JP2013222789A - Alloyed composite soft magnetic material and manufacturing method thereof - Google Patents

Alloyed composite soft magnetic material and manufacturing method thereof Download PDF

Info

Publication number
JP2013222789A
JP2013222789A JP2012092758A JP2012092758A JP2013222789A JP 2013222789 A JP2013222789 A JP 2013222789A JP 2012092758 A JP2012092758 A JP 2012092758A JP 2012092758 A JP2012092758 A JP 2012092758A JP 2013222789 A JP2013222789 A JP 2013222789A
Authority
JP
Japan
Prior art keywords
soft magnetic
powder
silicone resin
inorganic insulating
magnetic alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012092758A
Other languages
Japanese (ja)
Inventor
Naoki Kobayashi
小林  直樹
Masahisa Miyahara
正久 宮原
Katsuhiko Mori
克彦 森
Hiroaki Ikeda
裕明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Diamet Corp
Original Assignee
Mitsubishi Materials Corp
Diamet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Diamet Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012092758A priority Critical patent/JP2013222789A/en
Publication of JP2013222789A publication Critical patent/JP2013222789A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alloyed composite soft magnetic material having a satisfactory direct current superposition characteristic and high specific resistance, and the manufacturing method thereof.SOLUTION: Coating power obtained by coating soft magnetic apply powder 1 with a silicone resin 2 and inorganic insulation powder 3 are evenly mixed, and the mixture is molded and fired. The inorganic insulation powder are evenly attached to an outer side of the silicone resin coated with the soft magnetic allow powder without being flocculated by evenly mixing the coating powder obtained by coating the soft magnetic alloy power with the silicon resin with the inorganic insulation powder, and since gaps among soft magnetic alloy powder particles are maintained in a constant manner by making the thickness of the molded insulation layer even without segregation, an alloyed composite soft magnetic material having high specific resistance and satisfactory direct current superimposition characteristic is provided.

Description

本発明は、高い比抵抗を保ちつつ良好な直流重畳特性を有する合金系複合軟磁性材料及びその製造方法に関する。   The present invention relates to an alloy-based composite soft magnetic material having good direct current superposition characteristics while maintaining a high specific resistance, and a method for producing the same.

リアクトルなどの鉄心として、古くから積層鋼板コアや、フェライトコア、ダストコアが用いられている。積層鋼板においては、渦電流を防止するために積層する電磁鋼板を極力薄くするする必要があった。しかし、電磁鋼板の薄板化には限界があり、また、薄板化のために製造コストが高くなってしまうという問題があった。また、フェライトコアやダストコアは、飽和磁束密度が小さく、大電流用途ではインダクタンスの低下を生じ、それを回避するために大型化を招く問題点があった。   As iron cores such as reactors, laminated steel cores, ferrite cores, and dust cores have long been used. In laminated steel sheets, it was necessary to make the electromagnetic steel sheets to be laminated as thin as possible in order to prevent eddy currents. However, there is a limit to the reduction of the thickness of the electromagnetic steel sheet, and there is a problem that the manufacturing cost is increased due to the reduction of the thickness. In addition, the ferrite core and the dust core have a low saturation magnetic flux density, which causes a decrease in inductance in a large current application, and there is a problem of increasing the size in order to avoid it.

このような背景から、積層鋼板コアや、フェライトコア、ダストコアに代わる材料として、極少量の絶縁膜を有し、高密度に圧粉成形する手法で製造される複合軟磁性材料が用いられるようになってきている。この複合軟磁性材料は、積層鋼板と比べて渦電流損失が小さく、印加磁場を大きくした際のインダクタンスの低下も小さく、高効率で良好な直流重畳特性を有する。また、フェライトコアやダストコアに比べて大電流で使用できるという利点を有する。   From such a background, composite soft magnetic materials that have a very small amount of insulating film and that are manufactured by compacting with high density are used as an alternative to laminated steel cores, ferrite cores, and dust cores. It has become to. This composite soft magnetic material has a low eddy current loss compared to the laminated steel sheet, a small decrease in inductance when the applied magnetic field is increased, and has a high efficiency and good DC superposition characteristics. Moreover, it has the advantage that it can be used with a large current compared with a ferrite core or a dust core.

この複合軟磁性材料を製造する際には、良好な磁気特性を得るために、いかに絶縁膜を軟磁性粉末粒子間に形成するかが課題となっている。従来は、圧縮性の高い比較的軟質なシリコーン樹脂を少量添加して、軟磁性粉末粒子をシリコーン樹脂で被覆した後に、成形、焼成することで、軟磁性粉末粒子間に絶縁膜が形成された複合軟磁性材料が製造されていた。また、軟磁性粉末と無機絶縁粉末とを混合し、その混合粉末をシリコーン樹脂で被覆し、その後、成形、焼成することで、高周波数及び高磁束密度でも優れた磁気特性を有する複合軟磁性材料を製造することが開示されている(特許文献1)。   When manufacturing this composite soft magnetic material, in order to obtain good magnetic properties, how to form an insulating film between soft magnetic powder particles is a problem. Conventionally, an insulating film was formed between soft magnetic powder particles by adding a small amount of a relatively soft silicone resin with high compressibility and coating the soft magnetic powder particles with a silicone resin, followed by molding and firing. Composite soft magnetic materials have been manufactured. A composite soft magnetic material having excellent magnetic properties even at high frequencies and high magnetic flux density by mixing soft magnetic powder and inorganic insulating powder, coating the mixed powder with silicone resin, and then molding and firing. Is disclosed (Patent Document 1).

しかし、電気自動車やハイブリッド自動車などに搭載されるリアクトルなどのように大電流の昇圧が必要な場合などでは、従来の複合軟磁性材料の直流重畳特性では満足できない場合も多く、さらに直流重畳特性の優れた複合軟磁性材料が要求されている。なお、一般に直流重畳特性を向上させるためには、エアギャップを設けて調整する必要があるが、エアギャップを入れるためには、金型の形状が複雑になり、工程、部品数も増加するため、製造コストが増加してしまうという問題があった。さらに、エアギャップにおける漏れ磁束により損失が増加してしまうという問題もあった。   However, when a large current boost is required, such as a reactor mounted on an electric vehicle or a hybrid vehicle, there are many cases where the DC superposition characteristics of the conventional composite soft magnetic material cannot be satisfied. An excellent composite soft magnetic material is required. In general, in order to improve the direct current superimposition characteristics, it is necessary to adjust by providing an air gap. However, in order to add an air gap, the shape of the mold becomes complicated, and the number of processes and parts increases. There is a problem that the manufacturing cost increases. Further, there is a problem that the loss increases due to the leakage magnetic flux in the air gap.

さらに近年はリアクトルの大きさを小さくするために動作周波数を高くして使用する用途が増加してきており、その結果、従来の鉄粉を基原料とする複合軟磁性材料では鉄粉の保磁力が大きいので高周波でのヒステリシス損失が大きくなりすぎるため、使用が困難になってきている。これに対応するため、センダストやパーマロイなどの軟磁性合金粉末を基原料とした複合軟磁性材料の使用が増加してきている。   Furthermore, in recent years, the use of a high operating frequency to reduce the size of the reactor has increased, and as a result, the coercive force of iron powder is reduced in conventional composite soft magnetic materials based on iron powder. Since it is large, hysteresis loss at high frequencies becomes too large, making it difficult to use. In order to respond to this, the use of composite soft magnetic materials based on soft magnetic alloy powders such as Sendust and Permalloy has been increasing.

しかし、軟磁性合金粉末にシリコーン樹脂を被覆して使用した場合、シリコーン樹脂が硬質のときは、軟磁性粉末粒子間に十分なギャップが形成されるため良好な直流重畳特性が得られるが、成形時にシリコーン樹脂が破損してしまって絶縁が破れて比抵抗が低下して軟磁気特性が悪化し、損失が増大してしまう。一方、軟質のシリコーン樹脂を用いた場合は、高い比抵抗により良好な軟磁気特性が得られるが、成形時に軟磁性粉末粒子間のギャップを均一に保持することが難しく、その結果、直流重畳特性が悪化してしまうという問題があった。   However, when a soft magnetic alloy powder is coated with a silicone resin, when the silicone resin is hard, a sufficient gap is formed between the soft magnetic powder particles, but good DC superposition characteristics can be obtained. Sometimes the silicone resin breaks, the insulation breaks, the specific resistance decreases, the soft magnetic properties deteriorate, and the loss increases. On the other hand, when a soft silicone resin is used, good soft magnetic properties can be obtained due to high specific resistance, but it is difficult to maintain a uniform gap between soft magnetic powder particles during molding. There was a problem that would get worse.

特開2010−245460号公報JP 2010-245460 A

そこで、本発明は、上記の問題を一掃し、エアギャップなしの設計を可能とすることで製造コストを増加させずに得られ、高い比抵抗と良好な直流重畳特性を有し、低鉄損であって高周波での用途に対応できる、合金系複合軟磁性材料及びその製造方法を提供することを目的とする。   Therefore, the present invention eliminates the above problems and enables a design without an air gap without increasing the manufacturing cost, and has a high specific resistance and good DC superposition characteristics, and a low iron loss. An object of the present invention is to provide an alloy-based composite soft magnetic material that can be used for high frequency applications and a method for manufacturing the same.

本発明の請求項1記載の合金系複合軟磁性材料は、軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合し、その混合物を成形、焼成することにより得られたことを特徴とする。   The alloy-based composite soft magnetic material according to claim 1 of the present invention uniformly mixes a coating powder obtained by coating a soft magnetic alloy powder with a silicone resin and an inorganic insulating powder, and molds and fires the mixture. It was obtained by this.

本発明の請求項2記載の合金系複合軟磁性材料は、請求項1において、前記軟磁性合金粉末は平均粒径5〜200μmの合金粉であり、前記無機絶縁粉末の平均粒径は1μm以下であり、前記シリコーン樹脂と前記無機絶縁粉末の総量は前記軟磁性合金粉末に対して0.4〜4.5質量%であることを特徴とする。   The alloy-based composite soft magnetic material according to a second aspect of the present invention is the alloy-based composite soft magnetic material according to the first aspect, wherein the soft magnetic alloy powder is an alloy powder having an average particle size of 5 to 200 μm, and the average particle size of the inorganic insulating powder is 1 μm or less. The total amount of the silicone resin and the inorganic insulating powder is 0.4 to 4.5% by mass with respect to the soft magnetic alloy powder.

本発明の請求項3記載の合金系複合軟磁性材料は、請求項2において、前記シリコーン樹脂と前記無機絶縁粉末の総量のうち、前記シリコーン樹脂の量は前記軟磁性合金粉末に対して0.3〜3質量%、前記無機絶縁粉末の量は前記軟磁性合金粉末に対して0.1〜2質量%であることを特徴とする。   The alloy-based composite soft magnetic material according to claim 3 of the present invention is the alloy-based composite soft magnetic material according to claim 2, wherein the amount of the silicone resin out of the total amount of the silicone resin and the inorganic insulating powder is 0. The amount of the inorganic insulating powder is 3 to 3% by mass, and is 0.1 to 2% by mass with respect to the soft magnetic alloy powder.

本発明の請求項4記載の合金系複合軟磁性材料は、請求項1〜3のいずれか1項において、前記焼成は600℃以上で行われたことを特徴とする。   The alloy-based composite soft magnetic material according to claim 4 of the present invention is characterized in that, in any one of claims 1 to 3, the firing is performed at 600 ° C. or higher.

本発明の請求項5記載の合金系複合軟磁性材料の製造方法は、軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合し、その混合物を成形、焼成することを特徴とする。   The method for producing an alloy-based composite soft magnetic material according to claim 5 of the present invention comprises uniformly mixing a coating powder obtained by coating a soft magnetic alloy powder with a silicone resin and an inorganic insulating powder, and molding the mixture. And firing.

本発明の請求項6記載の複合軟磁性材料の製造方法は、請求項5において、前記軟磁性合金粉末は平均粒径5〜200μmの合金粉であり、前記無機絶縁粉末の平均粒径は1μm以下であり、前記シリコーン樹脂と前記無機絶縁粉末の総量は前記軟磁性合金粉末に対して0.4〜4.5質量%であることを特徴とする。   The method for producing a composite soft magnetic material according to claim 6 of the present invention is the method according to claim 5, wherein the soft magnetic alloy powder is an alloy powder having an average particle diameter of 5 to 200 μm, and the inorganic insulating powder has an average particle diameter of 1 μm. The total amount of the silicone resin and the inorganic insulating powder is 0.4 to 4.5% by mass with respect to the soft magnetic alloy powder.

本発明の請求項7記載の合金系複合軟磁性材料の製造方法は、請求項6において、前記シリコーン樹脂と前記無機絶縁粉末の総量のうち、前記シリコーン樹脂の量は前記軟磁性合金粉末に対して0.3〜3質量%、前記無機絶縁粉末の量は前記軟磁性合金粉末に対して0.1〜2質量%であることを特徴とする。   The method for producing an alloy-based composite soft magnetic material according to claim 7 of the present invention is the method according to claim 6, wherein the amount of the silicone resin out of the total amount of the silicone resin and the inorganic insulating powder is based on the soft magnetic alloy powder. 0.3 to 3 mass%, and the amount of the inorganic insulating powder is 0.1 to 2 mass% with respect to the soft magnetic alloy powder.

本発明の請求項8記載の合金系複合軟磁性材料の製造方法は、請求項5〜7のいずれか1項において、前記焼成は600℃以上で行われたことを特徴とする。   The method for producing an alloy-based composite soft magnetic material according to an eighth aspect of the present invention is characterized in that, in any one of the fifth to seventh aspects, the firing is performed at 600 ° C. or higher.

本発明によれば、軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合することにより、軟磁性合金粉末を被覆したシリコーン樹脂の外側に無機絶縁粉末が凝集することなく均一に付着して、成形後の絶縁層の厚さを偏析することなく均一にすることにより、軟磁性合金粉末粒子間のギャップが一定に保持されるため、高い比抵抗と良好な直流重畳特性を有する合金系複合軟磁性材料が提供される。また、本発明の合金系複合軟磁性材料は高い比抵抗値を有し渦電流損失を抑制できるので、大型のリアクトルにおいても使用可能である。また、良好な直流重畳特性を有するためエアギャップを設ける必要がなく、製造コストが増加することもない。さらに、軟磁性合金粉末と、軟質のシリコーン樹脂を用いた場合においても、無機絶縁粉末を軟磁性合金粉末の粒間に分散させて、成形時に軟磁性合金粉末粒子間のギャップを均一に保持することが可能となり、良好な直流重畳特性を有する複合軟磁性材料が提供される。   According to the present invention, the inorganic insulating powder is coated on the outside of the silicone resin coated with the soft magnetic alloy powder by uniformly mixing the coated powder obtained by coating the soft magnetic alloy powder with the silicone resin and the inorganic insulating powder. By adhering uniformly without agglomeration and making the thickness of the insulating layer after forming uniform without segregation, the gap between the soft magnetic alloy powder particles is kept constant. An alloy composite soft magnetic material having good direct current superposition characteristics is provided. Further, the alloy-based composite soft magnetic material of the present invention has a high specific resistance value and can suppress eddy current loss, so that it can be used in a large reactor. In addition, since it has good direct current superposition characteristics, it is not necessary to provide an air gap, and the manufacturing cost does not increase. Furthermore, even when soft magnetic alloy powder and soft silicone resin are used, the inorganic insulating powder is dispersed between the particles of the soft magnetic alloy powder, and the gap between the soft magnetic alloy powder particles is uniformly maintained during molding. This makes it possible to provide a composite soft magnetic material having good direct current superposition characteristics.

軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末の模式図である。It is a schematic diagram of the coating powder obtained by coating soft magnetic alloy powder with a silicone resin. 成形後の軟磁性合金粉末の間に介在するシリコーン樹脂と無機絶縁粉末を示す模式図である。It is a schematic diagram which shows the silicone resin and inorganic insulation powder which intervene between the soft-magnetic alloy powder after shaping | molding. 直流重畳特性を示すグラフである。It is a graph which shows a direct current | flow superimposition characteristic. 被覆粉末の模式図である。It is a schematic diagram of coating powder. 直流重畳特性を示すグラフである。It is a graph which shows a direct current | flow superimposition characteristic.

本発明の合金系複合軟磁性材料は、軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合し、その混合物を成形、焼成することにより得られたものである。また、本発明の複合軟磁性材料の製造方法は、軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合し、その混合物を成形、焼成するものである。   The alloy-based composite soft magnetic material of the present invention was obtained by uniformly mixing a coating powder obtained by coating a soft magnetic alloy powder with a silicone resin and an inorganic insulating powder, and molding and firing the mixture. Is. The method for producing a composite soft magnetic material according to the present invention comprises uniformly mixing a coating powder obtained by coating a soft magnetic alloy powder with a silicone resin and an inorganic insulating powder, and molding and firing the mixture. is there.

本発明によれば、軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合することにより、図1に示すように、軟磁性合金粉末1を被覆したシリコーン樹脂2の外側に無機絶縁粉末3が付着する。このように、シリコーン樹脂で軟磁性合金粉末を被覆した後に無機絶縁粉末を混合することで、無機絶縁粉末の分散性が良好となる。その結果、図2に示すように、成形後にシリコーン樹脂と無機絶縁粉末が軟磁性合金粉末の間に介在することとなり、軟磁性合金粉末粒子間のギャップが一定に保持されるため、高い比抵抗値と良好な直流重畳特性を有する複合軟磁性材料が得られる。   According to the present invention, the soft magnetic alloy powder 1 is coated as shown in FIG. 1 by uniformly mixing the coating powder obtained by coating the soft magnetic alloy powder with the silicone resin and the inorganic insulating powder. The inorganic insulating powder 3 adheres to the outside of the silicone resin 2. Thus, the dispersibility of the inorganic insulating powder is improved by mixing the inorganic insulating powder after coating the soft magnetic alloy powder with the silicone resin. As a result, as shown in FIG. 2, the silicone resin and the inorganic insulating powder are interposed between the soft magnetic alloy powders after molding, and the gap between the soft magnetic alloy powder particles is kept constant, resulting in a high specific resistance. And a composite soft magnetic material having good DC superposition characteristics.

本発明とは異なる工程で無機絶縁粉末を混合した被覆粉末の模式図を図4に示す。   FIG. 4 shows a schematic diagram of a coating powder in which an inorganic insulating powder is mixed in a process different from the present invention.

図4(a)は本発明による無機絶縁粉末を混合した被覆粉末である。   FIG. 4 (a) is a coating powder in which an inorganic insulating powder according to the present invention is mixed.

これに対し、はじめに軟磁性合金粉末と無機絶縁粉末を混合して無機絶縁粉末が付着した軟磁性合金粉末を得て、これにシリコーン樹脂を混合して被覆した被覆粉末は、図4(b)に示すように軟磁性合金粉末の外側に無機絶縁粉末が付着し、その外側にシリコーン樹脂が被覆されている。   On the other hand, first, a soft magnetic alloy powder and an inorganic insulating powder are mixed to obtain a soft magnetic alloy powder to which the inorganic insulating powder is adhered, and a coating powder obtained by mixing and coating a silicone resin is shown in FIG. As shown in FIG. 2, the inorganic insulating powder adheres to the outside of the soft magnetic alloy powder, and the outside is covered with a silicone resin.

ただし実際には、シリコーン樹脂の混合工程において、軟磁性合金粉末に付着した無機絶縁粉末は軟磁性合金粉末の表面を離れてシリコーン樹脂中に分散してしまい、分散した無機絶縁粉末はシリコーン樹脂の乾燥工程で凝集するため、図4(b)のように均一に被覆されることはない。この凝集により無機絶縁粉末およびシリコーン樹脂が軟磁性合金粉末表面に十分行き渡らず、被覆膜厚が不均一になり、部分的に薄くなって比抵抗が低下したり、軟磁性合金粉末粒子間のギャップを十分保てずに直流重畳特性が悪化することになる。   However, in practice, in the mixing step of the silicone resin, the inorganic insulating powder adhered to the soft magnetic alloy powder leaves the surface of the soft magnetic alloy powder and is dispersed in the silicone resin. Since it aggregates in the drying process, it is not uniformly coated as shown in FIG. As a result of this aggregation, the inorganic insulating powder and the silicone resin do not reach the surface of the soft magnetic alloy powder sufficiently, the coating film thickness becomes non-uniform, the thickness becomes partially thin and the specific resistance decreases, or between the soft magnetic alloy powder particles The DC superposition characteristic is deteriorated without sufficiently maintaining the gap.

また、はじめに無機絶縁粉末とシリコーン樹脂とを混合して無機絶縁粉末が分散したシリコーン樹脂を得て、これと軟磁性合金粉末を混合して被覆した被覆粉末は、図4(c)に示すように軟磁性合金粉末の外側にシリコーン樹脂と無機絶縁粉末の混合物が被覆されている。   Moreover, the inorganic insulating powder and the silicone resin are first mixed to obtain a silicone resin in which the inorganic insulating powder is dispersed, and the coated powder obtained by mixing this with the soft magnetic alloy powder is shown in FIG. Further, a mixture of silicone resin and inorganic insulating powder is coated on the outside of the soft magnetic alloy powder.

ただし実際には、シリコーン樹脂中に分散した無機絶縁粉末はシリコーン樹脂の乾燥工程で凝集するため、図4(c)のように均一に被覆されることはない。この凝集により無機絶縁粉末およびシリコーン樹脂が軟磁性合金粉末表面に十分行き渡らず、被覆膜厚が不均一になり、部分的に薄くなって比抵抗が低下したり、軟磁性合金粉末粒子間のギャップを十分保てずに直流重畳特性が悪化することになる。   However, in practice, the inorganic insulating powder dispersed in the silicone resin is agglomerated in the drying step of the silicone resin, so that it is not uniformly coated as shown in FIG. As a result of this aggregation, the inorganic insulating powder and the silicone resin do not reach the surface of the soft magnetic alloy powder sufficiently, the coating film thickness becomes non-uniform, the thickness becomes partially thin and the specific resistance decreases, or between the soft magnetic alloy powder particles The DC superposition characteristic is deteriorated without sufficiently maintaining the gap.

一方、図4(a)の本発明によれば、軟磁性合金粉末粒子がシリコーン樹脂により均一に被覆された後に無機絶縁粉末を混合して被覆粉末の表面に付着させるため、無機絶縁粉末粒子の凝集が起こらず、被覆膜厚が均一になって高い比抵抗を保つことができ、また軟磁性合金粉末粒子間のギャップを均一に保つことができるため良好な直流重畳特性を得ることができる。   On the other hand, according to the present invention shown in FIG. 4 (a), since the soft magnetic alloy powder particles are uniformly coated with the silicone resin, the inorganic insulating powder is mixed and adhered to the surface of the coated powder. Aggregation does not occur, the coating thickness becomes uniform, and a high specific resistance can be maintained, and a gap between soft magnetic alloy powder particles can be kept uniform, so that a good DC superposition characteristic can be obtained. .

また、本発明の合金系複合軟磁性材料は高い比抵抗値を有し渦電流損失を抑制できるので、大型のリアクトルにおいても使用可能である。また、良好な直流重畳特性を有するためエアギャップを設ける必要がなく、製造コストが増加することもない。本発明の複合軟磁性材料は、リアクトルのほか、トランス、チョークコア、ノイズフィルター、スイッチング電源、DC/DCコンバータ、磁気センサコア、アクチュエータ、モータコアなどの分野で利用可能である。   Further, the alloy-based composite soft magnetic material of the present invention has a high specific resistance value and can suppress eddy current loss, so that it can be used in a large reactor. In addition, since it has good direct current superposition characteristics, it is not necessary to provide an air gap, and the manufacturing cost does not increase. The composite soft magnetic material of the present invention can be used in fields such as transformers, choke cores, noise filters, switching power supplies, DC / DC converters, magnetic sensor cores, actuators, and motor cores in addition to reactors.

ここで、本発明に用いられる軟磁性合金粉末は、平均粒径5〜200μmの合金粉であることが好ましい。軟磁性合金粉末として、平均粒径5〜200μmの合金粉を用いることで、通常の製造設備において合金系複合軟磁性材料を製造することができるとともに、良好な直流重畳特性を有する合金系複合軟磁性材料を得ることが可能となる。   Here, the soft magnetic alloy powder used in the present invention is preferably an alloy powder having an average particle size of 5 to 200 μm. By using an alloy powder having an average particle diameter of 5 to 200 μm as the soft magnetic alloy powder, an alloy composite soft magnetic material can be manufactured in a normal manufacturing facility, and an alloy composite soft soft having good direct current superposition characteristics can be obtained. A magnetic material can be obtained.

本発明に用いられる無機絶縁粉末の平均粒径は、1μm以下であることが好ましい。1μmを超えると軟磁性合金粉末粒子間のギャップが大きくなってインダクタンスが低くなりすぎるため好ましくない。   The average particle size of the inorganic insulating powder used in the present invention is preferably 1 μm or less. If it exceeds 1 μm, the gap between the soft magnetic alloy powder particles becomes large and the inductance becomes too low.

また、シリコーン樹脂と無機絶縁粉末の総量は、軟磁性合金粉末に対して0.4〜4.5質量%であることが好ましい。0.4質量%未満であると、高電流域での直流重畳特性が悪化するので好ましくない。一方、4.5質量%を超えると、圧縮性の悪化により得られる合金系複合軟磁性材料の密度が低下し、その結果、高い磁束密度が得られなくなるため好ましくない。   The total amount of the silicone resin and the inorganic insulating powder is preferably 0.4 to 4.5% by mass with respect to the soft magnetic alloy powder. If it is less than 0.4% by mass, the direct current superimposition characteristics in the high current region deteriorate, which is not preferable. On the other hand, if it exceeds 4.5% by mass, the density of the alloy-based composite soft magnetic material obtained by deterioration of compressibility is lowered, and as a result, a high magnetic flux density cannot be obtained, which is not preferable.

シリコーン樹脂と無機絶縁粉末の総量のうちのシリコーン樹脂の量は、軟磁性合金粉末に対して0.3〜3質量%であることが好ましい。0.3質量%未満であると、膜厚が薄くなり絶縁を保てなくなり、比抵抗が低下するため好ましくない。一方、3質量%を超えると、圧縮性の悪化により得られる合金系複合軟磁性材料の密度が低下し、高い磁束密度が得られなくなるため好ましくない。   The amount of the silicone resin in the total amount of the silicone resin and the inorganic insulating powder is preferably 0.3 to 3% by mass with respect to the soft magnetic alloy powder. If it is less than 0.3% by mass, the film thickness becomes thin, insulation cannot be maintained, and the specific resistance decreases, which is not preferable. On the other hand, if it exceeds 3% by mass, the density of the alloy-based composite soft magnetic material obtained by deterioration of compressibility is lowered, and a high magnetic flux density cannot be obtained.

また、総量のうちの無機絶縁粉末の量は、軟磁性合金粉末に対して0.1〜2質量%であることが好ましい。0.1質量%未満であると、無機絶縁粉末が軟磁性合金粉末の表面全体に行き渡らず、軟磁性合金粉末粒子間のギャップを保てなくなり、直流重畳特性が悪化するため好ましくない。一方、2質量%を超えると、圧縮性の悪化により得られる合金系複合軟磁性材料の密度が低下し、高い磁束密度が得られなくなるだけでなく、軟磁性合金粉末粒子間に存在する多量の微細な無機絶縁粉末により成形性が低下し、成形体強度が低下するため好ましくない。   The amount of the inorganic insulating powder in the total amount is preferably 0.1 to 2% by mass with respect to the soft magnetic alloy powder. If it is less than 0.1% by mass, the inorganic insulating powder does not spread over the entire surface of the soft magnetic alloy powder, and the gap between the soft magnetic alloy powder particles cannot be maintained, and the direct current superposition characteristics are deteriorated. On the other hand, if it exceeds 2% by mass, the density of the alloy-based composite soft magnetic material obtained due to the deterioration of compressibility is reduced, and not only a high magnetic flux density cannot be obtained, but also a large amount existing between soft magnetic alloy powder particles. The fine inorganic insulating powder is not preferable because the moldability is lowered and the strength of the molded body is lowered.

また、焼成は、600℃以上で行うのが好ましい。焼成温度を600℃以上とすることで、成形後の歪を大きく除去することができる。   Moreover, it is preferable to perform baking at 600 degreeC or more. By setting the firing temperature to 600 ° C. or higher, distortion after molding can be largely removed.

また、シリコーン樹脂としては、例えば、メチル系シリコーン樹脂、メチルフェニル系シリコーン樹脂を用いることができる。無機絶縁粉末としては、例えば、二酸化ケイ素(シリカ、SiO)、酸化アルミニウム(アルミナ、Al)、酸化マグネシウム(マグネシア、MgO)を用いることができる。 Moreover, as a silicone resin, a methyl silicone resin and a methylphenyl silicone resin can be used, for example. As the inorganic insulating powder, for example, silicon dioxide (silica, SiO 2 ), aluminum oxide (alumina, Al 2 O 3 ), magnesium oxide (magnesia, MgO) can be used.

以下、本発明の合金系複合軟磁性材料及びその製造方法の具体的な実施例について説明する。なお、本発明は、以下の実施例に限定されるものではなく、種々の変形実施が可能である。   Hereinafter, specific examples of the alloy-based composite soft magnetic material and the manufacturing method thereof according to the present invention will be described. In addition, this invention is not limited to a following example, A various deformation | transformation implementation is possible.

軟磁性合金粉末として、平均粒径が約80μmのセンダストガスアトマイズ粉末(Fe−9.6%Si−5.4%Al(質量%))を用いた。シリコーン樹脂として、メチルフェニル系(信越化学社製 KRレジン)を用いた。また、無機絶縁粉末として、比表面積が170〜180m/g、平均粒径が約12nmの疎水性のシリカ粉末(日本アエロジル社製 R974)を用いた。 As a soft magnetic alloy powder, Sendust gas atomized powder (Fe-9.6% Si-5.4% Al (mass%)) having an average particle diameter of about 80 μm was used. As the silicone resin, methylphenyl type (KR resin manufactured by Shin-Etsu Chemical Co., Ltd.) was used. As the inorganic insulating powder, a hydrophobic silica powder (R974 manufactured by Nippon Aerosil Co., Ltd.) having a specific surface area of 170 to 180 m 2 / g and an average particle diameter of about 12 nm was used.

はじめに、軟磁性合金粉末と、軟磁性合金粉末に対して2.0質量%(ただし、溶媒を除いた溶質の量とする)のシリコーン樹脂とを均一に混合して、攪拌しながら50℃で0.5時間の乾燥を行って、軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を得た。   First, soft magnetic alloy powder and 2.0% by mass (however, the amount of solute excluding the solvent) of the soft magnetic alloy powder are uniformly mixed and stirred at 50 ° C. Drying was performed for 0.5 hour to obtain a coated powder in which the soft magnetic alloy powder was coated with a silicone resin.

つぎに、この被覆粉末と、軟磁性合金粉末に対して1.0質量%の無機絶縁粉末とを均一に混合した。このときの粉末は、図1に示すように、軟磁性合金粉末1を被覆したシリコーン樹脂2の外側に無機絶縁粉末3が付着している。さらに軟磁性合金粉末に対して0.8質量%の粉末冶金用ワックス系潤滑剤を添加して、その混合物を成形圧12t/cmで成形後、800℃の窒素雰囲気中で30分間の焼成を行った(実施例A)。或いは、この被覆粉末と、軟磁性合金粉末に対して0.5質量%の無機絶縁粉末とを均一に混合し、さらに軟磁性合金粉末に対して0.8質量%の粉末冶金用ワックス系潤滑剤を添加して、その混合物を成形圧12t/cmで成形後、800℃の窒素雰囲気中で30分間の焼成を行った(実施例B)。また、比較例として、無機絶縁粉末を混合しないほかは上記と同様にして焼成を行った(比較例a)。 Next, this coating powder was uniformly mixed with 1.0% by mass of an inorganic insulating powder with respect to the soft magnetic alloy powder. As shown in FIG. 1, the inorganic insulating powder 3 adheres to the outside of the silicone resin 2 coated with the soft magnetic alloy powder 1. Further, 0.8% by mass of a wax-based lubricant for powder metallurgy is added to the soft magnetic alloy powder, and the mixture is molded at a molding pressure of 12 t / cm 2 and then fired in a nitrogen atmosphere at 800 ° C. for 30 minutes. (Example A). Alternatively, this coating powder is mixed uniformly with 0.5% by mass of inorganic insulating powder with respect to the soft magnetic alloy powder, and further 0.8% by mass with respect to the soft magnetic alloy powder. After the agent was added and the mixture was molded at a molding pressure of 12 t / cm 2 , firing was performed in a nitrogen atmosphere at 800 ° C. for 30 minutes (Example B). Further, as a comparative example, firing was performed in the same manner as above except that the inorganic insulating powder was not mixed (Comparative Example a).

以上の操作により、それぞれφ35×φ25×5mmのトロイダル形状の試料を作製し、巻線(巻線数N=50ターン)を施し、LCRメーター(アジレント社製 4248A)を使用して0〜20kA/mの直流磁界中にて交流10kHzのインダクタンスを測定することにより、直流重畳特性を評価した。その結果を図3に示す。実施例A、Bともに、広い磁界範囲においても比較例aよりもインダクタンスの低下率が低く、良好な直流重畳特性を有することが確認された。   By the above operations, toroidal samples of φ35 × φ25 × 5 mm were prepared, wound (number of windings N = 50 turns), and 0-20 kA / using an LCR meter (Agilent 4248A). The DC superposition characteristics were evaluated by measuring the inductance of AC 10 kHz in a DC magnetic field of m. The result is shown in FIG. In both Examples A and B, the rate of decrease in inductance was lower than that in Comparative Example a even in a wide magnetic field range, and it was confirmed that the examples had good DC superposition characteristics.

また、巻線(1次巻線数N1=50、2次巻線数N2=50)を施して、100mT、50kHzにおける鉄損(Pc)を測定したところ、34.7W/kgであった。また、同様の条件において、ヒステリス損失(Ph)は13.6W/kg、渦電流損失(Pe)は20.2W/kgであった。   Further, when the winding (primary winding number N1 = 50, secondary winding number N2 = 50) was applied and the iron loss (Pc) at 100 mT and 50 kHz was measured, it was 34.7 W / kg. Under the same conditions, the hysteresis loss (Ph) was 13.6 W / kg, and the eddy current loss (Pe) was 20.2 W / kg.

無機絶縁粉末を混合するタイミングが、直流重畳特性に及ぼす影響について検討した。原料は実施例1と同様のものを用い、条件は明記しない限り実施例1と同様とした。   The influence of the timing of mixing the inorganic insulating powder on the DC superposition characteristics was investigated. The raw materials were the same as in Example 1 and the same as in Example 1 unless conditions were specified.

(1)実施例A
この実施例Aは実施例1の実施例Aと同じものである。はじめに、軟磁性合金粉末と、軟磁性合金粉末に対して2.0質量%のシリコーン樹脂とを均一に混合して、攪拌しながら乾燥を行って、軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を得た。
(1) Example A
This Example A is the same as Example A of Example 1. First, a soft magnetic alloy powder and a 2.0% by mass silicone resin based on the soft magnetic alloy powder are uniformly mixed, dried while stirring, and the soft magnetic alloy powder is coated with the silicone resin. A powder was obtained.

つぎに、この被覆粉末と、軟磁性合金粉末に対して1.0質量%の無機絶縁粉末とを均一に混合した。このときの粉末は、図4(a)に示すように、軟磁性合金粉末を被覆したシリコーン樹脂の外側に無機絶縁粉末が付着している。   Next, this coating powder was uniformly mixed with 1.0% by mass of an inorganic insulating powder with respect to the soft magnetic alloy powder. At this time, as shown in FIG. 4A, the inorganic insulating powder adheres to the outside of the silicone resin coated with the soft magnetic alloy powder.

さらに、軟磁性合金粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12t/cmで成形後、800℃の窒素雰囲気中で30分間の焼成を行った。 Further, 0.8% by mass of a lubricant was added to the soft magnetic alloy powder, and the mixture was molded at a molding pressure of 12 t / cm 2 and then fired in a nitrogen atmosphere at 800 ° C. for 30 minutes.

以上の操作により、それぞれφ35×φ25×5mmのトロイダル形状の試料を作製し、巻線(巻線数N=50ターン)を施し、LCRメーターを使用してインダンクタンスを測定することにより、直流重畳特性を測定した。   By the above operation, a toroidal sample of φ35 × φ25 × 5 mm is prepared, wound (number of windings N = 50 turns), and the inductance is measured using an LCR meter. The superposition characteristics were measured.

(2)比較例b
はじめに、軟磁性合金粉末と、軟磁性合金粉末に対して1.0質量%の無機絶縁粉末とを均一に混合し、無機絶縁粉末が付着した軟磁性合金粉末を得た。
(2) Comparative example b
First, a soft magnetic alloy powder and 1.0% by mass of an inorganic insulating powder with respect to the soft magnetic alloy powder were uniformly mixed to obtain a soft magnetic alloy powder to which the inorganic insulating powder was adhered.

つぎに、無機絶縁粉末が付着した軟磁性合金粉末と、軟磁性合金粉末に対して2.0質量%のシリコーン樹脂とを均一に混合して、攪拌しながら乾燥を行って、無機絶縁粉末が付着した軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を得た。このときの粉末は、図4(b)に示すように、軟磁性合金粉末の外側に無機絶縁粉末が付着し、その外側にシリコーン樹脂が被覆されている。   Next, the soft magnetic alloy powder to which the inorganic insulating powder is adhered and 2.0% by mass of the silicone resin with respect to the soft magnetic alloy powder are uniformly mixed, followed by drying with stirring. A coated powder obtained by coating the adhered soft magnetic alloy powder with a silicone resin was obtained. As shown in FIG. 4B, the powder at this time has an inorganic insulating powder attached to the outside of the soft magnetic alloy powder, and the outside is covered with a silicone resin.

さらに、軟磁性合金粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12t/cmで成形後、800℃の窒素雰囲気中で30分間の焼成を行った。 Further, 0.8% by mass of a lubricant was added to the soft magnetic alloy powder, and the mixture was molded at a molding pressure of 12 t / cm 2 and then fired in a nitrogen atmosphere at 800 ° C. for 30 minutes.

以上の操作により、それぞれφ35×φ25×5mmのトロイダル形状の試料を作製し、巻線(巻線数N=50ターン)を施し、LCRメーターを使用してインダンクタンスを測定することにより、直流重畳特性を測定した。   By the above operation, a toroidal sample of φ35 × φ25 × 5 mm is prepared, wound (number of windings N = 50 turns), and the inductance is measured using an LCR meter. The superposition characteristics were measured.

(3)比較例c
軟磁性合金粉末と、軟磁性合金粉末に対して2.0質量%のシリコーン樹脂と、軟磁性合金粉末に対して1.0質量%の無機絶縁粉末とを均一に混合して、攪拌しながら乾燥を行って、軟磁性合金粉末をシリコーン樹脂と無機絶縁粉末の混合物で被覆した被覆粉末を得た。このときの粉末は、図4(c)に示すように、軟磁性合金粉末の外側にシリコーン樹脂と無機絶縁粉末の混合物が被覆されている。
(3) Comparative example c
While uniformly mixing a soft magnetic alloy powder, 2.0 mass% silicone resin with respect to the soft magnetic alloy powder, and 1.0 mass% inorganic insulating powder with respect to the soft magnetic alloy powder, while stirring Drying was performed to obtain a coating powder in which the soft magnetic alloy powder was coated with a mixture of a silicone resin and an inorganic insulating powder. As shown in FIG. 4C, the powder at this time has a mixture of silicone resin and inorganic insulating powder coated on the outside of the soft magnetic alloy powder.

そして、軟磁性合金粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12t/cmで成形後、800℃の窒素雰囲気中で30分間の焼成を行った。 Then, 0.8% by mass of a lubricant was added to the soft magnetic alloy powder, and the mixture was molded at a molding pressure of 12 t / cm 2 and then fired in a nitrogen atmosphere at 800 ° C. for 30 minutes.

以上の操作により、それぞれφ35×φ25×5mmのトロイダル形状の試料を作製し、巻線(巻線数N=50ターン)を施し、LCRメーターを使用してインダクタンスを測定することにより、直流重畳特性を測定した。   By the above operation, φ35 × φ25 × 5mm toroidal samples are prepared, windings (number of windings N = 50 turns) are applied, and inductance is measured using an LCR meter. Was measured.

(4)結果
結果を図5に示す。実施例Aは、広い磁界範囲において比較例b、cよりもインダクタンスの低下率が低く、良好な直流重畳特性を有することが確認された。密度については、実施例A、比較例b、cの間に顕著な差は見られなかった。比抵抗については、比較例b、cと比べて実施例Aにおいて顕著に高い値となり、最大比透磁率については、比較例b、cと比べて実施例Aにおいて顕著に低い値となった。また、実施例Aにおいては、成形圧により比抵抗と最大比透磁率が変化することはなかった。
(4) Results The results are shown in FIG. In Example A, it was confirmed that the rate of decrease in inductance was lower than that of Comparative Examples b and c in a wide magnetic field range, and had good DC superposition characteristics. Regarding the density, no significant difference was found between Example A and Comparative Examples b and c. The specific resistance was significantly higher in Example A than in Comparative Examples b and c, and the maximum relative permeability was significantly lower in Example A than in Comparative Examples b and c. In Example A, the specific resistance and the maximum relative permeability did not change with the molding pressure.

以上より、軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合し、その混合物を成形、焼成することにより、成形圧に関わらず特性の優れた複合軟磁性材料が得られることが確認された。   As described above, a composite powder excellent in properties regardless of molding pressure can be obtained by uniformly mixing a coating powder obtained by coating a soft magnetic alloy powder with a silicone resin and an inorganic insulating powder, and molding and firing the mixture. It was confirmed that a soft magnetic material was obtained.

種々の軟磁性合金粉末材料、シリコーン樹脂(シリコーンレジン)、無機絶縁粉末を用い、これらの配合量、無機絶縁粉末を添加するタイミング、焼成温度を変化させて、複合軟磁性材料を作製し、性能を評価した。その結果を表に示す。なお、複合軟磁性材料の作製は、下記の表に示す条件のほかは、上記実施例1と同様の条件のもとで行った。特性値は、それぞれφ35×φ25×5mmのトロイダル形状の試料を作製し、巻線(巻線数N=50ターン)を施し、LCRメーターを使用して高磁界域(10kA/m)でのインダクタンスL、並びに、直流重畳特性として0〜5.3kA/mにかけてのインダクタンスLの低下率を測定した。また、それぞれ60×10×5mmのバー形状の試料を作製し、4端子法で比抵抗値を測定した。   Using various soft magnetic alloy powder materials, silicone resin (silicone resin), inorganic insulating powder, changing the blending amount, timing of adding inorganic insulating powder, and firing temperature, producing composite soft magnetic material, and performance Evaluated. The results are shown in the table. The composite soft magnetic material was produced under the same conditions as in Example 1 except for the conditions shown in the following table. The characteristic values are toroidal samples of φ35 × φ25 × 5 mm, respectively, wound (number of windings N = 50 turns), and inductance in a high magnetic field (10 kA / m) using an LCR meter. L and the reduction rate of the inductance L from 0 to 5.3 kA / m were measured as DC superposition characteristics. Moreover, each 60 * 10 * 5 mm bar-shaped sample was produced, and the specific resistance value was measured by the 4-terminal method.

軟磁性粉末としては、粒径の異なるセンダスト粉末を用いた。シリコーン樹脂としては、メチルフェニル系の軟質(硬さ3.9MHv)のもの(表中A)、メチル系の軟質(硬さ5.0MHv)のもの(表中B)、メチル系アルキルの硬質(硬さ8.9MHv)のもの(表中C)を用いた。無機絶縁粉末としては、二酸化ケイ素(SiO)、酸化アルミニウム(Al)、酸化マグネシウム(MgO)を用いた。 As the soft magnetic powder, Sendust powder having different particle diameters was used. Silicone resins include methylphenyl soft (hardness 3.9 MHv) (A in the table), methyl soft (hardness 5.0 MHv) (B in the table), methyl alkyl hard ( The one having a hardness of 8.9 MHv (C in the table) was used. As the inorganic insulating powder, silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and magnesium oxide (MgO) were used.

軟磁性合金粉末の平均粒径が5〜200μmであって、無機絶縁粉末の平均粒径が1μm以下であって、シリコーン樹脂と無機絶縁粉末の総量(添加総量)が軟磁性合金粉末に対して0.4〜4.5質量%であって、シリコーン樹脂の量が軟磁性合金粉末に対して0.3〜3質量%、無機絶縁粉末の量が軟磁性合金粉末に対して0.1〜2質量%であって、無機絶縁粉末の添加が軟磁性合金粉末をシリコーン樹脂で被覆した後であって、かつ、焼成が600℃以上で行われたときに(実施例A〜Q)、良好な特性値が得られた。   The average particle size of the soft magnetic alloy powder is 5 to 200 μm, the average particle size of the inorganic insulating powder is 1 μm or less, and the total amount (addition total amount) of the silicone resin and the inorganic insulating powder is relative to the soft magnetic alloy powder. 0.4 to 4.5 mass%, the amount of silicone resin is 0.3 to 3 mass% with respect to the soft magnetic alloy powder, and the amount of inorganic insulating powder is 0.1 to 0.1 with respect to the soft magnetic alloy powder. 2% by mass, after addition of the inorganic insulating powder, after the soft magnetic alloy powder was coated with the silicone resin, and when firing was performed at 600 ° C. or higher (Examples A to Q), good A characteristic value was obtained.

なお、比抵抗については、磁路断面1辺50mmのリアクトルで(粒間の渦損)/(全体の渦損)を5%と定めた場合に2Ωmの比抵抗値が必要となるため、2Ωm以上の場合に良好と判定した。インダクタンス(L)については、高磁界域(10kA/m)での値が市販ダストコア(比較例q,センダスト製)と同等かそれ以上となった場合に良好と判定した。また、インダクタンス低下率(L低下率)については、φ35×φ25×5mmのトロイダル形状の試料に巻線(巻線数N=50ターン)を施して10Aの電流を流して磁界を印加したとき(磁界5.3kA/m)、印加前に比べてインダクタンス低下率が40%以下の場合に良好と判断した。インダクタンス低下率が40%を超えるとギャップ加工又は部品増加が必要な設計となるので好ましくない。   As for the specific resistance, a specific resistance value of 2 Ωm is required when a reactor having a magnetic path cross section of 1 side of 50 mm and (vortex loss between grains) / (total vortex loss) is set to 5%. In the above cases, it was determined to be good. The inductance (L) was determined to be good when the value in the high magnetic field region (10 kA / m) was equal to or greater than that of a commercially available dust core (Comparative Example q, manufactured by Sendust). As for the inductance reduction rate (L reduction rate), when a magnetic field is applied by applying a winding (number of windings N = 50 turns) to a toroidal sample of φ35 × φ25 × 5 mm and flowing a current of 10 A ( The magnetic field was 5.3 kA / m), and when the inductance reduction rate was 40% or less compared to before application, it was judged to be good. If the inductance reduction rate exceeds 40%, it is not preferable because a gap machining or an increase in parts is required.

異なる軟磁性合金に本発明を適用した効果を調べるため、センダストに加えて、スーパーセンダスト(Fe−6%Si−4%Al−3.2%Ni)、パーマロイ(Fe−47%Ni)、Fe−6.5%Si、Fe−3%Si(いずれも百分率は質量%)の軟磁性合金粉末を用意した。軟磁性合金粉末以外の原料は、実施例1と同様のものを用い、条件は明記しない限り実施例1と同様とした。   In order to investigate the effect of applying the present invention to different soft magnetic alloys, in addition to Sendust, Super Sendust (Fe-6% Si-4% Al-3.2% Ni), Permalloy (Fe-47% Ni), Fe Soft magnetic alloy powders of -6.5% Si and Fe-3% Si (both percentages are mass%) were prepared. The raw materials other than the soft magnetic alloy powder were the same as in Example 1 and were the same as in Example 1 unless otherwise specified.

軟磁性合金粉末がセンダストおよびパーマロイについては、シリコーン樹脂と無機絶縁粉末の総量を3質量%とし、本発明の実施例として、軟磁性合金粉末と、軟磁性合金粉末に対して2.0質量%のシリコーン樹脂とを均一に混合して、撹拌しながら乾燥を行って、軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を作製し、つぎにこの被覆粉末と、軟磁性合金粉末に対して1.0質量%の無機絶縁粉末とを均一に混合し、さらに軟磁性合金粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12ton/cmで成形後、800℃の窒素雰囲気中で30分間焼成することにより、本発明の実施例A(センダスト)、実施例S(パーマロイ)を得た。 When the soft magnetic alloy powder is Sendust and Permalloy, the total amount of the silicone resin and the inorganic insulating powder is 3% by mass. As an example of the present invention, the soft magnetic alloy powder and the soft magnetic alloy powder are 2.0% by mass. The silicone resin was uniformly mixed and dried with stirring to produce a coated powder obtained by coating the soft magnetic alloy powder with the silicone resin. 0.0% by mass of the inorganic insulating powder was uniformly mixed, and 0.8% by mass of a lubricant was added to the soft magnetic alloy powder. The mixture was molded at a molding pressure of 12 ton / cm 2 , and then 800 Example A (Sendust) and Example S (Permalloy) of the present invention were obtained by baking in a nitrogen atmosphere at 0 ° C. for 30 minutes.

また、比較例として、軟磁性合金粉末と、軟磁性合金粉末に対して1.0質量%の無機絶縁粉末とを均一に混合して無機絶縁粉末が付着した混合粉末を作製し、次にこの混合粉末と、軟磁性合金粉末にたいして2.0質量%のシリコーン樹脂とを均一に混合し、撹拌しながら乾燥を行って、無機絶縁粉末が付着した軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を作製し、この被覆粉末に軟磁性粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12ton/cmで成形後、800℃の窒素雰囲気中で30分間焼成することにより、比較例b(センダスト)、比較例s(パーマロイ)を得た。 Further, as a comparative example, a soft magnetic alloy powder and 1.0% by mass of an inorganic insulating powder with respect to the soft magnetic alloy powder are uniformly mixed to prepare a mixed powder having the inorganic insulating powder adhered thereto. The mixed powder and 2.0% by mass of the silicone resin are uniformly mixed with the soft magnetic alloy powder, dried with stirring, and coated with the soft magnetic alloy powder to which the inorganic insulating powder is adhered. A 0.8% by mass lubricant is added to the coated powder with respect to the soft magnetic powder, and the mixture is molded at a molding pressure of 12 ton / cm 2 and then baked in a nitrogen atmosphere at 800 ° C. for 30 minutes. Thus, Comparative Example b (Sendust) and Comparative Example s (Permalloy) were obtained.

また、別の比較例として、軟磁性合金粉末と、軟磁性合金粉末に対して3.0質量%のシリコーン樹脂を均一に混合して、撹拌しながら乾燥を行って、軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を作製し、この被覆粉末に軟磁性粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12ton/cmで成形後、800℃の窒素雰囲気中で30分間焼成することにより、比較例i(センダスト)、比較例t(パーマロイ)を得た。 As another comparative example, the soft magnetic alloy powder and 3.0% by mass of the silicone resin are uniformly mixed with the soft magnetic alloy powder, followed by drying with stirring. to prepare a coating powder coated with a resin, the coated powder was added to 0.8 wt% lubricant against soft magnetic powder, after molding the mixture at a molding pressure of 12ton / cm 2, 800 ℃ nitrogen By firing in an atmosphere for 30 minutes, Comparative Example i (Sendust) and Comparative Example t (Permalloy) were obtained.

軟磁性合金粉末がスーパーセンダスト、Fe−6.5%SiおよびFe−3%Siについては、シリコーン樹脂と無機絶縁粉末の総量を1質量%とし、本発明の実施例として、軟磁性合金粉末と、軟磁性合金粉末に対して0.7質量%のシリコーン樹脂とを均一に混合して、撹拌しながら乾燥を行って、軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を作製し、つぎにこの被覆粉末と、軟磁性合金粉末に対して0.3質量%の無機絶縁粉末とを均一に混合し、さらに軟磁性合金粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12ton/cmで成形後、800℃の窒素雰囲気中で30分間焼成することにより、本発明の実施例R(スーパーセンダスト)、実施例T(Fe−6.5%Si)、実施例U(Fe−3%Si)を得た。 When the soft magnetic alloy powder is Super Sendust, Fe-6.5% Si and Fe-3% Si, the total amount of the silicone resin and the inorganic insulating powder is 1% by mass. Then, 0.7% by mass of the silicone resin is uniformly mixed with the soft magnetic alloy powder, followed by drying with stirring to produce a coated powder in which the soft magnetic alloy powder is coated with the silicone resin. This coating powder is uniformly mixed with 0.3% by mass of an inorganic insulating powder with respect to the soft magnetic alloy powder, and further, 0.8% by mass of a lubricant is added to the soft magnetic alloy powder. The mixture was molded at a molding pressure of 12 ton / cm 2 and then calcined in a nitrogen atmosphere at 800 ° C. for 30 minutes, so that Example R (super sendust), Example T (Fe-6.5% Si) of the present invention, Example U (Fe-3 % Si).

また、比較例として、軟磁性合金粉末と、軟磁性合金粉末に対して0.3質量%の無機絶縁粉末とを均一に混合して無機絶縁粉末が付着した混合粉末を作製し、次にこの混合粉末と、軟磁性合金粉末にたいして0.7質量%のシリコーン樹脂とを均一に混合し、撹拌しながら乾燥を行って、無機絶縁粉末が付着した軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を作製し、この被覆粉末に軟磁性粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12ton/cmで成形後、800℃の窒素雰囲気中で30分間焼成することにより、比較例q(スーパーセンダスト)、比較例u(Fe−6.5%Si)、比較例w(Fe−3%Si)を得た。 Further, as a comparative example, a soft magnetic alloy powder and 0.3% by mass of an inorganic insulating powder with respect to the soft magnetic alloy powder are uniformly mixed to prepare a mixed powder having the inorganic insulating powder adhered thereto. A mixed powder in which 0.7% by mass of a silicone resin is uniformly mixed with a soft magnetic alloy powder, dried with stirring, and coated with a soft magnetic alloy powder to which an inorganic insulating powder is adhered. A 0.8% by mass lubricant is added to the coated powder with respect to the soft magnetic powder, and the mixture is molded at a molding pressure of 12 ton / cm 2 and then baked in a nitrogen atmosphere at 800 ° C. for 30 minutes. Thus, Comparative Example q (Super Sendust), Comparative Example u (Fe-6.5% Si), and Comparative Example w (Fe-3% Si) were obtained.

また、別の比較例として、軟磁性合金粉末と、軟磁性合金粉末に対して1.0質量%のシリコーン樹脂を均一に混合して、撹拌しながら乾燥を行って、軟磁性合金粉末をシリコーン樹脂で被覆した被覆粉末を作製し、この被覆粉末に軟磁性粉末に対して0.8質量%の潤滑剤を添加して、その混合物を成形圧12ton/cmで成形後、800℃の窒素雰囲気中で30分間焼成することにより、比較例r(スーパーセンダスト)、比較例v(Fe−6.5%Si)、比較例x(Fe−3%Si)を得た。 As another comparative example, a soft magnetic alloy powder and 1.0% by mass of a silicone resin are uniformly mixed with the soft magnetic alloy powder, followed by drying with stirring. A coated powder coated with a resin was prepared, and 0.8% by mass of a lubricant was added to the coated powder with respect to the soft magnetic powder. The mixture was molded at a molding pressure of 12 ton / cm 2 , and then nitrogen at 800 ° C. By firing in an atmosphere for 30 minutes, Comparative Example r (Super Sendust), Comparative Example v (Fe-6.5% Si), and Comparative Example x (Fe-3% Si) were obtained.

特性値として、実施例3と同様に、比抵抗、高磁界域(10kA/m)でのインダクタンスL、並びに、直流重畳特性として0〜5.3kA/mにかけてのインダクタンスLの低下率で比較した。   As characteristic values, as in Example 3, the specific resistance, the inductance L in the high magnetic field region (10 kA / m), and the direct current superimposition characteristics were compared by the rate of decrease of the inductance L from 0 to 5.3 kA / m. .

いずれの軟磁性合金粉末を用いた場合でも、シリコーン樹脂のみを混合した比較例i、r、t、v、xに比べて、それぞれの軟磁性合金粉末を用いて本発明によりシリコーン樹脂の一部を無機絶縁粉末で置き換えた実施例A、R、S、T、Uの方が良好な特性が得られた。   Whichever soft magnetic alloy powder is used, compared with Comparative Examples i, r, t, v, and x in which only the silicone resin is mixed, each soft magnetic alloy powder is used to make a part of the silicone resin. Good characteristics were obtained in Examples A, R, S, T, and U in which is replaced with inorganic insulating powder.

また、軟磁性合金粉末に無機絶縁粉末を混合したのちシリコーン樹脂を添加した比較例b、q、s、u、wに比べて、それぞれの軟磁性合金粉末を用いて本発明により軟磁性合金粉末にシリコーン樹脂を混合したのち、無機絶縁粉末を添加した実施例A、R、S、T、Uの方が良好な特性が得られた。   Further, in comparison with Comparative Examples b, q, s, u, and w in which an inorganic insulating powder is mixed with a soft magnetic alloy powder and then a silicone resin is added, each soft magnetic alloy powder is used in accordance with the present invention. In Example A, R, S, T, and U to which inorganic insulating powder was added after mixing the silicone resin, better characteristics were obtained.

1 軟磁性合金粉末
2 シリコーン樹脂
3 無機絶縁粉末
1 Soft magnetic alloy powder 2 Silicone resin 3 Inorganic insulating powder

Claims (8)

軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合し、その混合物を成形、焼成することにより得られたことを特徴とする合金系複合軟磁性材料。 An alloy-based composite soft magnetic material obtained by uniformly mixing a coating powder obtained by coating a soft magnetic alloy powder with a silicone resin and an inorganic insulating powder, and molding and firing the mixture. . 前記軟磁性合金粉末は平均粒径5〜200μmの合金粉であり、前記無機絶縁粉末の平均粒径は1μm以下であり、前記シリコーン樹脂と前記無機絶縁粉末の総量は前記軟磁性合金粉末に対して0.4〜4.5質量%であることを特徴とする請求項1記載の合金系複合軟磁性材料。 The soft magnetic alloy powder is an alloy powder having an average particle size of 5 to 200 μm, the average particle size of the inorganic insulating powder is 1 μm or less, and the total amount of the silicone resin and the inorganic insulating powder is based on the soft magnetic alloy powder. The alloy-based composite soft magnetic material according to claim 1, wherein the content is 0.4 to 4.5% by mass. 前記シリコーン樹脂と前記無機絶縁粉末の総量のうち、前記シリコーン樹脂の量は前記軟磁性合金粉末に対して0.3〜3質量%、前記無機絶縁粉末の量は前記軟磁性合金粉末に対して0.1〜2質量%であることを特徴とする請求項2記載の合金系複合軟磁性材料。 Of the total amount of the silicone resin and the inorganic insulating powder, the amount of the silicone resin is 0.3 to 3% by mass based on the soft magnetic alloy powder, and the amount of the inorganic insulating powder is based on the soft magnetic alloy powder. The alloy-based composite soft magnetic material according to claim 2, wherein the content is 0.1 to 2% by mass. 前記焼成は600℃以上で行われたことを特徴とする請求項1〜3のいずれか1項記載の合金系複合軟磁性材料。 The alloy-based composite soft magnetic material according to claim 1, wherein the firing is performed at 600 ° C. or higher. 軟磁性合金粉末をシリコーン樹脂で被覆して得た被覆粉末と、無機絶縁粉末とを均一に混合し、その混合物を成形、焼成することを特徴とする合金系複合軟磁性材料の製造方法。 A method for producing an alloy-based composite soft magnetic material, comprising uniformly mixing a coating powder obtained by coating a soft magnetic alloy powder with a silicone resin and an inorganic insulating powder, and molding and firing the mixture. 前記軟磁性合金粉末は平均粒径5〜200μmの合金粉であり、前記無機絶縁粉末の平均粒径は1μm以下であり、前記シリコーン樹脂と前記無機絶縁粉末の総量は前記軟磁性合金粉末に対して0.4〜4.5質量%であることを特徴とする請求項5記載の合金系複合軟磁性材料の製造方法。 The soft magnetic alloy powder is an alloy powder having an average particle size of 5 to 200 μm, the average particle size of the inorganic insulating powder is 1 μm or less, and the total amount of the silicone resin and the inorganic insulating powder is based on the soft magnetic alloy powder. The method for producing an alloy-based composite soft magnetic material according to claim 5, wherein the content is 0.4 to 4.5% by mass. 前記シリコーン樹脂と前記無機絶縁粉末の総量のうち、前記シリコーン樹脂の量は前記軟磁性合金粉末に対して0.3〜3質量%、前記無機絶縁粉末の量は前記軟磁性合金粉末に対して0.1〜2質量%であることを特徴とする請求項6記載の合金系複合軟磁性材料の製造方法。 Of the total amount of the silicone resin and the inorganic insulating powder, the amount of the silicone resin is 0.3 to 3% by mass based on the soft magnetic alloy powder, and the amount of the inorganic insulating powder is based on the soft magnetic alloy powder. It is 0.1-2 mass%, The manufacturing method of the alloy type composite soft-magnetic material of Claim 6 characterized by the above-mentioned. 前記焼成は600℃以上で行われたことを特徴とする請求項5〜7のいずれか1項記載の合金系複合軟磁性材料の製造方法。 The method for producing an alloy-based composite soft magnetic material according to any one of claims 5 to 7, wherein the firing is performed at 600 ° C or higher.
JP2012092758A 2012-04-16 2012-04-16 Alloyed composite soft magnetic material and manufacturing method thereof Pending JP2013222789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092758A JP2013222789A (en) 2012-04-16 2012-04-16 Alloyed composite soft magnetic material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092758A JP2013222789A (en) 2012-04-16 2012-04-16 Alloyed composite soft magnetic material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2013222789A true JP2013222789A (en) 2013-10-28

Family

ID=49593568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092758A Pending JP2013222789A (en) 2012-04-16 2012-04-16 Alloyed composite soft magnetic material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2013222789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105344993A (en) * 2015-12-04 2016-02-24 广东工业大学 Method for preparing iron-silicon-aluminum soft magnetic powder core through warm-pressing
CN106180674A (en) * 2015-04-30 2016-12-07 深圳市麦捷微电子科技股份有限公司 The manufacture method of alloy powder
WO2024061046A1 (en) * 2022-09-21 2024-03-28 横店集团东磁股份有限公司 Preparation method for iron-nickel magnetic powder core material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106180674A (en) * 2015-04-30 2016-12-07 深圳市麦捷微电子科技股份有限公司 The manufacture method of alloy powder
CN105344993A (en) * 2015-12-04 2016-02-24 广东工业大学 Method for preparing iron-silicon-aluminum soft magnetic powder core through warm-pressing
CN105344993B (en) * 2015-12-04 2018-12-28 广东工业大学 A kind of method that temperature and pressure prepare iron-silicon-aluminum soft magnet powder core
WO2024061046A1 (en) * 2022-09-21 2024-03-28 横店集团东磁股份有限公司 Preparation method for iron-nickel magnetic powder core material

Similar Documents

Publication Publication Date Title
WO2013100143A1 (en) Composite soft magnetic material and production method therefor
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
JP2007019134A (en) Method of manufacturing composite magnetic material
WO2010082486A1 (en) Process for producing composite magnetic material, dust core formed from same, and process for producing dust core
WO2012131872A1 (en) Composite soft magnetic powder, method for producing same, and powder magnetic core using same
JP2001011563A (en) Manufacture of composite magnetic material
JP4336810B2 (en) Dust core
JP2007299871A (en) Manufacturing method of compound magnetic substance and compound magnetic substance obtained by using the same
JP2006287004A (en) Magnetic core for high frequency and inductance component using it
JP4995222B2 (en) Powder magnetic core and manufacturing method thereof
JP2015088529A (en) Powder-compact magnetic core, powder for magnetic core, and manufacturing method thereof
JP6243298B2 (en) Powder magnetic core and reactor
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP2009158802A (en) Manufacturing method of dust core
JP2013222789A (en) Alloyed composite soft magnetic material and manufacturing method thereof
JP5150535B2 (en) Powder magnetic core and manufacturing method thereof
JP2012222062A (en) Composite magnetic material
JP2004273564A (en) Dust core
CN108570214B (en) Dust core
JP2019153614A (en) Powder magnetic core and manufacturing method thereof and powder for magnetic core
JP4487025B2 (en) Dust core
JP4723609B2 (en) Dust core, dust core manufacturing method, choke coil and manufacturing method thereof
JP2010238930A (en) Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component
JP2011211026A (en) Composite magnetic material
JP2010185126A (en) Composite soft magnetic material and method for producing the same