0.05S/cm〜5000S/cmである、水性樹脂分散体。
An aqueous resin dispersion in which polymer particles are dispersed in water,
The polymer particles include a sulfonic acid emulsifier and a thiophene polymer,
The average particle diameter of the polymer particles is 10 nm to 5000 nm,
An aqueous resin dispersion having a conductivity of 0.05 S / cm to 5000 S / cm when the aqueous resin dispersion is formed into a film by a casting method.
下記式(1)で表される前記水性樹脂分散体中のポリマー成分におけるチオフェン系モノマーに由来するユニットの含有量(X)が30質量%〜80質量%である、請求項1に記載の水性樹脂分散体。
X=100×α/(α+β+γ) (1)
(式中、αはチオフェン系モノマーの仕込み量を示し、βはチオフェン系以外のモノマーの仕込み量を示し、γはスルホン酸系乳化剤の仕込み量を示す。)
2. The aqueous solution according to claim 1, wherein the content (X) of a unit derived from a thiophene monomer in the polymer component in the aqueous resin dispersion represented by the following formula (1) is 30% by mass to 80% by mass. Resin dispersion.
X = 100 × α / (α + β + γ) (1)
(In the formula, α represents the charged amount of the thiophene monomer, β represents the charged amount of the monomer other than the thiophene monomer, and γ represents the charged amount of the sulfonic acid emulsifier.)
前記ポリマー粒子が、ガラス転移温度が30℃以下のポリマーを更に含む、請求項1又は2に記載の水性樹脂分散体。   The aqueous resin dispersion according to claim 1, wherein the polymer particles further contain a polymer having a glass transition temperature of 30 ° C. or less. 前記ポリマー粒子がコア/シェル構造を有し、
前記シェルが、前記スルホン酸系乳化剤及びチオフェン系ポリマーを含む、
請求項1〜3のいずれか一項に記載の水性樹脂分散体。
The polymer particles have a core / shell structure;
The shell includes the sulfonic acid emulsifier and a thiophene polymer.
The aqueous resin dispersion according to any one of claims 1 to 3.
前記ポリマー粒子の平均粒子径が10nm〜180nmである、請求項1〜4のいずれか一項に記載の水性樹脂分散体。   The aqueous resin dispersion according to any one of claims 1 to 4, wherein an average particle diameter of the polymer particles is 10 nm to 180 nm. 前記ガラス転移温度が30℃以下のポリマーが、(メタ)アクリル酸エステルを含むモノマーを重合したアクリルポリマーを含有する、請求項3〜5のいずれか1項に記載の水性樹脂分散体。   The aqueous resin dispersion according to any one of claims 3 to 5, wherein the polymer having a glass transition temperature of 30 ° C or lower contains an acrylic polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester. 前記(メタ)アクリル酸エステルが、アクリル酸2−エチルヘキシルを含む、請求項6に記載の水性樹脂分散体。   The aqueous resin dispersion according to claim 6, wherein the (meth) acrylic acid ester contains 2-ethylhexyl acrylate. 前記アクリルポリマーが、(メタ)アクリル酸エステル及び多官能の(メタ)アクリレートを含むモノマーを重合した架橋型アクリルポリマーである、請求項6又は7に記載の水性樹脂分散体。   The aqueous resin dispersion according to claim 6 or 7, wherein the acrylic polymer is a cross-linked acrylic polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester and a polyfunctional (meth) acrylate. 前記多官能の(メタ)アクリレートが、トリメチロールプロパントリ(メタ)クリレートを含む、請求項8に記載の水性樹脂分散体。   The aqueous resin dispersion according to claim 8, wherein the polyfunctional (meth) acrylate comprises trimethylolpropane tri (meth) acrylate. 前記チオフェン系ポリマーが、ポリ(3,4−エチレンジオキシチオフェン)である、請求項1〜9のいずれか1項に記載の水性樹脂分散体。   The aqueous resin dispersion according to any one of claims 1 to 9, wherein the thiophene polymer is poly (3,4-ethylenedioxythiophene). 前記スルホン酸系乳化剤が、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、スチレンスルホン酸、スチレンスルホン酸ナトリウム、トルエンスルホン酸及びトルエンスルホン酸ナトリウムからなる群より選ばれる少なくとも1種を含む、請求項1〜10のいずれか一項に記載の水性樹脂分散体。   The sulfonic acid emulsifier includes at least one selected from the group consisting of dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, styrenesulfonic acid, sodium styrenesulfonate, toluenesulfonic acid, and sodium toluenesulfonate. The aqueous resin dispersion according to any one of 10 to 10. チオフェン系ポリマーと、前記チオフェン系ポリマー以外のポリマーと、スルホン酸系乳化剤とを含み、海島構造を形成している導電膜であり、
前記チオフェン系ポリマー以外のポリマーが島状に分散し、前記チオフェン系ポリマーが海状に連続体を形成し、
前記チオフェン系ポリマー以外のポリマーの平均粒子径が5nm〜80nmである、
導電膜。
A conductive film comprising a thiophene polymer, a polymer other than the thiophene polymer, and a sulfonic acid emulsifier, forming a sea-island structure,
A polymer other than the thiophene polymer is dispersed in islands, and the thiophene polymer forms a continuum in the sea,
The average particle size of the polymer other than the thiophene polymer is 5 nm to 80 nm.
Conductive film.
チオフェン系ポリマーと、前記チオフェン系ポリマー以外のポリマーと、スルホン酸系乳化剤とを含む導電膜であって、
導電率が0.05S/cm〜5000S/cmであり、粒径0.1μm以上の粒子が10個/mm以下である、導電膜。
A conductive film comprising a thiophene polymer, a polymer other than the thiophene polymer, and a sulfonic acid emulsifier,
A conductive film having a conductivity of 0.05 S / cm to 5000 S / cm, and 10 particles / mm 2 or less having a particle size of 0.1 μm or more.
下記式(3)で表される前記導電膜中のチオフェン系モノマーに由来するユニットの含有量(Z)が30質量%〜80質量%である、請求項12又は13に記載の導電膜。
Z=100×α/(α+β+γ) (3)
(式中、αはチオフェン系モノマーの仕込み量を示し、βはチオフェン系以外のモノマーの仕込み量を示し、γはスルホン酸系乳化剤の仕込み量を示す。)
The electrically conductive film of Claim 12 or 13 whose content (Z) of the unit derived from the thiophene-type monomer in the said electrically conductive film represented by following formula (3) is 30 mass%-80 mass%.
Z = 100 × α / (α + β + γ) (3)
(In the formula, α represents the charged amount of the thiophene monomer, β represents the charged amount of the monomer other than the thiophene monomer, and γ represents the charged amount of the sulfonic acid emulsifier.)
前記チオフェン系ポリマーが、ポリ(3,4−エチレンジオキシチオフェン)である、請求項12〜14のいずれか1項に記載の導電膜。   The conductive film according to claim 12, wherein the thiophene polymer is poly (3,4-ethylenedioxythiophene). 前記チオフェン系ポリマー以外のポリマーのガラス転移温度が30℃以下である、請求項12〜15のいずれか1項に記載の導電膜。   The electrically conductive film of any one of Claims 12-15 whose glass transition temperature of polymers other than the said thiophene-type polymer is 30 degrees C or less. 前記チオフェン系ポリマー以外のポリマーが、(メタ)アクリル酸エステルを含むモノマーを重合したアクリルポリマーである、請求項12〜16のいずれか1項に記載の導電膜。   The conductive film according to any one of claims 12 to 16, wherein the polymer other than the thiophene polymer is an acrylic polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester. 前記アクリルポリマーが、(メタ)アクリル酸エステル及び多官能の(メタ)アクリレートを含むモノマーを重合した架橋型アクリルポリマーである、請求項17に記載の導電膜。   The electrically conductive film according to claim 17, wherein the acrylic polymer is a cross-linked acrylic polymer obtained by polymerizing a monomer containing a (meth) acrylic acid ester and a polyfunctional (meth) acrylate. 前記(メタ)アクリル酸エステルが、アクリル酸2−エチルヘキシルを含む、請求項17又は18に記載の導電膜。   The conductive film according to claim 17 or 18, wherein the (meth) acrylic acid ester includes 2-ethylhexyl acrylate. 前記多官能の(メタ)アクリレートが、トリメチロールプロパントリメタクリレートを含む、請求項18又は19に記載の導電膜。   The electrically conductive film of Claim 18 or 19 in which the said polyfunctional (meth) acrylate contains a trimethylol propane trimethacrylate. 前記スルホン酸系乳化剤が、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、スチレンスルホン酸、スチレンスルホン酸ナトリウム、トルエンスルホン酸及びトルエンスルホン酸ナトリウムからなる群より選ばれる少なくとも1種を含む、請求項12〜20のいずれか一項に記載の導電膜。   The sulfonic acid emulsifier includes at least one selected from the group consisting of dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, styrenesulfonic acid, sodium styrenesulfonate, toluenesulfonic acid, and sodium toluenesulfonate. The electrically conductive film as described in any one of -20. ポリマー粒子が水に分散した水性樹脂分散体を製造する方法であって、
スルホン酸系乳化剤、チオフェン系モノマー及び水を含む第1の乳化液を調製する工程と、
スルホン酸系乳化剤、前記チオフェン系モノマー以外のモノマー及び水を含む第2の乳化液を調製し、該第2の乳化液を重合してコア粒子を作製する工程と、
前記コア粒子の存在下、前記第1の乳化液を重合してポリマー粒子を作製する工程と、
を備え、
前記コア粒子の平均粒子径が5nm〜80nmであり、前記ポリマー粒子の平均粒子径が10nm〜5000nmである、水性樹脂分散体の製造方法。
A method for producing an aqueous resin dispersion in which polymer particles are dispersed in water,
Preparing a first emulsion containing a sulfonic acid emulsifier, a thiophene monomer and water;
Preparing a second emulsion containing a sulfonic acid-based emulsifier, a monomer other than the thiophene monomer and water, and polymerizing the second emulsion to produce core particles;
Polymerizing the first emulsion in the presence of the core particles to produce polymer particles;
With
The manufacturing method of the aqueous resin dispersion whose average particle diameter of the said core particle is 5 nm-80 nm, and whose average particle diameter of the said polymer particle is 10 nm-5000 nm.
下記式(2)で表されるポリマー成分におけるチオフェン系モノマーに由来するユニットの仕込み量(Y)が30質量%〜80質量%である、請求項22に記載の水性樹脂分散体の製造方法。
Y=100×α/(α+β+γ) (2)
(式中、αはチオフェン系モノマーの仕込み量を示し、βはチオフェン系以外のモノマーの仕込み量を示し、γはスルホン酸系乳化剤の仕込み量を示す。)
The manufacturing method of the aqueous resin dispersion of Claim 22 whose preparation amount (Y) of the unit derived from the thiophene-type monomer in the polymer component represented by following formula (2) is 30 mass%-80 mass%.
Y = 100 × α / (α + β + γ) (2)
(In the formula, α represents the charged amount of the thiophene monomer, β represents the charged amount of the monomer other than the thiophene monomer, and γ represents the charged amount of the sulfonic acid emulsifier.)
前記ポリマー粒子の平均粒子径が10nm〜180nmである、請求項22又は23に記載の水性樹脂分散体の製造方法。   The method for producing an aqueous resin dispersion according to claim 22 or 23, wherein the polymer particles have an average particle diameter of 10 nm to 180 nm. 前記第1の乳化液及び前記第2の乳化液が、過硫酸アンモニウムを更に含む、請求項22〜24に記載の水性樹脂分散体の製造方法。   The method for producing an aqueous resin dispersion according to claim 22, wherein the first emulsion and the second emulsion further contain ammonium persulfate. 前記チオフェン系モノマーが、3,4−エチレンジオキシチオフェンである、請求項22〜25のいずれか一項に記載の水性樹脂分散体の製造方法。   The method for producing an aqueous resin dispersion according to any one of claims 22 to 25, wherein the thiophene monomer is 3,4-ethylenedioxythiophene. 前記チオフェン系モノマー以外のモノマーを重合して得られるポリマーのガラス転移温度が30℃以下である、請求項22〜26のいずれか1項に記載の水性樹脂分散体の製造方法。   The method for producing an aqueous resin dispersion according to any one of claims 22 to 26, wherein a glass transition temperature of a polymer obtained by polymerizing monomers other than the thiophene monomer is 30 ° C or lower. 前記チオフェン系モノマー以外のモノマーが、(メタ)アクリル酸エステルを含む、請求項22〜27のいずれか1項に記載の水性樹脂分散体の製造方法。   The method for producing an aqueous resin dispersion according to any one of claims 22 to 27, wherein the monomer other than the thiophene monomer includes a (meth) acrylic acid ester. 前記(メタ)アクリル酸エステルが、アクリル酸2−エチルヘキシルを含む、請求項28に記載の水性樹脂分散体の製造方法。   The method for producing an aqueous resin dispersion according to claim 28, wherein the (meth) acrylic acid ester contains 2-ethylhexyl acrylate. 前記チオフェン系モノマー以外のモノマーが、(メタ)アクリル酸エステル及び多官能の(メタ)アクリレートを含む、請求項22〜29のいずれか一項に記載の水性樹脂分散体の製造方法。   30. The method for producing an aqueous resin dispersion according to any one of claims 22 to 29, wherein the monomer other than the thiophene monomer includes a (meth) acrylic acid ester and a polyfunctional (meth) acrylate. 前記多官能の(メタ)アクリレートが、トリメチロールプロパントリメタクリレートを含む、請求項30に記載の水性樹脂分散体の製造方法。   The method for producing an aqueous resin dispersion according to claim 30, wherein the polyfunctional (meth) acrylate contains trimethylolpropane trimethacrylate. 前記スルホン酸系乳化剤が、ドデシルベンゼンスルホン酸、ドデシルベンゼンスルホン酸ナトリウム、スチレンスルホン酸、スチレンスルホン酸ナトリウム、トルエンスルホン酸及びトルエンスルホン酸ナトリウムからなる群より選ばれる少なくとも1種を含む、請求項22〜31のいずれか一項に記載の水性樹脂分散体の製造方法。   The sulfonic acid emulsifier includes at least one selected from the group consisting of dodecylbenzenesulfonic acid, sodium dodecylbenzenesulfonate, styrenesulfonic acid, sodium styrenesulfonate, toluenesulfonic acid, and sodium toluenesulfonate. The manufacturing method of the aqueous resin dispersion as described in any one of -31. 前記第1の乳化液を調製する際の温度が20℃〜60℃である、請求項22〜32のいずれか一項に記載の水性樹脂分散体の製造方法。   The manufacturing method of the aqueous resin dispersion as described in any one of Claims 22-32 whose temperature at the time of preparing a said 1st emulsion is 20 to 60 degreeC.
JP2013055212A 2012-03-19 2013-03-18 Method for producing aqueous resin dispersion Active JP5923049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013055212A JP5923049B2 (en) 2012-03-19 2013-03-18 Method for producing aqueous resin dispersion

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012062138 2012-03-19
JP2012062138 2012-03-19
JP2013055212A JP5923049B2 (en) 2012-03-19 2013-03-18 Method for producing aqueous resin dispersion

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2016053969A Division JP6084724B2 (en) 2012-03-19 2016-03-17 Aqueous resin dispersion and conductive film
JP2016053968A Division JP6084723B2 (en) 2012-03-19 2016-03-17 Aqueous resin dispersion and conductive film

Publications (2)

Publication Number Publication Date
JP2013224417A true JP2013224417A (en) 2013-10-31
JP5923049B2 JP5923049B2 (en) 2016-05-24

Family

ID=49594691

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2013055212A Active JP5923049B2 (en) 2012-03-19 2013-03-18 Method for producing aqueous resin dispersion
JP2016053968A Active JP6084723B2 (en) 2012-03-19 2016-03-17 Aqueous resin dispersion and conductive film
JP2016053969A Active JP6084724B2 (en) 2012-03-19 2016-03-17 Aqueous resin dispersion and conductive film

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2016053968A Active JP6084723B2 (en) 2012-03-19 2016-03-17 Aqueous resin dispersion and conductive film
JP2016053969A Active JP6084724B2 (en) 2012-03-19 2016-03-17 Aqueous resin dispersion and conductive film

Country Status (1)

Country Link
JP (3) JP5923049B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307722A (en) * 2003-04-09 2004-11-04 Nippon Shokubai Co Ltd Emulsion-type electrically conductive polymer composition and manufacturing method thereof
JP2011153224A (en) * 2010-01-27 2011-08-11 Nec Tokin Corp Conductive polymer suspension and method for producing the same, conductive polymer material, and solid electrolytic capacitor and method for producing the same
JP2011202008A (en) * 2010-03-25 2011-10-13 Nec Tokin Corp Conductive polymer and manufacturing method thereof, conductive polymer dispersion, solid electrolyte capacitor, and manufacturing method thereof
JP2012241068A (en) * 2011-05-17 2012-12-10 Nec Tokin Corp Conductive polymer suspension and production method thereof, conductive polymer material, and electrolytic condenser and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004307722A (en) * 2003-04-09 2004-11-04 Nippon Shokubai Co Ltd Emulsion-type electrically conductive polymer composition and manufacturing method thereof
JP2011153224A (en) * 2010-01-27 2011-08-11 Nec Tokin Corp Conductive polymer suspension and method for producing the same, conductive polymer material, and solid electrolytic capacitor and method for producing the same
JP2011202008A (en) * 2010-03-25 2011-10-13 Nec Tokin Corp Conductive polymer and manufacturing method thereof, conductive polymer dispersion, solid electrolyte capacitor, and manufacturing method thereof
JP2012241068A (en) * 2011-05-17 2012-12-10 Nec Tokin Corp Conductive polymer suspension and production method thereof, conductive polymer material, and electrolytic condenser and production method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6016004371; CHEN Hsueh-Yung et al: 'Core-shell composite latexes derived from PEDOT:PSS dispersion and the preparation of conductive, fl' J Mater Chem vol.1, No.34, 2013, p5351-5358 *
JPN6016004372; LIU Ying Dan et al: 'Core-Shell Structured Monodisperse Poly(3,4-Ethylenedioxythiophene)/Poly(Styrenesulfonic Acid) Coate' Macromol Rapid Commun Vol.32, No.12, 2011, p881-886 *

Also Published As

Publication number Publication date
JP5923049B2 (en) 2016-05-24
JP2016106169A (en) 2016-06-16
JP6084724B2 (en) 2017-02-22
JP6084723B2 (en) 2017-02-22
JP2016148045A (en) 2016-08-18

Similar Documents

Publication Publication Date Title
JP4245637B2 (en) Organic-inorganic composite coating film, method for producing the same, and aqueous coating composition
CN105873700B (en) Method for preparing silver nanostructures
JP4346665B2 (en) Method for producing structural color film, structural color film-coated substrate and structural color film
CN105367702A (en) Polyacrylate/nano SiO2 hybrid emulsion with high coating film hardness and tolerance and preparation method for polyacrylate/nano SiO2 hybrid emulsion and application of polyacrylate/nano SiO2 hybrid emulsion
JP6215403B2 (en) Organic-inorganic composite particles, dispersion containing the same, and resin composition
JP6349393B2 (en) Stable poly (3,4-ethylenedioxythiophene) composition and anionic stabilizer with limited acidity
WO2015056609A1 (en) Composition for forming transparent conductive film, transparent conductor, and production method for transparent conductor
JP5672022B2 (en) Insulating coated conductive particles, anisotropic conductive material, and connection structure
JP2014009261A (en) Heat insulating composition, method of producing heat insulating composition, and use of heat insulating composition
JP6084724B2 (en) Aqueous resin dispersion and conductive film
WO2009081591A1 (en) Onium salt-containing polymer
JP2013058470A (en) Organic conductive film
JP6426975B2 (en) Coating composition and method for producing optical coating film
Li et al. Hydrophobicity and corrosion resistance of waterborne fluorinated acrylate/silica nanocomposite coatings
WO2016024743A1 (en) Method for forming transparent electrode and transparent electrode laminate
JP6293896B2 (en) Ion transfer material, electrolyte membrane including the same, and method for producing the same
TW202229383A (en) Low refractive thermosetting composition, optical material and display device formed therefrom
Tian et al. High-efficiency enhancement of the surface weatherability and electrical and mechanical properties of a cycloaliphatic epoxy-based hybrid nanocomposite via reaction-induced organic functional groups
JP6530644B2 (en) Composition for forming ITO conductive film and ITO conductive film
TWI823345B (en) Surface-modified hollow silica particle adn surface-modified hollow silica particle liquid dispersion
TW202302653A (en) Hollow particles and the use thereof
JP2022041178A (en) Coated particle and manufacturing method thereof
TW202301382A (en) Dispersion of conductive particles, production method for same, coating liquid for conductive film formation, and conductive film-coated substrate
JP2020142943A (en) Multilayer hollow particle, dispersion liquid containing the same, composite material and resin sheet, and method for producing the same
JP2022134072A (en) Conductive polymer solution, conductive polymer film, and article coated therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160415

R150 Certificate of patent or registration of utility model

Ref document number: 5923049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350