JP2013218915A - Oxide superconducting wire with reinforcement member - Google Patents

Oxide superconducting wire with reinforcement member Download PDF

Info

Publication number
JP2013218915A
JP2013218915A JP2012089290A JP2012089290A JP2013218915A JP 2013218915 A JP2013218915 A JP 2013218915A JP 2012089290 A JP2012089290 A JP 2012089290A JP 2012089290 A JP2012089290 A JP 2012089290A JP 2013218915 A JP2013218915 A JP 2013218915A
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting wire
reinforcing material
solder
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012089290A
Other languages
Japanese (ja)
Inventor
Yuki Shinkai
優樹 新海
Masaya Konishi
昌也 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012089290A priority Critical patent/JP2013218915A/en
Priority to EP13775960.1A priority patent/EP2838090A4/en
Priority to CN201380019346.XA priority patent/CN104221097A/en
Priority to US14/387,991 priority patent/US20150045230A1/en
Priority to PCT/JP2013/059809 priority patent/WO2013153973A1/en
Priority to KR20147028057A priority patent/KR20150008062A/en
Publication of JP2013218915A publication Critical patent/JP2013218915A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxide superconducting wire with a reinforcement member capable of obtaining sufficient reinforcement strength without occurrence of inconvenience such as peeling of the reinforcement member even when a force in the thickness direction is applied.SOLUTION: In an oxide superconducting wire with a reinforcement member in which two reinforcing members are arranged so as to sandwich the oxide superconductive wire, the reinforcement members are stuck to the oxide superconducting wire using solder. A surface of the oxide superconducting wire opposed to at least the reinforcement member is covered with copper, nickel or an alloy containing one or more of these metals. An outer peripheral part in a cross section orthogonal to the longitudinal direction is covered with solder. The outer peripheral part in the cross section orthogonal to the longitudinal direction of the oxide superconducting wire is covered with copper, nickel or an alloy containing one or more kinds of these metals.

Description

本発明は、酸化物超電導線材の両面に補強材を配置して補強層を設けた補強材付き酸化物超電導線材に関する。   The present invention relates to an oxide superconducting wire with a reinforcing material in which a reinforcing material is provided on both sides of an oxide superconducting wire and a reinforcing layer is provided.

液体窒素の温度で超電導性を有する高温超電導体の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した高温超電導線材の開発が活発に行われている。中でも、金属基板上に配向したRE123系(RE:希土類元素)等の酸化物超電導層を形成させた酸化物超電導線材が注目されている。   Since the discovery of high-temperature superconductors that have superconductivity at the temperature of liquid nitrogen, development of high-temperature superconducting wires aimed at application to power devices such as cables, current limiters, and magnets has been actively conducted. Among them, an oxide superconducting wire in which an oxide superconducting layer such as RE123 (RE: rare earth element) oriented on a metal substrate is attracting attention.

このような酸化物超電導線材には、酸化物超電導線材の強度を補強したり、異常電流に対するバイパスとして酸化物超電導線材を保護するために補強層を設けることが一般に行われており、例えば、酸化物超電導線材の両面に配置された金属テープなどの補強材を半田を用いて酸化物超電導線材に貼り付けた補強層が設けられている(例えば特許文献1)。   Such an oxide superconducting wire is generally provided with a reinforcing layer to reinforce the strength of the oxide superconducting wire or protect the oxide superconducting wire as a bypass against abnormal current. A reinforcing layer is provided in which a reinforcing material such as a metal tape disposed on both surfaces of a physical superconducting wire is attached to an oxide superconducting wire using solder (for example, Patent Document 1).

特許第3949960号公報Japanese Patent No. 3949960

しかしながら、上記のように、両面に配置された補強材が半田により貼り付けられた従来の補強材付き酸化物超電導線材の場合、厚み方向の強度を充分に上昇させることができないという問題があった。   However, as described above, in the case of the conventional oxide superconducting wire with reinforcing material in which the reinforcing material arranged on both sides is attached by solder, there is a problem that the strength in the thickness direction cannot be sufficiently increased. .

即ち、従来の酸化物超電導線材の場合、一般的に、安定化層として、厚み10nm〜5μm程度の銀層が酸化物超電導線材の外周に設けられるが、このように外周に銀層が設けられた酸化物超電導線材の両面に半田を用いて補強材を貼り付けた場合、銀は半田に対して溶食し、Ag−Sn合金が生成する。溶食により生成されたAg−Sn合金はもろいため、剥離しやすく補強材による恩恵を十分に得ることができない。この結果、半田−銀の界面の強度が低下して、厚み方向の力を加えた場合、例えば、コイル状に巻かれた補強材付き酸化物超電導線材に磁場を掛けた場合に、補強材が剥離して、充分な補強強度を得ることができないという不具合が発生する恐れがある。   That is, in the case of a conventional oxide superconducting wire, a silver layer having a thickness of about 10 nm to 5 μm is generally provided on the outer periphery of the oxide superconducting wire as a stabilization layer, and thus a silver layer is provided on the outer periphery. When a reinforcing material is attached to both surfaces of the oxide superconducting wire using solder, silver is eroded with respect to the solder and an Ag—Sn alloy is generated. Since the Ag—Sn alloy produced by the erosion is fragile, it is easy to peel off and the benefit of the reinforcing material cannot be obtained sufficiently. As a result, when the strength of the solder-silver interface decreases and a force in the thickness direction is applied, for example, when a magnetic field is applied to the oxide superconducting wire with reinforcing material wound in a coil shape, the reinforcing material becomes There is a risk that a problem arises in that sufficient strength cannot be obtained due to peeling.

そこで、本発明は、厚み方向の力が加わった場合にも、補強材の剥がれなどの不具合が発生することがなく、充分な補強強度を得ることができる補強材付き酸化物超電導線材を提供することを課題とする。   Accordingly, the present invention provides an oxide superconducting wire with a reinforcing material that can obtain sufficient reinforcing strength without causing problems such as peeling of the reinforcing material even when a force in the thickness direction is applied. This is the issue.

本発明者は、鋭意検討の結果、以下に記載する発明により上記課題が解決できることを見出し、本発明を完成するに至った。以下、各請求項の発明について説明する。   As a result of intensive studies, the present inventor has found that the above problems can be solved by the invention described below, and has completed the present invention. Hereinafter, the invention of each claim will be described.

請求項1に記載の発明は、
酸化物超電導線材を挟むように2枚の補強材が配置された補強材付き酸化物超電導線材であって、
前記補強材が、半田を用いて前記酸化物超電導線材に貼り付けられており、
前記酸化物超電導線材の少なくとも前記補強材と対向する面が、銅、ニッケル、あるいはこれらの金属の1種以上を含む合金で覆われている
ことを特徴とする補強材付き酸化物超電導線材である。
The invention described in claim 1
An oxide superconducting wire with a reinforcing material in which two reinforcing materials are arranged so as to sandwich the oxide superconducting wire,
The reinforcing material is attached to the oxide superconducting wire using solder,
An oxide superconducting wire with a reinforcing material, characterized in that at least a surface of the oxide superconducting wire facing the reinforcing material is covered with copper, nickel, or an alloy containing one or more of these metals. .

銅(Cu)、ニッケル(Ni)、またはこれらの金属の1種以上を含む合金は、半田と接し、溶食により半田−Cu、Niの合金が生成した場合でも、半田−銀の溶食により生成した合金と異なり脆くなく、合金面での破壊が起きにくい。このため、これらの金属層を保護層として形成することにより、厚み方向の力を加えた場合でも、補強材の剥がれなどの不具合が発生せず、充分な補強強度を得ることができる。なお、これらの金属層は、銀などの安定化層が形成された酸化物超電導線材の上に形成されていてもよい。   Even when copper (Cu), nickel (Ni), or an alloy containing one or more of these metals is in contact with solder and an alloy of solder-Cu, Ni is produced by corrosion, Unlike the produced alloy, it is not brittle and is not easily broken on the alloy surface. For this reason, by forming these metal layers as protective layers, even when a force in the thickness direction is applied, problems such as peeling of the reinforcing material do not occur, and sufficient reinforcing strength can be obtained. These metal layers may be formed on an oxide superconducting wire on which a stabilizing layer such as silver is formed.

具体的なCu合金としては、Ni−Cu合金、Ag−Cu合金、Sn−Cu合金、Au−Cu合金、Zn−Cu合金などを挙げることができ、また、Ni合金としては、Ag−Ni合金、Sn−Ni合金、Zn−Ni合金、Au−Ni合金などを挙げることができる。これらの合金の内でも、特にNi−Cu合金は溶食しにくく、半田の濡れもよく更に低温で磁化しないという特性を有しているため、超電導線材の保護層としてより好ましい。   Specific examples of the Cu alloy include a Ni—Cu alloy, an Ag—Cu alloy, a Sn—Cu alloy, an Au—Cu alloy, and a Zn—Cu alloy, and examples of the Ni alloy include an Ag—Ni alloy. , Sn—Ni alloy, Zn—Ni alloy, Au—Ni alloy, and the like. Among these alloys, Ni—Cu alloys are particularly preferable as a protective layer for superconducting wires because they are resistant to corrosion, have good wettability and do not magnetize at low temperatures.

請求項2に記載の発明は、
長手方向に直交する断面における外周部が半田で覆われていることを特徴とする請求項1に記載の補強材付き酸化物超電導線材である。
The invention described in claim 2
2. The oxide superconducting wire with a reinforcing material according to claim 1, wherein an outer peripheral portion in a cross section perpendicular to the longitudinal direction is covered with solder.

長手方向に直交する断面における外周部が半田で覆われた補強材付き酸化物超電導線材は、補強材の剥離がより抑制されるため好ましい。   An oxide superconducting wire with a reinforcing material in which an outer peripheral portion in a cross section perpendicular to the longitudinal direction is covered with solder is preferable because peeling of the reinforcing material is further suppressed.

請求項3に記載の発明は、
前記酸化物超電導線材の長手方向に直交する断面における外周部が、銅、ニッケル、あるいはこれらの金属の1種以上を含む合金で覆われていることを特徴とする請求項1または請求項2に記載の補強材付き酸化物超電導線材である。
The invention according to claim 3
The outer peripheral part in the cross section orthogonal to the longitudinal direction of the said oxide superconducting wire is covered with copper, nickel, or the alloy containing 1 or more types of these metals, The Claim 1 or Claim 2 characterized by the above-mentioned. It is an oxide superconducting wire with a reinforcing material as described.

前記したように、これらの金属は半田に対して充分な濡れ性を有しているため、酸化物超電導線材の補強材と対向する面のみならず両側面も含めた外周部を覆うことにより、酸化物超電導線材の外周部に密着性よく半田を設けることができ、より高い補強強度を確保することができる。   As described above, since these metals have sufficient wettability with respect to solder, by covering not only the surface facing the reinforcing material of the oxide superconducting wire, but also the outer peripheral portion including both side surfaces, Solder can be provided on the outer peripheral portion of the oxide superconducting wire with good adhesion, and higher reinforcement strength can be ensured.

請求項4に記載の発明は、
前記半田が、Pb−Sn系、Ag−Sn系、Sn−Cu系、Pb−Sn−Ag系、Pb−Sn−Cu系、Sn−Ag−Cu系のいずれかの系の半田であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の補強材付き酸化物超電導線材である。
The invention according to claim 4
The solder is Pb—Sn, Ag—Sn, Sn—Cu, Pb—Sn—Ag, Pb—Sn—Cu, or Sn—Ag—Cu solder. The oxide superconducting wire with reinforcing material according to any one of claims 1 to 3.

Pb−Sn系、Ag−Sn系、Sn−Cu系、Pb−Sn−Ag系、Pb−Sn−Cu系、Sn−Ag−Cu系の半田は比較的低い温度で用いることができる半田である。このような半田を用いた場合、高温による超電導特性の劣化を防ぐことができるため好ましい。特に、Sn−Cu系、Pb−Sn−Cu系、Sn−Ag−Cu系はCuが入っていることにより超電導線材のCuが溶食しにくくなり、より好ましい。   Pb—Sn, Ag—Sn, Sn—Cu, Pb—Sn—Ag, Pb—Sn—Cu, and Sn—Ag—Cu solders can be used at relatively low temperatures. . The use of such solder is preferable because it can prevent deterioration of superconducting characteristics due to high temperature. In particular, Sn—Cu, Pb—Sn—Cu, and Sn—Ag—Cu systems are more preferable because Cu is less likely to corrode due to the inclusion of Cu.

請求項5に記載の発明は、
前記補強材の材質が、
ニッケル、鉄、クロム、またはこれらの金属の1種以上を含む合金、
あるいは、炭素、珪素、またはこれらの1種以上を含む繊維が用いられたフレキシブルな材料であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の補強材付き酸化物超電導線材である。
The invention described in claim 5
The material of the reinforcing material is
Nickel, iron, chromium, or an alloy containing one or more of these metals,
Alternatively, the oxide superconductivity with reinforcing material according to any one of claims 1 to 4, which is a flexible material using carbon, silicon, or a fiber containing one or more of these. It is a wire.

ニッケル(Ni)、鉄(Fe)、クロム(Cr)またはこれらの金属の1種以上を含む合金は、耐摩耗性、高い降伏応力などの機械特性に優れているため、補強材として好ましい。   Nickel (Ni), iron (Fe), chromium (Cr), or an alloy containing one or more of these metals is preferable as a reinforcing material because it has excellent mechanical properties such as wear resistance and high yield stress.

具体的なNi合金としては、Cu−Ni合金、Fe−Ni合金、Cr−Ni合金、Sn−Ni合金、Sn−Ni−Ag合金など、Fe合金としては、Ni−Fe合金、Cr−Fe合金、Cu−Fe合金、Ag−Fe合金、Sn−Fe合金、Sn−Fe−Ag合金など、また、Cr合金としては、Zn−Cr合金、Pb−Cr合金を挙げることができる。   Specific Ni alloys include Cu—Ni alloys, Fe—Ni alloys, Cr—Ni alloys, Sn—Ni alloys, Sn—Ni—Ag alloys, and the like, and Fe alloys include Ni—Fe alloys and Cr—Fe alloys. Cu—Fe alloy, Ag—Fe alloy, Sn—Fe alloy, Sn—Fe—Ag alloy, and the like, and examples of the Cr alloy include a Zn—Cr alloy and a Pb—Cr alloy.

また、炭素や珪素も、半田に対する濡れ性に優れ、補強性にも優れているため、補強材として好ましい。そして、これらの1種以上を含む繊維を樹脂などを用いて固めたフレキシブルな材料は、展性がないため、酸化物超電導線材の強度がより向上する。   Carbon and silicon are also preferable as a reinforcing material because they have excellent wettability to solder and excellent reinforcement. And since the flexible material which hardened the fiber containing these 1 or more types using resin etc. does not have malleability, the intensity | strength of an oxide superconducting wire improves more.

本発明によれば、厚み方向の力が加わった場合にも、補強材の剥がれなどの不具合が発生することがなく、充分な補強強度を得ることができる補強材付き酸化物超電導線材を提供することができる。   According to the present invention, there is provided an oxide superconducting wire with a reinforcing material capable of obtaining sufficient reinforcing strength without causing problems such as peeling of the reinforcing material even when a force in the thickness direction is applied. be able to.

本発明の一実施の形態の補強材付き酸化物超電導線材の構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the oxide superconducting wire with a reinforcing material of one embodiment of this invention.

以下、本発明を実施の形態に基づき図面を用いて説明する。   Hereinafter, the present invention will be described based on embodiments with reference to the drawings.

(補強材付き酸化物超電導線材)
1.全体構成
はじめに、補強材付き酸化物超電導線材の概要を説明する。図1は本実施の形態における補強材付き酸化物超電導線材の構造を模式的に示す断面図であり、図1において、1は補強材付き酸化物超電導線材、2は酸化物超電導線材、2aは保護層、3は補強材、4は半田(半田層)である。
(Oxide superconducting wire with reinforcing material)
1. Overall Configuration First, an outline of the oxide superconducting wire with reinforcing material will be described. FIG. 1 is a cross-sectional view schematically showing the structure of an oxide superconducting wire with reinforcing material in the present embodiment. In FIG. 1, 1 is an oxide superconducting wire with reinforcing material, 2 is an oxide superconducting wire, and 2a is an oxide superconducting wire. A protective layer, 3 is a reinforcing material, and 4 is solder (solder layer).

補強材3は酸化物超電導線材2を挟むように酸化物超電導線材2の両面に配置されている。そして、酸化物超電導線材2の少なくとも補強材3と対向する面(図1では上面と底面)には、Cu、Ni、またはこれらの金属の1種以上を含む合金からなる保護層2aが設けられており、補強材3は半田4により保護層2aを介して酸化物超電導線材2に貼り付けられている。   The reinforcing material 3 is disposed on both surfaces of the oxide superconducting wire 2 so as to sandwich the oxide superconducting wire 2. A protective layer 2a made of Cu, Ni, or an alloy containing one or more of these metals is provided on at least the surfaces of the oxide superconducting wire 2 facing the reinforcing material 3 (upper surface and bottom surface in FIG. 1). The reinforcing material 3 is attached to the oxide superconducting wire 2 by the solder 4 via the protective layer 2a.

半田4は、補強材3と酸化物超電導線材2との間に設けられるが、図1に示すように、補強材付き酸化物超電導線材1の全表面を半田4で覆った場合には、補強材の剥離をより抑制することができるため好ましい。   The solder 4 is provided between the reinforcing material 3 and the oxide superconducting wire 2. However, when the entire surface of the oxide superconducting wire 1 with reinforcing material is covered with the solder 4 as shown in FIG. It is preferable because peeling of the material can be further suppressed.

2.酸化物超電導線材
次に、酸化物超電導線材2について説明する。前記したように、酸化物超電導線材2は、配向基板上に、例えばRE123系(RE:希土類元素)等の酸化物超電導層が形成されている。酸化物超電導線材の幅、厚みは必要に応じて適宜決定されるが、幅が4mm程度、厚みが100〜200μmが好ましい。
2. Next, the oxide superconducting wire 2 will be described. As described above, the oxide superconducting wire 2 has an oxide superconducting layer such as RE123 (RE: rare earth element) formed on an alignment substrate. Although the width | variety and thickness of an oxide superconducting wire are suitably determined as needed, about 4 mm in width and 100-200 micrometers in thickness are preferable.

そして、酸化物超電導線材2の表面には、厚み10nm〜5μmの銀などの安定化層が形成されていてもよい。   A stabilizing layer such as silver having a thickness of 10 nm to 5 μm may be formed on the surface of the oxide superconducting wire 2.

(1)配向基板
配向基板としては、金属基板材上に中間層が設けられた配向基板が好ましい。金属基板材には、c軸に2軸配向した配向金属基板が好ましく、例えば、IBAD基材、Ni−W合金基材、SUS等をベース金属としたクラッドタイプの金属基板材等を用いることができる。また中間層としては、一般的には、CeO、YSZなどの安定化ジルコニア、Yの等を用いることができ、格子整合性や臨界電流密度(Jc)を高くできるなどの観点から、CeOが最上層に使用される。
(1) Alignment substrate The alignment substrate is preferably an alignment substrate in which an intermediate layer is provided on a metal substrate material. The metal substrate material is preferably an oriented metal substrate that is biaxially oriented with respect to the c-axis. For example, an IBAD base material, a Ni-W alloy base material, a clad-type metal substrate material based on SUS, or the like may be used. it can. Further, as the intermediate layer, generally, stabilized zirconia such as CeO 2 and YSZ, Y 2 O 3 and the like can be used, from the viewpoint of increasing lattice matching and critical current density (Jc). CeO 2 is used for the top layer.

(2)酸化物超電導層
酸化物超電導層は、例えば、RE123系酸化物超電導体で形成され、REとしては、イットリウム(Y)、ガドリウム(Gd)、ホルミウム(Ho)、サマリウム(Sm)などが好ましい。酸化物超電導層の形成方法としては、例えば塗布熱分解法(MOD法)やPLD法などの気相成長法が用いられる。
(2) Oxide superconducting layer The oxide superconducting layer is formed of, for example, an RE123-based oxide superconductor. Examples of the RE include yttrium (Y), gadolinium (Gd), holmium (Ho), and samarium (Sm). preferable. As a method for forming the oxide superconducting layer, for example, a vapor deposition method such as a coating pyrolysis method (MOD method) or a PLD method is used.

3.保護層
次に、保護層2aについて説明する。保護層2aは、Cu、Ni、あるいはこれらの金属の1種以上を含む合金からなり、前記したように、これらの金属は、半田に対して充分な濡れ性を有しているため、充分な密着性を確保することができる。また、これらの金属は、半田と接した場合でも半田と反応してボイドを発生させることがないため、厚み方向の力を加えた場合でも、補強材3の剥がれなどの不具合が発生せず、充分な補強強度を得ることができる。
3. Next, the protective layer 2a will be described. The protective layer 2a is made of Cu, Ni, or an alloy containing one or more of these metals. As described above, these metals have sufficient wettability with respect to the solder, so that they are sufficient. Adhesion can be ensured. In addition, since these metals do not react with the solder to generate voids even when in contact with the solder, even when a force in the thickness direction is applied, problems such as peeling of the reinforcing material 3 do not occur. Sufficient reinforcing strength can be obtained.

保護層2aの厚みとしては、一般的に5〜20μm程度が好ましく、通常、スパッタ法やめっき法などを用いて形成される。   The thickness of the protective layer 2a is generally preferably about 5 to 20 μm, and is usually formed using a sputtering method, a plating method, or the like.

図1においては、酸化物超電導線材2の上面と底面のみが保護層2aで覆われているが、酸化物超電導線材2の外周全面を保護層2aで覆ってもよい。これにより、酸化物超電導線材の全外周面に半田4を密着させることができ、より充分な補強強度を得ることができる。   In FIG. 1, only the top and bottom surfaces of the oxide superconducting wire 2 are covered with the protective layer 2a, but the entire outer periphery of the oxide superconducting wire 2 may be covered with the protective layer 2a. As a result, the solder 4 can be brought into close contact with the entire outer peripheral surface of the oxide superconducting wire, and more sufficient reinforcing strength can be obtained.

4.補強材
次に、補強材3について説明する。補強材3の幅としては、酸化物超電導線材2の幅以下とし、超電導線材2の幅をはみ出さないように配置されている。このように配置することにより、2枚の補強材の間に半田の侵入を阻害する隙間ができない。なお、補強材として充分に機能させるためには、酸化物超電導線材2の幅の50%以上の幅であることが好ましく、90%以上であるとより好ましく、100%であると特に好ましい。
4). Reinforcing Material Next, the reinforcing material 3 will be described. The width of the reinforcing material 3 is set to be equal to or smaller than the width of the oxide superconducting wire 2 and is disposed so as not to protrude from the superconducting wire 2. By arranging in this way, there is no gap between the two reinforcing members that hinders solder penetration. In order to sufficiently function as a reinforcing material, the width is preferably 50% or more of the width of the oxide superconducting wire 2, more preferably 90% or more, and particularly preferably 100%.

また、補強材3の厚みとしては特に限定されないが、酸化物超電導線材2よりも薄いことが好ましく、具体的には、5〜200μmが好ましく、50〜100μmがより好ましい。   Moreover, it is although it does not specifically limit as thickness of the reinforcing material 3, It is preferable that it is thinner than the oxide superconducting wire 2, Specifically, 5-200 micrometers is preferable and 50-100 micrometers is more preferable.

補強材3の材質としては、前記したようにNi、Fe、Cr、またはこれらの金属の1種以上を含む合金が好ましい。   As described above, the material of the reinforcing material 3 is preferably Ni, Fe, Cr, or an alloy containing one or more of these metals.

また、C、Siまたはこれらの1種以上を含む繊維をエポキシ樹脂やフッ素樹脂などの樹脂で固めたフレキシブルな材料も好ましい。   Further, a flexible material in which fibers containing C, Si, or one or more of these are hardened with a resin such as an epoxy resin or a fluorine resin is also preferable.

5.半田
次に、半田4について説明する。半田4としては特に限定されないが、Pb−Sn系、Ag−Sn系、Sn−Cu系、Pb−Sn−Ag系、Pb−Sn−Cu系、Sn−Ag−Cu系等の半田が好ましく用いられ、補強材3と酸化物超電導線材2との間だけでなく、図1に示すように、補強材付き酸化物超電導線材1の長手方向に直交する断面における外周部を覆うことにより、補強材の剥離がより抑制される。
5. Next, the solder 4 will be described. The solder 4 is not particularly limited, but Pb—Sn, Ag—Sn, Sn—Cu, Pb—Sn—Ag, Pb—Sn—Cu, Sn—Ag—Cu, and the like are preferably used. As shown in FIG. 1, not only between the reinforcing material 3 and the oxide superconducting wire 2, but also by covering the outer peripheral portion in the cross section perpendicular to the longitudinal direction of the oxide superconducting wire 1 with reinforcing material. Is more suppressed.

補強材3と酸化物超電導線材2との間における半田4の厚みは、補強材3の厚みよりもさらに薄く、具体的には1〜20μmであることが好ましい。また、補強材付き酸化物超電導線材1の長手方向に直交する断面における外周部を半田4で覆う場合、外周部における半田4の厚みは、1〜100μmであることが好ましい。   The thickness of the solder 4 between the reinforcing material 3 and the oxide superconducting wire 2 is further thinner than the thickness of the reinforcing material 3, and is specifically preferably 1 to 20 μm. Moreover, when covering the outer peripheral part in the cross section orthogonal to the longitudinal direction of the oxide superconducting wire 1 with a reinforcing material with the solder 4, it is preferable that the thickness of the solder 4 in an outer peripheral part is 1-100 micrometers.

以上のように、本実施の形態によれば、半田を用いて、補強材と酸化物超電導線材とを密着性高く接合することができるため、厚み方向の力が加わった場合にも、補強材の剥がれなどの不具合が発生することがなく、充分な補強強度を得ることができる。   As described above, according to the present embodiment, it is possible to join the reinforcing material and the oxide superconducting wire with high adhesiveness using solder. Therefore, even when a force in the thickness direction is applied, the reinforcing material Insufficient peeling strength or the like does not occur, and sufficient reinforcing strength can be obtained.

次に、実施例に基づき、本発明をより具体的に説明する。なお、以下の実施例においては、酸化物超電導線材としてY123系酸化物超電導線材を用いた。   Next, based on an Example, this invention is demonstrated more concretely. In the following examples, a Y123-based oxide superconducting wire was used as the oxide superconducting wire.

1.補強材付き酸化物超電導線材の作製
(実施例)
上記した実施の形態に基づき、以下の手順で、本実施例の補強材付き酸化物超電導線材を作製した。
1. Production of oxide superconducting wire with reinforcement (Example)
Based on the above-described embodiment, an oxide superconducting wire with a reinforcing material of this example was produced according to the following procedure.

(1)酸化物超電導線材の作製
(a)配向基板の準備
最初に、金属基板として、SUS層(厚み100μm)上に、Cu層(厚み20μm)、Ni層(厚み2μm)が順に形成されたNi/Cu/SUSクラッド基板(幅30mm×長さ10m)を準備した。
(1) Preparation of oxide superconducting wire (a) Preparation of alignment substrate First, a Cu layer (thickness 20 μm) and a Ni layer (thickness 2 μm) were sequentially formed on a SUS layer (thickness 100 μm) as a metal substrate. A Ni / Cu / SUS clad substrate (width 30 mm × length 10 m) was prepared.

次に、RFスパッタ法を用いて、金属基板の表面に、CeO層(厚み100nm)、YSZ層(厚み400nm)、CeO層(厚み70nm)の順に成膜を行って中間層を形成し、配向基板とした。 Next, using an RF sputtering method, a CeO 2 layer (thickness 100 nm), a YSZ layer (thickness 400 nm), and a CeO 2 layer (thickness 70 nm) are formed in this order on the surface of the metal substrate to form an intermediate layer. An alignment substrate was obtained.

(b)酸化物超電導層の形成
次に、PLD法を用いて、配向金属基板上に、厚み2μmのY123酸化物超電導層を成膜した。
(B) Formation of Oxide Superconducting Layer Next, a Y123 oxide superconducting layer having a thickness of 2 μm was formed on the oriented metal substrate using the PLD method.

(c)安定化層の形成
次に、酸化物超電導層が形成された酸化物超電導線材の外周に、スパッタ法を用いて、厚み5μmのAg層を形成した。
(C) Formation of Stabilization Layer Next, an Ag layer having a thickness of 5 μm was formed on the outer periphery of the oxide superconducting wire on which the oxide superconducting layer was formed by using a sputtering method.

(d)保護層の形成
次に、Ag層の外周に、めっき法を用いて、厚み20μmのCu層を形成し、酸化物超電導線材の作製を完了した。
(D) Formation of Protective Layer Next, a Cu layer having a thickness of 20 μm was formed on the outer periphery of the Ag layer using a plating method, thereby completing the production of the oxide superconducting wire.

(2)補強材付き酸化物超電導線材の作製
(a)補強材の準備
次に、補強材として、作製された酸化物超電導線材と同じ幅、長さのCu(厚み:30μm)板を2枚準備した。
(2) Production of oxide superconducting wire with reinforcing material (a) Preparation of reinforcing material Next, as a reinforcing material, two Cu (thickness: 30 μm) plates having the same width and length as the produced oxide superconducting wire. Got ready.

(b)補強材の貼り付け
酸化物超電導線材の両面に補強材を配置した後、Sn−Ag−Cu系の半田を用いて、これらを接合させると共に、酸化物超電導線材および補強材の長手方向に直交する断面における側面部も半田で覆って、幅4mm×厚み0.2mm×長さ10mの補強材付き酸化物超電導線材を作製した。
(B) Affixing of the reinforcing material After arranging the reinforcing material on both surfaces of the oxide superconducting wire, they are joined using Sn-Ag-Cu solder, and the longitudinal direction of the oxide superconducting wire and the reinforcing material. The side part in the cross section orthogonal to the above was also covered with solder to produce an oxide superconducting wire with a reinforcing material having a width of 4 mm, a thickness of 0.2 mm and a length of 10 m.

具体的には、Sn−Ag−Cu系の半田が溶融した槽を用意し、そこにCu補強材で挟んだ超電導線材を通すことにより、酸化物超電導線材と補強材とを接合させた。また、reel to reelシステムを用いて連続して行うことにより10m長の実施例サンプルを試作した。   Specifically, an oxide superconducting wire and a reinforcing material were joined by preparing a bath in which Sn-Ag-Cu solder was melted and passing the superconducting wire sandwiched between Cu reinforcing materials. In addition, a 10 m long example sample was prototyped by performing continuously using a reel to reel system.

(比較例)
保護層であるCu層を設けないこと以外は、実施例と同様にして、比較例の補強材付き酸化物超電導線材を作製した。
(Comparative example)
An oxide superconducting wire with a reinforcing material as a comparative example was produced in the same manner as in the example except that the Cu layer as the protective layer was not provided.

2.評価
得られた各補強材付き酸化物超電導線材について、以下の項目について評価した。
(1)密着性
まず、得られた各補強材付き酸化物超電導線材の断面を樹脂に埋め込み、幅方向に切断した後、その切断面を研磨することにより断面を出し、この断面を光学顕微鏡を用いて観察し、酸化物超電導線材、補強材および半田間の密着状態を観察した。
2. Evaluation The following items were evaluated for each obtained oxide superconducting wire with reinforcing material.
(1) Adhesiveness First, after embedding a cross section of each obtained oxide superconducting wire with reinforcing material in a resin and cutting in the width direction, the cross section is polished to obtain a cross section. And observed the adhesion state between the oxide superconducting wire, the reinforcing material and the solder.

その結果、実施例の場合には、これらの間にはボイドの発生などが見られず、充分に密着していることが分かった。これに対して、比較例の場合には、酸化物超電導線材と半田の接合面にボイドの発生が見られ、充分な密着性が確保されていないことが分かった。   As a result, in the case of the example, it was found that there was no generation of voids between them, and they were sufficiently adhered. On the other hand, in the case of the comparative example, it was found that voids were observed on the joint surface between the oxide superconducting wire and the solder, and sufficient adhesion was not ensured.

次に、各補強材付き酸化物超電導線材に対して、厚み方向に5Tの磁場を掛けることにより、厚み方向に力を加えた後、上記と同様の観察を行って、補強材の剥離の有無を評価した。   Next, after applying a force in the thickness direction by applying a magnetic field of 5T in the thickness direction to each oxide superconducting wire with a reinforcing material, the same observation as above was performed, and whether or not the reinforcing material was peeled off Evaluated.

その結果、実施例では補強材の剥離は観察されなかったが、比較例では補強材が剥離していた。   As a result, no peeling of the reinforcing material was observed in the examples, but the reinforcing material was peeled off in the comparative example.

(2)超電導特性(Ic)の測定
各補強材付き酸化物超電導線材について、上記のみ方向に力を加える前後にIcを測定し(直流四端子法、77.3K、自己磁場下)、その変化を評価した。
(2) Measurement of superconducting properties (Ic) For each oxide superconducting wire with reinforcing material, Ic was measured before and after applying a force only in the above direction (DC four-terminal method, 77.3K, under self-magnetic field), and the change Evaluated.

その結果、実施例では、力を加える前の120A/4mm幅が、力を加えた後も120A/4mm幅であり、変化していなかった。これは、力を加えても、補強材の剥離が生じず、充分な密着性が維持されているためである。   As a result, in the example, the 120 A / 4 mm width before applying the force was 120 A / 4 mm width even after the force was applied, and was not changed. This is because even when force is applied, the reinforcing material does not peel off and sufficient adhesion is maintained.

これに対して、比較例では、補強材の剥離が生じたため、力を加えた後では、50A/4mm幅にまで大きく低下していた。   On the other hand, in the comparative example, since the peeling of the reinforcing material occurred, the force was greatly reduced to 50 A / 4 mm width after the force was applied.

以上の結果より、本発明を適用することにより、厚み方向の力が加わった場合にも、補強材の剥がれなどの不具合が発生することがなく、充分な補強強度を得ることができることが確認できた。また、これにより、安定した超電導特性の維持を図ることができることが確認できた。   From the above results, by applying the present invention, it can be confirmed that even when a force in the thickness direction is applied, problems such as peeling of the reinforcing material do not occur and sufficient reinforcing strength can be obtained. It was. In addition, it was confirmed that stable superconducting characteristics can be maintained.

以上、本発明を実施の形態に基づき説明したが、本発明は上記の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、上記の実施の形態に対して種々の変更を加えることが可能である。   As mentioned above, although this invention was demonstrated based on embodiment, this invention is not limited to said embodiment. Various modifications can be made to the above-described embodiment within the same and equivalent scope as the present invention.

1 補強材付き酸化物超電導線材
2 酸化物超電導線材
2a 保護層
3 補強材
4 半田(半田層)
DESCRIPTION OF SYMBOLS 1 Oxide superconducting wire with reinforcing material 2 Oxide superconducting wire 2a Protective layer 3 Reinforcing material 4 Solder (solder layer)

Claims (5)

酸化物超電導線材を挟むように2枚の補強材が配置された補強材付き酸化物超電導線材であって、
前記補強材が、半田を用いて前記酸化物超電導線材に貼り付けられており、
前記酸化物超電導線材の少なくとも前記補強材と対向する面が、銅、ニッケル、あるいはこれらの金属の1種以上を含む合金で覆われている
ことを特徴とする補強材付き酸化物超電導線材。
An oxide superconducting wire with a reinforcing material in which two reinforcing materials are arranged so as to sandwich the oxide superconducting wire,
The reinforcing material is attached to the oxide superconducting wire using solder,
An oxide superconducting wire with a reinforcing material, wherein at least a surface of the oxide superconducting wire facing the reinforcing material is covered with copper, nickel, or an alloy containing one or more of these metals.
長手方向に直交する断面における外周部が半田で覆われていることを特徴とする請求項1に記載の補強材付き酸化物超電導線材。   The oxide superconducting wire with a reinforcing material according to claim 1, wherein an outer peripheral portion in a cross section orthogonal to the longitudinal direction is covered with solder. 前記酸化物超電導線材の長手方向に直交する断面における外周部が、銅、ニッケル、あるいはこれらの金属の1種以上を含む合金で覆われていることを特徴とする請求項1または請求項2に記載の補強材付き酸化物超電導線材。   The outer peripheral part in the cross section orthogonal to the longitudinal direction of the said oxide superconducting wire is covered with copper, nickel, or the alloy containing 1 or more types of these metals, The Claim 1 or Claim 2 characterized by the above-mentioned. An oxide superconducting wire with a reinforcing material as described. 前記半田が、Pb−Sn系、Ag−Sn系、Sn−Cu系、Pb−Sn−Ag系、Pb−Sn−Cu系、Sn−Ag−Cu系のいずれかの系の半田であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の補強材付き酸化物超電導線材。   The solder is Pb—Sn, Ag—Sn, Sn—Cu, Pb—Sn—Ag, Pb—Sn—Cu, or Sn—Ag—Cu solder. The oxide superconducting wire with a reinforcing material according to any one of claims 1 to 3, wherein the oxide superconducting wire has a reinforcing material. 前記補強材の材質が、
ニッケル、鉄、クロム、またはこれらの金属の1種以上を含む合金、
あるいは、炭素、珪素、またはこれらの1種以上を含む繊維が用いられたフレキシブルな材料であることを特徴とする請求項1ないし請求項4のいずれか1項に記載の補強材付き酸化物超電導線材。
The material of the reinforcing material is
Nickel, iron, chromium, or an alloy containing one or more of these metals,
Alternatively, the oxide superconductivity with reinforcing material according to any one of claims 1 to 4, which is a flexible material using carbon, silicon, or a fiber containing one or more of these. wire.
JP2012089290A 2012-04-10 2012-04-10 Oxide superconducting wire with reinforcement member Pending JP2013218915A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012089290A JP2013218915A (en) 2012-04-10 2012-04-10 Oxide superconducting wire with reinforcement member
EP13775960.1A EP2838090A4 (en) 2012-04-10 2013-04-01 Oxide superconducting wire having reinforcing materials
CN201380019346.XA CN104221097A (en) 2012-04-10 2013-04-01 Oxide superconducting wire having reinforcing materials
US14/387,991 US20150045230A1 (en) 2012-04-10 2013-04-01 Reinforcing-member-equipped oxide superconducting wire
PCT/JP2013/059809 WO2013153973A1 (en) 2012-04-10 2013-04-01 Oxide superconducting wire having reinforcing materials
KR20147028057A KR20150008062A (en) 2012-04-10 2013-04-01 Oxide superconducting wire having reinforcing materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089290A JP2013218915A (en) 2012-04-10 2012-04-10 Oxide superconducting wire with reinforcement member

Publications (1)

Publication Number Publication Date
JP2013218915A true JP2013218915A (en) 2013-10-24

Family

ID=49590792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089290A Pending JP2013218915A (en) 2012-04-10 2012-04-10 Oxide superconducting wire with reinforcement member

Country Status (1)

Country Link
JP (1) JP2013218915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128025B2 (en) 2014-08-05 2018-11-13 Fujikura Ltd. Oxide superconducting wire, superconducting device, and method for producing oxide superconducting wire
JP2018186037A (en) * 2017-04-27 2018-11-22 昭和電線ケーブルシステム株式会社 Superconductive cable line

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128025B2 (en) 2014-08-05 2018-11-13 Fujikura Ltd. Oxide superconducting wire, superconducting device, and method for producing oxide superconducting wire
JP2018186037A (en) * 2017-04-27 2018-11-22 昭和電線ケーブルシステム株式会社 Superconductive cable line

Similar Documents

Publication Publication Date Title
EP3133612B1 (en) Oxide superconducting wire material and oxide superconducting wire material production method
JP5326573B2 (en) Superconducting tape and method for producing superconducting tape
JP5421170B2 (en) Superconducting current lead
JP2016522530A (en) Reinforced superconducting wire and method for manufacturing the same
US20200028061A1 (en) Connection structure
KR102562414B1 (en) Superconducting wire and superconducting coil
WO2013153973A1 (en) Oxide superconducting wire having reinforcing materials
JP4391403B2 (en) Magnesium diboride superconducting wire connection structure and connection method thereof
JP2017050242A (en) Connection structure of oxide superconducting wire rod and method for producing the same
EP3576107B1 (en) Connection structure for superconductor wires
JP2013218915A (en) Oxide superconducting wire with reinforcement member
JP6734092B2 (en) Superconducting wire connection structure
JP6329736B2 (en) Laminated pancake type superconducting coil and superconducting equipment provided with the same
JP2011040176A (en) Superconducting tape wire and superconducting coil using the same
JP2011108918A (en) Superconductive coil
KR101535844B1 (en) METHOD OF SPLICING AND REINFORCING OF SPLICING PART FOR PERSISTENT CURRENT MODE OF 2G ReBCO HIGH TEMPERATURE SUPERCONDUCTORS
JP2014220194A (en) Oxide superconductive wire material and production method thereof
JP6751054B2 (en) Oxide superconducting wire, superconducting coil, and method for manufacturing oxide superconducting wire
JP5701247B2 (en) Oxide superconducting wire connection structure and connection method
JP2013218914A (en) Oxide superconducting wire with reinforcement member
JP6232450B2 (en) Oxide superconducting wire
JP2015035425A (en) Oxide superconductive wire and production method thereof
JP2011165625A (en) Oxide superconductive wire material
JP2017152210A (en) Oxide superconducting wire and manufacturing method therefor
JPWO2016185751A1 (en) Superconducting wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151005