JP2013221208A - Plated terminal for connector - Google Patents

Plated terminal for connector Download PDF

Info

Publication number
JP2013221208A
JP2013221208A JP2012095407A JP2012095407A JP2013221208A JP 2013221208 A JP2013221208 A JP 2013221208A JP 2012095407 A JP2012095407 A JP 2012095407A JP 2012095407 A JP2012095407 A JP 2012095407A JP 2013221208 A JP2013221208 A JP 2013221208A
Authority
JP
Japan
Prior art keywords
plating layer
silver
tin
terminal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012095407A
Other languages
Japanese (ja)
Other versions
JP5803793B2 (en
Inventor
Takahiro Sunaga
隆弘 須永
Yoshifumi Saka
喜文 坂
Yasushi Saito
寧 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2012095407A priority Critical patent/JP5803793B2/en
Publication of JP2013221208A publication Critical patent/JP2013221208A/en
Application granted granted Critical
Publication of JP5803793B2 publication Critical patent/JP5803793B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plated terminal for a connector at a low price, on which a large current can be applied and in which good insertability/removability and wear resistance, and heat resistance, specifically suppression in the increase of a contact resistance value due to use in a heating environment, are achieved.SOLUTION: In a plated terminal for a connector, a surface of a base material including copper or a copper alloy is coated with a silver plating layer, and a surface of the silver plating layer is coated with a tin plating layer. The plated terminal for a connector is heated at a temperature of 150°C or above so that the tin plating layer is changed to a silver-tin alloy.

Description

本発明は、コネクタ用めっき端子に関し、さらに詳しくは銀めっき層を備えたコネクタ用めっき端子に関するものである。   The present invention relates to a plating terminal for a connector, and more particularly to a plating terminal for a connector provided with a silver plating layer.

近年、ハイブリッドカーや、電気自動車等で高出力モータが使用されるようになっている。通電量が大きい高出力モータ用の端子等では、コネクタ端子に大電流が流れるので、端子部での発熱量が大きくなる。また、電流容量に合わせて端子も大きくなるため、挿入力が大きくなり、挿入時の端子表面へのダメージも大きくなる。   In recent years, high output motors have been used in hybrid cars, electric cars, and the like. In a terminal for a high output motor having a large energization amount, a large current flows through the connector terminal, so that the amount of heat generated at the terminal portion increases. Further, since the terminal becomes larger in accordance with the current capacity, the insertion force is increased, and the damage to the terminal surface during insertion is also increased.

従来、自動車の電気部品等を接続するコネクタ端子としては、一般に、銅又は銅合金などの母材の表面にスズめっきなどのめっきが施されたものが用いられていた。しかし、従来のスズめっき端子は、このような大電流で使用される場合には、耐熱性が不十分であり、挿抜も困難である。そこで、大電流が使用されるコネクタ端子として、スズめっき端子の代わりに銀めっき端子が用いられる。銀は電気抵抗値が低く、通電時の温度上昇が低く抑えられるとともに、高い融点を有し、発熱が生じる環境でも好適に使用することができる。また、銀めっきは、耐腐食性も非常に高い。   Conventionally, as a connector terminal for connecting an electrical component of an automobile or the like, generally, a surface of a base material such as copper or a copper alloy is plated with tin or the like. However, when the conventional tin-plated terminal is used at such a large current, the heat resistance is insufficient, and insertion / extraction is difficult. Therefore, silver-plated terminals are used instead of tin-plated terminals as connector terminals that use a large current. Silver has a low electric resistance value, a temperature rise during energization can be kept low, has a high melting point, and can be suitably used even in an environment where heat is generated. Silver plating also has very high corrosion resistance.

しかし、銀めっき層の中を銅原子が拡散しやすいため、銅又は銅合金の端子母材表面に銀めっきが施された場合には、銅成分が銀めっき表面に達し、酸化された銅成分が電気抵抗の増大を引き起こすという問題がある。また、銀は再結晶によって結晶粒が粗大化しやすい性質があり、銀めっきを施した端子を高温環境下で使用すると、結晶粒の成長による硬度の低下や端子の挿抜力の増大、摩擦係数の上昇という問題が発生する。   However, since copper atoms easily diffuse in the silver plating layer, when silver plating is applied to the surface of the copper or copper alloy terminal base material, the copper component reaches the silver plating surface, and the oxidized copper component However, there is a problem that the electrical resistance increases. In addition, silver has the property that the crystal grains are likely to be coarsened by recrystallization. When a silver-plated terminal is used in a high-temperature environment, the hardness decreases due to the growth of crystal grains, the terminal insertion / extraction force increases, and the friction coefficient increases. The problem of rising occurs.

上記の問題の解決を図るため、例えば特許文献1では、銅成分の拡散の抑制のために結晶粒径の大きい軟質銀めっき層を下層とし、挿抜性と耐磨耗性の向上のために結晶粒径の小さい硬質銀めっき層を上層とした、2層の銀めっきを端子表面に形成することを開示している。   In order to solve the above problems, for example, in Patent Document 1, a soft silver plating layer having a large crystal grain size is used as a lower layer to suppress diffusion of a copper component, and a crystal is used to improve insertion / removability and wear resistance. It discloses that two layers of silver plating with a hard silver plating layer having a small particle size as an upper layer are formed on the terminal surface.

一方、特許文献2においては、最表面の銀微結晶の結晶粒径を大きくし、さらにある程度の厚さを有する平滑な銀めっき層を下層として存在させることを開示している。ここで、下層として用いられる平滑な銀めっき層とは、結晶粒径の小さい硬質銀めっき層であると考えられる。   On the other hand, Patent Document 2 discloses that the crystal grain size of the outermost silver microcrystal is increased and a smooth silver plating layer having a certain thickness is present as a lower layer. Here, the smooth silver plating layer used as the lower layer is considered to be a hard silver plating layer having a small crystal grain size.

特開2008−169408号公報JP 2008-169408 A 特開2008−88493号公報JP 2008-88493 A

銀表面の摩擦係数はスズなどの金属と比較して高い。よって、銀めっき端子では、上記のような2層構造をとったとしても、端子の挿入力が高くなってしまうという問題がある。   The friction coefficient on the silver surface is higher than that of metals such as tin. Therefore, the silver plated terminal has a problem that the insertion force of the terminal is increased even if the above two-layer structure is adopted.

また、上記のように、端子表面の銀めっき層を2層構造とし、それぞれを結晶粒径の大きい軟質銀めっき層又は結晶粒径の小さい硬質銀めっき層とした場合に、加熱を受けない環境下での使用においては、各層の寄与によって、耐摩耗性、耐食性などが付与される。しかしながら、銀を加熱すると、再結晶による結晶粒の成長が容易に起こる。よって、大電流印加時のような加熱環境下で、上記のような銀めっき端子を使用すると、軟質銀めっき層において深刻となる表面抵抗値の上昇や、摩擦係数の上昇による挿抜性及び耐磨耗性の低下という問題が発生する。つまり、上記のような銀めっき端子では、大電流用端子として十分に高い耐熱性が達成されない。   In addition, as described above, when the silver plating layer on the terminal surface has a two-layer structure, and each is a soft silver plating layer having a large crystal grain size or a hard silver plating layer having a small crystal grain size, the environment is not subjected to heating. In the use below, wear resistance, corrosion resistance and the like are imparted by the contribution of each layer. However, when silver is heated, crystal grains grow easily by recrystallization. Therefore, when the above silver-plated terminals are used in a heating environment such as when a large current is applied, the surface resistance value becomes serious in the soft silver-plated layer, and the insertability and wear resistance due to the friction coefficient increase. The problem of reduced wear occurs. That is, the silver plated terminal as described above does not achieve sufficiently high heat resistance as a large current terminal.

また、銀は高価な金属であるので、めっき層全体を銀めっきで構成することにより、端子の製造コストも上昇する。   Moreover, since silver is an expensive metal, the manufacturing cost of a terminal also rises by comprising the whole plating layer by silver plating.

本発明が解決しようとする課題は、大電流を印加することができるコネクタ用めっき端子であって、良好な挿抜性および耐磨耗性が達成され、かつ加熱環境下での表面抵抗値上昇の抑制によって高い耐熱性を有するコネクタ用めっき端子を安価で提供することにある。   The problem to be solved by the present invention is a plating terminal for a connector to which a large current can be applied, which achieves good insertion / extraction and wear resistance, and increases the surface resistance value in a heating environment. It is to provide a plated terminal for a connector having high heat resistance at a low cost by the suppression.

上記課題を解決するために、本発明にかかるコネクタ用めっき端子は、銅又は銅合金よりなる母材の表面が銀めっき層により覆われ、前記銀めっき層の表面がスズめっき層により覆われていることを要旨とする。   In order to solve the above problems, the connector plating terminal according to the present invention is such that the surface of a base material made of copper or a copper alloy is covered with a silver plating layer, and the surface of the silver plating layer is covered with a tin plating layer. It is a summary.

ここで、前記銀めっき層は、ビッカース硬さが150以上の硬質銀よりなることが好適である。   Here, it is preferable that the silver plating layer is made of hard silver having a Vickers hardness of 150 or more.

また、前記スズめっき層の厚さが0.1μmを超え、かつ1.0μm未満であると良い。   The tin plating layer preferably has a thickness of more than 0.1 μm and less than 1.0 μm.

また、本発明にかかる別のコネクタ用めっき端子は、銅又は銅合金よりなる母材の表面を銀めっき層によって覆い、前記銀めっき層の表面をスズめっき層により覆った後、150℃以上の温度で加熱することにより、前記スズめっき層を銀−スズ合金としたことを要旨とする。   Moreover, the plating terminal for another connector according to the present invention covers the surface of a base material made of copper or a copper alloy with a silver plating layer, and covers the surface of the silver plating layer with a tin plating layer. The gist is that the tin plating layer is made of a silver-tin alloy by heating at a temperature.

上記発明にかかる母材の表面が銀めっき層により覆われ、銀めっき層の表面がスズめっき層により覆われたコネクタ用めっき端子によると、銀めっき層の表面が、軟らかく、潤滑作用を有するスズめっき層によって覆われているため、めっき端子の最表面における摩擦係数が低く、挿抜性及び耐摩耗性に優れる。   According to the plating terminal for connectors in which the surface of the base material according to the invention is covered with a silver plating layer and the surface of the silver plating layer is covered with a tin plating layer, the surface of the silver plating layer is soft and has a lubricating action. Since it is covered with the plating layer, the coefficient of friction on the outermost surface of the plating terminal is low, and the insertability and wear resistance are excellent.

また、大電流印加時など、高温環境で使用した際には、スズめっき層が銀−スズ合金層となる。この合金層が、母材の銅原子や、銀めっき層に含まれる場合のあるアンチモン等の添加物原子がめっき端子の最表層に拡散してくることを防止する。これにより、銅やアンチモン等が表面で酸化され、コネクタ用めっき端子の表面抵抗値を上昇させることが防止される。また、銀−スズ合金は非常に硬い特性を有し、摩擦係数が低く抑えられる。これらの機構により、コネクタ用めっき端子に、高い耐熱性が付与される。   Further, when used in a high temperature environment such as when a large current is applied, the tin plating layer becomes a silver-tin alloy layer. This alloy layer prevents the copper atoms of the base material and additive atoms such as antimony that may be contained in the silver plating layer from diffusing into the outermost layer of the plating terminal. Thereby, copper, antimony, etc. are oxidized on the surface, and it is prevented that the surface resistance value of the plating terminal for connectors is raised. Further, the silver-tin alloy has very hard characteristics, and the friction coefficient can be kept low. By these mechanisms, high heat resistance is imparted to the plating terminal for connectors.

さらに、めっき層の一部が安価なスズによって形成されるので、めっき層全体を高価な銀によって形成する場合よりも、コネクタ用めっき端子の製造コストが削減される。   Furthermore, since a part of the plating layer is formed of inexpensive tin, the manufacturing cost of the connector plating terminal is reduced as compared with the case where the entire plating layer is formed of expensive silver.

ここで、前記銀めっき層が、ビッカース硬さが150以上の硬質銀よりなる場合には、硬い銀めっき層の上に軟らかいスズめっき層が形成される構成となり、摩擦係数の低下による端子挿抜性の向上が一層図られる。また、硬質銀めっき層においては結晶粒が非常に緻密に形成されるため、耐食性も向上される。   Here, when the silver plating layer is made of hard silver having a Vickers hardness of 150 or more, a soft tin plating layer is formed on the hard silver plating layer, and terminal insertion / removability due to a reduction in friction coefficient is achieved. Is further improved. Further, since the crystal grains are formed very densely in the hard silver plating layer, the corrosion resistance is also improved.

また、前記スズめっき層の厚さが0.1μmを超え、かつ1.0μm未満であると、スズめっき層の存在によってもたらされる摩擦係数の低下による端子の挿抜性と耐摩耗性の向上が効果的に達成される。   In addition, when the thickness of the tin plating layer is more than 0.1 μm and less than 1.0 μm, it is effective to improve the terminal insertion / removal and wear resistance due to the decrease in the friction coefficient caused by the presence of the tin plating layer. Is achieved.

上記発明にかかる母材の表面を銀めっき層とスズめっき層とにより覆った後、150℃以上の温度で加熱することにより、前記スズめっき層の少なくとも一部を銀−スズ合金としたコネクタ用めっき端子によると、この合金自体の特性により、低い摩擦係数が達成されるとともに、さらに大電流の印加等によって、コネクタ用めっき端子が加熱された際に、母材の銅原子がめっき端子の最表層に拡散してくることが防止される。これにより、銅が表面で酸化され、コネクタ用めっき端子の表面抵抗値や摩擦係数を上昇させることが防止される。   After covering the surface of the base material according to the invention with a silver plating layer and a tin plating layer, by heating at a temperature of 150 ° C. or higher, at least a part of the tin plating layer is made of a silver-tin alloy. According to the plated terminal, a low coefficient of friction is achieved by the characteristics of the alloy itself, and when the plated terminal for a connector is heated by applying a large current or the like, the copper atom of the base material is the most of the plated terminal. Diffusion to the surface layer is prevented. Thereby, copper is oxidized on the surface, and it is prevented that the surface resistance value and friction coefficient of the plating terminal for connectors are raised.

本発明にかかるコネクタ用めっき端子の表面構成を示す図であり、(a)は母材の表面に銀めっき層とスズめっき層が形成された構成を示し、(b)は銀−スズ合金層が形成された構成を示している。It is a figure which shows the surface structure of the plating terminal for connectors concerning this invention, (a) shows the structure by which the silver plating layer and the tin plating layer were formed in the surface of a preform | base_material, (b) is a silver-tin alloy layer The structure in which is formed is shown. (a)は、銅母材に硬質銀めっきを形成し、その上にスズめっきを形成しためっき部材を150℃で放置した後のFIB−SIM像であり、(b)は銅母材にAgSnめっきを施し、150℃で放置した後のFIB−SIM像である。(A) is a FIB-SIM image after a hard silver plating is formed on a copper base material, and a plating member on which a tin plating is formed is left at 150 ° C., and (b) is an Ag on the copper base material. 4 is a FIB-SIM image after Sn plating and left at 150 ° C. FIG. 上記150℃で放置後のめっき部材について、深さ分解ESCAで得られた銀とスズの分布量を最表面からの深さの関数としてプロットしたグラフである。It is the graph which plotted the distribution amount of silver and tin obtained by depth decomposition | disassembly ESCA as a function of the depth from the outermost surface about the plated member after leaving at 150 degreeC.

以下に、本発明の実施形態について、図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明にかかる第一のコネクタ用めっき端子(以下、単にめっき端子又は端子ということもある)は、図1(a)に示したように、銅又は銅合金からなる母材1の表面が、銀めっき層2により被覆され、さらにその表面がスズめっき層3により被覆されているものである。   As shown in FIG. 1 (a), the surface of the base material 1 made of copper or a copper alloy is used as the first plating terminal for a connector according to the present invention (hereinafter sometimes simply referred to as a plating terminal or a terminal). It is covered with a silver plating layer 2 and the surface thereof is further covered with a tin plating layer 3.

母材1は、コネクタ用端子の基材として用いられるものであり、銅又は銅合金から形成されている。また、母材1の表面には、ニッケル等よりなる下地めっき層が形成されていてもよい。その場合、母材1からめっき層への銅原子の拡散が、強固に防止される。   The base material 1 is used as a base material for connector terminals, and is formed from copper or a copper alloy. In addition, a base plating layer made of nickel or the like may be formed on the surface of the base material 1. In that case, diffusion of copper atoms from the base material 1 to the plating layer is strongly prevented.

母材1の上に銀めっき層2を形成することで、めっき端子の電気抵抗が低く抑えられ、大電流を印加することが可能となる。この銀めっき層2は、好ましくは、硬質銀めっき層より形成されるとよい。硬いめっき層の上に軟らかいめっき層が形成された場合に、最表面での摩擦係数が低減される傾向があり、硬い銀めっき層2の上に軟らかいスズめっき層3が形成された状態において、スズめっき層3の表面での摩擦係数が効果的に低減されるからである。更に好ましくは、この銀めっき層2は、ビッカース硬さが150以上であるとよい。   By forming the silver plating layer 2 on the base material 1, the electric resistance of the plating terminal can be kept low and a large current can be applied. The silver plating layer 2 is preferably formed from a hard silver plating layer. When the soft plating layer is formed on the hard plating layer, the friction coefficient on the outermost surface tends to be reduced, and in the state where the soft tin plating layer 3 is formed on the hard silver plating layer 2, This is because the friction coefficient on the surface of the tin plating layer 3 is effectively reduced. More preferably, the silver plating layer 2 has a Vickers hardness of 150 or more.

一般に、ビッカース硬さが100あるいは150以上の銀めっき層が硬質銀めっき層と称され、ビッカース硬さが100あるいは150未満の銀めっき層が軟質銀めっき層と称される。また、銀微結晶の結晶粒径と、硬さの間には強い相関があり、概ね粒径0・2μm以下の場合が硬質銀、それ以上の場合が軟質銀となる。硬質銀と軟質銀は、電気めっきの電流密度等、製膜条件を制御することによっても作り分けることができるが、アンチモン、セレン等の元素をめっき液に添加することで、結晶粒径の小さい硬質銀めっき層を効率的に得ることができる。これらの添加元素が銀微結晶の結晶成長を抑制するからである。   In general, a silver plating layer having a Vickers hardness of 100 or 150 or more is referred to as a hard silver plating layer, and a silver plating layer having a Vickers hardness of 100 or less than 150 is referred to as a soft silver plating layer. Further, there is a strong correlation between the crystal grain size and hardness of the silver microcrystals, and when the grain size is approximately 0.2 μm or less, it is hard silver, and when it is more than that, it is soft silver. Hard silver and soft silver can be made separately by controlling the film forming conditions such as electroplating current density, but by adding elements such as antimony and selenium to the plating solution, the crystal grain size is small. A hard silver plating layer can be obtained efficiently. This is because these additive elements suppress the crystal growth of silver microcrystals.

銀めっき層2の膜厚は特に限定されるものではないが、薄すぎると、上記のような効果が十分に発揮されず、厚すぎると、コストの増大を招く。1〜30μmの範囲内とすることが好適である。   The film thickness of the silver plating layer 2 is not particularly limited, but if it is too thin, the above effects cannot be sufficiently exhibited, and if it is too thick, the cost increases. It is preferable to be within the range of 1 to 30 μm.

銀めっき層2の表面は、スズめっき層3によって覆われる。スズは非常に軟らかい金属であり、表面に生じた酸化物が摩擦によって容易に剥離するので、固体潤滑剤として作用する。よって、最表面に銀めっき層2が露出している場合に比べ、銀めっき層2の上にスズめっき層3を形成することで、めっき端子表面の摩擦係数が低下し、良好な挿抜性が得られる。   The surface of the silver plating layer 2 is covered with the tin plating layer 3. Tin is a very soft metal and acts as a solid lubricant because the oxide generated on the surface is easily peeled off by friction. Therefore, compared with the case where the silver plating layer 2 is exposed on the outermost surface, by forming the tin plating layer 3 on the silver plating layer 2, the friction coefficient on the surface of the plating terminal is lowered, and the good insertion / removal property is improved. can get.

スズめっき層3の厚さとしては、0.1μm超かつ1.0μm未満とすることが好適である。スズめっき層3の厚さが0.1μm以下であると、上記のようなスズめっき層3の存在による摩擦係数の低減の効果が得られにくい。一方、スズめっき層3の厚さが1.0μm以上であると、スズの接点特性が強く現れるようになる。例えば、下層に銀めっき層2を形成しても、スズめっき層3の表面における摩擦係数の低減という、銀めっき層2の存在による効果が発揮され難くなり、摩擦係数が上昇してしまう。スズめっき層3の存在による効果と、その下の銀めっき層2の存在による効果がバランス良く享受され、効果的に最表面での摩擦係数が低減されるという点において、スズめっき層3の厚さが0.5μm程度である場合が最も好適である。   The thickness of the tin plating layer 3 is preferably more than 0.1 μm and less than 1.0 μm. When the thickness of the tin plating layer 3 is 0.1 μm or less, it is difficult to obtain the effect of reducing the friction coefficient due to the presence of the tin plating layer 3 as described above. On the other hand, when the thickness of the tin plating layer 3 is 1.0 μm or more, tin contact characteristics appear strongly. For example, even if the silver plating layer 2 is formed in the lower layer, the effect due to the presence of the silver plating layer 2, that is, the reduction of the friction coefficient on the surface of the tin plating layer 3 becomes difficult to be exhibited, and the friction coefficient increases. The thickness of the tin plating layer 3 in that the effect of the presence of the tin plating layer 3 and the effect of the presence of the silver plating layer 2 thereunder are enjoyed in a balanced manner, and the friction coefficient at the outermost surface is effectively reduced. The thickness is most preferably about 0.5 μm.

銀めっき層2の表面が薄いスズめっき層3によって覆われている効果は、更に、めっき端子が加熱環境下で使用された場合にも発揮される。大電流用端子においては、電流印加による端子の温度上昇が大きくなる場合がある。   The effect that the surface of the silver plating layer 2 is covered with the thin tin plating layer 3 is further exhibited when the plating terminal is used in a heating environment. In a large current terminal, the temperature rise of the terminal due to current application may be large.

このような場合に、銅又は銅合金よりなる母材1の表面上に、銀めっき層2しか形成されていないと、銀は高温環境下で容易に再結晶による結晶粒の成長を起こすので、めっき層の軟化による摩擦係数の増大が起こってしまう。当初の銀めっき層2を硬質銀めっき層として形成した場合でも、加熱環境に晒されることで、硬質銀の軟化が起こってしまう。また、銀めっき層2の中を銅原子が拡散するうえ、銀めっき層2がアンチモン等が添加された硬質銀よりなる場合には、そのアンチモン等の添加元素も拡散によって最表面に濃縮される。めっき層最表面に到達した銅やアンチモン等が酸化されることで、表面の接触抵抗値が上昇してしまう。   In such a case, if only the silver plating layer 2 is formed on the surface of the base material 1 made of copper or a copper alloy, silver easily causes crystal grain growth by recrystallization in a high temperature environment. The friction coefficient increases due to the softening of the plating layer. Even when the original silver plating layer 2 is formed as a hard silver plating layer, the hard silver is softened by being exposed to a heating environment. In addition, when copper atoms diffuse in the silver plating layer 2 and the silver plating layer 2 is made of hard silver to which antimony or the like is added, the additive elements such as antimony are also concentrated on the outermost surface by diffusion. . When copper, antimony, or the like that reaches the outermost surface of the plating layer is oxidized, the contact resistance value of the surface increases.

一方、図1(a)のように、銀めっき層2の表面が薄いスズめっき層3で覆われている場合には、加熱環境下での使用に伴う摩擦係数の増大及び接触抵抗値の上昇が大幅に抑制される。これは、加熱によってスズめっき層3が下層の銀めっき層2の一部と合金化反応を起こし、銀−スズ合金が形成されるためである。   On the other hand, when the surface of the silver plating layer 2 is covered with the thin tin plating layer 3 as shown in FIG. 1A, the friction coefficient increases and the contact resistance value increases with use in a heating environment. Is greatly suppressed. This is because the tin plating layer 3 causes an alloying reaction with a part of the lower silver plating layer 2 by heating to form a silver-tin alloy.

加熱によってこのような銀−スズ合金化反応が進行した状態の端子の構成を示すのが図1(b)であり、これは、本発明にかかる第二のコネクタ用めっき端子に対応するものである。本構成においては、銅又は銅合金あるいはそれらにニッケル下地めっきが施された材料よりなる母材1の表面に、銀めっき層2が形成され、その上に銀−スズめっき層4が形成されている。   FIG. 1B shows the structure of the terminal in a state where such a silver-tin alloying reaction has progressed by heating, which corresponds to the second plated terminal for a connector according to the present invention. is there. In this configuration, a silver plating layer 2 is formed on the surface of a base material 1 made of copper or a copper alloy or a material on which nickel is plated, and a silver-tin plating layer 4 is formed thereon. Yes.

銀−スズ合金は非常に硬い合金であり、銀−スズ合金層4の表面は、低い摩擦係数を示す。   The silver-tin alloy is a very hard alloy, and the surface of the silver-tin alloy layer 4 exhibits a low coefficient of friction.

さらに、銀−スズ合金層4が一旦形成されれば、さらに高温になる条件でめっき端子を使用したとしても、硬く緻密な銀−スズ合金層4の存在によって、母材を構成する銅原子がめっき端子の最表面に拡散することが阻止される。さらに、アンチモン等の添加元素が銀めっき層2に含まれていた場合にも、その添加元素がめっき端子の最表面に拡散することが阻止される。その結果、めっき端子表面に銅や添加元素の酸化物が形成され、めっき端子表面の接触抵抗値を上昇させることが防止される。   Furthermore, once the silver-tin alloy layer 4 is formed, the presence of the hard and dense silver-tin alloy layer 4 causes the copper atoms constituting the base material to be formed even if the plated terminal is used at a higher temperature. Diffusion to the outermost surface of the plated terminal is prevented. Further, even when an additive element such as antimony is contained in the silver plating layer 2, the additive element is prevented from diffusing to the outermost surface of the plating terminal. As a result, copper or an oxide of an additive element is formed on the surface of the plating terminal, and the contact resistance value on the surface of the plating terminal is prevented from increasing.

このように、本発明にかかるめっき端子によれば、銀めっき層2の上にスズめっき層3が形成された状態においても、スズめっき層3が銀−スズ合金層4に変換された状態においても、それぞれ異なる機構によって、低い摩擦係数が達成される。これにより、高い挿抜性と、耐摩耗性が達成される。また、加熱環境での使用に伴う表面の接触抵抗値の上昇も低く抑えられる。   Thus, according to the plated terminal concerning this invention, in the state in which the tin plating layer 3 was converted into the silver-tin alloy layer 4 also in the state in which the tin plating layer 3 was formed on the silver plating layer 2, However, a low coefficient of friction is achieved by different mechanisms. Thereby, high insertion / extraction and wear resistance are achieved. In addition, an increase in the contact resistance value of the surface due to use in a heating environment can be suppressed to a low level.

以下、実施例を用いて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail using examples.

[実施例]
清浄な銅基板の表面に、電気めっき法によって、硬質銀めっき膜を形成した。膜厚はめっき時間によって制御し、8μmとした。さらにその表面に、電気めっき法によって、スズめっき膜を形成した。膜厚はめっき時間によって制御し、0.1μm、0.5μm、1.0μmの3とおりのものをそれぞれ形成した。
[Example]
A hard silver plating film was formed on the surface of a clean copper substrate by electroplating. The film thickness was controlled by the plating time and was 8 μm. Further, a tin plating film was formed on the surface by electroplating. The film thickness was controlled by the plating time, and three types of 0.1 μm, 0.5 μm, and 1.0 μm were formed.

硬質銀めっき層については、アトテック社製アルガルックス64を用いて形成した。めっき浴の組成は、シアン化銀40g/L、シアン化ナトリウム120g/L、炭酸ナトリウム15g/L、光沢剤4ml/L、硬化剤15ml/Lであった。めっき条件は、電流密度2ASD、浴温25度とし、6分程度めっきすると約8μmのめっきが形成された(めっき速度は約1.3μm/分)。スズめっき層については、レイボルド社400浴を使用して形成した。つまり、MST−酸:50ml/L、MST−錫:400ml/L、MST−400:60ml/Lの割合で建浴した。50℃での析出速度は、電流密度1ASDで0.5μm/分程度であった。すなわち電流密度1ASDで1分程度めっきを行うと0.5μmのめっきが形成された。   The hard silver plating layer was formed using Algarx 64 manufactured by Atotech. The composition of the plating bath was 40 g / L silver cyanide, 120 g / L sodium cyanide, 15 g / L sodium carbonate, 4 ml / L brightener, and 15 ml / L hardener. The plating conditions were a current density of 2 ASD and a bath temperature of 25 degrees. When plating was performed for about 6 minutes, a plating of about 8 μm was formed (plating speed was about 1.3 μm / min). The tin plating layer was formed using a Reybold 400 bath. That is, the bath was constructed at a ratio of MST-acid: 50 ml / L, MST-tin: 400 ml / L, MST-400: 60 ml / L. The deposition rate at 50 ° C. was about 0.5 μm / min at a current density of 1 ASD. That is, when plating was performed for about 1 minute at a current density of 1 ASD, plating of 0.5 μm was formed.

このようにして作成しためっき部材における銀めっき層の硬度の目安として、集束イオンビーム−走査イオン顕微鏡(FIB−SIM)を用いて銀めっき層を構成する銀微結晶の粒径を確認した。スズめっき層を形成する直前のめっき部材の断面についてFIB−SIM像を取得した後、銀めっき層中のある長さの直線が横切る微結晶を計数し、その長さを微粒子の個数で割ることで、銀微結晶の平均粒径を算出したところ、銀微結晶の平均粒径は0.16μmであった。この粒径は、硬質銀の粒径として典型的なものであり、実施例のめっき部材において、銀めっき層は硬質銀めっき層よりなることが確認された。   As a measure of the hardness of the silver plating layer in the plating member thus prepared, the particle size of the silver microcrystals constituting the silver plating layer was confirmed using a focused ion beam-scanning ion microscope (FIB-SIM). After obtaining the FIB-SIM image for the cross section of the plating member just before forming the tin plating layer, the number of microcrystals crossed by a certain straight line in the silver plating layer is counted, and the length is divided by the number of fine particles. Then, when the average particle diameter of the silver microcrystals was calculated, the average particle diameter of the silver microcrystals was 0.16 μm. This particle size is typical as the particle size of hard silver, and it was confirmed that the silver plating layer was composed of a hard silver plating layer in the plated members of the examples.

[比較例1]
実施例1において、硬質銀めっき層の表面にスズめっき層を形成せずに、銅基板の上に硬質銀めっき層を形成した状態のものを、比較例1にかかるめっき部材とした。
[比較例2]
清浄な銅基板の表面に、電気めっき法によって、AgSnの組成を有する膜厚8μmの合金めっき層を形成した。これを比較例2にかかるめっき部材とした。この際、大和化成製AgSn合金めっき液(商品名:ダインシスター)を利用した。Ag濃度を35g/L、温度を25℃、電流密度を1ASDとし、0.3μm/分の析出速度でめっきを行った。
[Comparative Example 1]
In Example 1, a member in which a hard silver plating layer was formed on a copper substrate without forming a tin plating layer on the surface of the hard silver plating layer was used as a plating member according to Comparative Example 1.
[Comparative Example 2]
An alloy plating layer having a thickness of 8 μm and a composition of Ag 4 Sn was formed on the surface of a clean copper substrate by electroplating. This was used as a plated member according to Comparative Example 2. At this time, an AgSn alloy plating solution (trade name: Dyne Sister) manufactured by Daiwa Kasei was used. Plating was performed at an Ag concentration of 35 g / L, a temperature of 25 ° C., a current density of 1 ASD, and a deposition rate of 0.3 μm / min.

[試験方法] [Test method]

(荷重−抵抗特性の評価)
端子接点部における接触抵抗と、加熱環境下での使用に伴う接触抵抗値の上昇の程度を見積もるため、荷重−抵抗特性の評価を行った。各実施例及び比較例1にかかるめっき部材について、接触抵抗を四端子法によって測定した。この際、開放電圧を20mV、通電電流を10mA、荷重印加速度を0.1mm/min.とし、0〜40Nの荷重を増加させる方向と減少させる方向に印加した。電極は、一方を平板とし、一方を半径3mmのエンボス形状とした。この荷重−抵抗特性の評価を、作成直後のめっき部材に対して行った。次いで、めっき部材を大気中150℃で120時間放置し(以下、この条件を「高温放置」と称する場合がある)、放置後の試料に対しても室温に放冷後、同様に荷重−抵抗特性の評価を行った。さらに、荷重10Nにおける接触抵抗値に着目し、初期状態(高温放置前)から高温放置後に上昇した値を、抵抗上昇値とした。ここで、一般的な大電流用端子において、接点部に加えられる荷重の近似値として、10Nとの荷重が評価基準として選定されている。
(Evaluation of load-resistance characteristics)
In order to estimate the contact resistance at the terminal contact portion and the degree of increase in the contact resistance value due to use in a heating environment, load-resistance characteristics were evaluated. About the plating member concerning each Example and the comparative example 1, contact resistance was measured by the four-terminal method. At this time, the open circuit voltage was 20 mV, the energization current was 10 mA, and the load application speed was 0.1 mm / min. And applied in the direction of increasing and decreasing the load of 0 to 40N. One of the electrodes was a flat plate and the other was an embossed shape with a radius of 3 mm. Evaluation of this load-resistance characteristic was performed with respect to the plating member immediately after preparation. Subsequently, the plated member is left in the atmosphere at 150 ° C. for 120 hours (hereinafter, this condition may be referred to as “high temperature storage”), and the sample after being left to cool to room temperature is similarly subjected to load-resistance. The characteristics were evaluated. Further, paying attention to the contact resistance value at a load of 10 N, the value increased from the initial state (before standing at high temperature) after standing at high temperature was set as the resistance rise value. Here, in a general large current terminal, a load of 10 N is selected as an evaluation standard as an approximate value of the load applied to the contact portion.

(摩擦係数の評価)
端子の挿抜性の指標として、各実施例及び比較例1にかかるめっき部材について、動摩擦係数を評価した。つまり、平板状にしためっき部材と半径3mmのエンボス状にしためっき部材を鉛直方向に接触させて保持し、ピエゾアクチュエータを用いて鉛直方向に5Nの荷重を印加しながら、10mm/min.の速度でエンボス状のめっき部材を水平方向に引張り、ロードセルを使用して接点部に働く摩擦力を測定した。摩擦力を荷重で割った値を摩擦係数とした。
(Evaluation of friction coefficient)
The dynamic friction coefficient was evaluated for the plated members according to the examples and the comparative example 1 as an index of terminal insertion / extraction. That is, the plate-shaped plated member and the embossed plated member having a radius of 3 mm are held in contact with each other in the vertical direction, and a load of 5 N is applied in the vertical direction by using a piezo actuator, and 10 mm / min. The embossed plated member was pulled in the horizontal direction at a speed of 5 mm, and the frictional force acting on the contact portion was measured using a load cell. The value obtained by dividing the friction force by the load was taken as the friction coefficient.

(高温放置後のスズめっき層の組成変化の評価)
本発明のスズめっき層が、高温放置によってどのように変化するのかを調べるための測定を行った。実施例(スズ層の厚さ:0.5μm)及び比較例2にかかるめっき部材を大気中150℃で120時間放置し、断面方向からFIB−SIM観察を行った。また、Arイオンスパッタリングを使用したX線光電子分光(XPS、ESCA)により、層内部の化学組成を調べた。つまり、Sn3d5/2のピーク強度と、Ag3dのピーク強度の比から、スズと銀の原子数比を求めた。さらに、透過型電子顕微鏡(TEM)を用いたX線分光による元素分析及び電子線回折によっても、化学組成の分析を行った。
(Evaluation of composition change of tin plating layer after standing at high temperature)
Measurements were performed to examine how the tin plating layer of the present invention changes when left at high temperatures. The plated member according to Example (thin layer thickness: 0.5 μm) and Comparative Example 2 was left in the atmosphere at 150 ° C. for 120 hours, and FIB-SIM observation was performed from the cross-sectional direction. Further, the chemical composition inside the layer was examined by X-ray photoelectron spectroscopy (XPS, ESCA) using Ar ion sputtering. That is, the atomic ratio of tin and silver was determined from the ratio of the peak intensity of Sn3d 5/2 and the peak intensity of Ag3d. Furthermore, the chemical composition was also analyzed by elemental analysis and electron beam diffraction by X-ray spectroscopy using a transmission electron microscope (TEM).

[試験結果及び考察]
(荷重−抵抗特性の評価)
[Test results and discussion]
(Evaluation of load-resistance characteristics)

表1に、各実施例と比較例1のめっき部材について、荷重10Nで計測した高温放置前後の接触抵抗値とその上昇値を示す。   Table 1 shows the contact resistance values before and after being left at a high temperature measured with a load of 10 N and the increased values for the plated members of each Example and Comparative Example 1.

まず、初期(高温放置前)の荷重−抵抗特性を比較すると、スズめっき層が形成されている場合と、形成されていない場合とで、またスズめっき層の厚さによって、その値に大きな差はない。   First, when comparing the load-resistance characteristics in the initial stage (before standing at high temperature), there is a large difference in the value depending on whether the tin plating layer is formed or not and depending on the thickness of the tin plating layer. There is no.

高温放置後には、スズめっき層が存在する場合も、存在しない場合も、それぞれの初期値に比べて接触抵抗値が上昇している。しかしながら、スズめっき層が存在する場合には、いずれの膜厚においても、スズめっき層が存在しない場合と比較して、高温放置後の接触抵抗値が小さくなっている。   After standing at high temperature, the contact resistance value is higher than the initial value in both cases where the tin plating layer is present and absent. However, when the tin plating layer is present, the contact resistance value after being left at a high temperature is small at any film thickness as compared with the case where the tin plating layer is not present.

その結果、スズめっき層が存在することによって、いずれの層厚においても、高温放置による抵抗上昇値が低く抑えられている。しかし、スズめっき層の厚みが3とおりの場合を比較すると、スズめっき層が0.5μmの場合にとりわけ高温放置による接触抵抗の上昇値が小さくなっている。   As a result, due to the presence of the tin plating layer, the resistance increase value due to standing at high temperature is kept low at any layer thickness. However, comparing the cases where the thickness of the tin plating layer is three, especially when the tin plating layer is 0.5 μm, the increase in contact resistance due to standing at high temperature is small.

自動車用大電流端子の高温放置による抵抗上昇値としては、5mΩ以下に抑えることが望ましい。上記の結果では、スズめっき層の厚さが0.5μmの場合にのみ、この条件を満たしている。   It is desirable to suppress the resistance increase value by leaving the high current terminal for automobiles at a high temperature to 5 mΩ or less. In the above results, this condition is satisfied only when the thickness of the tin plating layer is 0.5 μm.

(摩擦係数の評価)
表2に、各実施例と比較例1のめっき部材について、高温放置の前後で摩擦係数を測定した結果を示す。
(Evaluation of friction coefficient)
Table 2 shows the results of measuring the coefficient of friction before and after being left at a high temperature for the plated members of Examples and Comparative Example 1.

まず、初期(高温放置前)の摩擦係数を比較すると、スズめっき層の厚みが0.5μm以上の場合に、スズめっき層が形成されない場合に比べ、その値が小さくなっている。   First, when comparing the initial friction coefficient (before standing at high temperature), the value is smaller when the thickness of the tin plating layer is 0.5 μm or more than when the tin plating layer is not formed.

高温放置を経ると、スズめっき層が形成されている場合にも、されていない場合にも摩擦係数は初期値よりも上昇している。しかしながら、スズめっき層の厚さが0.5μm以上である場合には、摩擦係数は、スズめっき層が形成されていない場合の半分の値である0.3に抑えられ、摩擦係数が低い状態が維持されている。   After leaving at high temperature, the friction coefficient is higher than the initial value whether the tin plating layer is formed or not. However, when the thickness of the tin plating layer is 0.5 μm or more, the friction coefficient is suppressed to 0.3, which is half the value when the tin plating layer is not formed, and the friction coefficient is low. Is maintained.

スズめっき層の厚さを1.0μmまで厚くしても、初期及び高温放置後における摩擦係数の低減の効果は飽和している。   Even if the thickness of the tin plating layer is increased to 1.0 μm, the effect of reducing the friction coefficient at the initial stage and after standing at high temperature is saturated.

(高温放置後のスズめっき層の組成変化の評価)
スズめっき層の厚さが0.5μmであるめっき部材を高温放置した後の断面のFIB−SIM像を図2(a)に示す。これを見ると、粒径1μm程度の微結晶よりなる厚い下層と、粒径0.5〜1μm程度の微結晶が緻密に形成された厚さ1μm程度の上層の2層よりなることが分かる。下層は、高温放置によって結晶成長し、軟化した硬質銀めっき層であると考えられる。
(Evaluation of composition change of tin plating layer after standing at high temperature)
FIG. 2A shows a FIB-SIM image of a cross section after a plating member having a tin plating layer thickness of 0.5 μm is left at a high temperature. From this, it can be seen that there are two layers: a thick lower layer made of microcrystals having a grain size of about 1 μm and an upper layer having a thickness of about 1 μm in which microcrystals having a grain size of about 0.5 to 1 μm are densely formed. The lower layer is considered to be a hard silver plating layer that has been crystallized and softened by standing at high temperature.

一方、上層の方は、図2(b)のAgSnめっき層(比較例2)を高温放置した場合のFIB−SIM像と非常によく似ている。つまり、丸みを帯びた粒径0.5〜1μm程度の微結晶が緻密に形成され、隣接する粒子間で高い画像コントラストを有する点において両者は共通している。これより、実施例にかかるめっき部材を高温放置した際に、上層にAgSnに近い組成を有する銀−スズ合金が形成されている可能性が考えられる。 On the other hand, the upper layer is very similar to the FIB-SIM image when the Ag 4 Sn plating layer (Comparative Example 2) in FIG. That is, both are common in that round crystallites having a particle diameter of about 0.5 to 1 μm are densely formed and have high image contrast between adjacent particles. From this, when the plated member according to Example were left at high temperature, silver has a composition close to Ag 4 Sn in the upper - possibility of tin alloy is formed is considered.

この上層の組成は、深さ分解ESCAでの組成分析によって、更に明確になった。図3に、最表面からの深さに対する銀及びスズの存在量を全含有元素に対する割合で示す。   The composition of this upper layer was further clarified by composition analysis by depth-resolved ESCA. In FIG. 3, the abundance of silver and tin with respect to the depth from the outermost surface is shown by the ratio with respect to all the contained elements.

この結果を見ると、検出深さ6nmよりも深い領域では、銀とスズの原子数比が、4:1〜5:1となっている。つまり、上層において、AgSn〜AgSnの組成を有する合金が形成されていることが明らかになった。これは、上記のFIB−SIM像に基づく考察結果とも一致する。なお、比較例2のめっき部材を高温放置したものについても、同様に深さ分解ESCAの測定を行い、銀とスズの原子数比が4:1で検出されることを確認した。 Looking at this result, in the region deeper than the detection depth of 6 nm, the atomic ratio of silver and tin is 4: 1 to 5: 1. That is, it became clear that an alloy having a composition of Ag 4 Sn to Ag 5 Sn was formed in the upper layer. This is consistent with the above-described consideration result based on the FIB-SIM image. In addition, about the thing which left the plating member of the comparative example 2 high temperature, the measurement of depth resolution ESCA was performed similarly, and it confirmed that the atomic ratio of silver and tin was detected by 4: 1.

最表層からの深さが4nmより浅い領域においては、組成比はAg:Sn=4:1よりもSnが多くなってはいるが、最表層においても、Agが存在している。これより、スズめっき層は、高温放置により、全体が硬質銀めっき層を形成していた銀と合金化反応を起こし、銀−スズ合金を形成していることが分かる。つまり、高温放置後のめっき層に、純スズ層は残っていない。   In the region where the depth from the outermost layer is shallower than 4 nm, the composition ratio is higher than that of Ag: Sn = 4: 1, but Ag is also present in the outermost layer. From this, it can be seen that the tin plating layer undergoes an alloying reaction with the silver which has formed the hard silver plating layer as a whole when left at high temperature, thereby forming a silver-tin alloy. That is, the pure tin layer does not remain in the plating layer after being left at high temperature.

また、この合金層内において、銅原子は不純物程度の量しか観測されなかった。つまり、高温放置による合金層内への銅原子の拡散は起こっていないと考えられる。また、アンチモン元素は検出限界の範囲内で検出されず、硬質銀めっき層からのアンチモンの拡散も起こっていないことが分かる。   Further, only an amount of impurities of copper atoms was observed in the alloy layer. That is, it is considered that copper atoms do not diffuse into the alloy layer due to being left at a high temperature. Further, it can be seen that antimony element is not detected within the detection limit range, and antimony is not diffused from the hard silver plating layer.

TEMの元素分析、及び電子線回折については、結果の表示は省略する。しかし、TEMの元素分析においても、深さ分解ESCAの結果と同様に、実施例にかかるめっき部材を高温放置した際の上層がAgSnなる組成を有することが確認された。また、電子線回折においては、高温放置によって実施例にかかるめっき部材の上層に形成された物質について得られた回折パターンが、AgSnのものと一致した。 For TEM elemental analysis and electron diffraction, the display of results is omitted. However, in the TEM elemental analysis, it was confirmed that the upper layer had a composition of Ag 4 Sn when the plated member according to the example was allowed to stand at a high temperature as in the result of the depth-resolved ESCA. In the electron beam diffraction, the diffraction pattern obtained for the upper layer to the formed material of the plated member according to Example by the high temperature, consistent with that of the Ag 4 Sn.

AgSnの組成を有する合金は、X線回折データベースに報告されている。また、Ag5Snの組成を有する合金相も状態相として存在することが報告されている。よって、実施例にかかるめっき部材を高温放置した際に、安定な銀−スズ合金層が形成されていると考えられる。 Alloys having the composition Ag 4 Sn have been reported in the X-ray diffraction database. It has also been reported that an alloy phase having a composition of Ag 5 Sn exists as a state phase. Therefore, it is considered that a stable silver-tin alloy layer is formed when the plated member according to the example is left at a high temperature.

(まとめ)
実施例のうち厚さ0.5μmのスズめっき層が硬質銀めっき層の上に形成された場合と、比較例1のスズめっき層が形成されない硬質銀めっき層の場合とについて、測定された高温放置による接触抵抗上昇値及び高温放置前後の摩擦係数を、車載用大電流端子としての目標値とともに表3にまとめる。
(Summary)
The measured high temperature in the case where a tin plating layer having a thickness of 0.5 μm was formed on the hard silver plating layer and in the case of the hard silver plating layer in which the tin plating layer in Comparative Example 1 was not formed. Table 3 summarizes the contact resistance increase value due to leaving and the friction coefficient before and after leaving at high temperature together with the target value as a large current terminal for vehicle use.

このように、銀めっき層の上に厚さ0.5μmのスズめっき層が形成されていると、高温環境下で使用しても、接触抵抗値の上昇を抑えることができ、5mΩ以下との目標値が達成されている。これにより、高い耐熱性が達成される。   Thus, when a tin plating layer having a thickness of 0.5 μm is formed on the silver plating layer, an increase in the contact resistance value can be suppressed even when used in a high temperature environment. The target value has been achieved. Thereby, high heat resistance is achieved.

摩擦係数についても、銀めっき層の上に厚さ0.5μmのスズめっき層が形成されていることで、高温放置の前後を通じて、摩擦係数が低減されている。高温放置前後を通じて、0.5以下との大電流端子の目標値を達成している。これにより、初期又は高温放置後いずれの状態においても、良好な端子の挿抜性が達成される。   Regarding the friction coefficient, the friction coefficient is reduced before and after being left at a high temperature because the tin plating layer having a thickness of 0.5 μm is formed on the silver plating layer. The target value of a large current terminal of 0.5 or less was achieved before and after being left at high temperature. As a result, good terminal insertion / removal is achieved in either the initial state or after being left at a high temperature.

なお、スズの膜厚が0.1μm以下である場合には、高温放置時の接触抵抗値上昇の抑制、及び高温放置前後の摩擦係数の抑制についての効果は、スズの膜厚が0.1μm超である場合ほどに大きくはない。一方、スズの膜厚を1.0μm以上に増加させても、これらの効果が増強されるわけではない。   In addition, when the film thickness of tin is 0.1 μm or less, the effect of suppressing the increase in contact resistance value when left at high temperature and the coefficient of friction before and after high temperature exposure are as follows: Not as big as if it was super. On the other hand, increasing the thickness of tin to 1.0 μm or more does not enhance these effects.

スズめっき層の形成による高温放置前の摩擦係数の低減は、硬い銀めっき層の上に軟らかいスズめっき層が形成されていることによるものと考えられる。一方で、高温放置後については、スズめっき層が全て銀−スズ合金となっていることが明らかになったので、これとは異なる機構で摩擦係数が低減されていることになる。つまり、銀−スズ合金自体が低い摩擦係数を有していると考えられる。   The reduction in the coefficient of friction before leaving at high temperature by forming a tin plating layer is considered to be due to the formation of a soft tin plating layer on the hard silver plating layer. On the other hand, after leaving at high temperature, it became clear that the tin plating layer was entirely a silver-tin alloy, and the friction coefficient was reduced by a mechanism different from this. That is, it is considered that the silver-tin alloy itself has a low friction coefficient.

また、高温放置によって銀−スズ合金が形成されることで、この合金層が母材からの銅原子の拡散及び銀めっき層からのアンチモン等の添加元素の拡散を抑制していると考えられる。これにより、銀めっき層がスズめっき層に覆われていない場合に起こる、表面に拡散した銅及びアンチモン等の酸化物形成による高温放置後の接触抵抗値の上昇が回避されていると考えられる。   Moreover, it is thought that this alloy layer is suppressing the diffusion of the copper atom from a base material, and the diffusion of additive elements, such as antimony, from a silver plating layer by forming a silver-tin alloy by leaving at high temperature. Thereby, it is considered that an increase in contact resistance value after leaving at high temperature due to formation of oxides such as copper and antimony diffused on the surface, which occurs when the silver plating layer is not covered with the tin plating layer, is avoided.

1 母材
2 銀めっき層
3 スズめっき層
4 銀−スズ合金層
1 Base material 2 Silver plating layer 3 Tin plating layer 4 Silver-tin alloy layer

Claims (4)

銅又は銅合金よりなる母材の表面が銀めっき層により覆われ、前記銀めっき層の表面がスズめっき層により覆われていることを特徴とするコネクタ用めっき端子。   A plating terminal for a connector, wherein a surface of a base material made of copper or a copper alloy is covered with a silver plating layer, and a surface of the silver plating layer is covered with a tin plating layer. 前記銀めっき層は、ビッカース硬さが150以上の硬質銀よりなることを特徴とする請求項1に記載のコネクタ用めっき端子。   The said silver plating layer consists of hard silver whose Vickers hardness is 150 or more, The plating terminal for connectors of Claim 1 characterized by the above-mentioned. 前記スズめっき層の厚さが0.1μmを超え、かつ1.0μm未満であることを特徴とする請求項1又は2に記載のコネクタ用めっき端子。   The plated terminal for a connector according to claim 1 or 2, wherein the tin plating layer has a thickness of more than 0.1 µm and less than 1.0 µm. 銅又は銅合金よりなる母材の表面を銀めっき層によって覆い、前記銀めっき層の表面をスズめっき層により覆った後、150℃以上の温度で加熱することにより、前記スズめっき層を銀−スズ合金としたことを特徴とするコネクタ用めっき端子。   The surface of a base material made of copper or a copper alloy is covered with a silver plating layer, and the surface of the silver plating layer is covered with a tin plating layer, and then heated at a temperature of 150 ° C. or higher, whereby the tin plating layer is silver- A plated terminal for connectors, characterized by being a tin alloy.
JP2012095407A 2012-04-19 2012-04-19 Plated terminals for connectors Expired - Fee Related JP5803793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095407A JP5803793B2 (en) 2012-04-19 2012-04-19 Plated terminals for connectors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012095407A JP5803793B2 (en) 2012-04-19 2012-04-19 Plated terminals for connectors

Publications (2)

Publication Number Publication Date
JP2013221208A true JP2013221208A (en) 2013-10-28
JP5803793B2 JP5803793B2 (en) 2015-11-04

Family

ID=49592411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095407A Expired - Fee Related JP5803793B2 (en) 2012-04-19 2012-04-19 Plated terminals for connectors

Country Status (1)

Country Link
JP (1) JP5803793B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092978A1 (en) * 2013-12-20 2015-06-25 オリエンタル鍍金株式会社 Silver-plated member, and production method therefor
WO2015092979A1 (en) * 2013-12-20 2015-06-25 オリエンタル鍍金株式会社 Silver-plated member, and production method therefor
JP2015183216A (en) * 2014-03-24 2015-10-22 Jx日鉱日石金属株式会社 ELECTRONIC COMPONENT HAVING Ag-Sn ALLOY PLATING FILM, AND MANUFACTURING METHOD OF Ag-Sn PLATING SOLUTION AND THE ELECTRONIC COMPONENT
CN109072471A (en) * 2016-05-10 2018-12-21 三菱综合材料株式会社 Tin plating copper tip material and terminal and wire terminations portion structure
JP2020056057A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Terminal material for connector, terminal for connector, and manufacturing method of terminal material for connector
JP2020196910A (en) * 2019-05-31 2020-12-10 古河電気工業株式会社 Material for electric contact and its manufacturing method, connector terminal, connector and electronic component
CN112754690A (en) * 2021-01-18 2021-05-07 桂林市啄木鸟医疗器械有限公司 Hot melt gutta-percha of local heating needle that generates heat for pen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306574A (en) * 1988-06-06 1989-12-11 Furukawa Electric Co Ltd:The Sn or sn alloy clad material
JP2001131774A (en) * 1999-11-10 2001-05-15 Nippon Riironaaru Kk Method of forming plated layer of silver-tin alloy
JP2003129278A (en) * 2001-10-16 2003-05-08 Ishihara Chem Co Ltd Process for inhibiting tin whisker through pre-treatment
JP2008169408A (en) * 2007-01-09 2008-07-24 Auto Network Gijutsu Kenkyusho:Kk Silver-plated terminal for connector
JP2009079250A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306574A (en) * 1988-06-06 1989-12-11 Furukawa Electric Co Ltd:The Sn or sn alloy clad material
JP2001131774A (en) * 1999-11-10 2001-05-15 Nippon Riironaaru Kk Method of forming plated layer of silver-tin alloy
JP2003129278A (en) * 2001-10-16 2003-05-08 Ishihara Chem Co Ltd Process for inhibiting tin whisker through pre-treatment
JP2008169408A (en) * 2007-01-09 2008-07-24 Auto Network Gijutsu Kenkyusho:Kk Silver-plated terminal for connector
JP2009079250A (en) * 2007-09-26 2009-04-16 Dowa Metaltech Kk Copper or copper alloy member having silver alloy layer formed as outermost surface layer, and manufacturing method therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092978A1 (en) * 2013-12-20 2015-06-25 オリエンタル鍍金株式会社 Silver-plated member, and production method therefor
WO2015092979A1 (en) * 2013-12-20 2015-06-25 オリエンタル鍍金株式会社 Silver-plated member, and production method therefor
JP2015183216A (en) * 2014-03-24 2015-10-22 Jx日鉱日石金属株式会社 ELECTRONIC COMPONENT HAVING Ag-Sn ALLOY PLATING FILM, AND MANUFACTURING METHOD OF Ag-Sn PLATING SOLUTION AND THE ELECTRONIC COMPONENT
CN109072471A (en) * 2016-05-10 2018-12-21 三菱综合材料株式会社 Tin plating copper tip material and terminal and wire terminations portion structure
CN109072471B (en) * 2016-05-10 2021-05-28 三菱综合材料株式会社 Tin-plated copper terminal material, terminal and electric wire terminal structure
JP2020056057A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Terminal material for connector, terminal for connector, and manufacturing method of terminal material for connector
JP2020196910A (en) * 2019-05-31 2020-12-10 古河電気工業株式会社 Material for electric contact and its manufacturing method, connector terminal, connector and electronic component
JP7306879B2 (en) 2019-05-31 2023-07-11 古河電気工業株式会社 Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
CN112754690A (en) * 2021-01-18 2021-05-07 桂林市啄木鸟医疗器械有限公司 Hot melt gutta-percha of local heating needle that generates heat for pen

Also Published As

Publication number Publication date
JP5803793B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5803793B2 (en) Plated terminals for connectors
JP5387742B2 (en) Plating member, plating terminal for connector, method for manufacturing plating member, and method for manufacturing plating terminal for connector
JP5696811B2 (en) Plated terminals and terminal pairs for connectors
WO2015108004A1 (en) Electrical contact material for connectors and method for producing same
WO2015083547A1 (en) Electric contact and pair of connector terminals
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP2012036436A (en) Sn ALLOY PLATED CONDUCTIVE MATERIAL AND METHOD FOR PRODUCING THE SAME
JP5464297B2 (en) Method for manufacturing plated member and method for manufacturing plated terminal for connector
JP5803833B2 (en) Plated terminals for connectors
JP6123655B2 (en) Copper foil and manufacturing method thereof
CN113597480B (en) Metal material and connection terminal
JP2015137417A (en) connector terminal and connector terminal material
JPWO2015182786A1 (en) Electrical contact material, method of manufacturing electrical contact material, and terminal
WO2018074255A1 (en) Connection terminal and method for producing connection terminal
JP7281971B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP2019112666A (en) Conductive material
JP7111000B2 (en) Metal materials and connection terminals
JP7306879B2 (en) Electrical contact material and its manufacturing method, connector terminal, connector and electronic component
JP7151499B2 (en) Metal materials and connection terminals
JP2011127153A (en) Plating material and method of producing the same
JP5979615B2 (en) Manufacturing method of plating material
WO2022181445A1 (en) Metal material, connection terminal, and method for manufacturing metal material
JP6282205B2 (en) Manufacturing method of electrical contact material
JP2014129611A (en) Plating material and its manufacturing method
JP2019178347A (en) Copper-based material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R150 Certificate of patent or registration of utility model

Ref document number: 5803793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees