JP2013215682A - Water treatment method and water treatment apparatus used for the water treatment method - Google Patents

Water treatment method and water treatment apparatus used for the water treatment method Download PDF

Info

Publication number
JP2013215682A
JP2013215682A JP2012089119A JP2012089119A JP2013215682A JP 2013215682 A JP2013215682 A JP 2013215682A JP 2012089119 A JP2012089119 A JP 2012089119A JP 2012089119 A JP2012089119 A JP 2012089119A JP 2013215682 A JP2013215682 A JP 2013215682A
Authority
JP
Japan
Prior art keywords
water
treated
ferrous
water treatment
treated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012089119A
Other languages
Japanese (ja)
Inventor
Taisuke Nose
泰祐 能勢
Yuzo Yokoyama
祐三 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2012089119A priority Critical patent/JP2013215682A/en
Publication of JP2013215682A publication Critical patent/JP2013215682A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment method by which water treatment can be efficiently carried out even in a neutral region and an alkali region without requiring much energy cost and a large-sized apparatus, and to provide a water treatment apparatus used for the water treating method.SOLUTION: A water treatment method is configured such that a streamer discharge is generated between a linear electrode 3 and a cylindrical electrode 4 which are provided in a treatment chamber 2, water W to be treated is made into water droplets and supplied in a discharge space, and substances to be treated in the water droplet M is subjected to decomposition treatment by active species generated by the discharge in the discharge space. At least either a water-soluble ferrous salt or its aqueous solution is added to at least one of the water W to be treated, treated water W1 obtained by making the water W to be treated into the water droplets and passing through the inside of the discharge space, and mixed water of the water W to be treated and the treated water W1.

Description

本発明は、上水、下水、排水等に含有される有機物、無機物、微生物を分解処理する水処理方法及びこの水処理方法に用いる水処理装置に関する。   The present invention relates to a water treatment method for decomposing organic substances, inorganic substances, and microorganisms contained in tap water, sewage, waste water, and the like, and a water treatment apparatus used in this water treatment method.

従来から、上水、下水、産業排水、プールなどの分野で、水中の有機物の酸化分解、殺菌、脱臭等の処理のためにオゾンが用いられている(特許文献1参照)。
しかしながら、オゾンは酸化力が弱く、親水化、低分子化はできても無機化することはできない。また、ダイオキシン等の難分解性有機物は分解できない。
Conventionally, ozone has been used for treatments such as oxidative decomposition, sterilization, and deodorization of organic substances in water in fields such as clean water, sewage, industrial wastewater, and pools (see Patent Document 1).
However, ozone has a weak oxidizing power and cannot be mineralized even if it can be made hydrophilic and low molecular. In addition, hardly decomposable organic substances such as dioxins cannot be decomposed.

そこで、処理能力を向上させるために、放電によりオゾンを発生させるとともに、オゾンより酸化力が強いOHラジカルやOラジカル等を発生させ、このオゾン及びラジカルを含む放電空間(放電場)に被処理水を曝すことによって、オゾンだけでなく、ラジカルによっても酸化処理するようにした水処理装置が提案されている(特許文献2参照)。
しかし、ラジカルは寿命が短く、消滅しやすく、そのため効率が悪く、上記のような先に提案された水処理装置ではラジカルによる酸化作用を十分に発揮させることができない。
Therefore, in order to improve the treatment capacity, ozone is generated by discharge, and OH radicals, O radicals, and the like that have stronger oxidizing power than ozone are generated, and the water to be treated is discharged in a discharge space (discharge field) containing the ozone and radicals. A water treatment apparatus has been proposed in which oxidation treatment is performed not only by ozone but also by radicals by exposure to water (see Patent Document 2).
However, radicals have a short lifetime and tend to disappear, so that the efficiency is low, and the water treatment apparatus previously proposed cannot sufficiently exhibit the oxidizing action by radicals.

そこで、本発明の発明者は、接地電極である円筒電極の中心軸に沿って電圧印加電極である線状電極を設け、線状電極に高電圧を印加して両電極間で放電を生じさせるとともに、この放電空間に被処理水を水滴状にして供給し、放電空間内で生じるラジカルやオゾン等の活性種によって被処理水中の処理対象物質を分解処理するようにした水処理装置を先に提案している(特許文献3参照)。
すなわち、この水処理装置は、放電によってラジカルやオゾンをつぎつぎに発生させるとともに、被処理水を水滴化して、このラジカルやオゾンとの接触表面積を上げることによって処理効率を良くしている。
Therefore, the inventor of the present invention provides a linear electrode as a voltage application electrode along the central axis of the cylindrical electrode as a ground electrode, and applies a high voltage to the linear electrode to cause discharge between both electrodes. At the same time, a water treatment apparatus is provided in which water to be treated is supplied to the discharge space in the form of water droplets, and the treatment target substance in the water to be treated is decomposed by active species such as radicals and ozone generated in the discharge space. It has been proposed (see Patent Document 3).
In other words, this water treatment apparatus generates radicals and ozone one after another by electric discharge, and improves the treatment efficiency by increasing the surface area of contact with the radicals and ozone by forming water to be treated into water droplets.

ところで、この水処理装置を用いた水処理方法において、放電空間での処理効率を上げるには、水滴をできるだけ長時間放電空間に止まらせる必要がある。しかし、水滴が長時間放電空間に止まっているようにするには、電極を大きく長くすることが必要になるため、装置を大型化せざるを得ない。また、装置の大型化に伴い、放電に要する電気エネルギーも多量に必要となり、コストがかかるという問題がある。   By the way, in the water treatment method using this water treatment apparatus, in order to increase the treatment efficiency in the discharge space, it is necessary to stop water droplets in the discharge space as long as possible. However, in order for the water droplets to remain in the discharge space for a long time, it is necessary to make the electrode large and long, and thus the apparatus must be enlarged. In addition, as the apparatus becomes larger, a large amount of electric energy is required for discharging, which increases the cost.

そこで、本発明の発明者は、上記問題を解消するために、放電空間を通過して処理された水滴を処理水として処理水貯槽の促進酸化処理部に貯めるとともに、促進酸化処理部に貯まった処理水中に鉄粉を供給して処理水中の残存処理対象物質を促進酸化することによって、放電空間の大きさを小さくしても十分な処理能力を得るようにした水処理方法をさらに提案している(特許文献4参照)。   Therefore, in order to solve the above problem, the inventor of the present invention stores the water droplets processed through the discharge space as treated water in the accelerated oxidation treatment unit of the treated water storage tank and stored in the accelerated oxidation treatment unit. Proposing further a water treatment method to obtain sufficient treatment capacity even if the size of the discharge space is reduced by supplying iron powder into the treated water and promoting oxidation of the remaining treatment target substance in the treated water (See Patent Document 4).

特開平9−267096号公報Japanese Patent Laid-Open No. 9-267096 特開2000−279977号公報JP 2000-279977 A 特開2009−241055号公報JP 2009-241055 A 特開2011−251275号公報JP 2011-251275 A

しかし、上記特許文献4の水処理方法の場合、鉄粉の表面に生じる第一鉄イオンによって処理水中の過酸化水素からOHラジカルを発生させて処理水中の残存処理対象物質を促進酸化させるようになっているため、処理効率を上げるには、処理水のpHを3以下の酸性域にしなければ、鉄粉表面から第一鉄イオンを多量に溶出させることができない。
したがって、処理装置で処理される被処理水のpHが中性やアルカリ域にある場合、処理効率を上げるには、被処理水あるいは促進酸化処理部に貯められた処理水に一旦酸を添加してpHが酸性となるように調整する必要がある。
However, in the case of the water treatment method of Patent Document 4, OH radicals are generated from hydrogen peroxide in the treated water by ferrous ions generated on the surface of the iron powder so as to promote oxidation of the remaining treatment target substance in the treated water. Therefore, in order to increase the treatment efficiency, ferrous ions cannot be eluted in a large amount from the surface of the iron powder unless the pH of the treated water is set to an acidic range of 3 or less.
Therefore, when the pH of the water to be treated to be treated by the treatment apparatus is in a neutral or alkaline range, in order to increase the treatment efficiency, an acid is once added to the treated water or the treated water stored in the accelerated oxidation treatment section. Therefore, it is necessary to adjust the pH to be acidic.

一方、上記水処理装置で処理された処理水のpHが酸性域あるいはアルカリ域にある場合、そのまま処理水を放流などできないため、中和処理する必要がある。
したがって、被処理水のpHが中性やアルカリ域にある場合、酸による前処理と、処理後の中和処理の二工程が余分になるとともに、中和処理によって余分な汚泥の発生が伴い、処理コスト低減が不十分となるおそれがある。
On the other hand, when the pH of the treated water treated by the water treatment apparatus is in the acidic region or the alkaline region, the treated water cannot be discharged as it is, and thus it is necessary to neutralize it.
Therefore, when the pH of the water to be treated is in a neutral or alkaline range, the two steps of the pretreatment with acid and the neutralization treatment after the treatment become extra, and the generation of extra sludge is caused by the neutralization treatment. There is a possibility that the processing cost reduction is insufficient.

本発明は、上記事情に鑑みて、エネルギーコストをあまりかけず、かつ、装置を大型化することなく、中性域でもアルカリ域でも水処理を効率よく行える水処理方法及びこの水処理方法に用いる水処理装置を提供することを目的としている。   In view of the above circumstances, the present invention is used for a water treatment method capable of efficiently performing water treatment in a neutral region or an alkali region without much energy cost and without increasing the size of the apparatus, and the water treatment method. The object is to provide a water treatment device.

上記目的を達成するために、本発明にかかる水処理方法(以下、「本発明の水処理方法」と記す)は、放電空間内に被処理水を水滴化して供給し、放電空間内で放電によって発生した活性種によって、水滴中の処理対象物質を分解処理するようにした水処理方法であって、被処理水と、この被処理水を水滴化して放電空間内を通過させることによって得られた処理水と、前記被処理水と前記処理水の混合水の少なくともいずれかに水溶性の第一鉄塩およびその水溶液の少なくともいずれかを添加することを特徴としている。   In order to achieve the above object, a water treatment method according to the present invention (hereinafter referred to as “water treatment method of the present invention”) supplies water to be treated in the form of water droplets in a discharge space, and discharges in the discharge space. Is a water treatment method in which a substance to be treated in water droplets is decomposed by the active species generated by the water, and is obtained by making the water to be treated and the water to be treated into water droplets and passing through the discharge space. In addition, at least one of a water-soluble ferrous salt and an aqueous solution thereof is added to at least one of the treated water and the mixed water of the water to be treated and the treated water.

本発明において、放電空間を形成する放電方式としては、活性種が形成されれば特に限定されないが、コロナ放電が好ましく、コロナ放電中でもストリーマ放電が好ましい。
上記活性種とは、Oラジカル、OHラジカルなどのラジカル及びオゾンを意味する。
In the present invention, the discharge method for forming the discharge space is not particularly limited as long as active species are formed, but corona discharge is preferable, and streamer discharge is preferable among corona discharges.
The active species means radicals such as O radical and OH radical, and ozone.

本発明の水処理方法は、第一鉄塩あるいはその水溶液の添加によって、実質的に被処理水あるいは処理水中に第一鉄イオンが添加されたことになるが、処理水あるいは処理水中の第1鉄イオン濃度は、常に0.1mM/L以上にすることが好ましく、常に0.3〜1.0mM/Lとすることがより好ましい。
すなわち、濃度が低すぎると、分解処理の効果が乏しく、濃度が高すぎると汚泥等の発生が多くなり、汚泥処理の問題が生じるおそれがある。
In the water treatment method of the present invention, ferrous ions are substantially added to the treated water or treated water by adding the ferrous salt or an aqueous solution thereof. The iron ion concentration is preferably always 0.1 mM / L or more, more preferably 0.3 to 1.0 mM / L.
That is, if the concentration is too low, the effect of the decomposition treatment is poor, and if the concentration is too high, the generation of sludge increases, which may cause a problem of sludge treatment.

上記第一鉄塩としては、特に限定されないが、たとえば、第一鉄イオンを含む塩が、塩化第一鉄(II)、硫酸第一鉄(II)、硝酸第一鉄(II)、リン酸第一鉄(II)、硫酸第一鉄(II)アンモニウム及びそれらの水和物が挙げられ、これらが単独であるいは複数用いられてよい。   Although it does not specifically limit as said ferrous salt, For example, the salt containing a ferrous ion is ferrous chloride (II), ferrous sulfate (II), ferrous nitrate (II), phosphoric acid Examples thereof include ferrous (II), ferrous (II) sulfate, and hydrates thereof, and these may be used alone or in combination.

被処理水のpHは、特に限定されないが、3〜10が好ましい。すなわち、pHが10を超えると、不溶性の水酸化鉄が形成され、第一鉄イオンの濃度が少なく十分な分解効果が得られなくなる恐れがあり、pHが3未満になると、やはり十分な分解効果が得られなくなるおそれがある。   Although the pH of to-be-processed water is not specifically limited, 3-10 are preferable. That is, when the pH exceeds 10, insoluble iron hydroxide is formed, and there is a possibility that the concentration of ferrous ions is small and a sufficient decomposition effect may not be obtained. May not be obtained.

本発明の水処理方法に用いられる水処理装置としては、特に限定されないが、少なくとも一対の円筒状電極及び線状電極と、円筒状電極と線状電極との間に高電圧を印加して放電空間を形成する高圧電源とを備えているものが挙げられ、さらに、放電空間を通って処理された処理水を貯留する処理水貯槽と、処理水貯槽の処理水を再び放電空間に供給する循環路を備える構成としてもよい。   The water treatment apparatus used in the water treatment method of the present invention is not particularly limited, and discharge is performed by applying a high voltage between at least a pair of cylindrical electrodes and linear electrodes, and between the cylindrical electrodes and linear electrodes. A high-voltage power supply that forms a space, and a treated water storage tank for storing treated water treated through the discharge space, and a circulation for supplying treated water from the treated water storage tank to the discharge space again. It is good also as a structure provided with a path.

本発明において、放電方式は、高エネルギーの電子や紫外線が発生する放電が発生すれば、特に限定されないが、一方の電極を電圧印加電極とし、他方の電極を接地電極として、電圧印加電極に高圧パルス電圧を印加する方式が挙げられる。
上記電圧印加電極及び接地電極の材質は、特に限定されないが、耐食性を考慮するとチタン、ステンレス鋼、カーボンが好ましい。
In the present invention, the discharge method is not particularly limited as long as a discharge that generates high-energy electrons or ultraviolet rays occurs. However, one electrode is used as a voltage application electrode, the other electrode is used as a ground electrode, and a high voltage is applied to the voltage application electrode. A method of applying a pulse voltage can be mentioned.
The materials for the voltage application electrode and the ground electrode are not particularly limited, but titanium, stainless steel, and carbon are preferable in consideration of corrosion resistance.

電極の形状は、特に限定されないが、接地電極の場合、特に限定されないが、円筒電極、円筒メッシュ電極などの円筒状電極、平板電極などが挙げられ、円筒状電極が好適である。
一方、電圧印加電極は、例えば、接地電極が円筒状電極の場合、円筒状電極の中心軸に沿って設けられるワイヤー電極、ネジ状電極、剣山状電極、ワイヤーブラシ状電極などが挙げられ、接地電極が平板電極の場合、この平板電極に平行に設けられる平板電極が挙げられる。
The shape of the electrode is not particularly limited, but in the case of the ground electrode, it is not particularly limited, and examples thereof include a cylindrical electrode such as a cylindrical electrode and a cylindrical mesh electrode, a flat plate electrode, and the like, and a cylindrical electrode is preferable.
On the other hand, for example, when the ground electrode is a cylindrical electrode, the voltage application electrode includes a wire electrode, a screw electrode, a sword mountain electrode, a wire brush electrode, and the like provided along the central axis of the cylindrical electrode. When the electrode is a flat plate electrode, a flat plate electrode provided in parallel to the flat plate electrode is exemplified.

また、電圧印加電極及び接地電極は、処理室内に1対だけでなく複数対設けるようにしても構わない。   Further, a plurality of pairs of voltage application electrodes and ground electrodes may be provided in the processing chamber instead of only one pair.

電圧印加電極と接地電極との間に印加される放電電圧は、放電が起きる電圧であれば特に限定されない。   The discharge voltage applied between the voltage application electrode and the ground electrode is not particularly limited as long as it is a voltage at which discharge occurs.

本発明において、処理対象物質としては、特に限定されないが、各種有機化合物、細菌や臭気成分などの有機物が挙げられる。
本発明において、水滴化手段としては、特に限定されず、例えば、噴霧ノズルやシャワーノズルが挙げられる。
なお、上記水滴は、特に限定されないが、放電空間内で発生するラジカル及びオゾンとの接触を高めるために、出来るだけ細かい水滴とすることが好ましい。
In the present invention, the substance to be treated is not particularly limited, and examples thereof include various organic compounds, organic substances such as bacteria and odor components.
In the present invention, the water droplet forming means is not particularly limited, and examples thereof include a spray nozzle and a shower nozzle.
In addition, although the said water droplet is not specifically limited, In order to improve the contact with the radical and ozone which generate | occur | produce in a discharge space, it is preferable to use a water droplet as fine as possible.

本発明の水処理装置において、処理水貯槽は、特に限定されないが、処理水を貯留するとともに、処理水貯槽の処理水を再び放電空間に供給する循環路を備えている構成としてもよい。
すなわち、循環によって処理水を放電空間での処理及び処理水貯槽での処理を繰り返し行うことができ、装置全体を小型化しても高い処理性能を得ることができる。
In the water treatment apparatus of the present invention, the treated water storage tank is not particularly limited, but may be configured to have a circulation path for storing treated water and supplying treated water from the treated water storage tank to the discharge space again.
That is, the treatment water can be repeatedly treated in the discharge space and the treatment water storage tank by circulation, and high treatment performance can be obtained even if the entire apparatus is downsized.

本発明の水処理方法は、以上のように、放電空間内に被処理水を水滴化して供給し、放電空間内で放電によって発生した活性種によって、水滴中の処理対象物質を分解処理するようにした水処理方法であって、被処理水と、この被処理水を水滴化して放電空間内を通過させることによって得られた処理水と、前記被処理水と前記処理水の混合水の少なくともいずれかに水溶性の第一鉄塩およびその水溶液の少なくともいずれかを添加するようにした。   In the water treatment method of the present invention, as described above, the water to be treated is supplied as droplets in the discharge space, and the treatment target substance in the water droplet is decomposed by the active species generated by the discharge in the discharge space. A water treatment method, treated water, treated water obtained by making the treated water into water droplets and passing through the discharge space, and at least mixed water of the treated water and the treated water At least one of a water-soluble ferrous salt and an aqueous solution thereof was added to either.

すなわち、被処理水を水滴化して放電空間内を通過させることによって、放電空間内で発生するオゾン及びラジカルに水滴中の処理対象物質を接触させて、水滴中の処理対象物質を分解処理することができる。
また、放電によって、過酸化水素が形成され、この過酸化水素が処理水貯槽内に受けられた処理水中に溶け込む。
That is, by subjecting the water to be treated to water droplets and passing through the discharge space, the material to be treated in the water droplets is brought into contact with ozone and radicals generated in the discharge space to decompose the material to be treated in the water droplets. Can do.
Moreover, hydrogen peroxide is formed by discharge, and this hydrogen peroxide dissolves in the treated water received in the treated water storage tank.

そして、処理水貯槽では、被処理水、処理水あるいは被処理水と処理水の混合水に添加された第一鉄イオンが放電によって発生した過酸化水素に触媒的に反応し、酸化力の強いOHラジカルを発生させて、処理水あるいは混合水中に残存する処理対象物質を分解する。したがって、放電空間を通過することによって分解処理されなかった残存処理対象物質が、素早く、かつ、効率よく分解される。   In the treated water storage tank, ferrous ions added to the treated water, treated water, or mixed water of treated water and treated water react catalytically with hydrogen peroxide generated by discharge, and have strong oxidizing power. OH radicals are generated to decompose the material to be treated remaining in the treated water or mixed water. Therefore, the remaining target substance that has not been decomposed by passing through the discharge space is quickly and efficiently decomposed.

以上のように、本発明の水処理方法によれば、有機化合物等の処理対象物質の分解を放電空間で発生するオゾンやラジカルによる分解だけでなく、電気エネルギーをかけることのなく、第一鉄イオンを加えるだけで、過酸化水素との反応によりOHラジカルを生成する、いわゆるフェントン反応を利用して残存処理対象物質を分解処理するようにしたので、エネルギーコストをあまりかけず、かつ、装置を大型化することなく、水処理を効率よく行うことができる。   As described above, according to the water treatment method of the present invention, the ferrous iron is not decomposed not only by ozone and radicals generated in the discharge space, but also by applying electric energy to decompose the target substance such as an organic compound. Since the remaining material to be treated is decomposed using the so-called Fenton reaction, which generates OH radicals by reaction with hydrogen peroxide simply by adding ions, so that the energy cost is not so much and the device is Water treatment can be performed efficiently without increasing the size.

しかも、第一鉄塩あるいはその水溶液を被処理水、処理水あるいは被処理水と処理水の混合水に添加するようにしたので、被処理水のpHが中性域やアルカリ域にある場合であっても、鉄粉添加の場合のように、被処理水を一旦酸性となるように調整しなくても、第一鉄イオンの濃度を最適な濃度に保つことができ、フェントン反応が効率よく進行し、有機物を分解することができる。すなわち、酸性域への調整工程や、その後の処理水の中和工程が不要となる。   Moreover, since ferrous salt or an aqueous solution thereof is added to the treated water, treated water, or mixed water of treated water and treated water, the pH of the treated water is in a neutral range or an alkaline range. Even if iron powder is added, the concentration of ferrous ions can be maintained at an optimum level without adjusting the water to be treated once to be acidic, and the Fenton reaction is efficiently performed. It can progress and decompose organic matter. That is, the adjustment process to an acidic region and the subsequent neutralization process of the treated water become unnecessary.

本発明にかかる水処理装置の1つの実施の形態を模式的に説明する図である。It is a figure which illustrates typically one embodiment of the water treatment equipment concerning the present invention. 図1の水処理装置の高電圧パルス発生装置の回路図である。It is a circuit diagram of the high voltage pulse generator of the water treatment apparatus of FIG. 実施例及び比較例で用いた水処理装置の処理室の横断面の概略図である。It is the schematic of the cross section of the process chamber of the water treatment apparatus used by the Example and the comparative example. 実施例1、比較例1で調べた第一鉄イオン濃度によるインディゴカルミンの分解速度を対比してあらわすグラフである。It is a graph showing the decomposition rate of indigo carmine by the ferrous ion concentration investigated in Example 1 and Comparative Example 1 in comparison. 実施例2で調べた第一鉄イオンを一定濃度添加した時のpHの変化によるインディゴカルミンの分解速度を比較してあらわすグラフである。It is a graph which compares the decomposition rate of indigo carmine by the change of pH when the ferrous ion investigated in Example 2 is added by fixed concentration. 実施例3及び比較例2で調べた硫酸第一鉄と鉄粉とのインディゴカルミンの分解速度を対比してあらわすグラフである。It is a graph showing the decomposition rate of indigo carmine of ferrous sulfate and iron powder investigated in Example 3 and Comparative Example 2 in comparison.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1は、本発明にかかる水処理方法に用いる水処理装置の1つの実施の形態をあらわしている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG. 1 shows one embodiment of a water treatment apparatus used in the water treatment method according to the present invention.

図1に示すように、この水処理装置1aは、処理室2と、円筒状電極3と、線状電極4と、処理水貯槽5と、ポンプ6と、水滴化手段としてのシャワーノズル7と、循環路となる被処理水供給ホース71と、鉄イオン供給装置9と、高圧電源である高電圧パルス発生装置10と、を備えている。
処理室2は、例えば、アクリル樹脂等の絶縁材料で形成され、あるいは、ステンレス鋼の筒状体の内面が絶縁材料で被覆された形成されて、円筒状をしている。
As shown in FIG. 1, the water treatment apparatus 1a includes a treatment chamber 2, a cylindrical electrode 3, a linear electrode 4, a treated water storage tank 5, a pump 6, and a shower nozzle 7 as a water droplet forming means. The to-be-processed water supply hose 71 used as a circulation path, the iron ion supply apparatus 9, and the high voltage pulse generator 10 which is a high voltage power supply are provided.
The processing chamber 2 is formed of, for example, an insulating material such as an acrylic resin, or the inner surface of a stainless steel cylindrical body is covered with an insulating material, and has a cylindrical shape.

処理室2は、上蓋23を備え、この上蓋23にシャワーノズル設置孔23aが設けられているとともに、図示していないが、酸素が25〜90容量%、窒素が残部である混合気体が、処理室2内に充満するように供給する混合気体供給手段(例えば、酸素ボンベと、窒素ボンベと、混合器とを備えたもの)が接続されている。
また、処理室2の下端部には、排気管25が設けられている。排気管25の途中または出口にはオゾン除去フィルター等のオゾン除去装置を設けることが好ましい。
The processing chamber 2 includes an upper lid 23, and a shower nozzle installation hole 23 a is provided in the upper lid 23, and although not shown, a mixed gas in which oxygen is 25 to 90% by volume and nitrogen is the balance is treated. A mixed gas supply means (for example, an oxygen cylinder, a nitrogen cylinder, and a mixer) that supplies the chamber 2 so as to fill the chamber 2 is connected.
Further, an exhaust pipe 25 is provided at the lower end of the processing chamber 2. It is preferable to provide an ozone removing device such as an ozone removing filter in the middle or the outlet of the exhaust pipe 25.

円筒状電極3は、例えば、ステンレス鋼製の2.5メッシュ、線径1.1mmの金網を円筒状に加工することによって得られ、外径が処理室本体21の内径より少し小さくなっている。
線状電極4は、例えば、直径1mmのチタン鋼線で形成され、円筒状電極3の中心軸に沿うように設けられている。
The cylindrical electrode 3 is obtained, for example, by processing a stainless steel 2.5 mesh, wire net of 1.1 mm into a cylindrical shape, and the outer diameter is slightly smaller than the inner diameter of the processing chamber body 21. .
The linear electrode 4 is formed of, for example, a titanium steel wire having a diameter of 1 mm, and is provided along the central axis of the cylindrical electrode 3.

処理水貯槽5は、被処理水Wおよび処理室2内で処理された処理水W1を貯留することかできるとともに、ポンプ6に接続されている。
また、処理水貯槽5は、図示していないが、処理水貯槽5内の被処理水Wおよび処理水W1を攪拌する攪拌装置および排水配管を備えている。
The treated water storage tank 5 can store the treated water W and the treated water W1 treated in the treatment chamber 2 and is connected to the pump 6.
Moreover, although not shown in figure, the treated water storage tank 5 is equipped with the stirring apparatus and drainage piping which stir the to-be-processed water W and the treated water W1 in the treated water storage tank 5. FIG.

上記攪拌装置としては、エアーバブリング装置や、攪拌スクリュー等が用いられる。
上記排水配管は、処理水貯槽5内の最終処理水を中和処理工程、沈殿処理工程、河川等に排水できるようになっている。
ポンプ6は、被処理水Wを、被処理水供給ホース71を介してシャワーノズル7に送るようになっている。
An air bubbling device, a stirring screw, or the like is used as the stirring device.
The drainage pipe can drain the final treated water in the treated water storage tank 5 to a neutralization treatment process, a precipitation treatment process, a river or the like.
The pump 6 is configured to send the treated water W to the shower nozzle 7 via the treated water supply hose 71.

シャワーノズル7は、被処理水供給ホース71を介して送られてきた被処理水を粒径が1500μm以下の水滴からなるミスト状態にして円筒状電極3の上部開口に向かって噴射するようになっている。
また、シャワーノズル7の噴角は、噴射される被処理水ミストMの最大広がり部で放電空間の最外縁である円筒状電極3の内壁面に沿うような角度に調整されている。
The shower nozzle 7 sprays the water to be treated, which has been sent through the water to be treated supply hose 71, into a mist state composed of water droplets having a particle diameter of 1500 μm or less toward the upper opening of the cylindrical electrode 3. ing.
Moreover, the spray angle of the shower nozzle 7 is adjusted to an angle along the inner wall surface of the cylindrical electrode 3 that is the outermost edge of the discharge space at the maximum spread portion of the sprayed water mist M to be sprayed.

鉄イオン供給装置9は、例えば、硫酸第一鉄などの水溶性の第一鉄塩粉末91を処理水貯槽5に供給するようになっている。   The iron ion supply device 9 supplies water-soluble ferrous salt powder 91 such as ferrous sulfate to the treated water storage tank 5, for example.

高電圧パルス発生装置10は、図2に示すように、高圧直流電源101、コンデンサ102、抵抗103、トリガトロンギャップスイッチ104、パルストランス105およびトリガ回路106を備えている。   As shown in FIG. 2, the high-voltage pulse generator 10 includes a high-voltage DC power supply 101, a capacitor 102, a resistor 103, a trigger tron gap switch 104, a pulse transformer 105, and a trigger circuit 106.

そして、高電圧パルス発生装置10は、以下のように動作する。
すなわち、高圧直流電源101からの電流が抵抗103を介してコンデンサ102に供給され、コンデンサ102が充電される。目標電圧までコンデンサ102が充電された後、トリガ回路106からの高電圧のトリガパルスによりトリガトロンギャップスイッチ104がオン状態になる。このとき、コンデンサ102に充電された電荷がパルストランス105の1次側に流れ込み、相互インダクタンスにより2次側にパルス状の誘起電圧が発生する。
The high voltage pulse generator 10 operates as follows.
That is, the current from the high voltage DC power supply 101 is supplied to the capacitor 102 via the resistor 103, and the capacitor 102 is charged. After the capacitor 102 is charged to the target voltage, the trigger tron gap switch 104 is turned on by a high voltage trigger pulse from the trigger circuit 106. At this time, the electric charge charged in the capacitor 102 flows into the primary side of the pulse transformer 105, and a pulse-like induced voltage is generated on the secondary side due to the mutual inductance.

このようにしてパルストランス105の2次側に生じた高電圧パルスは、線状電極4と円筒状電極3との間に印加される。
すなわち、端子107が、線状電極4に導通状態にされ、端子108が円筒状電極4と導通状態にされる。
The high voltage pulse generated on the secondary side of the pulse transformer 105 in this way is applied between the linear electrode 4 and the cylindrical electrode 3.
That is, the terminal 107 is brought into conduction with the linear electrode 4, and the terminal 108 is brought into conduction with the cylindrical electrode 4.

端子107、108間に出力されるパルスの繰り返し数は、トリガ回路106におけるトリガパルスの出力頻度を変えることによって制御される。また出力パルスの電圧は、高圧直流電源101の出力電圧を切り替えることによって制御される。   The number of repetitions of pulses output between the terminals 107 and 108 is controlled by changing the output frequency of the trigger pulse in the trigger circuit 106. The voltage of the output pulse is controlled by switching the output voltage of the high-voltage DC power supply 101.

つぎに、この水処理装置1aを用いた水処理方法を詳しく説明する。
この水処理方法は、処理水貯槽5に有機物等を含む被処理水Wを仕込むとともに、所定量(被処理水中の有機化合物の種類や量に応じて経験的に求められた量、例えば、被処理水中の第一鉄イオン濃度が、常に0.3〜1.0mM/Lとなる量)の第一鉄塩粉末91を、鉄イオン供給装置9から処理水貯槽5内に供給する。
Next, a water treatment method using the water treatment apparatus 1a will be described in detail.
In this water treatment method, treated water W containing organic matter or the like is charged into the treated water storage tank 5, and a predetermined amount (an amount empirically determined according to the type and amount of the organic compound in the treated water, for example, Ferrous salt powder 91 in an amount such that the ferrous ion concentration in the treated water is always 0.3 to 1.0 mM / L) is supplied from the iron ion supply device 9 into the treated water storage tank 5.

そして、高電圧パルス発生装置10によって、円筒状電極3と線状電極4との間に、高電圧をパルス状に印加し、円筒状電極3内に上下方向に円柱状となった放電空間を形成するとともに、ポンプ6を駆動させて、被処理水Wを、被処理水供給ホース71を介してシャワーノズル7に送り、円筒状電極3の上方から円筒状電極3の中心軸方向に向かって水滴化して噴射する。   Then, a high voltage pulse generator 10 applies a high voltage between the cylindrical electrode 3 and the linear electrode 4 in a pulsed manner, and a discharge space having a cylindrical shape in the vertical direction is formed in the cylindrical electrode 3. At the same time, the pump 6 is driven to feed the treated water W to the shower nozzle 7 via the treated water supply hose 71, from above the cylindrical electrode 3 toward the central axis of the cylindrical electrode 3. Water droplets are jetted.

そして、噴射された被処理水Wの水滴Mが、円筒状電極3内部に形成された放電空間で発生するオゾンやラジカルに接触して被処理水W(水滴M)中の有機化合物等の分解処理物質が分解された処理水W1となって処理水貯槽5に落下し、処理水貯槽5の被処理水Wに混ざった状態の混合水となった状態で貯められ、再びこの混合水が被処理水Wとなってシャワーノズル7から噴射されるように循環する。
また、放電空間で発生する放電によって、過酸化水素が発生し、この過酸化水素が処理水に溶け込んで、処理水貯槽5内に入り込む。
そして、処理水Wに溶け込んだ過酸化水素が、処理水貯槽5内の第一鉄イオンと反応してOHラジカルが発生し、このOHラジカルの処理水貯槽5中に貯留された被処理水W中の有機物を分解する。
And the water droplet M of the to-be-processed water W injected contacts the ozone and radical which generate | occur | produce in the discharge space formed in the cylindrical electrode 3, and decomposes | disassembles the organic compound etc. in the to-be-processed water W (water droplet M) The treated water is decomposed into treated water W1 and falls into the treated water storage tank 5 and is stored in a mixed water state mixed with the treated water W in the treated water storage tank 5. It circulates so as to be treated water W and sprayed from the shower nozzle 7.
Further, hydrogen peroxide is generated by the discharge generated in the discharge space, and this hydrogen peroxide is dissolved in the treated water and enters the treated water storage tank 5.
Then, the hydrogen peroxide dissolved in the treated water W reacts with ferrous ions in the treated water storage tank 5 to generate OH radicals, and the treated water W stored in the treated water storage tank 5 of the OH radicals. Decomposes organic matter inside.

最後に、所定時間経過し、十分に分解処理が行われ、処理水貯槽5内の混合水の分解対象物質濃度が規定値以下となると、処理水貯槽5内の処理水を上記排水配管から排水し、再び被処理水Wを処理水貯槽5に仕込み、同様の工程を繰り返し行う。   Finally, when a predetermined time elapses and the decomposition process is sufficiently performed and the concentration of the target substance for decomposition in the mixed water in the treated water storage tank 5 falls below a specified value, the treated water in the treated water storage tank 5 is drained from the drain pipe. Then, the treated water W is again charged into the treated water storage tank 5, and the same process is repeated.

以上のように、この水処理方法によれば、処理水貯槽5内に第一鉄塩粉末を供給し、処理水貯槽中で溶解し、結果として処理水貯槽5中に第一鉄イオンを供給することによって、放電空間内で発生するオゾンやラジカルで分解できなかった残存処理対象物質を促進酸化させて分解するようにしたので、処理室2が小さいものであっても、処理効率が向上する。しかも、放電空間を大きく、かつ長くする必要がないので、放電に要する電気エネルギーも少なくすることができる。   As described above, according to this water treatment method, ferrous salt powder is supplied into the treated water storage tank 5, dissolved in the treated water storage tank, and as a result, ferrous ions are supplied into the treated water storage tank 5. As a result, the residual processing target substance that could not be decomposed by ozone or radicals generated in the discharge space is decomposed by accelerated oxidation, so that the processing efficiency is improved even if the processing chamber 2 is small. . In addition, since it is not necessary to enlarge and lengthen the discharge space, the electrical energy required for the discharge can be reduced.

また、この水処理装置1aは、上記のように、処理室2内には、混合気体供給手段によって、酸素が25〜90容量%、窒素が残部である混合気体が充満するように供給されるので、OHラジカル、Oラジカルが多量に効率よく発生し、より処理を速く行うことができる。   Further, as described above, the water treatment apparatus 1a is supplied into the processing chamber 2 by the mixed gas supply means so that the mixed gas in which oxygen is 25 to 90% by volume and nitrogen is the remainder is filled. Therefore, a large amount of OH radicals and O radicals are efficiently generated, and the treatment can be performed more quickly.

なお、本発明は、上記の実施の形態に限定されない。例えば、上記の実施の形態では、高電圧パルス発生装置を備えていたが、高電圧パルス発生装置は市販のものを別途容易するようにしても構わない。
上記の実施の形態では、被処理水を上方から水滴化して噴射するようにしていたが、円筒状電極がメッシュとなっている場合は、円筒状電極の側面方向から網目を介して円筒状電極内に水滴化された被処理水を供給するようにしても構わない。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the high voltage pulse generator is provided, but a commercially available high voltage pulse generator may be separately provided.
In the above-described embodiment, the water to be treated is sprayed from above and sprayed. However, when the cylindrical electrode is a mesh, the cylindrical electrode is connected from the side of the cylindrical electrode through the mesh. The water to be treated may be supplied into the inside.

また、上記の実施の形態では、処理室内に円筒電極と線状電極が1対しか設けられていなかったが、処理室内に複数対平行に並べるように設けるようにしてもよいし、サークル状に設けるようにしてもよい。シャワーノズルも1つに限らず複数設けるようにしても構わない。
上記の実施の形態では、第一鉄塩粉末を処理水貯槽に直接供給するようにしていたが、第一鉄塩を水溶液化して処理水貯槽に供給するようにしても構わないし、
In the above embodiment, only one pair of cylindrical electrode and linear electrode is provided in the processing chamber, but a plurality of pairs may be arranged in parallel in the processing chamber, or in a circle shape. You may make it provide. The number of shower nozzles is not limited to one, and a plurality of shower nozzles may be provided.
In the above embodiment, the ferrous salt powder was directly supplied to the treated water storage tank, but the ferrous salt may be made into an aqueous solution and supplied to the treated water storage tank,

上記の実施の形態では、処理水が、被処理水として再びシャワーノズルから噴射される循環式であったが、被処理水タンクを別途設け、処理水貯槽では処理室で処理された処理水のみを貯留し、第一鉄イオンによるフェントン処理完了後に排水するようにしてもよい。また、かかる方式をとる場合、第一鉄塩は、被処理水タンクの被処理水に添加するようにしても構わないし、被処理水供給ホースの途中で第一鉄塩の水溶液を被処理水中に混合したのち、シャワーノズルから処理室に噴射するようにしても構わない。   In the above embodiment, the treated water is a circulation type sprayed again from the shower nozzle as treated water, but a treated water tank is separately provided, and only treated water treated in the treatment chamber is treated in the treated water storage tank. May be stored and drained after completion of the Fenton treatment with ferrous ions. Moreover, when taking this system, the ferrous salt may be added to the treated water in the treated water tank, and the aqueous solution of the ferrous salt is passed through the treated water supply hose in the treated water. After mixing, it may be sprayed from the shower nozzle into the processing chamber.

以下に、本発明の具体的な実施例を比較例と対比させて説明する。   Specific examples of the present invention will be described below in comparison with comparative examples.

(実施例1)
処理室2内に、図3に示すように、6対の円筒状電極3及び線状電極4を、1対の円筒状電極3及び線状電極4を中心にして、他の5対の円筒状電極3及び線状電極4を放射状に等間隔で並べた以外は、図1に示す水処理装置1aと同様の水処理装置1bを用い、以下の実験条件で被処理水W中の処理対象物質としてのインディゴカルミンの分解処理を行い、紫外可視分光光度計(日立ハイテクノロジーズ社製商品名U−1900)を用いて610nmでの吸光度によって、被処理水Wの、各第一鉄イオン濃度での単位時間あたりのインディゴカルミンの分解処理速度を調べた。
〔実験条件〕
被処理水W中のインディゴカルミン初期濃度:約20ppm
被処理水W量:7リットル
被処理水Wの噴射速度(循環速度):14L/分
充電電圧:20kV
放電回数:100回/秒
円筒状電極3の性状:2.5メッシュ、線径1.1mm、開孔率79.5%、溶接金網
円筒状電極3の外径:39.5mm
円筒状電極3の長さ(中心軸方向の長さ):200mm×6本
被処理水ミストの粒径:750〜970μm
シャワーノズル7の噴角:30°
第一鉄イオン濃度:0.08、0.33、0.41、0.5、0.58、0.65、
0.83mM/L
シャワーノズル7から円筒状電極までの距離:被処理水ミストMの最外縁が最外部に位置する円筒状電極外縁の上端になるように調整した。
Example 1
In the processing chamber 2, as shown in FIG. 3, six pairs of cylindrical electrodes 3 and linear electrodes 4 are centered on one pair of cylindrical electrodes 3 and linear electrodes 4, and the other five pairs of cylinders. 1 except that the electrode 3 and the linear electrode 4 are arranged radially at equal intervals, and using the water treatment device 1b similar to the water treatment device 1a shown in FIG. 1, the treatment target in the treated water W under the following experimental conditions The indigo carmine as a substance is decomposed, and the concentration of each ferrous ion in the water W to be treated is determined by the absorbance at 610 nm using an ultraviolet-visible spectrophotometer (trade name U-1900, manufactured by Hitachi High-Technologies Corporation). The degradation rate of indigo carmine per unit time was investigated.
[Experimental conditions]
Indigo carmine initial concentration in treated water W: about 20 ppm
Amount of treated water W: 7 liters Injection speed (circulation speed) of treated water W: 14 L / min Charging voltage: 20 kV
Number of discharges: 100 times / second Properties of cylindrical electrode 3: 2.5 mesh, wire diameter 1.1 mm, hole area ratio 79.5%, welded wire mesh Outer diameter of cylindrical electrode 3: 39.5 mm
Length of cylindrical electrode 3 (length in the central axis direction): 200 mm × 6 Particle diameter of water mist to be treated: 750 to 970 μm
Spray angle of shower nozzle 7: 30 °
Ferrous ion concentration: 0.08, 0.33, 0.41, 0.5, 0.58, 0.65,
0.83mM / L
Distance from shower nozzle 7 to cylindrical electrode: The outermost edge of the water mist M to be treated was adjusted to be the upper end of the outer edge of the cylindrical electrode located at the outermost part.

(比較例1)
硫酸第一鉄を用いなかった以外は、上記実施例1と同様にして単位時間あたりのインディゴカルミンの分解処理速度を調べた。
(Comparative Example 1)
Except for not using ferrous sulfate, the decomposition rate of indigo carmine per unit time was examined in the same manner as in Example 1 above.

上記実施例1及び比較例1で調べた各第一鉄イオン濃度でのインディゴカルミンの分解処理速度を図4に対比してあらわす。
図4に示すように、本発明の水処理方法を用いれば、すなわち、処理水貯槽に硫酸第一鉄、すなわち、第一鉄イオンを加えることにより分解処理速度が速くなることがよくわかる。さらに第一鉄イオン濃度が0.7mM/L付近でインディゴカルミンの分解処理速度が最大になることがわかる。
The indigo carmine decomposition treatment rate at each ferrous ion concentration investigated in Example 1 and Comparative Example 1 is shown in comparison with FIG.
As shown in FIG. 4, it is well understood that the decomposition treatment speed is increased by using the water treatment method of the present invention, that is, adding ferrous sulfate, that is, ferrous ions, to the treated water storage tank. Furthermore, it can be seen that the decomposition rate of indigo carmine is maximized when the ferrous ion concentration is around 0.7 mM / L.

(実施例2)
第一鉄イオン濃度を0.5mM/Lと一定にして、処理水貯槽中の被処理水のpHを3.5、4.7、5.3、8.0、11.3に変化させたときのそれぞれについて、実施例1と同様にしてインディゴカルミンの分解処理速度を調べ、その結果を図5に対比してあらわした。
図5に示すように、本発明の水処理方法を用いれば、pHによりインディゴカルミンの分解処理速度が異なり、pHが4.5から8.0で最も大きくなっていることがわかる。
(Example 2)
The pH of the treated water in the treated water storage tank was changed to 3.5, 4.7, 5.3, 8.0, and 11.3 with the ferrous ion concentration kept constant at 0.5 mM / L. In each case, the decomposition rate of indigo carmine was examined in the same manner as in Example 1, and the results were shown in comparison with FIG.
As shown in FIG. 5, it can be seen that when the water treatment method of the present invention is used, the decomposition treatment rate of indigo carmine varies depending on the pH, and the pH is highest at 4.5 to 8.0.

(実施例3)
第一鉄イオン濃度を0.5mM/Lとするとともに、水酸化ナトリウムを添加して被処理水のpHを9に調整した以外は、実施例1と同様にしてインディゴカルミンの濃度経時変化を調べ、その結果を図6に示した。
(比較例2)
硫酸第一鉄の代わりに鉄粉7g/Lを被処理水に用いた以外は、上記実施例3と同様にしてインディゴカルミンの濃度経時変化を調べ、その結果を実施例3の結果と対比させて図6に示した。
(Example 3)
The change with time in the concentration of indigo carmine was examined in the same manner as in Example 1 except that the ferrous ion concentration was adjusted to 0.5 mM / L and the pH of the water to be treated was adjusted to 9 by adding sodium hydroxide. The results are shown in FIG.
(Comparative Example 2)
Except that iron powder 7g / L was used in the water to be treated instead of ferrous sulfate, the change with time in the concentration of indigo carmine was examined in the same manner as in Example 3 above, and the result was compared with the result in Example 3. This is shown in FIG.

図6に示すように、pH9においては、鉄粉添加に比べ、硫酸第一鉄を添加した方がインディゴカルミンの分解処理速度が速くなっていることがわかる。   As shown in FIG. 6, at pH 9, it can be seen that the rate of indigo carmine decomposition treatment is faster when ferrous sulfate is added than when iron powder is added.

本発明の水処理装置は、特に限定されないが、例えば、有機物を含む排水の浄化、汚染水の殺菌などに用いることができる。   Although the water treatment apparatus of this invention is not specifically limited, For example, it can use for purification | cleaning of the waste_water | drain containing organic substance, disinfection of contaminated water, etc.

1a,1b 水処理装置
2 処理室
3 円筒状電極
4 線状電極
5 処理水貯槽
6 ポンプ
7 シャワーノズル(水滴化手段)
71 被処理水供給ホース(循環路)
9 鉄イオン供給装置
91 第一鉄塩粉末
10 高電圧パルス発生装置(高圧電源)
W 被処理水
W1 処理水
M 水滴
1a, 1b Water treatment device 2 Treatment chamber 3 Cylindrical electrode 4 Linear electrode 5 Treated water storage tank 6 Pump 7 Shower nozzle (water droplet forming means)
71 Untreated water supply hose (circulation path)
9 Iron ion supply device 91 Ferrous salt powder 10 High voltage pulse generator (high voltage power supply)
W treated water W1 treated water M water droplets

Claims (7)

放電空間内に被処理水を水滴化して供給し、放電空間内で放電によって発生した活性種によって、水滴中の処理対象物質を分解処理するようにした水処理方法であって、
被処理水と、この被処理水を水滴化して放電空間内を通過させることによって得られた処理水と、前記被処理水と前記処理水の混合水の少なくともいずれかに水溶性の第一鉄塩およびその水溶液の少なくともいずれかを添加することを特徴とする水処理方法。
A water treatment method in which water to be treated is supplied as water droplets in a discharge space, and a treatment target substance in the water droplets is decomposed by active species generated by discharge in the discharge space,
Water to be treated, ferrous water soluble in at least one of the treated water obtained by making the treated water into water droplets and passing through the discharge space, and the mixed water of the treated water and the treated water A water treatment method comprising adding at least one of a salt and an aqueous solution thereof.
第一鉄塩の添加によって、被処理水あるいは処理水中の第一鉄イオン濃度を、常に0.1mM/L以上にする請求項1に記載の水処理方法。   The water treatment method according to claim 1, wherein the ferrous ion concentration in the water to be treated or the treated water is always 0.1 mM / L or more by adding the ferrous salt. 第一鉄イオン濃度を、常に0.3mM/L〜1.0mM/Lにする請求項2に記載の水処理方法。   The water treatment method according to claim 2, wherein the ferrous ion concentration is always 0.3 mM / L to 1.0 mM / L. 第一鉄塩が、塩化第一鉄、硫酸第一鉄、硝酸第一鉄、リン酸第一鉄、硫酸第一鉄アンモニウム及びそれらの水和物からなる群より選ばれた少なくともいずれか1種である請求項1〜請求項3のいずれかに記載の水処理方法。   The ferrous salt is at least one selected from the group consisting of ferrous chloride, ferrous sulfate, ferrous nitrate, ferrous phosphate, ferrous ammonium sulfate, and hydrates thereof. The water treatment method according to any one of claims 1 to 3. 被処理水のpHが、3〜10である請求項1〜請求項4のいずれかに記載の水処理方法。   The water treatment method according to any one of claims 1 to 4, wherein the pH of the water to be treated is 3 to 10. 請求項1〜請求項5のいずれかに記載の水処理方法に用いられる水処理装置であって、少なくとも一対の円筒状電極及び線状電極と、円筒状電極と線状電極との間に高電圧を印加して放電空間を形成する高圧電源とを備えていることを特徴とする水処理装置。   It is a water treatment apparatus used for the water treatment method in any one of Claims 1-5, Comprising: It is high between at least a pair of cylindrical electrode and linear electrode, and a cylindrical electrode and linear electrode. A water treatment apparatus comprising: a high-voltage power supply that applies a voltage to form a discharge space. 放電空間を通って処理された処理水を貯留する処理水貯槽と、処理水貯槽の処理水を再び放電空間に供給する循環路を備えている請求項7に記載の水処理装置。   The water treatment apparatus according to claim 7, comprising a treated water storage tank for storing treated water treated through the discharge space, and a circulation path for supplying treated water in the treated water storage tank to the discharge space again.
JP2012089119A 2012-04-10 2012-04-10 Water treatment method and water treatment apparatus used for the water treatment method Pending JP2013215682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012089119A JP2013215682A (en) 2012-04-10 2012-04-10 Water treatment method and water treatment apparatus used for the water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012089119A JP2013215682A (en) 2012-04-10 2012-04-10 Water treatment method and water treatment apparatus used for the water treatment method

Publications (1)

Publication Number Publication Date
JP2013215682A true JP2013215682A (en) 2013-10-24

Family

ID=49588484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012089119A Pending JP2013215682A (en) 2012-04-10 2012-04-10 Water treatment method and water treatment apparatus used for the water treatment method

Country Status (1)

Country Link
JP (1) JP2013215682A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106241963A (en) * 2015-06-09 2016-12-21 松下知识产权经营株式会社 Method for treating liquids, object processing method, liquid handling device and Cement Composite Treated by Plasma liquid
CN112390455A (en) * 2020-12-31 2021-02-23 山西远航环境科技股份有限公司 Enhanced Fenton oxidation wastewater treatment process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106241963A (en) * 2015-06-09 2016-12-21 松下知识产权经营株式会社 Method for treating liquids, object processing method, liquid handling device and Cement Composite Treated by Plasma liquid
JP2017001021A (en) * 2015-06-09 2017-01-05 パナソニックIpマネジメント株式会社 Liquid treatment method, object treatment method, liquid treatment device and plasma treatment liquid
CN112390455A (en) * 2020-12-31 2021-02-23 山西远航环境科技股份有限公司 Enhanced Fenton oxidation wastewater treatment process

Similar Documents

Publication Publication Date Title
Vanraes et al. Electrical discharge in water treatment technology for micropollutant decomposition
Murugesan et al. Water decontamination using non-thermal plasma: Concepts, applications, and prospects
JP6588425B2 (en) Treatment method of water system by high voltage discharge and ozone
US7704401B2 (en) Liquid treatment apparatus and liquid treatment method
WO2012157034A1 (en) Liquid treatment device and liquid treatment method
US9409800B2 (en) Electric arc for aqueous fluid treatment
US20210221706A1 (en) Plasma-Based Water Treatment Apparatus
Ghasemi et al. A review of pulsed power systems for degrading water pollutants ranging from microorganisms to organic compounds
JP2003320373A (en) Treating device by radical
US10988390B2 (en) Gas/liquid plasma reactor with pulsed power supply and secondary direct current electrodes
JP2009241055A (en) Water treating apparatus
JP2013215682A (en) Water treatment method and water treatment apparatus used for the water treatment method
JP5534846B2 (en) Water treatment equipment
Morimoto et al. Surfactant treatment using nanosecond pulsed powers and action of electric discharges on solution liquid
JP4934119B2 (en) Water treatment equipment
JP2012196621A (en) Water sterilization apparatus and water sterilization method
JP2011251275A (en) Water treatment method and water treatment apparatus used for water treatment method
JP2005013858A (en) Method and apparatus for treating wastewater using high voltage pulses
JP2000279977A (en) Fluid treatment and fluid treatment apparatus
KR200407858Y1 (en) The multiple plasma treatment system of the waste water and air pollution
US11059729B2 (en) Liquid treatment device
JP2014117639A (en) Method for decomposing dioxane in water to be treated
RU2478580C1 (en) Device for decontamination of effluents by electric discharges
Nose et al. Effect of Iron Addition on the Decomposition of Dye by Pulsed Discharge in Air With Water Droplets Spray
JP2012024693A (en) Water treatment method and water treatment apparatus used for the water treatment method