JP2013213024A - Rhododendrol derivative - Google Patents

Rhododendrol derivative Download PDF

Info

Publication number
JP2013213024A
JP2013213024A JP2013038329A JP2013038329A JP2013213024A JP 2013213024 A JP2013213024 A JP 2013213024A JP 2013038329 A JP2013038329 A JP 2013038329A JP 2013038329 A JP2013038329 A JP 2013038329A JP 2013213024 A JP2013213024 A JP 2013213024A
Authority
JP
Japan
Prior art keywords
formula
compound
nmr
mhz
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013038329A
Other languages
Japanese (ja)
Inventor
Kenichi Nihei
賢一 二瓶
Takeo Iwadate
丈央 岩舘
Yu Kashiwakura
裕 柏倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Utsunomiya University
Fuji Industrial Co Ltd
Fuji Kogyo KK
Original Assignee
Utsunomiya University
Fuji Industrial Co Ltd
Fuji Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Utsunomiya University, Fuji Industrial Co Ltd, Fuji Kogyo KK filed Critical Utsunomiya University
Priority to JP2013038329A priority Critical patent/JP2013213024A/en
Publication of JP2013213024A publication Critical patent/JP2013213024A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a novel compound that shows a peculiar physiological activity such as tyrosinase activity inhibitor; and to provide a physiological active medicine.SOLUTION: Compound that is rododendrol derivative shown by formula (A). In the formula (A), either one of following (1), (2), (3) is satisfied: (1) Rand Rare hydroxy groups and Rand Rare hydrogen atoms, (2) Rand Rare hydroxy groups and Rand Ris hydrogen atom, (3) Rand Rare hydroxy groups and Rand Rare hydrogen atoms.

Description

本発明は、ロドデンドロール誘導体及び生理活性剤に関する。   The present invention relates to a rhododendrol derivative and a bioactive agent.

酸化還元酵素のポリフェノールオキシダーゼ(チロシナーゼを含む。)は、動植物の細胞構成組織に含まれるフェノール類の化学反応を促進させる作用がある。こうしたポリフェノールオキシダーゼは、人の皮膚では褐色化(日焼け)を引き起こしたり、青果類や魚介類等の食品では褐変により商品価値を低下させたり、食品に含まれて有益な抗酸化活性のあるポリフェノール類を分解したりする、酸化還元酵素として知られている。   Polyphenol oxidase (including tyrosinase), which is an oxidoreductase, has an action of promoting the chemical reaction of phenols contained in the cell constituent tissues of animals and plants. These polyphenol oxidases cause browning (sunburn) in human skin, and in foods such as fruits and seafood, the product value decreases due to browning, and polyphenols with beneficial antioxidant activity contained in foods It is known as an oxidoreductase that breaks down.

特に、動植物における色素形成反応の初期段階には、チロシナーゼ(ポリフェノールオキシダーゼ)が深く関与している。チロシナーゼは、銅原子を活性中心に含む酸化還元酵素であり、自然界で観察される様々な褐変現象の初期反応を触媒する。例えば、皮膚が紫外線を浴びた場合には、皮膚の基底層の色素細胞(メラノサイト)ではメラニン生合成の第一段階を司るチロシナーゼの働きが活性化し、その結果、生成した過剰のメラニンが皮膚に沈着してシミやそばかす等の皮膚褐変を引き起こす。このメラニン生合成を効果的に抑制するために、チロシナーゼの働きを阻害又は抑制できる化合物(以下「チロシナーゼ活性阻害剤」ともいう。)の研究が行われている。   In particular, tyrosinase (polyphenol oxidase) is deeply involved in the initial stage of the pigment formation reaction in animals and plants. Tyrosinase is an oxidoreductase containing a copper atom as an active center and catalyzes the initial reaction of various browning phenomena observed in nature. For example, when the skin is exposed to ultraviolet rays, the tyrosinase that controls the first stage of melanin biosynthesis is activated in pigment cells (melanocytes) in the basal layer of the skin, and as a result, the excess melanin produced in the skin Deposits cause skin browning such as spots and freckles. In order to effectively suppress this melanin biosynthesis, research has been conducted on compounds capable of inhibiting or suppressing the action of tyrosinase (hereinafter also referred to as “tyrosinase activity inhibitors”).

チロシナーゼ活性阻害剤は、機能性化粧品への添加剤として、果実や野菜の褐変防止剤として、また、医薬品として、広い応用が期待されている。現在までに開発されてきたチロシナーゼ活性阻害剤は、構造及び酵素化学的な性質に基づき、基質類似体と銅キレーターの二種類に大別される。特にレゾルシノール骨格を持つ基質類似体は、チロシナーゼの働きを阻害する活性性能(「チロシナーゼ阻害活性」ともいう。)が強いことが知られている。レゾルシノール骨格を持つ基質類似体として、例えば、コウジ酸、アルブチン、4位置換アルキルレゾルシノール(例えば、4−ブチルレゾルシノール)等がある。   The tyrosinase activity inhibitor is expected to be widely applied as an additive to functional cosmetics, as a browning inhibitor for fruits and vegetables, and as a pharmaceutical product. Tyrosinase activity inhibitors that have been developed to date are broadly divided into two types: substrate analogs and copper chelators, based on structure and enzymatic chemistry. In particular, it is known that a substrate analog having a resorcinol skeleton has strong activity performance (also referred to as “tyrosinase inhibitory activity”) that inhibits the action of tyrosinase. Examples of the substrate analog having a resorcinol skeleton include kojic acid, arbutin, 4-substituted alkylresorcinol (for example, 4-butylresorcinol) and the like.

このうち、コウジ酸は、日焼けや褐変を防ぐものとして古くから化粧品や食品に添加されてきたが、毒性が示唆され、2003年に医薬部外品(薬用化粧品)への使用が一旦禁止された。アルブチンは、コケモモやナシ等の植物に含まれる天然フェノール配糖体であるが、チロシナーゼ阻害活性は非常に弱い。しかし、このアルブチンは、水溶性かつ低毒性のために、美白効果のある化粧品の成分に使用されている。また、脂溶性の4位置換アルキルレゾルシノールである4−ブチルレゾルシノールは、レゾルシノール骨格を持つために強い阻害活性を示すことが知られている。   Of these, kojic acid has long been added to cosmetics and foods to prevent sunburn and browning, but its toxicity was suggested and its use in quasi-drugs (medicinal cosmetics) was temporarily banned in 2003. . Arbutin is a natural phenol glycoside contained in plants such as cowberry and pear, but its tyrosinase inhibitory activity is very weak. However, arbutin is used as a cosmetic ingredient having a whitening effect because of its water solubility and low toxicity. It is known that 4-butylresorcinol, which is a fat-soluble 4-substituted alkylresorcinol, has a resorcinol skeleton and thus exhibits a strong inhibitory activity.

なお、本発明者は、ビベンジル誘導体を含有するチロシナーゼの活性阻害剤を既に提案している(特許文献1及び非特許文献1,2を参照)。また、特許文献2,3では、天然ロドデンドロールを利用して得た特定構造のロドデンドロール及びその誘導体を、水性美白化粧料等の皮膚外用剤として使用できることが提案され、特許文献4では、天然ロドデンドロールを利用して得た特定構造のロドデンドロール及びその誘導体を、香料組成物として使用できることが提案されている。また、非特許文献3には、メグスリノキ(Acer nikoense)に含まれるロドデンドロール配糖体が記載されているが、生理活性については記載されていない。   In addition, this inventor has already proposed the activity inhibitor of tyrosinase containing a bibenzyl derivative (refer patent document 1 and nonpatent literature 1, 2). Patent Documents 2 and 3 propose that rhododendrol having a specific structure obtained by using natural rhododendrol and a derivative thereof can be used as a skin external preparation such as aqueous whitening cosmetics. It has been proposed that rhododendrol having a specific structure obtained by utilizing natural rhododendrol and a derivative thereof can be used as a perfume composition. Non-Patent Document 3 describes rhododendrol glycosides contained in Acer nikoense, but does not describe physiological activity.

特開2008−56651号公報JP 2008-56651 A 特開2010−90259号公報JP 2010-90259 A 特開2008−273851号公報JP 2008-238551 A 特開2008−7432号公報JP 2008-7432 A

K.Nihei, et.al., "Molecular design of potent tyrosinase inhibitors having the bibenzyl skeleton", Bioorg.Med.Chem.Lett., 18, 5252-5254(2008).K. Nihei, et.al., "Molecular design of potent tyrosinase inhibitors having the bibenzyl skeleton", Bioorg. Med. Chem. Lett., 18, 5252-5254 (2008). K.Nihei, et.al., "Synthesis and evaluation of bibenzyl glycosides as potent tyrosinase inhibitors", Eur.J.Med.Chem., 46, 1374-1381(2011).K. Nihei, et.al., "Synthesis and evaluation of bibenzyl glycosides as potent tyrosinase inhibitors", Eur.J.Med.Chem., 46, 1374-1381 (2011). T.Inoue, et.al., Yakugaku Zasshi, 98, 41-46(1978).T. Inoue, et.al., Yakugaku Zasshi, 98, 41-46 (1978).

本発明の目的は、チロシナーゼ活性阻害剤等のような特有の生理活性を示す新規な化合物を提供することにある。特に、ロドデンドロール誘導体及びそのロドデンドロール誘導体からなる生理活性剤を提供することにある。   An object of the present invention is to provide a novel compound exhibiting a specific physiological activity such as a tyrosinase activity inhibitor. In particular, it is to provide a rhododendrol derivative and a bioactive agent comprising the rhododendrol derivative.

本発明者らは、チロシナーゼ阻害活性を示す新規な化合物の研究開発を行っている過程で、特定のロドデンドロール誘導体がコウジ酸よりも強いチロシナーゼ阻害活性を示すことを見出した。さらに、そのロドデンドロール誘導体についての研究を進めている過程で、ロドデンドロール骨格の芳香環部分にヒドロキシル基を導入した誘導体は、特有の生理活性を示すことが確認された。本発明は、こうした知見に基づいて完成させたものである。   In the course of research and development of a novel compound exhibiting tyrosinase inhibitory activity, the present inventors have found that a specific rhododendrol derivative exhibits stronger tyrosinase inhibitory activity than kojic acid. Furthermore, in the course of advancing research on the rhododendrol derivative, it was confirmed that a derivative having a hydroxyl group introduced into the aromatic ring portion of the rhododendrol skeleton exhibits a specific physiological activity. The present invention has been completed based on these findings.

上記課題を解決するための本発明に係る化合物は、式Aで示されるロドデンドロール誘導体である。ここで、式A中、(1)R及びRがヒドロキシル基でR及びRが水素原子である場合、(2)R及びRがヒドロキシル基でR及びRが水素原子である場合、及び、(3)R及びRがヒドロキシル基でR及びRが水素原子である場合、のいずれかである。式A中、Rは、水素原子、炭素数2以上10以下のアルキル基、フェニル基、シクロ環化合物、含酸素複素環化合物、又は、単糖類若しくはオリゴ糖類のいずれかの残基又はそれらのメチル化物である。 The compound according to the present invention for solving the above problems is a rhododendrol derivative represented by the formula A. Here, in Formula A, when (1) R 1 and R 3 are hydroxyl groups and R 2 and R 4 are hydrogen atoms, (2) R 2 and R 3 are hydroxyl groups and R 1 and R 4 are hydrogen And (3) when R 2 and R 4 are hydroxyl groups and R 1 and R 3 are hydrogen atoms. In Formula A, R 5 is a hydrogen atom, an alkyl group having 2 to 10 carbon atoms, a phenyl group, a cyclocyclic compound, an oxygen-containing heterocyclic compound, or any residue of a monosaccharide or an oligosaccharide, or their Methylated product.

Figure 2013213024
Figure 2013213024

この発明によれば、チロシナーゼ阻害活性等の生理活性を示す新規なロドデンドロール誘導体を提供することができる。   According to the present invention, a novel rhododendrol derivative exhibiting physiological activities such as tyrosinase inhibitory activity can be provided.

上記課題を解決するための本発明に係る化合物は、式Bで示されるロドデンドロール誘導体型骨格構造を持つ化合物である。ここで、式B中、(1)R及びRがヒドロキシル基でR及びRが水素原子である場合、(2)R及びRがヒドロキシル基でR及びRが水素原子である場合、及び、(3)R及びRがヒドロキシル基でR及びRが水素原子である場合、のいずれかである。式B中、Rは、式C1〜C3に示す構造式のいずれかであり、式C3中、Rは、炭素数2以上10以下のアルキル基、フェニル基、シクロ環化合物、含酸素複素環化合物、又は、単糖類若しくはオリゴ糖類のいずれかの残基又はそれらのメチル化物である。 The compound according to the present invention for solving the above-mentioned problems is a compound having a rhododendrol derivative type skeleton structure represented by Formula B. Here, in Formula B, (1) when R 1 and R 3 are hydroxyl groups and R 2 and R 4 are hydrogen atoms, (2) R 2 and R 3 are hydroxyl groups and R 1 and R 4 are hydrogen atoms And (3) when R 2 and R 4 are hydroxyl groups and R 1 and R 3 are hydrogen atoms. In Formula B, R 6 is any one of the structural formulas shown in Formulas C1 to C3, and in Formula C3, R 7 is an alkyl group having 2 to 10 carbon atoms, a phenyl group, a cyclic compound, an oxygen-containing complex. It is a ring compound, or any residue of a monosaccharide or oligosaccharide or a methylated product thereof.

Figure 2013213024
Figure 2013213024

Figure 2013213024
Figure 2013213024

この発明によれば、チロシナーゼ阻害活性等の生理活性を示す新規な化合物を提供することができる。   According to this invention, a novel compound exhibiting physiological activities such as tyrosinase inhibitory activity can be provided.

上記課題を解決するための本発明に係る生理活性剤は、上記式Aで示される化合物又は上記式Bで示される化合物である(式A、式B及び式Cは上記同様である)。   The bioactive agent according to the present invention for solving the above problems is a compound represented by the above formula A or a compound represented by the above formula B (formula A, formula B and formula C are the same as above).

この発明によれば、チロシナーゼ阻害活性等を示す式Aの新規な化合物又は式Bの新規な化合物を用いて、チロシナーゼ活性阻害剤等の生理活性剤とするので、例えば美白剤等の化粧品用途等に好ましく用いることができる。   According to this invention, a novel compound of formula A or a novel compound of formula B that exhibits tyrosinase inhibitory activity or the like is used as a physiologically active agent such as a tyrosinase activity inhibitor. Can be preferably used.

本発明によれば、チロシナーゼ阻害活性等の生理活性を示す新規な化合物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the novel compound which shows physiological activities, such as a tyrosinase inhibitory activity, can be provided.

また、本発明によれば、チロシナーゼ阻害活性等を示す新規な化合物を用いた生理活性剤を提供することができる。こうして得られた生理活性剤は、例えば、皮膚褐色化防止機能をもつ化粧品(すなわち皮膚の美白化粧品等)や、野菜等の植物カット食材の鮮度保持を目的とする褐変防止機能をもつ添加剤としての用途が期待できる。   In addition, according to the present invention, a bioactive agent using a novel compound exhibiting tyrosinase inhibitory activity and the like can be provided. The bioactive agent thus obtained can be used, for example, as an additive having a function of preventing browning for the purpose of maintaining the freshness of cosmetics having a skin browning prevention function (that is, skin whitening cosmetics, etc.) and vegetable-cut foodstuffs such as vegetables. Can be expected.

以下、本発明に係る新規な化合物及び生理活性剤について詳細に説明する。なお、本発明の技術的範囲は、以下に記載の事項及び実施例に記載の事項に限定されない。   Hereinafter, the novel compound and bioactive agent according to the present invention will be described in detail. The technical scope of the present invention is not limited to the items described below and the items described in the examples.

[ロドデンドロール誘導体]
本発明に係るロドデンドロール誘導体は、式Aで示されるロドデンドロール誘導体である。
[Rhodendrol derivative]
The rhododendrol derivative according to the present invention is a rhododendrol derivative represented by the formula A.

Figure 2013213024
Figure 2013213024

式A中、R〜Rは、下記(1)〜(3)のいずれかである。すなわち、(1)R及びRがヒドロキシル基でR及びRが水素原子である場合、(2)R及びRがヒドロキシル基でR及びRが水素原子である場合、及び、(3)R及びRがヒドロキシル基でR及びRが水素原子である場合、のいずれかである。式A中、Rは、水素原子、炭素数2以上10以下のアルキル基、フェニル基、シクロ環化合物、含酸素複素環化合物、又は、単糖類若しくはオリゴ糖類のいずれかの残基又はそれらのメチル化物である。 In Formula A, R 1 to R 4 are any of the following (1) to (3). That is, (1) when R 1 and R 3 are hydroxyl groups and R 2 and R 4 are hydrogen atoms, (2) when R 2 and R 3 are hydroxyl groups and R 1 and R 4 are hydrogen atoms, And (3) when R 2 and R 4 are hydroxyl groups and R 1 and R 3 are hydrogen atoms. In Formula A, R 5 is a hydrogen atom, an alkyl group having 2 to 10 carbon atoms, a phenyl group, a cyclocyclic compound, an oxygen-containing heterocyclic compound, or any residue of a monosaccharide or an oligosaccharide, or their Methylated product.

このロドデンドロール誘導体では、ヒドロキシル基の導入配置を上記した(1)〜(3)のいずれかにしたことによって生理活性を示した。さらに、そのヒドロキシル基の導入位置によって異なる生理活性を示した。   In this rhododendrol derivative, physiological activity was exhibited by changing the introduction configuration of the hydroxyl group to any one of the above (1) to (3). Furthermore, it showed different physiological activities depending on the introduction position of the hydroxyl group.

例えば、(1)R及びRがヒドロキシル基でR及びRが水素原子であり、RがD−グルコースである下記化合物2は、チロシナーゼ阻害活性とポリフェノールオキシターゼ阻害活性を示す。 For example, (1) The following compound 2 in which R 1 and R 3 are hydroxyl groups, R 2 and R 4 are hydrogen atoms, and R 5 is D-glucose exhibits tyrosinase inhibitory activity and polyphenol oxidase inhibitory activity.

Figure 2013213024
Figure 2013213024

例えば、(2)R及びRがヒドロキシル基でR及びRが水素原子であり、RがD−グルコースである下記化合物3は、フリーラジカル捕捉能とリポキシゲナーゼ阻害活性を示す。 For example, (2) the following compound 3 in which R 2 and R 3 are hydroxyl groups, R 1 and R 4 are hydrogen atoms, and R 5 is D-glucose exhibits free radical scavenging ability and lipoxygenase inhibitory activity.

Figure 2013213024
Figure 2013213024

例えば、(3)R及びRがヒドロキシル基でR及びRが水素原子であり、RがD−グルコースである下記化合物4は、キサンチンオキシターゼ阻害活性を示す。 For example, the following compound 4 in which (3) R 2 and R 4 are hydroxyl groups, R 1 and R 3 are hydrogen atoms, and R 5 is D-glucose exhibits xanthine oxidase inhibitory activity.

Figure 2013213024
Figure 2013213024

また、(1)の場合の他の例として、下記化合物5〜8はチロシナーゼ阻害活性を示す。すなわち、(1a)R及びRがヒドロキシル基でR及びRが水素原子であり、RがD−キシロピラノシル基である下記化合物5は、チロシナーゼ阻害活性を示す。 Moreover, as another example in the case of (1), the following compounds 5-8 show tyrosinase inhibitory activity. That is, (1a) The following compound 5 in which R 1 and R 3 are hydroxyl groups, R 2 and R 4 are hydrogen atoms, and R 5 is a D-xylopyranosyl group exhibits tyrosinase inhibitory activity.

Figure 2013213024
Figure 2013213024

(1b)R及びRがヒドロキシル基でR及びRが水素原子であり、RがD−セロビオシル基である下記化合物6は、チロシナーゼ阻害活性を示す。 (1b) The following compound 6 in which R 1 and R 3 are hydroxyl groups, R 2 and R 4 are hydrogen atoms, and R 5 is a D-cellobiosyl group exhibits tyrosinase inhibitory activity.

Figure 2013213024
Figure 2013213024

(1c)R及びRがヒドロキシル基でR及びRが水素原子であり、RがD−マルトシル基である下記化合物7は、チロシナーゼ阻害活性を示す。 (1c) The following compound 7 in which R 1 and R 3 are hydroxyl groups, R 2 and R 4 are hydrogen atoms, and R 5 is a D-maltosyl group exhibits tyrosinase inhibitory activity.

Figure 2013213024
Figure 2013213024

(1d)R及びRがヒドロキシル基でR及びRが水素原子であり、Rが水素原子である下記化合物8は、チロシナーゼ阻害活性を示す。 (1d) The following compound 8 in which R 1 and R 3 are hydroxyl groups, R 2 and R 4 are hydrogen atoms, and R 5 is a hydrogen atom exhibits tyrosinase inhibitory activity.

Figure 2013213024
Figure 2013213024

これらの化合物1〜8は、後述する実施例1〜6に例示した合成方法又はそれに類似する合成方法によって得ることができる。   These compounds 1 to 8 can be obtained by the synthesis method exemplified in Examples 1 to 6 described later or a synthesis method similar thereto.

式Aにおいて、Rは、水素原子、炭素数2以上10以下のアルキル基、フェニル基、シクロ環化合物、含酸素複素環化合物、又は、単糖類若しくはオリゴ糖類のいずれかの残基又はそれらのメチル化物である。 In Formula A, R 5 is a hydrogen atom, an alkyl group having 2 to 10 carbon atoms, a phenyl group, a cyclocyclic compound, an oxygen-containing heterocyclic compound, or any residue of a monosaccharide or oligosaccharide, or a Methylated product.

が炭素数2以上10以下のアルキル基である場合、直鎖のアルキル基としては、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基等を挙げることができ、分岐鎖のアルキル基としては、イソプロピル基、イソブチル基、sec−ブチル基、tert−ブチル基、1−エチルプロピル基、2−メチルブチル基、2−エチルブチル基、2−メチルペンチル基、2−メチルヘキシル基、2−エチルヘキシル基、2−メチルヘプチル基等を挙げることができる。 When R 5 is an alkyl group having 2 to 10 carbon atoms, examples of the linear alkyl group include an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group. Examples of the group include isopropyl group, isobutyl group, sec-butyl group, tert-butyl group, 1-ethylpropyl group, 2-methylbutyl group, 2-ethylbutyl group, 2-methylpentyl group, 2-methylhexyl group, 2- An ethylhexyl group, 2-methylheptyl group, etc. can be mentioned.

がフェニル基の場合、そのフェニル基は置換基を有していてもよい。置換基としては、水素原子の他、メチル基、エチル基等を挙げることができる。 When R 5 is a phenyl group, the phenyl group may have a substituent. Examples of the substituent include a hydrogen group, a methyl group, an ethyl group, and the like.

がシクロ環化合物の場合、そのシクロ環化合物としては、五員環又はその誘導体、六員環又はその誘導体、七員環又はその誘導体等を挙げることができる。 When R 5 is a cyclo ring compound, examples of the cyclo ring compound include a five-membered ring or a derivative thereof, a six-membered ring or a derivative thereof, a seven-membered ring or a derivative thereof, and the like.

が含酸素複素環化合物の場合、その含酸素複素環化合物としては、五員環、六員環又は七員環の含酸素複素環化合物及びその誘導体等を挙げることができ、例えば、ジオキサン等を挙げることができる。 When R 5 is an oxygen-containing heterocyclic compound, examples of the oxygen-containing heterocyclic compound include five-membered, six-membered or seven-membered oxygen-containing heterocyclic compounds and derivatives thereof, such as dioxane. Etc.

が単糖類若しくはオリゴ糖類のいずれかの残基又はそれらのメチル化物の場合、その単糖類としては、三〜七炭糖類のいずれでもよいが、好ましくは五炭糖類又は六炭糖類である。五炭糖類の具体例としては、リボース、キシロース、アラビノース等が挙げられ、六炭糖類の具体例としては、グルコース、マンノース、ガラクトース、フルクトース等が挙げられる。特に五炭糖類のキシロース(Xyl)や六単糖類のグルコース(Glc)が好ましい。オリゴ糖類としては、二〜六糖類が好ましく、特に二糖類が好ましい。二糖類の具体例としては、スクロース、マルトース、ラクトース、セロビオース、トレハロース等が挙げられ、特にセロビオース(Cel)又はマルトース(Mal)が好ましい。その他、三糖類としては、ラフィノース、パノース、メレジトース、ゲンチアノース等が、四糖類としては、スタキオース等が挙げられる。その他のグリコシル基としては、デオキシリボース、フコース、ラムノース等のデオキシ糖、グルクロン酸等のウロン酸、グルコサミン等のアミノ糖の各残基も挙げられる。また、これら糖類は、D−体、L−体又はこれらの混合物等、いずれの異性体も使用することができる。 When R 5 is any residue of monosaccharide or oligosaccharide or methylated product thereof, the monosaccharide may be any of 3-7 heptosaccharides, preferably pentose saccharide or hexose saccharides. . Specific examples of the pentose saccharide include ribose, xylose, arabinose, and the like. Specific examples of the hexose saccharide include glucose, mannose, galactose, fructose, and the like. In particular, pentose saccharide xylose (Xyl) and hexose saccharide glucose (Glc) are preferable. The oligosaccharide is preferably a di-hexasaccharide, and particularly preferably a disaccharide. Specific examples of the disaccharide include sucrose, maltose, lactose, cellobiose, trehalose and the like, and cellobiose (Cel) or maltose (Mal) is particularly preferable. In addition, examples of the trisaccharide include raffinose, panose, melezitose, and gentianose, and examples of the tetrasaccharide include stachyose. Other glycosyl groups also include deoxy sugars such as deoxyribose, fucose, and rhamnose, uronic acids such as glucuronic acid, and amino sugars such as glucosamine. Moreover, any isomers such as D-form, L-form or a mixture thereof can be used as these saccharides.

[他の化合物]
本発明では、式Bで示される化合物も本発明の目的を達成できる。
[Other compounds]
In the present invention, the compound represented by the formula B can also achieve the object of the present invention.

Figure 2013213024
Figure 2013213024

式B中、R〜Rは、下記(1)〜(3)のいずれかである。すなわち、(1)R及びRがヒドロキシル基でR及びRが水素原子である場合、(2)R及びRがヒドロキシル基でR及びRが水素原子である場合、及び、(3)R及びRがヒドロキシル基でR及びRが水素原子である場合、のいずれかである。これらは、上記した式Aのロドデンドロール誘導体で説明したものと同じなのでここではその説明を省略する。 In Formula B, R 1 to R 4 are any of the following (1) to (3). That is, (1) when R 1 and R 3 are hydroxyl groups and R 2 and R 4 are hydrogen atoms, (2) when R 2 and R 3 are hydroxyl groups and R 1 and R 4 are hydrogen atoms, And (3) when R 2 and R 4 are hydroxyl groups and R 1 and R 3 are hydrogen atoms. Since these are the same as those described above for the rhododendrol derivative of the formula A, the description thereof is omitted here.

式B中、Rは、式C1〜C3に示す構造式のいずれかであり、式C3中、Rは、炭素数2以上10以下のアルキル基、フェニル基、シクロ環化合物、含酸素複素環化合物、又は、単糖類若しくはオリゴ糖類のいずれかの残基又はそれらのメチル化物である。式C3のRは、上記した式Aのロドデンドロール誘導体で説明したRと同じであるのでここではその説明を省略する。 In Formula B, R 6 is any one of the structural formulas shown in Formulas C1 to C3, and in Formula C3, R 7 is an alkyl group having 2 to 10 carbon atoms, a phenyl group, a cyclic compound, an oxygen-containing complex. It is a ring compound, or any residue of a monosaccharide or oligosaccharide or a methylated product thereof. Since R 7 in the formula C3 is the same as R 6 explained in the above-mentioned rhododendrol derivative of the formula A, its explanation is omitted here.

Figure 2013213024
Figure 2013213024

この化合物Bは、上記したロドデンドロール誘導体の合成過程で生じる中間合成物であり、ロドデンドロール誘導体と同型の骨格構造(「ロドデンドロール誘導体型骨格構造」という。)を持つ化合物ということができる。本発明者は、この化合物Bがロドデンドロール誘導体と同様の骨格構造を持つことから、生理活性を調べてみたところ、生理活性を持っていることを確認した。この化合物Bが生理活性を持つ原因は、現時点では明確ではないが、Rの構造式を持つと共に、化合物Bの芳香環部分のヒドロキシル基の導入態様に因るものと考えられる。 This compound B is an intermediate product generated in the process of synthesizing the above-described rhododendrol derivative, and is referred to as a compound having the same type of skeleton structure as the rhododendrol derivative (referred to as “roddendrol derivative-type skeleton structure”). it can. The inventor of the present invention has a skeletal structure similar to that of the rhododendrol derivative. Therefore, when the physiological activity was examined, it was confirmed that the compound B had the physiological activity. The reason why Compound B has physiological activity is not clear at this time, but it has the structural formula of R 7 and is considered to be due to the mode of introduction of the hydroxyl group of the aromatic ring moiety of Compound B.

化合物Bの具体例を以下に示す。   Specific examples of Compound B are shown below.

Figure 2013213024
Figure 2013213024

以上のように構成される化合物(ロドデンドロール誘導体及びロドデンドロール誘導体型骨格構造を持つ化合物)は、チロシナーゼ阻害活性等の生理活性を示す生理活性剤として好ましく用いることができる。本発明に係る化合物を例えばチロシナーゼの活性阻害剤として使用する場合、そのまま単独で使用してもよいが、通常は、各種用途に応じた使用形態とすることが望ましい。具体的には、得られた化合物と、医薬品、化粧品等に一般に用いられる各種成分(例えば、水性成分、油性成分、粉末成分、界面活性剤、保湿剤、増粘剤、色剤、香料、pH調整剤、抗酸化剤、防腐剤又は紫外線防御剤等)の1種又は2種以上を、本発明の効果を損なわない範囲で配合することができる。   The compounds configured as described above (a rhododendrol derivative and a compound having a rhododendrol derivative-type skeleton structure) can be preferably used as a bioactive agent exhibiting physiological activity such as tyrosinase inhibitory activity. When the compound according to the present invention is used as, for example, an activity inhibitor of tyrosinase, it may be used alone as it is, but it is usually desirable to use it according to various uses. Specifically, the obtained compound and various components generally used in pharmaceuticals, cosmetics, etc. (for example, aqueous components, oily components, powder components, surfactants, moisturizers, thickeners, colorants, fragrances, pH 1 type (s) or 2 or more types of regulators, antioxidants, preservatives, UV protection agents, etc.) can be blended within a range that does not impair the effects of the present invention.

例えば、本発明に係る化合物を含むチロシナーゼ活性阻害剤を生理活性剤として構成した場合、その生理活性剤を水やペースト剤と混合して塗布用の皮膚褐色化防止機能性化粧品、すなわち皮膚の美白化粧品(美白効果の高い皮膚外用剤や美白用皮膚外用剤)として使用できる。また、水と混合して植物カット食材の褐変防止機能性添加剤としても使用できる。また、散布剤として使用すれば野菜野鮮度保持用の散布剤としても使用できる。また、昆虫のさなぎ化抑止剤や人畜無害な殺虫剤としても使用できる。   For example, when a tyrosinase activity inhibitor containing the compound according to the present invention is configured as a bioactive agent, the bioactive agent is mixed with water or a paste agent to prevent skin browning for application, ie, skin whitening. It can be used as cosmetics (skin external preparation with high whitening effect and skin external preparation for whitening). Moreover, it can mix with water and can also be used as a browning prevention functional additive of a plant cut foodstuff. Moreover, if it is used as a spraying agent, it can also be used as a spraying agent for maintaining the freshness of vegetables. Moreover, it can also be used as an insect puppeting inhibitor and a harmless insecticide for humans.

特に本発明に係る化合物又は生理活性剤のうち、チロシナーゼ阻害活性を示す生理活性剤は、メラニン生成を抑制することから、美白剤として有用であり、皮膚外用剤に好適に配合される。皮膚外用剤として用いる場合、通常、化粧品や医薬品等の皮膚外用剤に用いられる他の成分、例えば粉末成分、液体油脂、固体油脂、高級脂肪酸、高級アルコール、低級アルコール、多価アルコール、エステル類、シリコーン、各種界面活性剤、保湿剤、水溶性高分子化合物、増粘剤、紫外線吸収剤、金属イオン封鎖剤、糖類、アミノ酸類、有機アミン類、pH調整剤、皮膚栄養剤、ビタミン類、酸化防止剤、酸化防止助剤、香料、水等を必要に応じて適宜配合することができる。さらに、ビタミンC、アスコルビン酸リン酸マグネシウム、アスコルビン酸グルコシド、アルブチン、コウジ酸等の他の美白剤も適宜配合することができる。   In particular, among the compounds or bioactive agents according to the present invention, a bioactive agent exhibiting tyrosinase inhibitory activity is useful as a whitening agent because it suppresses melanin production and is suitably blended into a skin external preparation. When used as a skin external preparation, other components usually used in skin external preparations such as cosmetics and pharmaceuticals, such as powder components, liquid fats and oils, solid fats and oils, higher fatty acids, higher alcohols, lower alcohols, polyhydric alcohols, esters, Silicone, various surfactants, moisturizers, water-soluble polymer compounds, thickeners, UV absorbers, sequestering agents, sugars, amino acids, organic amines, pH adjusters, skin nutrients, vitamins, oxidation An inhibitor, an antioxidant assistant, a fragrance, water, and the like can be appropriately blended as necessary. Furthermore, other whitening agents such as vitamin C, magnesium ascorbate phosphate, glucoside ascorbate, arbutin, and kojic acid can be appropriately blended.

以上、本発明によれば、各種の生理活性を示す新規な化合物及び生理活性剤を提供することができる。また、本発明に係る化合物及び生理活性剤によれば、皮膚褐色化防止機能をもつ化粧品(すなわち皮膚の美白化粧品等)や、野菜等の植物カット食材の鮮度保持を目的とする褐変防止機能をもつ添加剤としての用途等が期待できる。   As mentioned above, according to this invention, the novel compound and bioactive agent which show various bioactivity can be provided. Moreover, according to the compound and bioactive agent according to the present invention, the anti-browning function for maintaining the freshness of cosmetics having a skin browning prevention function (ie, skin whitening cosmetics) and vegetable-cut foodstuffs such as vegetables. Use as an additive can be expected.

以下、実施例により本発明をさらに具体的に説明するが、本発明の技術的範囲はこれらの例示に限定されるものではない。   Hereinafter, the present invention will be described more specifically by way of examples. However, the technical scope of the present invention is not limited to these examples.

[参考例1:ロドデンドロール誘導体1の合成]
ロドデンドロール誘導体(配糖体)1の合成経路を下記のScheme1に示す。ラズベリーケトン5を出発原料とし、フェノール性ヒドロキシ基に対するベンジル(Bn)基による保護(収率75%)とカルボニル基のヒドリド還元(収率92%)とにより、ロドデンドロール骨格部分にあたるアルコール6を得た。次に、D−グルコースから調製したイミデート7による配糖体化を行い、収率62%で中間体6をグルコシド8に変換した。得られたグルコシド8に対し、パラジウム触媒を用いた加水素分解によるBn基の脱保護(収率92%)と、それに続くアセチル(Ac)基の脱保護を行い(収率91%)、ラズベリーケトン5から5段階、総収率36%で参考例1のロドデンドロール誘導体1であるジアステレオマー混合物を得た。
[Reference Example 1: Synthesis of rhododendrol derivative 1]
The synthesis route of rhododendrol derivative (glycoside) 1 is shown in Scheme 1 below. Using raspberry ketone 5 as a starting material, alcohol 6 corresponding to the rhododendrol skeleton is obtained by protecting the phenolic hydroxy group with a benzyl (Bn) group (yield 75%) and hydride reduction of the carbonyl group (yield 92%). It was. Next, glycosylation with imidate 7 prepared from D-glucose was performed, and intermediate 6 was converted to glucoside 8 in a yield of 62%. The resulting glucoside 8 was subjected to deprotection of the Bn group by hydrogenolysis using a palladium catalyst (yield 92%), followed by deprotection of the acetyl (Ac) group (yield 91%), and the raspberry ketone The diastereomer mixture which is the rhododendrol derivative 1 of Reference Example 1 was obtained in 5 to 5 steps and a total yield of 36%.

Figure 2013213024
Figure 2013213024

Figure 2013213024
Figure 2013213024

<4-(4-(benzyloxy)phenyl)butan-2-one (5a)>
出発物質であるラズベリーケトン(1.01g、6.13mmol)をN,N−ジメチルホルムアミド7mLに溶かし、アルゴン雰囲気下でKCO(2.53g、18.4mmol)及びベンジルブロミド(1.46mL、12.3mmol)を加え、60℃で2時間撹拌した。反応液に水を加えて酢酸エチルで抽出した。有機層を飽和NaHCO水溶液、飽和NHCl水溶液及び飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。ろ過により硫酸ナトリウムを除き、ろ液を減圧濃縮した後、酢酸エチル/ヘキサンの混合溶媒を用いて結晶化を行った。結晶をヘキサンで洗浄し、白色のケトン5a(1.17g、4.59mmol)を得た。
<4- (4- (benzyloxy) phenyl) butan-2-one (5a)>
The starting material raspberry ketone (1.01 g, 6.13 mmol) was dissolved in 7 mL of N, N-dimethylformamide and K 2 CO 3 (2.53 g, 18.4 mmol) and benzyl bromide (1.46 mL, 12.3 mmol) was added and the mixture was stirred at 60 ° C. for 2 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated NaHCO 3 aqueous solution, saturated NH 4 Cl aqueous solution and saturated brine, and dried over sodium sulfate. Sodium sulfate was removed by filtration, the filtrate was concentrated under reduced pressure, and then crystallized using a mixed solvent of ethyl acetate / hexane. The crystals were washed with hexane to obtain white ketone 5a (1.17 g, 4.59 mmol).

H−NMR(400MHz,CDCl)δ7.43−7.31(m,5H),7.09(d,J=8.6Hz,2H),6.89(d,J=2.4Hz,2H),5.02(s,2H),2.83(m,2H),2.71(m,2H),2.12(s,3H).
13C−NMR(100MHz,CDCl)δ208.1(s),157.1(s),137.2(s),133.3(s),127.9(d),129.2(d),28.5(d),114.8(d),127.4(d),70.0(t),45.4(t),30.1(t),28.2(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.43-7.31 (m, 5H), 7.09 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 2.4 Hz, 2H), 5.02 (s, 2H), 2.83 (m, 2H), 2.71 (m, 2H), 2.12 (s, 3H).
13 C-NMR (100 MHz, CDCl 3 ) δ 208.1 (s), 157.1 (s), 137.2 (s), 133.3 (s), 127.9 (d), 129.2 (d) ), 28.5 (d), 114.8 (d), 127.4 (d), 70.0 (t), 45.4 (t), 30.1 (t), 28.2 (q) .

<4-(4-(benzyloxy)phenyl)butan-2-ol (6)>
ケトン5a(0.50g、1.97mmol)をジエチルエーテル2mLとエタノール18mLに溶かし、氷冷下でNaBH(0.14g、3.96mmol)を加え、30分撹拌した。反応液に飽和NHCl水溶液を滴下し、酢酸エチルにより抽出した。得られた有機層を飽和NHCl水溶液及び飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別して、ろ液を減圧濃縮した後、酢酸エチル/ヘキサンの混合溶媒を用いて結晶化を行った。得られた結晶をヘキサンで洗浄し、白色のアルコール6(0.47g、1.81mmol)を得た。
<4- (4- (benzyloxy) phenyl) butan-2-ol (6)>
Ketone 5a (0.50 g, 1.97 mmol) was dissolved in 2 mL of diethyl ether and 18 mL of ethanol, and NaBH 4 (0.14 g, 3.96 mmol) was added under ice cooling, followed by stirring for 30 minutes. A saturated NH 4 Cl aqueous solution was added dropwise to the reaction solution, and the mixture was extracted with ethyl acetate. The obtained organic layer was washed with a saturated aqueous NH 4 Cl solution and saturated brine, and dried over sodium sulfate. Sodium sulfate was filtered off, the filtrate was concentrated under reduced pressure, and then crystallized using a mixed solvent of ethyl acetate / hexane. The obtained crystals were washed with hexane to obtain white alcohol 6 (0.47 g, 1.81 mmol).

H−NMR(400MHz,CDCl)δ7.43−7.30(m,5H),7.11(d,J=8.6Hz,2H),6.69(m,2H),5.03(s,2H),5.01(s,2H),3.71(sext,J=6.2Hz,1H),2.72−2.57(m,2H),1.76−1.69(m,2H),1.21(d,J=6.2Hz,1H).
13C−NMR(100MHz,CDCl)δ156.0(s),137.2(s),129.8(d),129.3(d),128.5(d),127.9(d),114.8(d),70.0(t),67.5(d),40.1(t),31.2(t),23.6(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.43-7.30 (m, 5H), 7.11 (d, J = 8.6 Hz, 2H), 6.69 (m, 2H), 5.03 (S, 2H), 5.01 (s, 2H), 3.71 (sext, J = 6.2 Hz, 1H), 2.72-2.57 (m, 2H), 1.76-1.69 (M, 2H), 1.21 (d, J = 6.2 Hz, 1H).
13 C-NMR (100 MHz, CDCl 3 ) δ 156.0 (s), 137.2 (s), 129.8 (d), 129.3 (d), 128.5 (d), 127.9 (d) ), 114.8 (d), 70.0 (t), 67.5 (d), 40.1 (t), 31.2 (t), 23.6 (q).

<4-(4-(benzyloxy)phenyl)-2-β-((2',3',4',6'-O-tetraacetyl)-glucopyranosyl)butane (8)>
真空乾燥したアルコール6(0.27g、1.06mmol)及びイミデート7(1.23g、2.50mmol)をジクロロメタン15mLに溶かし、−40℃に冷却した。アルゴン雰囲気下で反応液を撹拌しながら、三フッ化ホウ素エーテル錯体26μL/ジクロロメタン1mL溶液(0.10mL、0.21mmol)を加えた。トリエチルアミンを30分間後、反応液に滴下し、さらに飽和NaHCO水溶液を加え、酢酸エチルで抽出した。得られた有機層を飽和NaHCO水溶液及び飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。ろ過により硫酸ナトリウムを除き、ろ液を減圧濃縮して得られた残渣を、シリカゲルカラムクロマトグラフィー(30〜45%酢酸エチル/ヘキサン)により精製して無色油状のグリコシド8(0.39g、0.66mmol)を収率62%で得た。
<4- (4- (benzyloxy) phenyl) -2-β-((2 ', 3', 4 ', 6'-O-tetraacetyl) -glucopyranosyl) butane (8)>
Vacuum-dried alcohol 6 (0.27 g, 1.06 mmol) and imidate 7 (1.23 g, 2.50 mmol) were dissolved in 15 mL of dichloromethane and cooled to −40 ° C. While stirring the reaction solution under an argon atmosphere, a boron trifluoride ether complex 26 μL / dichloromethane 1 mL solution (0.10 mL, 0.21 mmol) was added. Triethylamine was added dropwise to the reaction solution after 30 minutes, and a saturated aqueous NaHCO 3 solution was further added, followed by extraction with ethyl acetate. The obtained organic layer was washed with a saturated aqueous NaHCO 3 solution and saturated brine, and dried over sodium sulfate. Sodium sulfate was removed by filtration, and the residue obtained by concentrating the filtrate under reduced pressure was purified by silica gel column chromatography (30-45% ethyl acetate / hexane) to give colorless oily glycoside 8 (0.39 g, 0. 66 mmol) was obtained with a yield of 62%.

H−NMR(400MHz,CDCl)δ7.42−7.30(m,5H),7.09(d,J=8.7Hz,2H),7.05(d,J=8.7Hz,2H),6.89(d,J=8.7Hz,2H),6.88(d,J=8.7Hz,2H),6.88(d,J=8.7Hz,2H),5.17(m,1H),5.16(m,1H),5.13−4.94(m,2H),5.03(s,2H),5.02(s,2H),4.53(d,J=8.0Hz,1H),4.51(d,J=8.0Hz,1H),4.31−4.06(m,2H),3.76−3.62(m,2H),2.71−2.44(m,2H),2.09−1.98(m,12H),1.87−1.60(m,2H),1.24(d,J=6.2Hz,3H),1.09(d,J=6.2Hz,3H).
13C−NMR(100MHz,CDCl)δ170.8(s),170.7(s),170.4(s),169.45(s),169.44(s),169.3(s),169.2(s),157.0(s),156.9(s),137.2(s),137.1(s),134.4(s),134.1(s),129.5(d),129.3(d),114.8(d),114.6(d),101.2(d),99.2(d),77.7(d),77.2(d),75.0(d),72.95(d),72.93(d),71.6(d),71.5(d),70.01(d),69.97(d),68.6(d),68.5(d),62.1(t),62.1(t),38.8(t),38.6(t),30.5(t),30.4(t),20.7−20.5(q),21.8(q),19.8(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.42-7.30 (m, 5H), 7.09 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), 5. 17 (m, 1H), 5.16 (m, 1H), 5.13-4.94 (m, 2H), 5.03 (s, 2H), 5.02 (s, 2H), 4.53 (D, J = 8.0 Hz, 1H), 4.51 (d, J = 8.0 Hz, 1H), 4.31-4.06 (m, 2H), 3.76-3.62 (m, 2H), 2.71-2.44 (m, 2H), 2.09-1.98 (m, 12H), 1.87-1.60 (m, 2H), 1.24 (d, J = 6.2 Hz, 3H), 1. 9 (d, J = 6.2Hz, 3H).
13 C-NMR (100 MHz, CDCl 3 ) δ 170.8 (s), 170.7 (s), 170.4 (s), 169.45 (s), 169.44 (s), 169.3 (s) ), 169.2 (s), 157.0 (s), 156.9 (s), 137.2 (s), 137.1 (s), 134.4 (s), 134.1 (s) , 129.5 (d), 129.3 (d), 114.8 (d), 114.6 (d), 101.2 (d), 99.2 (d), 77.7 (d), 77.2 (d), 75.0 (d), 72.95 (d), 72.93 (d), 71.6 (d), 71.5 (d), 70.01 (d), 69 97 (d), 68.6 (d), 68.5 (d), 62.1 (t), 62.1 (t), 38.8 (t), 38.6 (t), 30. 5 (t), 30.4 (t , 20.7-20.5 (q), 21.8 (q), 19.8 (q).

<4-(4-(hydrooxy)phenyl)-2-β-((2',3',4',6'-O-tetraacetyl)-glucopyranosyl)butane (8a)>
グリコシド8(19.3mg、32.9μmol)を2mLの酢酸エチルに溶かし、10%Pd(OH)/Cを1.6mg加えて水素雰囲気下で一晩激しく撹拌した。セライトにより10%Pd(OH)/Cをろ別した後、ろ液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(30〜45%酢酸エチル/ヘキサン)により精製して無色油状のフェノール8a(15.0g、30.2μmol)を得た(収率92%)。
<4- (4- (hydrooxy) phenyl) -2-β-((2 ', 3', 4 ', 6'-O-tetraacetyl) -glucopyranosyl) butane (8a)>
Glycoside 8 (19.3 mg, 32.9 μmol) was dissolved in 2 mL of ethyl acetate, 1.6 mg of 10% Pd (OH) 2 / C was added, and the mixture was vigorously stirred overnight under a hydrogen atmosphere. After 10% Pd (OH) 2 / C was filtered off with Celite, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (30-45% ethyl acetate / hexane) to give colorless oily phenol 8a ( 15.0 g, 30.2 μmol) was obtained (yield 92%).

H−NMR(400MHz,CDCl)δ7.09(d,J=8.6Hz,2H),7.05(d,J=8.6Hz,2H),6.89(d,J=8.6Hz,2H),6.88(d,J=8.6Hz,2H),5.192(m,1H),5.188(m,1H),5.11−4.94(m,2H),4.53(m,1H),4.51(m,1H),4.24−4.08(m,2H),3.75−3.61(m,2H),2.65−2.42(m,2H)1.85−1.58(m,12H),1.87−1.60(m,2H),1.24(d,J=6.3Hz,3H,1.09(d,J=6.3Hz,3H).
13C−NMR(100MHz,CDCl)δ171.0(s),170.8(s),170.48(s),170.46(s),169.52(s),169.49(s),169.43(s),169.35(s),153.8(s),153.7(s),134.0(s),133.8(s),129.6(d),129.3(d),115.3(d),115.0(d),101.1(d),99.1(d),77.7(d),77.2(d),74.7(d),73.0(d),72.9(d),71.6(d),71.5(d),68.6(d),62.18(t),62.15(t),38.8(t),38.6(t),30.5(t),30.3(t),20.7−20.6(q),21.7(q),19.8(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.09 (d, J = 8.6 Hz, 2H), 7.05 (d, J = 8.6 Hz, 2H), 6.89 (d, J = 8. 6 Hz, 2H), 6.88 (d, J = 8.6 Hz, 2H), 5.192 (m, 1H), 5.188 (m, 1H), 5.11-4.94 (m, 2H) , 4.53 (m, 1H), 4.51 (m, 1H), 4.24-4.08 (m, 2H), 3.75-3.61 (m, 2H), 2.65-2 .42 (m, 2H) 1.85-1.58 (m, 12H), 1.87-1.60 (m, 2H), 1.24 (d, J = 6.3 Hz, 3H, 1.09) (D, J = 6.3 Hz, 3H).
13 C-NMR (100 MHz, CDCl 3 ) δ 171.0 (s), 170.8 (s), 170.48 (s), 170.46 (s), 169.52 (s), 169.49 (s) ), 169.43 (s), 169.35 (s), 153.8 (s), 153.7 (s), 134.0 (s), 133.8 (s), 129.6 (d) , 129.3 (d), 115.3 (d), 115.0 (d), 101.1 (d), 99.1 (d), 77.7 (d), 77.2 (d), 74.7 (d), 73.0 (d), 72.9 (d), 71.6 (d), 71.5 (d), 68.6 (d), 62.18 (t), 62 .15 (t), 38.8 (t), 38.6 (t), 30.5 (t), 30.3 (t), 20.7-20.6 (q), 21.7 (q ), 19.8 (q).

<rhododendrin and epi-rhododendrin (1)>
フェノール8a(2.9mg、6.0μmol)をメタノール2mLに溶かし、氷冷下で28%ナトリウムメトキシドのメタノール溶液を150μL加えた。反応液を30分撹拌した後、室温にもどし、さらに15分間撹拌した。反応液を氷冷し、Amberlite(登録商標)IR120−Hで中和した後、Amberlite(登録商標)IR120をろ別し、ろ液を減圧濃縮した。残渣をSep−Pak(登録商標)(0〜40%MeCN/HO)で分画した後、分取逆相HPLC(20%MeCN/HO、流速1mL/分、検出波長254nm)による精製を行い、溶出時間6.8分のピークを分取し、白色結晶のrhododendrin及びepi−rhododendrin(1)の混合物を(2.1mg、5.0μmol)得た(収率92%)。
<Rhododendrin and epi-rhododendrin (1)>
Phenol 8a (2.9 mg, 6.0 μmol) was dissolved in 2 mL of methanol, and 150 μL of 28% sodium methoxide in methanol was added under ice cooling. The reaction solution was stirred for 30 minutes, then returned to room temperature, and further stirred for 15 minutes. The reaction mixture was ice-cooled and neutralized with Amberlite (registered trademark) IR120-H + , Amberlite (registered trademark) IR120 was filtered off, and the filtrate was concentrated under reduced pressure. The residue was fractionated with Sep-Pak® (0-40% MeCN / H 2 O) and then by preparative reverse phase HPLC (20% MeCN / H 2 O, flow rate 1 mL / min, detection wavelength 254 nm). Purification was performed, and a peak with an elution time of 6.8 minutes was collected to obtain a mixture of rhododrin and epi-rhodendrin (1) (2.1 mg, 5.0 μmol) as white crystals (yield 92%).

H−NMR(400MHz,CDOD)δ7.03(d,J=8.4Hz,1H),6.25(d,J=8.4Hz,1H),4.33(d,J=7.8Hz,1H),4.32(d,J=7.8Hz,1H),3.89−3.79(m,2H),3.72(m,1H),3.38−3.16(m,3H),2.69−2.55(m,2H)1.91−1.81(m,2H),1.74−1.64(m,2H),1.27(d,J=6.2Hz,3H),1.20(d,J=6.2Hz,3H).
13C−NMR(100MHz,CDOD)δ156.3(s),156.2(s),134.7(s),134.5(s),130.41(d),130.36(d),116.1(d),116.0(d),104.2(d),102.2(d),78.1(d),77.8(d),77.2(d),75.3(d),75.1(d),75.1(d),71.7(d),71.6(d),62.8(t),62.7(t),38.8(t),38.6(t),30.5(t),30.3(t),20.7−20.6(q),21.7(q),19.8(q).
1 H-NMR (400 MHz, CD 3 OD) δ 7.03 (d, J = 8.4 Hz, 1H), 6.25 (d, J = 8.4 Hz, 1H), 4.33 (d, J = 7 .8 Hz, 1H), 4.32 (d, J = 7.8 Hz, 1H), 3.89-3.79 (m, 2H), 3.72 (m, 1H), 3.38-3.16. (M, 3H), 2.69-2.55 (m, 2H) 1.91-1.81 (m, 2H), 1.74-1.64 (m, 2H), 1.27 (d, J = 6.2 Hz, 3H), 1.20 (d, J = 6.2 Hz, 3H).
13 C-NMR (100 MHz, CD 3 OD) δ 156.3 (s), 156.2 (s), 134.7 (s), 134.5 (s), 130.41 (d), 130.36 ( d), 116.1 (d), 116.0 (d), 104.2 (d), 102.2 (d), 78.1 (d), 77.8 (d), 77.2 (d) ), 75.3 (d), 75.1 (d), 75.1 (d), 71.7 (d), 71.6 (d), 62.8 (t), 62.7 (t) , 38.8 (t), 38.6 (t), 30.5 (t), 30.3 (t), 20.7-20.6 (q), 21.7 (q), 19.8 (Q).

<イミデート7の合成>
なお、イミデート7は、下記式のように、D−グルコースを出発原料とし、アセテート7aとアセタール7bを経てイミデート7を合成した。
<Synthesis of imidate 7>
In addition, the imidate 7 synthesize | combined the imidate 7 through the acetate 7a and the acetal 7b, using D-glucose as a starting material like the following formula.

Figure 2013213024
Figure 2013213024

(1,2,3,4,6-penta-O-acetylglucopyranoside (7a))
D−グルコース(2.00g、11.1mmol)をピリジン14mLに溶かし、無水酢酸(6.40mL、88.9mmol)を加えた。一晩撹拌した後、未反応にメタノールを加え、酢酸エチルで抽出した。得られた有機層を精製水、飽和硫酸銅水溶液、及び飽和食塩水で洗浄し、得られた有機層を硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ過し、ろ液を減圧濃縮した。得られた粗生成物を酢酸エチルに溶かし、シリカパッドに通してろ液を減圧濃縮した。ヘキサンを用いて結晶化を行うことにより、白色のアセテート7a(4.00g、10.3mmol)を収率93%で得た。
(1,2,3,4,6-penta-O-acetylglucopyranoside (7a))
D-glucose (2.00 g, 11.1 mmol) was dissolved in 14 mL of pyridine and acetic anhydride (6.40 mL, 88.9 mmol) was added. After stirring overnight, unreacted methanol was added and extracted with ethyl acetate. The obtained organic layer was washed with purified water, saturated aqueous copper sulfate solution and saturated brine, and the obtained organic layer was dried over sodium sulfate. Sodium sulfate was filtered and the filtrate was concentrated under reduced pressure. The obtained crude product was dissolved in ethyl acetate, passed through a silica pad, and the filtrate was concentrated under reduced pressure. Crystallization using hexane gave white acetate 7a (4.00 g, 10.3 mmol) in a yield of 93%.

(2,3,4,6-tetra-O-acetylglucopyranoside (7b))
アセテート7a(1.00g、2.55mmol)をテトラヒドロフラン40mLに溶かし、アルゴン雰囲気下、撹拌しながらピペリジン(1.00mL、10.2mmol)をゆっくりと滴下した。一晩撹拌した後、1%塩酸を反応液に加え、酢酸エチルにより抽出した。得られた有機層を1%HCl水溶液と飽和食塩水で洗浄し、得られた有機層を硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別し、ろ液を減圧濃縮して得られた残渣をシリカゲルクロマトグラフィーにより(50〜60%酢酸エチル/ヘキサン)精製してアセタール7b(0.86g、2.47mmol)を得た(収率97%)。
(2,3,4,6-tetra-O-acetylglucopyranoside (7b))
Acetate 7a (1.00 g, 2.55 mmol) was dissolved in 40 mL of tetrahydrofuran, and piperidine (1.00 mL, 10.2 mmol) was slowly added dropwise with stirring under an argon atmosphere. After stirring overnight, 1% hydrochloric acid was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The obtained organic layer was washed with 1% aqueous HCl solution and saturated brine, and the obtained organic layer was dried over sodium sulfate. Sodium sulfate was removed by filtration, and the residue obtained by concentrating the filtrate under reduced pressure was purified by silica gel chromatography (50-60% ethyl acetate / hexane) to give acetal 7b (0.86 g, 2.47 mmol). (Yield 97%).

(2,3,4-tetra-O-acetyl-1-(2',2',2'-trichloroacetimidyl)-
glucopyranoside (7))
真空乾燥を行ったアセタール7b(0.67g、1.92mmol)をジクロロメタン10mLに溶かし、氷冷した。アルゴン雰囲気下、トリクロロアセトニトリル(0.78mL、7.70mmol)及び触媒量のジアザビシクロウンデセン(50μL、0.38mmol)を加え、2時間撹拌し、溶媒を減圧濃縮により留去した。残渣をシリカゲルカラムクロマトグラフィー(30〜40%酢酸エチル/ヘキサン)により精製し、無色の油状物質イミデート7を収率72%で得た。
(2,3,4-tetra-O-acetyl-1- (2 ', 2', 2'-trichloroacetimidyl)-
glucopyranoside (7))
Acetal 7b (0.67 g, 1.92 mmol) that had been vacuum-dried was dissolved in 10 mL of dichloromethane and ice-cooled. Under an argon atmosphere, trichloroacetonitrile (0.78 mL, 7.70 mmol) and a catalytic amount of diazabicycloundecene (50 μL, 0.38 mmol) were added and stirred for 2 hours, and the solvent was distilled off by concentration under reduced pressure. The residue was purified by silica gel column chromatography (30-40% ethyl acetate / hexane) to give colorless oily substance imidate 7 in 72% yield.

[実施例1:ロドデンドロール誘導体2の合成]
ロドデンドロール誘導体2の合成経路をScheme2に示す。原料として、2,4−ジヒドロキシベンズアルデヒド10を選択し、フェノール性ヒドロキシ基をBn基で保護して(収率91%)、アセトンとのアルドール縮合によりエノン11を合成した(収率94%)。このエノン11に対し、パラジウム−エチレンジアミン錯体を触媒とするオレフィンの還元(収率80%)、さらにカルボニル基のヒドリド還元(収率89%)を行い、アルコール12を調製した。次に、上記したロドデンドロール誘導体1の合成と同様に、イミデート7を用い、アルコール12からグリコシド13を収率50%で合成した。得られたグリコシド13のBn基の脱保護(収率80%)及びAc基の脱保護(収率87%)を行い、7段階、総収率19%で実施例1のロドデンドロール誘導体2であるジアステレオマー2a(R体)及び2b(S体)の混合物を得た。
[Example 1: Synthesis of rhododendrol derivative 2]
A synthesis route of rhododendrol derivative 2 is shown in Scheme 2. 2,4-Dihydroxybenzaldehyde 10 was selected as a raw material, the phenolic hydroxy group was protected with a Bn group (91% yield), and enone 11 was synthesized by aldol condensation with acetone (yield 94%). The enone 11 was subjected to olefin reduction using a palladium-ethylenediamine complex as a catalyst (yield 80%), and further hydride reduction of the carbonyl group (yield 89%) to prepare an alcohol 12. Next, similarly to the synthesis of rhododendrol derivative 1 described above, glycoside 13 was synthesized from alcohol 12 with a yield of 50% using imidate 7. The Bn group of the resulting glycoside 13 was deprotected (yield 80%) and the Ac group was deprotected (yield 87%). As a result, a mixture of diastereomers 2a (R form) and 2b (S form) was obtained.

Figure 2013213024
Figure 2013213024

Figure 2013213024
Figure 2013213024

<2,4-bisbenzyloxybenzaldehyde (10a)>
2,4−dihydroxybenzaldehyde(10)(1.00g、7.26mmol)をN,N−ジメチルホルムアミド20mLに溶かし、アルゴン雰囲気下、KCO(4.52g、32.7mmol)及びBnBr(2.58mL、21.8mmol)を加え、室温で1時間攪拌した。反応液に水を加え、酢酸エチルで抽出した後、有機層を飽和NaHCO水溶液、飽和NHCl水溶液及び飽和食塩水で洗浄した。得られた有機層を硫酸ナトリウムで乾燥し、硫酸ナトリウムをろ別した。ろ液を減圧濃縮し、得られた残渣から酢酸エチル/ヘキサンの混合溶媒を用いて、白色結晶のエーテル10a(2.07g、6.49mmol)を収率89%で得た。
<2,4-bisbenzyloxybenzaldehyde (10a)>
2,4-dihydroxybenzaldehyde (10) (1.00 g, 7.26 mmol) was dissolved in 20 mL of N, N-dimethylformamide, and K 2 CO 3 (4.52 g, 32.7 mmol) and BnBr (2. 58 mL, 21.8 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with a saturated aqueous NaHCO 3 solution, a saturated aqueous NH 4 Cl solution and saturated brine. The obtained organic layer was dried over sodium sulfate, and sodium sulfate was filtered off. The filtrate was concentrated under reduced pressure, and white crystals of ether 10a (2.07 g, 6.49 mmol) were obtained from the obtained residue using a mixed solvent of ethyl acetate / hexane in a yield of 89%.

H−NMR(400MHz,CDCl)δ10.4(s,1H),7.82(d,J=8.6Hz,1H),7.34−7.34(m,10H),6.63(dd,J=2.0,8.6Hz,1H),6.58(d,J=9.2,2.1Hz,1H),5.12(s,2H),5.09(s,2H).
13C−NMR(100MHz,CDCl)δ188.3(s),165.2(s),162.7(s),135.90(s),136.87(s),130.5(d),128.74(d),128.72(d),128.4(d),128.3(d),127.5(d),127.3(d),119.4(s),107.0(d),100.1(d),70.43(t),70.36(t).
1 H-NMR (400 MHz, CDCl 3 ) δ 10.4 (s, 1H), 7.82 (d, J = 8.6 Hz, 1H), 7.34-7.34 (m, 10H), 6.63 (Dd, J = 2.0, 8.6 Hz, 1H), 6.58 (d, J = 9.2, 2.1 Hz, 1H), 5.12 (s, 2H), 5.09 (s, 2H).
13 C-NMR (100 MHz, CDCl 3 ) δ 188.3 (s), 165.2 (s), 162.7 (s), 135.90 (s), 136.87 (s), 130.5 (d ), 128.74 (d), 128.72 (d), 128.4 (d), 128.3 (d), 127.5 (d), 127.3 (d), 119.4 (s) , 107.0 (d), 100.1 (d), 70.43 (t), 70.36 (t).

<4-(2,4-(bisbenzloxy)phenyl)but-3-en-2-one (11)>
エーテル10a(1.89g、5.94mmol)をアセトン(5.8mL、77.2mmol)とエタノール40mLに懸濁し、氷冷下0.7g/10mLKOH水溶液(10mL、7.13mmol)を加えて2時間攪拌した。その後、反応液を室温に戻し、さらに1時間攪拌した。反応液を再度氷冷し、1NHCl水溶液を酸性になるまで滴下し、10分間攪拌した。得られた反応液を酢酸エチルで抽出し、有機層を1%HCl水溶液及び飽和食塩水で洗浄し、硫酸ナトリウムを用いて乾燥した。硫酸ナトリウムをろ過し、ろ液を減圧濃縮して黄緑色の粗結晶を得た。酢酸エチル/ヘキサンの混合溶媒によって、再結晶を行い、黄緑色のエノン11(1.99g、5.56mmol)を得た(収率94%).
<4- (2,4- (bisbenzloxy) phenyl) but-3-en-2-one (11)>
Ether 10a (1.89 g, 5.94 mmol) is suspended in acetone (5.8 mL, 77.2 mmol) and ethanol 40 mL, and 0.7 g / 10 mL KOH aqueous solution (10 mL, 7.13 mmol) is added under ice cooling for 2 hours. Stir. Then, the reaction liquid was returned to room temperature and further stirred for 1 hour. The reaction solution was ice-cooled again, 1N HCl aqueous solution was added dropwise until acidic, and the mixture was stirred for 10 minutes. The resulting reaction solution was extracted with ethyl acetate, and the organic layer was washed with 1% aqueous HCl and saturated brine, and dried over sodium sulfate. Sodium sulfate was filtered off, and the filtrate was concentrated under reduced pressure to obtain yellow-green crude crystals. Recrystallization was performed with a mixed solvent of ethyl acetate / hexane to obtain yellowish green enone 11 (1.99 g, 5.56 mmol) (yield 94%).

H−NMR(400MHz,CDCl)δ7.85(d,J=16.4Hz,1H),7.49(d,J=8.4Hz,1H),7.39−7.33(m,10H),6.67(d,J=16.4Hz,1H),6.59(dd,J=9.2,2.3Hz,1H),6.58(m,1H),5.10(s,2H),5.04(s,2H),2.30(s,3H).
13C−NMR(100MHz,CDCl)δ199.1(s),162.0(s),158.8(s),138.6(d),135.33(s),136.28(s),129.8(d),128.6(d),128.23(d),128.15(d),127.5(d),127.2(d),125.7(d),117.0(s),106.9(d),100.7(d),70.5(t),70.2(t),27.1(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.85 (d, J = 16.4 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 7.39-7.33 (m, 10H), 6.67 (d, J = 16.4 Hz, 1H), 6.59 (dd, J = 9.2, 2.3 Hz, 1H), 6.58 (m, 1H), 5.10 ( s, 2H), 5.04 (s, 2H), 2.30 (s, 3H).
13 C-NMR (100 MHz, CDCl 3 ) δ 199.1 (s), 162.0 (s), 158.8 (s), 138.6 (d), 135.33 (s), 136.28 (s) ), 129.8 (d), 128.6 (d), 128.23 (d), 128.15 (d), 127.5 (d), 127.2 (d), 125.7 (d) , 117.0 (s), 106.9 (d), 100.7 (d), 70.5 (t), 70.2 (t), 27.1 (q).

<4-(2,4-(bisbenzloxy)phenyl)butan-2-one (11a)>
エノン11(24.6mg、68.6μmol)をトルエン1mLに溶かし、5%Pd(en)/C(2.5mg)を加え、水素雰囲気下で激しく攪拌した。約1時間後、反応液をセライト濾過して、Pd触媒をろ別した。ろ液を減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィー(10〜15%酢酸エチル/ヘキサン)により精製し、白色結晶のケトン11a(19.9mg、55.2μmol)を得た(収率81%)。
<4- (2,4- (bisbenzloxy) phenyl) butan-2-one (11a)>
Enone 11 (24.6 mg, 68.6 μmol) was dissolved in 1 mL of toluene, 5% Pd (en) / C (2.5 mg) was added, and the mixture was vigorously stirred under a hydrogen atmosphere. After about 1 hour, the reaction solution was filtered through Celite to separate the Pd catalyst. The filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (10-15% ethyl acetate / hexane) to obtain white crystalline ketone 11a (19.9 mg, 55.2 μmol) (yield 81%). .

H−NMR(400MHz,CDCl)δ7.42−7.29(m,10H),7.04(d,J=8.2Hz,1H),6.58(d,J=2.4Hz,1H),6.49(dd,J=8.3,2.4Hz,1H),5.03(s,2H),5.00(s,2H),2.86(m,2H),2.69(m,2H),2.06(s,3H).
13C−NMR(100MHz,CDCl)δ2.08(s),158.5(s),157.3(s),137.02(s),136.99(s),130.3(d),128.56−128.55(d),128.0(d),127.9(d),127.5(d),127.1(d),122.2(s),105.3(d),100.6(d),70.2(t),69.9(t),43.9(t),29.9(t),24.5(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.42-7.29 (m, 10H), 7.04 (d, J = 8.2 Hz, 1H), 6.58 (d, J = 2.4 Hz, 1H), 6.49 (dd, J = 8.3, 2.4 Hz, 1H), 5.03 (s, 2H), 5.00 (s, 2H), 2.86 (m, 2H), 2 .69 (m, 2H), 2.06 (s, 3H).
13 C-NMR (100 MHz, CDCl 3 ) δ 2.08 (s), 158.5 (s), 157.3 (s), 137.02 (s), 136.99 (s), 130.3 (d ), 128.56-128.55 (d), 128.0 (d), 127.9 (d), 127.5 (d), 127.1 (d), 122.2 (s), 105. 3 (d), 100.6 (d), 70.2 (t), 69.9 (t), 43.9 (t), 29.9 (t), 24.5 (q).

<4-(2,4-(bisbenzloxy)phenyl)butan-2-ol (12)*>
ケトン11a(0.12g、0.33mmol)をジエチルエーテル3mLとエタノール3mLの混合溶媒に溶かし、氷冷下、NaBH(37.5mg、0.99mmol)を加えて、1時間攪拌した。その後、飽和NHCl水溶液を反応液へ滴下し、酢酸エチルにより抽出した。得られた有機層を飽和NHCl水溶液及び飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。硫酸ナトリウムをろ別してろ液を減圧濃縮し、粗生成物を得た。粗生成物に酢酸エチル/ヘキサンの混合溶媒を加えて結晶化を行い、得られた結晶をヘキサンで洗浄して白色のアルコール12(0.11g、0.29mmol)を収率89%で得た。
<4- (2,4- (bisbenzloxy) phenyl) butan-2-ol (12) *>
Ketone 11a (0.12 g, 0.33 mmol) was dissolved in a mixed solvent of 3 mL of diethyl ether and 3 mL of ethanol, NaBH 4 (37.5 mg, 0.99 mmol) was added under ice cooling, and the mixture was stirred for 1 hour. Thereafter, saturated aqueous NH 4 Cl solution was added dropwise to the reaction solution, and the mixture was extracted with ethyl acetate. The obtained organic layer was washed with a saturated aqueous NH 4 Cl solution and saturated brine, and dried over sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. Crystallization was performed by adding a mixed solvent of ethyl acetate / hexane to the crude product, and the obtained crystal was washed with hexane to obtain white alcohol 12 (0.11 g, 0.29 mmol) in a yield of 89%. .

H−NMR(400MHz,CDCl)δ7.42−7.30(m,10H),7.05(d,J=8.2Hz,1H),6.60(d,J=2.4Hz,1H),6.52(d,J=8.2,2.4Hz,1H),5.03(s,2H),5.02(s,2H),5.01(s,2H),3.71(sext,J=6.2Hz,1H),2.77−2.61(m,2H),1.72−1.66(m,2H),1.15(d,J=6.2Hz,1H).
13C−NMR(100MHz,CDCl)δ158.3(s),157.3(s),137.03(s),136.84(s),129.8(d),128.61(d),128.57(d),128.15(d),127.98(d),127.96(d),127.5(d),127.3(d),123.2(s),105.7(d),100.6(d),70.19(t),70.18(t),67.0(d),39.9(t),25.6(t),23.2(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.42-7.30 (m, 10H), 7.05 (d, J = 8.2 Hz, 1H), 6.60 (d, J = 2.4 Hz, 1H), 6.52 (d, J = 8.2, 2.4 Hz, 1H), 5.03 (s, 2H), 5.02 (s, 2H), 5.01 (s, 2H), 3 .71 (sext, J = 6.2 Hz, 1H), 2.77-2.61 (m, 2H), 1.72-1.66 (m, 2H), 1.15 (d, J = 6. 2Hz, 1H).
13 C-NMR (100 MHz, CDCl 3 ) δ 158.3 (s), 157.3 (s), 137.03 (s), 136.84 (s), 129.8 (d), 128.61 (d ), 128.57 (d), 128.15 (d), 127.98 (d), 127.96 (d), 127.5 (d), 127.3 (d), 123.2 (s) , 105.7 (d), 100.6 (d), 70.19 (t), 70.18 (t), 67.0 (d), 39.9 (t), 25.6 (t), 23.2 (q).

<4-(2,4-(bisbenzyloxy)phenyl)-2-β-((2',3',4',6'-O-tetraacetyl)-glucopyranosyl)butane (13)*>
真空乾燥したアルコール12(42.9mg、0.12mmol)及びイミデート7(116mg,0.24mmol)をジクロロメタンに溶かし、−40℃に冷却した。アルゴン雰囲気下で撹拌しながら、トリフルオロメタンスルホン酸トリメチルシリル21μL/3mLジクロロメタン溶液(0.6mL、23.7μmol)を反応液に加えた。TEAを30分間攪拌した反応液に滴下し、さらに飽和NaHCO水溶液を加え、酢酸エチルで抽出した。得られた有機層を飽和NaHCO水溶液及び飽和食塩水で洗浄し、硫酸ナトリウムで乾燥した。ろ過により硫酸ナトリウムを除き、ろ液を減圧濃縮して粗生成物を得た。この粗生成物をシリカゲルカラムクロマトグラフィー(20〜30%酢酸エチル/ヘキサン)により精製し、淡黄色油状のグリコシド13(41mg、59.2μmol)を得た(収率50%)。
<4- (2,4- (bisbenzyloxy) phenyl) -2-β-((2 ', 3', 4 ', 6'-O-tetraacetyl) -glucopyranosyl) butane (13) *>
Vacuum-dried alcohol 12 (42.9 mg, 0.12 mmol) and imidate 7 (116 mg, 0.24 mmol) were dissolved in dichloromethane and cooled to −40 ° C. Trimethylsilyl trifluoromethanesulfonate 21 μL / 3 mL dichloromethane solution (0.6 mL, 23.7 μmol) was added to the reaction solution while stirring under an argon atmosphere. TEA was added dropwise to the reaction solution stirred for 30 minutes, and a saturated aqueous NaHCO 3 solution was further added, followed by extraction with ethyl acetate. The obtained organic layer was washed with a saturated aqueous NaHCO 3 solution and saturated brine, and dried over sodium sulfate. Sodium sulfate was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (20-30% ethyl acetate / hexane) to obtain a pale yellow oily glycoside 13 (41 mg, 59.2 μmol) (yield 50%).

H−NMR(400MHz,CDCl)δ7.41−7.31(m,10H),7.07(d,J=8.2Hz,1H),6.99(d,J=8.2Hz,1H),6.58(d,J=2.4Hz,1H),6.56(d,J=2.4Hz,1H),6.50(dd,J=8.2,2.4Hz,1H),6.46(dd,J=8.2,2.4Hz,1H),5.03(s,2H),5.02(s,2H),5.17(m,1H),5.16(m,1H),5.08−4.93(m,6H),4.50(d,J=8.4Hz,1H),4.23−4.05(m,2H),3.77−3.65(m,1H),3.61−3.56(m,1H),2.75−2.48(m,2H),2.05−1.94(m,12H),1.84−1.66(m,2H),1.22(d,J=6.2Hz,3H),1.09(d,J=6.2Hz,3H).
13C−NMR(100MHz,CDCl)δ170.7(s),170.4(s),169.4(s),169.3(s),158.3(s),158.2(s),157.36(s),157.34(s),137.2(s),137.1(s),137.0(s),130.4(d),129.9(d),128.57(d),128.54(d),128.49(d),127.97(d),127.92(d),127.87(d),127.7(d),127.5(d),127.1(d),127.0(d),123.3(s),123.1(s),105.2(d),105.1(d),101.0(d),99.2(d),100.6(d),100.5(d),78.0(d),77.2(d),75.8(d),73.0(d),71.6(d),71.5(d),70.2(t),70.1(t),69.8(t),69.7(t),68.6(d),62.1(t),36.9(t),36.8(t),25.8(t),25.6(t),21.7(q),20.7(q),20.63(q),20.59(q),19.8(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.41-7.31 (m, 10H), 7.07 (d, J = 8.2 Hz, 1H), 6.99 (d, J = 8.2 Hz, 1H), 6.58 (d, J = 2.4 Hz, 1H), 6.56 (d, J = 2.4 Hz, 1H), 6.50 (dd, J = 8.2, 2.4 Hz, 1H) ), 6.46 (dd, J = 8.2, 2.4 Hz, 1H), 5.03 (s, 2H), 5.02 (s, 2H), 5.17 (m, 1H), 5. 16 (m, 1H), 5.08-4.93 (m, 6H), 4.50 (d, J = 8.4 Hz, 1H), 4.23-4.05 (m, 2H), 3. 77-3.65 (m, 1H), 3.61-3.56 (m, 1H), 2.75-2.48 (m, 2H), 2.05-1.94 (m, 12H), 1.84-1.66 ( , 2H), 1.22 (d, J = 6.2Hz, 3H), 1.09 (d, J = 6.2Hz, 3H).
13 C-NMR (100 MHz, CDCl 3 ) δ 170.7 (s), 170.4 (s), 169.4 (s), 169.3 (s), 158.3 (s), 158.2 (s) ), 157.36 (s), 157.34 (s), 137.2 (s), 137.1 (s), 137.0 (s), 130.4 (d), 129.9 (d) , 128.57 (d), 128.54 (d), 128.49 (d), 127.97 (d), 127.92 (d), 127.87 (d), 127.7 (d), 127.5 (d), 127.1 (d), 127.0 (d), 123.3 (s), 123.1 (s), 105.2 (d), 105.1 (d), 101 0.0 (d), 99.2 (d), 100.6 (d), 100.5 (d), 78.0 (d), 77.2 (d), 75.8 (d), 3.0 (d), 71.6 (d), 71.5 (d), 70.2 (t), 70.1 (t), 69.8 (t), 69.7 (t), 68 .6 (d), 62.1 (t), 36.9 (t), 36.8 (t), 25.8 (t), 25.6 (t), 21.7 (q), 20. 7 (q), 20.63 (q), 20.59 (q), 19.8 (q).

<4-(2,4-(dihydroxy)phenyl)-2-β-((2',3',4',6'-O-tetraacetyl)-glucopyranosyl)butane (13a)*>
グリコシド13(62.4mg、90.1μmol)を酢酸エチル5mLに溶かし、10%Pd(OH)/C(6mg)を加えて水素雰囲気下で激しく攪拌した。一晩攪拌を続けた後、反応液をセライトでろ過し、ろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(60〜70%酢酸エチル/ヘキサン)により精製し、無色油状のジフェノール13a(34.1mg、66.5μmol)を収率80%で得た。
<4- (2,4- (dihydroxy) phenyl) -2-β-((2 ', 3', 4 ', 6'-O-tetraacetyl) -glucopyranosyl) butane (13a) *>
Glycoside 13 (62.4 mg, 90.1 μmol) was dissolved in 5 mL of ethyl acetate, 10% Pd (OH) 2 / C (6 mg) was added, and the mixture was vigorously stirred under a hydrogen atmosphere. After stirring overnight, the reaction solution was filtered through celite, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (60-70% ethyl acetate / hexane) to obtain colorless oily diphenol 13a (34.1 mg, 66.5 μmol) in a yield of 80%.

H−NMR(400MHz,CDCl)δ6.88(d,J=8.2Hz,1H),6.84(d,J=8.2Hz,1H),6.33(d,J=2.4Hz,1H),6.30(dd,J=8.2,2.4Hz,1H),5.20(m,1H),5.19(m,1H),5.09(m,1H),5.06−4.95(m,1H),4.58(d,J=8.0Hz,1H),4.54(d,J=8.0Hz,1H),4.23−4.02(m,2H),3.83−3.65(m,2H),2.75−2.44(m,2H),2.07−1.98(m,12H),1.76−1.66(m,2H),1.23(d,J=6.3Hz,6.2Hz,3H),1.10(d,J=6.3Hz,6.2Hz,3H).
13C−NMR(100MHz,CDCl)δ170.7(s),170.5(s),170.0(s),169.7(s),169.6(s),155.19(s),155.17(s),154.8(s),154.7(s),130.4(s),129.9(d),119.80(s),119.79(s),107.4(d),107.3(d),103.3(d),102.9(d),100.8(d),99.2(d),78.1(d),77.2(d),75.5(d),73.0(d),72.8(d),71.6(d),71.5(d),68.6(d),68.5(d),62.1(t),37.1(t),37.0(t),25.0(t),24.3(t),21.6(q),20.7,20.62(q),20.60(q),20.59(q),20.56(q),19.9(q).
1 H-NMR (400 MHz, CDCl 3 ) δ 6.88 (d, J = 8.2 Hz, 1H), 6.84 (d, J = 8.2 Hz, 1H), 6.33 (d, J = 2. 4Hz, 1H), 6.30 (dd, J = 8.2, 2.4Hz, 1H), 5.20 (m, 1H), 5.19 (m, 1H), 5.09 (m, 1H) 5.05 to 4.95 (m, 1H), 4.58 (d, J = 8.0 Hz, 1H), 4.54 (d, J = 8.0 Hz, 1H), 4.23-4. 02 (m, 2H), 3.83-3.65 (m, 2H), 2.75-2.44 (m, 2H), 2.07-1.98 (m, 12H), 1.76- 1.66 (m, 2H), 1.23 (d, J = 6.3 Hz, 6.2 Hz, 3H), 1.10 (d, J = 6.3 Hz, 6.2 Hz, 3H).
13 C-NMR (100 MHz, CDCl 3 ) δ 170.7 (s), 170.5 (s), 170.0 (s), 169.7 (s), 169.6 (s), 155.19 (s) ), 155.17 (s), 154.8 (s), 154.7 (s), 130.4 (s), 129.9 (d), 119.80 (s), 119.79 (s) , 107.4 (d), 107.3 (d), 103.3 (d), 102.9 (d), 100.8 (d), 99.2 (d), 78.1 (d), 77.2 (d), 75.5 (d), 73.0 (d), 72.8 (d), 71.6 (d), 71.5 (d), 68.6 (d), 68 .5 (d), 62.1 (t), 37.1 (t), 37.0 (t), 25.0 (t), 24.3 (t), 21.6 (q), 20. 7, 20.62 (q), 20 60 (q), 20.59 (q), 20.56 (q), 19.9 (q).

<4-(2,4-(bisbenzyloxy)phenyl)-2-β-glucopyranosylbutane (2)>
ジフェノール13a(34.1mg、66.5μmol)をメタノールに溶かし、氷冷下、攪拌しながら28%ナトリウムメトキシドのメタノール溶液(150μL、0.40mmol)を加えた。反応液を1時間後に室温へもどし、さらに1時間攪拌した。反応液を再び氷冷し、Amberlite(登録商標)IR120−Hで中和した後、Amberlite(登録商標)IR120をろ別して得られたろ液を減圧濃縮した。残渣(19.9mg、57.9μmol)のNMR測定を行い、不純物がないことを確認した(収率89%)。残渣の一部をSep−Pak(登録商標)(0〜40%MeCN/HO)で分画した後、分取逆相HPLC(12%MeCN/HO、流速1mL/分、検出波長254nm)でジアステレオマーの分割を行い、下記の2a(溶出時間8.7分)及び下記の2b(溶出時間9.6分)を得た。Epi−rhododendrin(1)の13C−NMRの文献値(非特許文献3)は、2bのものと酷似した。したがって、2bの2位の炭素の絶対配置をS、2aの2位の絶対配置をRと決定した。
<4- (2,4- (bisbenzyloxy) phenyl) -2-β-glucopyranosylbutane (2)>
Diphenol 13a (34.1 mg, 66.5 μmol) was dissolved in methanol, and a methanol solution of 28% sodium methoxide (150 μL, 0.40 mmol) was added with stirring under ice cooling. The reaction solution was returned to room temperature after 1 hour, and further stirred for 1 hour. The reaction solution was ice-cooled again and neutralized with Amberlite (registered trademark) IR120-H + , and the filtrate obtained by filtering Amberlite (registered trademark) IR120 was concentrated under reduced pressure. The residue (19.9 mg, 57.9 μmol) was subjected to NMR measurement to confirm that there was no impurity (yield 89%). A portion of the residue was fractionated with Sep-Pak® (0-40% MeCN / H 2 O), followed by preparative reverse phase HPLC (12% MeCN / H 2 O, flow rate 1 mL / min, detection wavelength. The diastereomer was resolved at 254 nm to obtain the following 2a (elution time 8.7 minutes) and the following 2b (elution time 9.6 minutes). Epi-rhodendrin (1) 13 C-NMR literature value (Non-Patent Document 3) was very similar to that of 2b. Therefore, the absolute configuration of the 2nd carbon of 2b was determined as S, and the absolute configuration of the 2nd position of 2a was determined as R.

[2a(R体):]
H−NMR(400MHz,CDOD)δ6.90(d,J=8.1Hz,1H),6.25(d,J=2.4Hz,1H),6.20(dd,J=8.1,2.4Hz,1H),4.34(d,J=7.8Hz,1H),3.93−3.85(m,2H),3.72(dd,J=11.8,5.4Hz,1H),3.38−3.23(m,3H,H−2),3.18(m,1H),2.66−2.49(m,2H),1.89−1.64(m,2H),1.21(d,J=6.2Hz,3H).
13C−NMR(100MHz,CDOD)δ157.3(s),156.9(s),131.5(d),122.0(s),107.4(d),104.0(d),102.2(d),77.7(d),77.5(d),75.7(d),75.6(d),62.7(t),38.8(t),26.5(t),19.9(q).
[2a (R form):]
1 H-NMR (400 MHz, CD 3 OD) δ 6.90 (d, J = 8.1 Hz, 1H), 6.25 (d, J = 2.4 Hz, 1H), 6.20 (dd, J = 8 .1, 2.4 Hz, 1H), 4.34 (d, J = 7.8 Hz, 1H), 3.93-3.85 (m, 2H), 3.72 (dd, J = 11.8, 5.4 Hz, 1H), 3.38-3.23 (m, 3H, H-2), 3.18 (m, 1H), 2.66-2.49 (m, 2H), 1.89- 1.64 (m, 2H), 1.21 (d, J = 6.2 Hz, 3H).
13 C-NMR (100 MHz, CD 3 OD) δ 157.3 (s), 156.9 (s), 131.5 (d), 122.0 (s), 107.4 (d), 104.0 ( d), 102.2 (d), 77.7 (d), 77.5 (d), 75.7 (d), 75.6 (d), 62.7 (t), 38.8 (t) ), 26.5 (t), 19.9 (q).

[2b(S体):]
H−NMR(400MHz,CDOD)δ6.89(d,J=8.2Hz,1H),6.26(d,J=2.4Hz,1H),6.21(dd,J=8.2,2.4Hz,1H),4.35(d,J=7.8Hz,1H),3.85−3.79(m,2H),3.72(dd,J=11.8,5.4Hz,1H),3.36−3.14(m,3H,H−2),3.18(m,1H),2.65−2.52(m,2H),1.89−1.64(m,2H),1.27(d,J=6.2Hz,3H).
13C−NMR(100MHz,CDOD)δ157.2(s),156.9(s),131.5(d),121.0(s),107.4(d),104.0(d),103.5(d),78.1(d),77.7(d),77.5(d),71.6(d),62.8(t),38.2(t),26.4(t),22.1(q).
[2b (S body):]
1 H-NMR (400 MHz, CD 3 OD) δ 6.89 (d, J = 8.2 Hz, 1H), 6.26 (d, J = 2.4 Hz, 1H), 6.21 (dd, J = 8 .2, 2.4 Hz, 1H), 4.35 (d, J = 7.8 Hz, 1H), 3.85-3.79 (m, 2H), 3.72 (dd, J = 11.8, 5.4 Hz, 1H), 3.36-3.14 (m, 3H, H-2), 3.18 (m, 1H), 2.65-2.52 (m, 2H), 1.89- 1.64 (m, 2H), 1.27 (d, J = 6.2 Hz, 3H).
13 C-NMR (100 MHz, CD 3 OD) δ 157.2 (s), 156.9 (s), 131.5 (d), 121.0 (s), 107.4 (d), 104.0 ( d), 103.5 (d), 78.1 (d), 77.7 (d), 77.5 (d), 71.6 (d), 62.8 (t), 38.2 (t ), 26.4 (t), 22.1 (q).

[実施例2:ロドデンドロール誘導体3]
ロドデンドロール誘導体3の合成経路をScheme3に示す。ロドデンドロール誘導体3は、3,4−ジヒドロキシベンズアルデヒド(13)から合成を開始した。ヒドロキシ基のBn基による保護(収率89%)及びアルドール縮合による炭素骨格の構築を行い(収率94%)、得られた14をパラジウム−エチレンジアミン錯体触媒を用いて水素化し(収率91%)、さらにケトンのヒドリド還元(収率99%)によりアルコール15に導いた。このアルコール中間体15は、4段階、収率75%で得ることができた。上記した参考例1及び実施例1と同様の手段で配糖体化を行って、実施例2のロドデンドロール誘導体3を合成した。
[Example 2: Rhododendrol derivative 3]
A synthesis route of rhododendrol derivative 3 is shown in Scheme 3. Rhododendrol derivative 3 was synthesized from 3,4-dihydroxybenzaldehyde (13). Protection of hydroxy group by Bn group (yield 89%) and construction of carbon skeleton by aldol condensation (yield 94%), and hydrogenation of 14 obtained using palladium-ethylenediamine complex catalyst (yield 91%) ) And led to alcohol 15 by hydride reduction of ketone (99% yield). This alcohol intermediate 15 could be obtained in 4 steps with a yield of 75%. Glycosylation was carried out by the same means as in Reference Example 1 and Example 1 described above to synthesize rhododendrol derivative 3 of Example 2.

Figure 2013213024
Figure 2013213024

[実施例3:ロドデンドロール誘導体5の合成]
ロドデンドロール誘導体5の合成経路をScheme4に示す。上記したロドデンドロール誘導体2の合成と同様にしてアルコール12を調製した。また、D−グルコースの代わりにD−キシロピラノースを出発原料とする以外は、上記イミデート7と同様の工程でイミデート17を調製した。調製したアルコール12とイミデート17を用い、アルコール12からグリコシド18を収率48%で合成した。得られたグリコシド18のBn基の脱保護(収率65%)及びAc基の脱保護(収率99%)を行い、実施例3のロドデンドロール誘導体5であるジアステレオマー5a(R体)及び5b(S体)の混合物を得た。
[Example 3: Synthesis of rhododendrol derivative 5]
A synthesis route of rhododendrol derivative 5 is shown in Scheme 4. Alcohol 12 was prepared in the same manner as the synthesis of rhododendrol derivative 2 described above. Further, imidate 17 was prepared in the same process as imidate 7 except that D-xylopyranose was used as a starting material instead of D-glucose. Using the prepared alcohol 12 and imidate 17, glycoside 18 was synthesized from alcohol 12 in a yield of 48%. Deprotection of the Bn group of the obtained glycoside 18 (yield 65%) and deprotection of the Ac group (yield 99%) were performed, and the diastereomer 5a (R form) which is the rhododendrol derivative 5 of Example 3 ) And 5b (S form).

Figure 2013213024
Figure 2013213024

Figure 2013213024
Figure 2013213024

<2-(2”,3”,4”-tri-O-acetyl-β-D-xylopyranosyl)-4-(2',4'-dibenzyloxyphenyl)butane (18)>
上記したロドデンドロール誘導体2の合成と同様に、アルコール12を調製した。アルコール12(52.8mg、146μmol)及びイミデート17(246mg、587μmol)をジクロロメタン(脱水)1.5mLに溶かし、−40℃に冷却した。アルゴン雰囲気下で撹拌しながら、トリフルオロメタンスルホン酸トリメチルシリル/ジクロロメタン溶液(5μL、28μmol)を反応液に加えた。TEAを30分間攪拌した反応液に1滴滴下し、反応液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(20%酢酸エチル/ヘキサン)により精製し,無色の油状物質のグリコシド18(43.0mg、119μmo1)を得た(収率48%)。
<2- (2 ”, 3”, 4 ”-tri-O-acetyl-β-D-xylopyranosyl) -4- (2 ', 4'-dibenzyloxyphenyl) butane (18)>
Alcohol 12 was prepared in the same manner as the synthesis of rhododendrol derivative 2 described above. Alcohol 12 (52.8 mg, 146 μmol) and imidate 17 (246 mg, 587 μmol) were dissolved in 1.5 mL of dichloromethane (dehydrated) and cooled to −40 ° C. While stirring under an argon atmosphere, a trimethylsilyl trifluoromethanesulfonate / dichloromethane solution (5 μL, 28 μmol) was added to the reaction solution. One drop of TEA was added dropwise to the reaction solution stirred for 30 minutes, and the reaction solution was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (20% ethyl acetate / hexane) to obtain glycoside 18 (43.0 mg, 119 μmo1) as a colorless oily substance (yield 48%).

H−NMR(400MHz,CDCl)δ7.41−7.28(m,10H,Bn(Ph−CH−)),7.05,7.00(d,J=8.2Hz,1H,H−6’),6.57,6.56(d,J=2.4Hz,1H,H−3'),6.51−6.46(dd,J=8.2,2.4Hz,1H,H−5'),5.14,5.13(t,J=9.1Hz,t,J=8.5Hz,1H,H−3”),5.02,5.03,5.00,4.99(s,4H,Bn(Ph−CH−)),4.95−4.85(m,2H,H−4”,H−2”),4.51,4.46(d,J=6.8Hz,d,=7.3Hz,1H,H−1”),4.09−4.04(m,1H,H−5”),3.79−3.64(m,1H,H−2),3.28,3.23(dd,J=11.8,8.6Hz,dd,J=11.7,9.5Hz,1H,H−5”),2.76−2.48(m,2H,H−4)2.08−2.01(m,9H,Ac),1.87−1.66(m,2H,H−3),1.20,1.08(d,J=6.2Hz,d,J=6.1Hz,3H,H−1).
13C−NMR(100MHz,CDCl)δ170.5,170.4(s,Ac),170.1,170.0(s,Ac),169.6(s,Ac),158.5,158.4(s,C−2'),157.5(s,C−4'),137.4(s,Bn),137.30(s,Bn),137.25(s,Bn),137.2(s,Bn),130.4,130.1(d,C−6'),128.77(s,Bn),128.75(d,Bn),128.7(d,Bn),128.2(d,Bn),128.1(d,Bn),128.0(d,Bn),127.9(d,Bn),127.74(d,Bn),127.73(d,Bn),127.3(d,Bn),127.2(d,Bn),123.6,123.3(s,C−1'),105.4,105.3(d,C−5'),101.1,98.9(d,C−1”),100.8,100.7(d,C−3'),76.9,75.3(d,C−2),72.2,71.63(d,C−3”),71.59,71.2(d,C−4”),70.33,70.31,70.0,69.9(t,Bn),69.3,69.2(d,C−2”),62.3,62.0(t,C−5”),37.3,37.0(t,C−4),26.0,25.9(t,C−3),21.8,19.7(q,C−1),21.0(q,Ac),20.92(q,Ac),20.90(q,Ac),20.8(q,Ac).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.41-7.28 (m, 10 H, Bn (Ph—CH 2 —)), 7.05, 7.00 (d, J = 8.2 Hz, 1 H, H-6 ′), 6.57, 6.56 (d, J = 2.4 Hz, 1H, H-3 ′), 6.51-6.46 (dd, J = 8.2, 2.4 Hz, 1H, H-5 ′), 5.14, 5.13 (t, J = 9.1 Hz, t, J = 8.5 Hz, 1H, H-3 ″), 5.02, 5.03, 5. 00,4.99 (s, 4H, Bn ( Ph-CH 2 -)), 4.95-4.85 (m, 2H, H-4 ", H-2"), 4.51,4.46 (D, J = 6.8 Hz, d, = 7.3 Hz, 1H, H-1 ″), 4.09-4.04 (m, 1H, H-5 ″), 3.79-3.64 ( m, 1H, H-2), 3.28, 3.23 dd, J = 11.8, 8.6 Hz, dd, J = 11.7, 9.5 Hz, 1H, H-5 "), 2.76-2.48 (m, 2H, H-4) 2. 08-2.01 (m, 9H, Ac), 1.87-1.66 (m, 2H, H-3), 1.20, 1.08 (d, J = 6.2 Hz, d, J = 6.1 Hz, 3H, H-1).
13 C-NMR (100 MHz, CDCl 3 ) δ 170.5, 170.4 (s, Ac), 170.1, 170.0 (s, Ac), 169.6 (s, Ac), 158.5, 158 .4 (s, C-2 ′), 157.5 (s, C-4 ′), 137.4 (s, Bn), 137.30 (s, Bn), 137.25 (s, Bn), 137.2 (s, Bn), 130.4, 130.1 (d, C-6 ′), 128.77 (s, Bn), 128.75 (d, Bn), 128.7 (d, Bn) ), 128.2 (d, Bn), 128.1 (d, Bn), 128.0 (d, Bn), 127.9 (d, Bn), 127.74 (d, Bn), 127.73 (D, Bn), 127.3 (d, Bn), 127.2 (d, Bn), 123.6, 123.3 (s, C-1 ′), 105.4 105.3 (d, C-5 ′), 101.1, 98.9 (d, C-1 ″), 100.8, 100.7 (d, C-3 ′), 76.9, 75. 3 (d, C-2), 72.2, 71.63 (d, C-3 ″), 71.59, 71.2 (d, C-4 ″), 70.33, 70.31, 70 0.0, 69.9 (t, Bn), 69.3, 69.2 (d, C-2 ″), 62.3, 62.0 (t, C-5 ″), 37.3, 37. 0 (t, C-4), 26.0, 25.9 (t, C-3), 21.8, 19.7 (q, C-1), 21.0 (q, Ac), 20. 92 (q, Ac), 20.90 (q, Ac), 20.8 (q, Ac).

<2-(2”,3”,4”-tri-O-acetyl-β-D-xylopyranosyl)-4-(2',4'-dihydroxyphenyl)butane (18a)>
グリコシド18(18.9mg、30.4μmol)を酢酸エチル1mLに溶かし、Pd(OH)/C(水酸化パラジウム/活性炭素)(2mg)を加えて水素雰囲気下で激しく攪拌した。2時間撹拌を続けた後、反応液をセライトでろ過することでPd触媒を除き、ろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(60〜70%酢酸エチル/ヘキサン)により精製し,無色油状のジフェノール18a(8.7mg、19.8μmol)を収率65%で得た。
<2- (2 ”, 3”, 4 ”-tri-O-acetyl-β-D-xylopyranosyl) -4- (2 ', 4'-dihydroxyphenyl) butane (18a)>
Glycoside 18 (18.9 mg, 30.4 μmol) was dissolved in 1 mL of ethyl acetate, Pd (OH) 2 / C (palladium hydroxide / activated carbon) (2 mg) was added, and the mixture was vigorously stirred under a hydrogen atmosphere. After stirring for 2 hours, the reaction solution was filtered through celite to remove the Pd catalyst, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (60-70% ethyl acetate / hexane) to obtain colorless oily diphenol 18a (8.7 mg, 19.8 μmol) in a yield of 65%.

H−NMR(400MHz,CDCl)δ6.90−6.87(m,1H,H−6'),6.34−6.30(m,1H,H−3'),5.89−5.88(m,1H,H−5'),5.20−5.14(m,1H,H−3”),5.00−4.90(m,2H,H−4”,H−2”),4.58,4.43(d,J=7.0Hz,d=7.2Hz,1H,H−1”),4.16−4.08(m,1H,H−5”),3.79−3.70(m,1H,H−2),3.28,3.23(m,1H,H−5”),2.62−2.43(m,2H,H−4)2.10−2.02(m,9H,Ac),1.73−1.68(m,2H,H−3),1.23,1.11(d,J=6.1Hz,d,J=5.6Hz,3H,H−1).
13C−NMR(100MHz,CDCl)δ170.6(s,Ac),170.2(s,Ac),169.8(s,Ac),155.4,155.3(s,C−2'),155.1,154.8(s,C−4'),131.0,130.8(d,C−6'),120.03,119.96(s,C−1'),107.7,107.6(d,C−5'),103.5,103.2(d,C−3'),100.8,99.4(d,C−1”),76.8,75.3(d,C−2),71.9,71.8(d,C−3”),71.6,71.4(d,C−4”),69.1,69.0(d,C−2”),62.4(t,C−5”),37.6,37.2(t,C−4),25.1,24.4(t,C−3),21.8,19.9(q,C−1),20.95(q,Ac),20.92(q,Ac),20.89(q,Ac).
1 H-NMR (400 MHz, CDCl 3 ) δ 6.90-6.87 (m, 1H, H-6 ′), 6.34-6.30 (m, 1H, H-3 ′), 5.89- 5.88 (m, 1H, H-5 ′), 5.20-5.14 (m, 1H, H-3 ″), 5.00-4.90 (m, 2H, H-4 ″, H -2 "), 4.58, 4.43 (d, J = 7.0 Hz, d = 7.2 Hz, 1H, H-1"), 4.16-4.08 (m, 1H, H-5) "), 3.79-3.70 (m, 1H, H-2), 3.28, 3.23 (m, 1H, H-5"), 2.62-2.43 (m, 2H, H-4) 2.10-2.02 (m, 9H, Ac), 1.73-1.68 (m, 2H, H-3), 1.23, 1.11 (d, J = 6. 1 Hz, d, J = 5.6 Hz, 3H, H-1).
13 C-NMR (100 MHz, CDCl 3 ) δ 170.6 (s, Ac), 170.2 (s, Ac), 169.8 (s, Ac), 155.4, 155.3 (s, C-2 '), 155.1, 154.8 (s, C-4'), 131.0, 130.8 (d, C-6 '), 120.03, 119.96 (s, C-1') , 107.7, 107.6 (d, C-5 ′), 103.5, 103.2 (d, C-3 ′), 100.8, 99.4 (d, C-1 ″), 76. .8, 75.3 (d, C-2), 71.9, 71.8 (d, C-3 ″), 71.6, 71.4 (d, C-4 ″), 69.1, 69.0 (d, C-2 ″), 62.4 (t, C-5 ″), 37.6, 37.2 (t, C-4), 25.1, 24.4 (t, C -3), 21.8, 19.9 (q, C-1), 20 95 (q, Ac), 20.92 (q, Ac), 20.89 (q, Ac).

<4-(2',4'-dihydroxyphenyl)-2-β-D-xylopyranosylbutane (5)>
ジフェノール18a(69.0mg、157μmol)をメタノール2mLに溶かし、氷冷下、攪拌しながら28%ナトリウムメトキシドのメタノール溶液(185μL、942μmol)を加えた。反応液を1時間後に室温へもどし、さらに1時間攪拌した。反応液を再び氷冷し、Amberlite(登録商標)IR120−Hで中和した後,Amberlite(登録商標)IR120をろ別して得られたろ液を減圧濃縮した。残渣をSep−Pak(登録商標)(0〜40%アセトニトリル水溶液)で分画し、ジアステレオマー5a(R体)及び5b(S体)の混合物5(48.9mg、155μmol)を収率99%で得た。得られた混合物5の一部を、分取逆相HPLC(15%アセトニトリル水溶液、流速1mL/分、検出波長254nm)による精製およびジアステレオマーの分割を行い、下記の5a(溶出時間7.7分)及び下記の5b(溶出時間9.9分)を得た.
<4- (2 ', 4'-dihydroxyphenyl) -2-β-D-xylopyranosylbutane (5)>
Diphenol 18a (69.0 mg, 157 μmol) was dissolved in 2 mL of methanol, and a methanol solution of 28% sodium methoxide (185 μL, 942 μmol) was added with stirring under ice cooling. The reaction solution was returned to room temperature after 1 hour, and further stirred for 1 hour. The reaction solution was ice-cooled again, neutralized with Amberlite (registered trademark) IR120-H + , and the filtrate obtained by filtering Amberlite (registered trademark) IR120 was concentrated under reduced pressure. The residue was fractionated with Sep-Pak (registered trademark) (0 to 40% acetonitrile aqueous solution) to obtain a mixture 5 (48.9 mg, 155 μmol) of diastereomer 5a (R form) and 5b (S form) with a yield of 99. %. A portion of the resulting mixture 5 was purified by preparative reverse phase HPLC (15% aqueous acetonitrile, flow rate 1 mL / min, detection wavelength 254 nm) and diastereomeric resolution was performed, and the following 5a (elution time 7.7) was obtained. Min) and the following 5b (elution time 9.9 min).

[5a(R体):]
H−NMR(400MHz,CDOD)δ6.90(d,J=8.2Hz,1H,H−6'),6.26(d,J=2.4Hz,1H,H−3'),6.20(dd,J=8.1,2.4Hz,1H,H−5'),4.28(d,J=7.6Hz,1H,H−1”),3.86(dd,J=11.4,5.3Hz,1H,H−5”),3.82(m,1H,H−2),3.50(ddd,J=10.2,8.9,5.3Hz,1H,H−4”),3.34−3.29(m,1H,H−3”),3.19(m,1H,H−5”),3.17(dd,1H,H−2”),2.61,2.49(ddd,2H,13.7,9.8,5.8Hz,H−4),1.84−1.63(m,2H,H−3),1.20(d,J=6.2Hz,3H,H−1).
13C−NMR(100MHz,CDOD)δ157.2(s,C−4'),156.9(s,C−2'),131.4(d,C−6'),121.1(s,C−1'),107.3(d,C−5'),103.5(d,C−3'),103.0(d,C−1”),77.9(d,C−3”),75.9(d,C−2),74.9(d,C−2”),71.3(d,C−4”)66.9(t,C−5”),38.8(t,C−4),26.6(t,C−3),20.0(q,C−1).
[5a (R form):]
1 H-NMR (400 MHz, CD 3 OD) δ 6.90 (d, J = 8.2 Hz, 1H, H-6 ′), 6.26 (d, J = 2.4 Hz, 1H, H-3 ′) 6.20 (dd, J = 8.1, 2.4 Hz, 1H, H-5 ′), 4.28 (d, J = 7.6 Hz, 1H, H−1 ″), 3.86 (dd , J = 11.4, 5.3 Hz, 1H, H-5 "), 3.82 (m, 1H, H-2), 3.50 (ddd, J = 10.2, 8.9, 5.). 3Hz, 1H, H-4 "), 3.34-3.29 (m, 1H, H-3"), 3.19 (m, 1H, H-5 "), 3.17 (dd, 1H, H-2 "), 2.61, 2.49 (ddd, 2H, 13.7, 9.8, 5.8 Hz, H-4), 1.84-1.63 (m, 2H, H-3). ), 1.20 (d, J = 6.2 Hz, 3H, H−1) .
13 C-NMR (100 MHz, CD 3 OD) δ 157.2 (s, C-4 ′), 156.9 (s, C-2 ′), 131.4 (d, C-6 ′), 121.1 (S, C-1 ′), 107.3 (d, C-5 ′), 103.5 (d, C-3 ′), 103.0 (d, C-1 ″), 77.9 (d , C-3 "), 75.9 (d, C-2), 74.9 (d, C-2"), 71.3 (d, C-4 ") 66.9 (t, C-5) "), 38.8 (t, C-4), 26.6 (t, C-3), 20.0 (q, C-1).

[5b(S体):]
H−NMR(400MHz,CDOD)δ6.88(d,J=8.2Hz,1H,H−6'),6.27(d,J=2.4Hz,1H,H−3'),6.22(dd,J=8.2,2.4Hz,1H,H−5'),4.29(d,J=7.6Hz,1H,H−1”),3.84(dd,J=11.4,5.3Hz,1H,H−5”),3.74(sext,J=6.2Hz,1H,H−2),3.66(ddd,J=10.3,8.9,5.3Hz,1H,H−5”),3.33−3.29(m,1H,H−3”),3.17(dd,1H,J=9.4,7.6Hz,H−2”),3.16(dd,J=11.4,10.3Hz,1H,H−5”),2.64−2.52(m,2H,H−4)1.89−1.63(m,2H,H−3),1.24(d,J=6.2Hz,3H,H−1).
13C−NMR(100MHz,CDOD)δ157.3(s,C−4'),156.9(s,C−2'),131.5(d,C−6'),121.0(s,C−1'),107.4(d,C−5'),104.1(d,C−1”),103.5(d,C−3'),78.9(d,C−3”),77.7(d,C−2),75.2(d,C−2”),71.2(d,C−4”),66.8(t,C−5”),38.6(t,C−4),26.4(t,C−3),22.1(q,C−1).
[5b (S body):]
1 H-NMR (400 MHz, CD 3 OD) δ 6.88 (d, J = 8.2 Hz, 1H, H-6 ′), 6.27 (d, J = 2.4 Hz, 1H, H-3 ′) , 6.22 (dd, J = 8.2, 2.4 Hz, 1H, H-5 ′), 4.29 (d, J = 7.6 Hz, 1H, H−1 ″), 3.84 (dd , J = 11.4, 5.3 Hz, 1H, H-5 "), 3.74 (sext, J = 6.2 Hz, 1H, H-2), 3.66 (ddd, J = 10.3, 8.9, 5.3 Hz, 1H, H-5 "), 3.33-3.29 (m, 1H, H-3"), 3.17 (dd, 1H, J = 9.4,7. 6 Hz, H-2 "), 3.16 (dd, J = 11.4, 10.3 Hz, 1H, H-5"), 2.64-2.52 (m, 2H, H-4). 89-1.63 (m, 2H, H-3), 1 24 (d, J = 6.2Hz, 3H, H-1).
13 C-NMR (100 MHz, CD 3 OD) δ 157.3 (s, C-4 ′), 156.9 (s, C-2 ′), 131.5 (d, C-6 ′), 121.0 (S, C-1 ′), 107.4 (d, C-5 ′), 104.1 (d, C-1 ″), 103.5 (d, C-3 ′), 78.9 (d , C-3 "), 77.7 (d, C-2), 75.2 (d, C-2"), 71.2 (d, C-4 "), 66.8 (t, C- 5 "), 38.6 (t, C-4), 26.4 (t, C-3), 22.1 (q, C-1).

[実施例4:ロドデンドロール誘導体6の合成]
ロドデンドロール誘導体6の合成経路をScheme5に示す。上記したロドデンドロール誘導体2の合成と同様にしてアルコール12を調製した。また、D−グルコースの代わりにD−セロビオースを出発原料とする以外は、上記イミデート7と同様の工程でイミデート19を調製した。調製したアルコール12とイミデート19を用い、アルコール12からグリコシド20を収率20%で合成した。得られたグリコシド20のBn基の脱保護(収率99%)及びAc基の脱保護(収率86%)を行い、実施例4のロドデンドロール誘導体6であるジアステレオマー6a(R体)及び6b(S体)の混合物を得た。
[Example 4: Synthesis of rhododendrol derivative 6]
The synthesis route of rhododendrol derivative 6 is shown in Scheme 5. Alcohol 12 was prepared in the same manner as the synthesis of rhododendrol derivative 2 described above. Further, imidate 19 was prepared in the same process as imidate 7 except that D-cellobiose was used as a starting material instead of D-glucose. Using the prepared alcohol 12 and imidate 19, glycoside 20 was synthesized from alcohol 12 with a yield of 20%. Deprotection of the Bn group of the obtained glycoside 20 (yield 99%) and deprotection of the Ac group (yield 86%) were carried out, and the diastereomer 6a (R form) which is the rhododendrol derivative 6 of Example 4 ) And 6b (S form).

Figure 2013213024
Figure 2013213024

Figure 2013213024
Figure 2013213024

<2-(2”,2”',3”,3”',4”',6”,6”'-hepta-O-acetyl-β-D-cellobiosyl)-4-(2',4'-dibenzyloxyphenyl)butane (20)>
上記したロドデンドロール誘導体2の合成と同様に、アルコール12を調製した。アルコール12(99.8mg、275μmol)及びイミデート19(108mg、138μmol)をジクロロメタン(脱水)1.5mLに溶解し、−40℃に冷却した。アルゴン雰囲気下で反応液を撹拌しながら、トリフルオロメタンスルホン酸トリメチルシリル/ジクロロメタン溶液(2mL、11μmol)を反応液に加えた。TEAを30分間攪拌した反応液に1滴滴下し、反応液を減圧濃縮した。得られた残渣を、シリカゲルカラムクロマトグラフィー(40%酢酸エチル/ヘキサン)により精製し、無色油状のグリコシド20(27.6mg、28.1μmol)を得た(収率20%)。
<2- (2 ", 2"', 3 ", 3"', 4 "', 6", 6 "'-hepta-O-acetyl-β-D-cellobiosyl) -4- (2 ', 4' -dibenzyloxyphenyl) butane (20)>
Alcohol 12 was prepared in the same manner as the synthesis of rhododendrol derivative 2 described above. Alcohol 12 (99.8 mg, 275 μmol) and imidate 19 (108 mg, 138 μmol) were dissolved in 1.5 mL of dichloromethane (dehydrated) and cooled to −40 ° C. While stirring the reaction solution under an argon atmosphere, a trimethylsilyl trifluoromethanesulfonate / dichloromethane solution (2 mL, 11 μmol) was added to the reaction solution. One drop of TEA was added dropwise to the reaction solution stirred for 30 minutes, and the reaction solution was concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (40% ethyl acetate / hexane) to obtain colorless oily glycoside 20 (27.6 mg, 28.1 μmol) (yield 20%).

H−NMR(400MHz,CDCl)δ7.41−7.30(m,10H,Bn(Ph−CH−)),7.04,6.98(d,J=8.2Hz,1H,H−6'),6.57,6.56(d,J=2.2Hz,1H,H−3'),6.49,6.47(dd,J=8.2,2.2Hz,1H,H−5'),5.16−5.10(m,1H,H−3”,H−3”'),5.04(m,1H,H−4”),5.01−4.99(s,4H,Bn(Ph−CH−)),4.93−4.84(m,J=2H,H−2”,H−2”'),4.48−4.42(m,3H,H−1”,H−1”',H−6”),4.35(dd,1H,J=12.4,4.4Hz,H−6”),4.06−4.00(m,2H,H−6”'),3.75−3.62(m,3H,H−4”',H−5”,H−2),3.51−3.45(m,1H,H−5”'),2.72−2.46(m,2H,H−4)2.07−1.93(m,12H,Ac),1.83−1.64(m,2H,H−3),1.18,1.07(d,J=6.1Hz,3H,H−1).
13C−NMR(100MHz,CDCl)δ170.7(s,Ac),170.6,170.5(s,Ac),170.4(s,Ac),170.10,170.08(s,Ac),169.7(s,Ac),169.5(s,Ac),169.3(s,Ac),158.5,158.4(s,C−2'),157.53(s,C−4'),137.4(s,Bn),137.28(s,Bn),137.27(s,Bn),137.2(s,Bn),130.6,130.2(d,C−6'),128.2(d,Bn),128.13(d,Bn),128.09(d,Bn),128.00(d,Bn),128.13(d,Bn),128.09(d,Bn),128.0(d,Bn),127.75(d,Bn),127.73(d,Bn),127.33(d,Bn),127.22(d,Bn),123.6,123.3(s,C−1'),105.4,105.3(d,C−5'),101.2,99.4(d,C−1”),101.0(d,C−1”'),100.8,100.7(d,C−3'),78.2,76.0(d,C−2),76.9(d,C−4”),73.1,72.9(d,C−3”,C−3”'),72.6,72.1(d,C−5”,C−5”'),72.01,72.00(d,C−2”),71.8(d,C−2”'),70.4,70.3,70.0,69.9(t,Bn),68.0(d,C−4”),62.2,62.1,61.8(t,C−6”,C−6”'),37.1(t,C−4),26.0,25.9(t,C−3),21.9,20.0(q,C−1),21.0(q,Ac),20.9(q,Ac),20.85(q,Ac),20.83(q,Ac),20.76(q,Ac),20.75(q,Ac),20.8(q,Ac).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.41-7.30 (m, 10H, Bn (Ph—CH 2 —)), 7.04, 6.98 (d, J = 8.2 Hz, 1H, H-6 ′), 6.57, 6.56 (d, J = 2.2 Hz, 1H, H-3 ′), 6.49, 6.47 (dd, J = 8.2, 2.2 Hz, 1H, H-5 ′), 5.16-5.10 (m, 1H, H-3 ″, H-3 ″ ′), 5.04 (m, 1H, H-4 ″), 5.01- 4.99 (s, 4H, Bn ( Ph-CH 2 -)), 4.93-4.84 (m, J = 2H, H-2 ", H-2"'), 4.48-4. 42 (m, 3H, H-1 ″, H-1 ″ ′, H-6 ″), 4.35 (dd, 1H, J = 12.4, 4.4 Hz, H-6 ″), 4.06 -4.00 (m, 2H, H-6 "'), 3.75-3.62 ( m, 3H, H-4 "', H-5", H-2), 3.51-3.45 (m, 1H, H-5 "'), 2.72-2.46 (m, 2H) , H-4) 2.07-1.93 (m, 12H, Ac), 1.83-1.64 (m, 2H, H-3), 1.18, 1.07 (d, J = 6) .1 Hz, 3H, H-1).
13 C-NMR (100 MHz, CDCl 3 ) δ 170.7 (s, Ac), 170.6, 170.5 (s, Ac), 170.4 (s, Ac), 170.10, 170.08 (s , Ac), 169.7 (s, Ac), 169.5 (s, Ac), 169.3 (s, Ac), 158.5, 158.4 (s, C-2 ′), 157.53 (S, C-4 ′), 137.4 (s, Bn), 137.28 (s, Bn), 137.27 (s, Bn), 137.2 (s, Bn), 130.6, 130 .2 (d, C-6 ′), 128.2 (d, Bn), 128.13 (d, Bn), 128.09 (d, Bn), 128.00 (d, Bn), 128.13 (D, Bn), 128.09 (d, Bn), 128.0 (d, Bn), 127.75 (d, Bn), 127.73 ( , Bn), 127.33 (d, Bn), 127.22 (d, Bn), 123.6, 123.3 (s, C-1 ′), 105.4, 105.3 (d, C−) 5 ′), 101.2, 99.4 (d, C-1 ″), 101.0 (d, C-1 ″ ′), 100.8, 100.7 (d, C-3 ′), 78 2, 76.0 (d, C-2), 76.9 (d, C-4 ″), 73.1, 72.9 (d, C-3 ″, C-3 ″ ′), 72. 6, 72.1 (d, C-5 ″, C-5 ″ ′), 72.01, 72.00 (d, C-2 ″), 71.8 (d, C-2 ″ ′), 70 4, 70.3, 70.0, 69.9 (t, Bn), 68.0 (d, C-4 "), 62.2, 62.1, 61.8 (t, C-6") , C-6 "'), 37.1 (t, C-4), 26.0, 25.9 (t, C-3), 21.9. 20.0 (q, C-1), 21.0 (q, Ac), 20.9 (q, Ac), 20.85 (q, Ac), 20.83 (q, Ac), 20.76 (Q, Ac), 20.75 (q, Ac), 20.8 (q, Ac).

<2-(2”,2”',3”,3”',4”',6”,6”'-hepta-O-acetyl-β-D-cellobiosyl)-4-(2',4'-dihydroxyphenyl)butane (20a)>
グリコシド20(49.4mg、50.3μmol)を酢酸エチル2mLに溶解し、Pd(OH)/C(水酸化パラジウム/活性炭素)を4.5mg加えて水素雰囲気下で激しく攪拌した。4時間攪拌を続けた後、反応液をセライトでろ過することでPd触媒を除き、ろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(70%酢酸エチル/ヘキサン)により精製し、無色油状のジフェノール20a(39.9mg、49.9μmol)を収率99%で得た。
<2- (2 ", 2"', 3 ", 3"', 4 "', 6", 6 "'-hepta-O-acetyl-β-D-cellobiosyl) -4- (2 ', 4' -dihydroxyphenyl) butane (20a)>
Glycoside 20 (49.4 mg, 50.3 μmol) was dissolved in 2 mL of ethyl acetate, 4.5 mg of Pd (OH) 2 / C (palladium hydroxide / activated carbon) was added, and the mixture was vigorously stirred under a hydrogen atmosphere. After stirring for 4 hours, the reaction solution was filtered through Celite to remove the Pd catalyst, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (70% ethyl acetate / hexane) to obtain colorless oily diphenol 20a (39.9 mg, 49.9 μmol) in a yield of 99%.

H−NMR(400MHz,CDCl)δ6.88,687(d,J=8.1Hz,1H,H−6'),6.34−6.32(d,J=2.5Hz,1H,H−3'),6.32−6.29(dd,J=8.1,2.5Hz,1H,H−5'),5.19−5.11(m,2H,H−3”,H−3”'),5.04(t,J=9.4Hz,1H,H−4”),4.93−4.84(m,2H,H−2”,H−2”'),4.57,4.47(dd,J=12.0,2.0Hz,12.0,2.0Hz,0.5H,H−6”),4.53−4.47(m,2H,H−1”,H−1”'),4.35,4.35(dd,0.5H,J=12.4,2.2Hz,12.5,2.1Hz,H−6”'),4.10−4.01(m,2H,H−6”,H−6”'),3.79(t,J=9.4Hz,1H,H−4”'),3.74−3.68(m,1H,H−2),3.64(ddd,J=2.2,4.3,9.4Hz,1H,H−5”),3.57−3.51(m,1H,H−5”'),2.58−2.44(m,2H,H−4)2.08−1.97(m,12H,Ac),1.79−1.60(m,2H,H−3),1.21,1.11(d,J=6.2,6.1Hz,3H,H−1).
13C−NMR(100MHz,CDCl)δ171.2(s,Ac),170.83(s,Ac),170.81(s,Ac),170.7(s,Ac),170.51(s,Ac),170.46(s,Ac),170.4(s,Ac),170.20(s,Ac),170.17(s,Ac),169.9(s,Ac),169.60(s,Ac),169.58(s,Ac),169.4(s,Ac),155.5,155.3(s,C−2'),155.1,154.9(s,C−4'),130.8,130.6(d,C−6'),120.1,120.0(s,C−1'),107.7,107.6(d,C−5'),103.7,103.2(d,C−3'),101.0,99.3(d,C−1”),77.8,75.8(d,C−2),76.8,76.5(d,C−4”),73.1,73.0,72.9(d,C−3”,C−3”'),72.8,72.6,72.2,72.1(d,C−5”,C−5”'),72.1,71.85(d,C−2”),71.83(d,C−2”'),68.0,68.9(d,C−4”),62.1,61.7(t,C−6”,C−6”'),37.3(t,C−4),25.1,24.3(t,C−3),21.8,20.2(q,C−1),21.0(q,Ac),20.9(q,Ac),20.85(q,Ac),20.79(q,Ac),20.75(q,Ac),20.73(q,Ac),20.8(q,Ac).
1 H-NMR (400 MHz, CDCl 3 ) δ 6.88, 687 (d, J = 8.1 Hz, 1H, H-6 ′), 6.34-6.32 (d, J = 2.5 Hz, 1H, H-3 '), 6.32-6.29 (dd, J = 8.1, 2.5 Hz, 1H, H-5'), 5.19-5.11 (m, 2H, H-3 " , H-3 ″ ′), 5.04 (t, J = 9.4 Hz, 1H, H-4 ″), 4.93-4.84 (m, 2H, H-2 ″, H-2 ″ ′). ), 4.57, 4.47 (dd, J = 12.0, 2.0 Hz, 12.0, 2.0 Hz, 0.5H, H-6 "), 4.53-4.47 (m, 2H, H-1 ″, H-1 ″ ′), 4.35, 4.35 (dd, 0.5H, J = 12.4, 2.2 Hz, 12.5, 2.1 Hz, H-6 ″. '), 4.10-4.01 (m, 2H, H-6 ", H-6) '), 3.79 (t, J = 9.4 Hz, 1H, H-4 "'), 3.74-3.68 (m, 1H, H-2), 3.64 (ddd, J = 2). .2, 4.3, 9.4 Hz, 1H, H-5 "), 3.57-3.51 (m, 1H, H-5"'), 2.58-2.44 (m, 2H, H-4) 2.08-1.97 (m, 12H, Ac), 1.79-1.60 (m, 2H, H-3), 1.21, 1.11 (d, J = 6. 2, 6.1 Hz, 3H, H-1).
13 C-NMR (100 MHz, CDCl 3 ) δ 171.2 (s, Ac), 170.83 (s, Ac), 170.81 (s, Ac), 170.7 (s, Ac), 170.51 ( s, Ac), 170.46 (s, Ac), 170.4 (s, Ac), 170.20 (s, Ac), 170.17 (s, Ac), 169.9 (s, Ac), 169.60 (s, Ac), 169.58 (s, Ac), 169.4 (s, Ac), 155.5, 155.3 (s, C-2 ′), 155.1, 154.9 (S, C-4 '), 130.8, 130.6 (d, C-6'), 120.1, 120.0 (s, C-1 '), 107.7, 107.6 (d , C-5 ′), 103.7, 103.2 (d, C-3 ′), 101.0, 99.3 (d, C-1 ″), 77.8, 75.8 (d C-2), 76.8, 76.5 (d, C-4 "), 73.1, 73.0, 72.9 (d, C-3", C-3 "'), 72.8 , 72.6, 72.2, 72.1 (d, C-5 ″, C-5 ″ ′), 72.1, 71.85 (d, C-2 ″), 71.83 (d, C -2 "'), 68.0, 68.9 (d, C-4"), 62.1, 61.7 (t, C-6 ", C-6"'), 37.3 (t, C-4), 25.1, 24.3 (t, C-3), 21.8, 20.2 (q, C-1), 21.0 (q, Ac), 20.9 (q, Ac), 20.85 (q, Ac), 20.79 (q, Ac), 20.75 (q, Ac), 20.73 (q, Ac), 20.8 (q, Ac).

<2-β-D-cellobiosyl-4-(2',4'-dihydrooxyphenyl)butane (6)>
ジフェノール20a(19.8mg、24.7μmol)をメタノール1mLに溶解し、氷冷下、攪拌しながら28%ナトリウムメトキシドのメタノール溶液(71μL、371μmol)を加えた。反応液を1時間後に室温へもどし、さらに1時間攪拌した。反応液を再び氷冷し、Amberlite(登録商標)IR120−Hで中和した後,Amberlite(登録商標)IR120をろ別して得られたろ液を減圧濃縮した。残渣をSep−Pak(登録商標)(0〜20%アセトニトリル水溶液)で分画し、ジアステレオマー6a(R体)及び6b(S体)の混合物6(10.8mg,213μmol)を収率86%で得た.得られたジアステレオマー混合物6の一部を、分取逆相HPLC(10%アセトニトリル水溶液、流速1mL/分、検出波長254nm)で精製及びジアステレオマーの分割を行い、下記の6a(溶出速度13.2分)及び下記の6b(溶出速度14.2分)を得た。
<2-β-D-cellobiosyl-4- (2 ', 4'-dihydrooxyphenyl) butane (6)>
Diphenol 20a (19.8 mg, 24.7 μmol) was dissolved in 1 mL of methanol, and a methanol solution of 28% sodium methoxide (71 μL, 371 μmol) was added with stirring under ice cooling. The reaction solution was returned to room temperature after 1 hour, and further stirred for 1 hour. The reaction solution was ice-cooled again, neutralized with Amberlite (registered trademark) IR120-H + , and the filtrate obtained by filtering Amberlite (registered trademark) IR120 was concentrated under reduced pressure. The residue was fractionated with Sep-Pak (registered trademark) (0 to 20% acetonitrile aqueous solution) to obtain a mixture 6 (10.8 mg, 213 μmol) of diastereomer 6a (R form) and 6b (S form) in a yield of 86. %. A part of the obtained diastereomer mixture 6 was purified by preparative reverse phase HPLC (10% acetonitrile aqueous solution, flow rate 1 mL / min, detection wavelength 254 nm), and the diastereomer was separated, and the following 6a (elution rate) 13.2 minutes) and the following 6b (elution rate 14.2 minutes) were obtained.

[6a(R体):]
H−NMR(400MHz,CDOD)δ6.90(d,J=8.2Hz,1H,H−6'),6.25(d,J=2.4Hz,1H,H−3'),6.20(dd,J=8.1,2.4Hz,1H,H−5'),4.43(d,J=7.8Hz,1H,H−1”),4.37(d,J=7.8Hz,1H,H−1”'),3.89−3.86(m,4H,H−2,H−6”,H−6”),3.66(dd,J=11.8,5.4Hz,H−6”'),3.60(dd,J=9.0,9.1Hz,H−3”),3.52(t,J=8.9Hz,H−3”'),3.40−3.32(m,4H,H−4”,H−4”',H−5”,H−5”'),3.28−3.20(m,2H,H−2”,H−2”'),2.62,2.53(ddd,J=13.8,9.4,5.8Hz,2H,H−4)1.89−1.65(m,2H,H−3),1.21(d,J=6.2Hz,3H,H−1).
13C−NMR(100MHz,CDOD)δ157.3(s,C−4'),156.9(s,C−2'),131.5(d,C−6'),121.1(s,C−1'),107.4(d,C−5'),104.5(d,C−1”'),104.6(d,C−3'),102.2(d,C−1”),80.4(d,C−4”),78.1(d,C−5”'),77.9(d,C−5”),76.5(d,C−3”'),76.4(d,C−3”),75.8(d,C−2),75.0(d,C−2”),74.8(d,C−2”'),71.4(d,C−4”'),62.4(t,C−6”'),62.0(t,C−6”'),38.7(t,C−4),26.5(t,C−3),20.0(q,C−1).
[6a (R form):]
1 H-NMR (400 MHz, CD 3 OD) δ 6.90 (d, J = 8.2 Hz, 1H, H-6 ′), 6.25 (d, J = 2.4 Hz, 1H, H-3 ′) 6.20 (dd, J = 8.1, 2.4 Hz, 1H, H-5 ′), 4.43 (d, J = 7.8 Hz, 1H, H−1 ″), 4.37 (d , J = 7.8 Hz, 1H, H-1 "'), 3.89-3.86 (m, 4H, H-2, H-6", H-6 "), 3.66 (dd, J = 11.8, 5.4 Hz, H-6 "'), 3.60 (dd, J = 9.0, 9.1 Hz, H-3"), 3.52 (t, J = 8.9 Hz, H-3 "'), 3.40-3.32 (m, 4H, H-4", H-4 "', H-5", H-5 "'), 3.28-3.20 ( m, 2H, H-2 ″, H-2 ″ ′), 2.62, 2.53 (ddd, J = 13.8). 9.4,5.8Hz, 2H, H-4) 1.89-1.65 (m, 2H, H-3), 1.21 (d, J = 6.2Hz, 3H, H-1).
13 C-NMR (100 MHz, CD 3 OD) δ 157.3 (s, C-4 ′), 156.9 (s, C-2 ′), 131.5 (d, C-6 ′), 121.1 (S, C-1 ′), 107.4 (d, C-5 ′), 104.5 (d, C-1 ″ ′), 104.6 (d, C-3 ′), 102.2 ( d, C-1 "), 80.4 (d, C-4"), 78.1 (d, C-5 "'), 77.9 (d, C-5"), 76.5 (d , C-3 ″ ′), 76.4 (d, C-3 ″), 75.8 (d, C-2), 75.0 (d, C-2 ″), 74.8 (d, C -2 "'), 71.4 (d, C-4"'), 62.4 (t, C-6 "'), 62.0 (t, C-6"'), 38.7 (t , C-4), 26.5 (t, C-3), 20.0 (q, C-1).

[6b(S体):]
H−NMR(400MHz,CDOD)δ6.89(d,J=8.2Hz,1H,H−6'),6.25(d,J=2.4Hz,1H,H−3'),6.21(dd,J=8.2,2.4Hz,1H,H−5'),4.42(d,J=7.8Hz,1H,H−1”),4.38(d,J=7.8Hz,1H,H−1”'),3.88(dd,J=11.8,1.7Hz,1H,H−6”),3.89−3.85(m,2H,H−6”,H−6”'),3.80(sext,J=6.2Hz,H−2),3.66(dd,J=11.8,5.4Hz,1H,H−6”'),3.57(t,J=9.1Hz,H−3'),3.51(t,J=8.8Hz,H−3”),3.39−3.32(m,4H,H−4”,H−4”',H−5”,H−5”'),3.26−3.20(m,2H,H−2”,H−2”'),2.65−2.53(m,2H,H−4)1.89−1.63(m,2H,H−3),1.27(d,J=6.2Hz,3H,H−1).
13C−NMR(100MHz,CDOD)δ157.3(s,C−4'),156.9(s,C−2'),131.5(d,C−6'),121.0(s,C−1'),107.4(d,C−5'),104.0(d,C−3),103.5(d,C−1”),78.1(d,C−3”),77.7(d,C−5”),77.5(d,C−2),75.4(d,C−2”),71.6(d,C−4”),62.8(t,C−6”),38.2(t,C−4),26.4(t,C−3),22.1(q,C−1).
[6b (S body):]
1 H-NMR (400 MHz, CD 3 OD) δ 6.89 (d, J = 8.2 Hz, 1H, H-6 ′), 6.25 (d, J = 2.4 Hz, 1H, H-3 ′) , 6.21 (dd, J = 8.2, 2.4 Hz, 1H, H-5 ′), 4.42 (d, J = 7.8 Hz, 1H, H−1 ″), 4.38 (d , J = 7.8 Hz, 1H, H-1 ″ ′), 3.88 (dd, J = 11.8, 1.7 Hz, 1H, H-6 ″), 3.89-3.85 (m, 2H, H-6 ″, H-6 ″ ′), 3.80 (sext, J = 6.2 Hz, H−2), 3.66 (dd, J = 11.8, 5.4 Hz, 1H, H −6 ″ ′), 3.57 (t, J = 9.1 Hz, H−3 ′), 3.51 (t, J = 8.8 Hz, H−3 ″), 3.39−3.32 ( m, 4H, H-4 ", H-4"', H-5 ", H-5"'), 26-3.20 (m, 2H, H-2 ″, H-2 ″ ′), 2.65-2.53 (m, 2H, H-4) 1.89-1.63 (m, 2H) , H-3), 1.27 (d, J = 6.2 Hz, 3H, H-1).
13 C-NMR (100 MHz, CD 3 OD) δ 157.3 (s, C-4 ′), 156.9 (s, C-2 ′), 131.5 (d, C-6 ′), 121.0 (S, C-1 ′), 107.4 (d, C-5 ′), 104.0 (d, C-3), 103.5 (d, C-1 ″), 78.1 (d, C-3 "), 77.7 (d, C-5"), 77.5 (d, C-2), 75.4 (d, C-2 "), 71.6 (d, C-4) "), 62.8 (t, C-6"), 38.2 (t, C-4), 26.4 (t, C-3), 22.1 (q, C-1).

[実施例5:ロドデンドロール誘導体7の合成]
ロドデンドロール誘導体7の合成経路をScheme6に示す。上記したロドデンドロール誘導体2の合成と同様にしてアルコール12を調製した。また、D−グルコースの代わりにD−マルトースを出発原料とする以外は、上記イミデート7と同様の工程でイミデート21を調製した。調製したアルコール12とイミデート21を用い、アルコール12からグリコシド22を収率13%で合成した。得られたグリコシド22のBn基の脱保護(収率84%)及びAc基の脱保護(収率65%)を行い、実施例5のロドデンドロール誘導体7であるジアステレオマー7a(R体)及び7b(S体)の混合物を得た。
[Example 5: Synthesis of rhododendrol derivative 7]
The synthesis route of rhododendrol derivative 7 is shown in Scheme 6. Alcohol 12 was prepared in the same manner as the synthesis of rhododendrol derivative 2 described above. Further, imidate 21 was prepared in the same process as imidate 7 except that D-maltose was used as a starting material instead of D-glucose. Using the prepared alcohol 12 and imidate 21, glycoside 22 was synthesized from alcohol 12 in a yield of 13%. Deprotection of the Bn group of the obtained glycoside 22 (yield 84%) and deprotection of the Ac group (yield 65%) were performed, and the diastereomer 7a (R form) which is the rhododendrol derivative 7 of Example 5 ) And 7b (S form).

Figure 2013213024
Figure 2013213024

Figure 2013213024
Figure 2013213024

<2-(2”,2”',3”,3”',4”',6”,6”'-hepta-O-acetyl-β-D-maltosyl)-4-(2',4'-dibenzyloxyphenyl)butane (22)>
上記したロドデンドロール誘導体2の合成と同様に、アルコール12を調製した。アルコール12(979.7mg、2.70mmol)およびイミデート21(1.77g、2.27mmol)をジクロロメタン(脱水)1.5mLに溶解し、−40℃に冷却した。アルゴン雰囲気下で撹拌しながら、トリフルオロメタンスルホン酸トリメチルシリル/ジクロロメタン溶液(20μL、111μmol)を反応液に加えた。TEAを30分間攪拌した反応液に1滴滴下し,反応液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(40%酢酸エチル/ヘキサン)により精製し、無色油状のグリコシド22(27.6mg、298μmol)を得た(収率13%)。
<2- (2 ", 2"', 3 ", 3"', 4 "', 6", 6 "'-hepta-O-acetyl-β-D-maltosyl) -4- (2 ', 4' -dibenzyloxyphenyl) butane (22) >
Alcohol 12 was prepared in the same manner as the synthesis of rhododendrol derivative 2 described above. Alcohol 12 (979.7 mg, 2.70 mmol) and imidate 21 (1.77 g, 2.27 mmol) were dissolved in 1.5 mL of dichloromethane (dehydrated) and cooled to −40 ° C. While stirring under an argon atmosphere, a trimethylsilyl trifluoromethanesulfonate / dichloromethane solution (20 μL, 111 μmol) was added to the reaction solution. One drop of TEA was added dropwise to the reaction solution stirred for 30 minutes, and the reaction solution was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (40% ethyl acetate / hexane) to obtain colorless oily glycoside 22 (27.6 mg, 298 μmol) (yield 13%).

H−NMR(400MHz,CDCl)δ7.41−7.29(m,10H,Bn(Ph−CH−)),7.05,6.99(d,J=8.2Hz,1H,H−6'),6.57,6.56(d,J=2.4Hz,1H,H−3'),6.49,6.47(dd,J=8.2,2.2Hz,1H,H−5'),5.40,5.39(d,J=2.8Hz,1H,H−1”'),5.36,535(dd,J=10.4,9.6Hz,1H,H−3”'),5.22(t,J=9.3Hz,1H,H−3”),5.05−5.00(m,5H,H−4”',Bn(Ph−CH−)),4.86−4.76(m,2H,H−2”,H−2”'),4.517,4.515(d,J=8.0Hz,1H,H−1”),4.42,4.40(dd,1H,J=12.0,2.7Hz,H−6”),4.23(dd,J=12.4,4.1Hz,H−6”'),4.01(ddd,J=12.4,4.1,2.2Hz,H−5”'),3.96−3.92(m,2H,H−4”',H−6”),3.77−3.63(m,1H,H−5”),2.57−2.52(m,2H,H−2),2.73−2.46(m,2H,H−4),2.10−1.92(m,12H,Ac),1.84−1.61(m,2H,H−3),1.20,1.07(d,J=6.2Hz,3H,H−1).
13C−NMR(100MHz,CDCl)δ170.76(s,Ac),170.75(s,Ac),170.74(s,Ac),170.72(s,Ac),170.6(s,Ac),170.5(s,Ac),170.2(s,Ac),169.8(s,Ac),169.6(s,Ac),158.5,158.4(s,C−2'),157.6,157.5(s,C−4'),137.4(s,Bn),137.28(s,Bn),137.27(s,Bn),137.2(s,Bn),130.6,130.1(d,C−6'),128.79(d,Bn),128.76(d,Bn),128.75(d,Bn),128.7(d,Bn),128.2(d,Bn),128.12(d,Bn),128.09(d,Bn),127.75(d,Bn),127.73(d,Bn),127.3(d,Bn),127.2(d,Bn),123.5,123.3(s,C−1'),105.4,105.3(d,C−5'),100.75,98.9(d,C−1”),100.8,100.72(d,C−3'),95.6(d,C−1”'),78.2,76.0(d,C−2),75.83,75.80(d,C−3”),73.0(d,C−4”),72.64,72.60(d,C−2”),72.0(d,C−5”),70.4,70.3(t,Bn),70.2(d,C−2”'),70.0,69.9(t,Bn),69.5(d,C−3”'),68.64,68.62(d,C−5”'),68.2(d,C−4”'),63.2,63.1(t,C−6”'),61.72,61.68(t,C−6”),37.12,37.07(t,C−4),26.0,25.9(t,C−3),21.9,20.0(q,C−1),21.12(q,Ac),20.11(q,Ac),21.0(q,Ac),20.90(q,Ac),20.86(q,Ac),20.8(q,Ac),20.79(q,Ac),20.76(q,Ac).
1 H-NMR (400 MHz, CDCl 3 ) δ 7.41-7.29 (m, 10 H, Bn (Ph—CH 2 —)), 7.05, 6.99 (d, J = 8.2 Hz, 1 H, H-6 ′), 6.57, 6.56 (d, J = 2.4 Hz, 1H, H-3 ′), 6.49, 6.47 (dd, J = 8.2, 2.2 Hz, 1H, H-5 ′), 5.40, 5.39 (d, J = 2.8 Hz, 1H, H−1 ″ ′), 5.36, 535 (dd, J = 10.4, 9.6 Hz) , 1H, H-3 ″ ′), 5.22 (t, J = 9.3 Hz, 1H, H-3 ″), 5.05-5.00 (m, 5H, H-4 ″ ′, Bn ( Ph-CH 2 -)), 4.86-4.76 (m, 2H, H-2 ", H-2"'), 4.517,4.515 (d, J = 8.0Hz, 1H, H-1 ″), 4.42, 4.40 (dd, 1H, J = 12.0, 2.7 Hz, H-6 ″), 4.23 (dd, J = 12.4, 4.1 Hz, H-6 ″ ′), 4.01 (ddd, J = 12 .4, 4.1, 2.2 Hz, H-5 ″ ′), 3.96-3.92 (m, 2H, H-4 ″ ′, H-6 ″), 3.77-3.63 ( m, 1H, H-5 "), 2.57-2.52 (m, 2H, H-2), 2.73-2.46 (m, 2H, H-4), 2.10-1. 92 (m, 12H, Ac), 1.84 to 1.61 (m, 2H, H-3), 1.20, 1.07 (d, J = 6.2 Hz, 3H, H-1).
13 C-NMR (100 MHz, CDCl 3 ) δ 170.76 (s, Ac), 170.75 (s, Ac), 170.74 (s, Ac), 170.72 (s, Ac), 170.6 ( s, Ac), 170.5 (s, Ac), 170.2 (s, Ac), 169.8 (s, Ac), 169.6 (s, Ac), 158.5, 158.4 (s , C-2 ′), 157.6, 157.5 (s, C-4 ′), 137.4 (s, Bn), 137.28 (s, Bn), 137.27 (s, Bn), 137.2 (s, Bn), 130.6, 130.1 (d, C-6 ′), 128.79 (d, Bn), 128.76 (d, Bn), 128.75 (d, Bn) ), 128.7 (d, Bn), 128.2 (d, Bn), 128.12 (d, Bn), 128.09 (d, Bn), 1 7.75 (d, Bn), 127.73 (d, Bn), 127.3 (d, Bn), 127.2 (d, Bn), 123.5, 123.3 (s, C-1 ′ ), 105.4, 105.3 (d, C-5 ′), 100.75, 98.9 (d, C-1 ″), 100.8, 100.72 (d, C-3 ′), 95.6 (d, C-1 ″ ′), 78.2, 76.0 (d, C-2), 75.83, 75.80 (d, C-3 ″), 73.0 (d, C-4 "), 72.64, 72.60 (d, C-2"), 72.0 (d, C-5 "), 70.4, 70.3 (t, Bn), 70.2 (D, C-2 "'), 70.0, 69.9 (t, Bn), 69.5 (d, C-3"'), 68.64, 68.62 (d, C-5 "'), 68.2 (d, C-4 "'), 63.2, 63.1 (t, C-6"') 61.72, 61.68 (t, C-6 "), 37.12, 37.07 (t, C-4), 26.0, 25.9 (t, C-3), 21.9. , 20.0 (q, C-1), 21.12 (q, Ac), 20.11 (q, Ac), 21.0 (q, Ac), 20.90 (q, Ac), 20. 86 (q, Ac), 20.8 (q, Ac), 20.79 (q, Ac), 20.76 (q, Ac).

<2-(2”,2”',3”,3”',4”',6”,6”'-hepta-O-acetyl-β-D-maltosyl)-4-(2',4'-dihydrooxyphenyl)butane (22a)>
グリコシド22(271mg、277μmol)を酢酸エチル5mLに溶解し、Pd(OH)/C(水酸化パラジウム/活性炭素)(26.9mg)を加えて水素雰囲気下で激しく攪拌した。2時間攪拌を続けた後、反応液をセライトでろ過することでPd触媒を除き、ろ液を減圧濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(70%酢酸エチル/ヘキサン)により精製し、無色油状のジフェノール22a(186mg、232μmol)を収率84%で得た。
<2- (2 ", 2"', 3 ", 3"', 4 "', 6", 6 "'-hepta-O-acetyl-β-D-maltosyl) -4- (2 ', 4' -dihydrooxyphenyl) butane (22a) >
Glycoside 22 (271 mg, 277 μmol) was dissolved in 5 mL of ethyl acetate, Pd (OH) 2 / C (palladium hydroxide / activated carbon) (26.9 mg) was added, and the mixture was vigorously stirred under a hydrogen atmosphere. After stirring for 2 hours, the reaction solution was filtered through celite to remove the Pd catalyst, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (70% ethyl acetate / hexane) to obtain colorless oily diphenol 22a (186 mg, 232 μmol) in a yield of 84%.

H−NMR(400MHz,CDCl)δ6.88,687(d,J=8.0Hz,1H,H−6'),6.33−6.30(m,2H,H−3',H−5'),5.41,5.39(d,J=3.9Hz,1H,H−1”'),5.35(dd,J=10Hz,1H,H−3”'),5.27−5.22(m,1H,H−3”),5.04,5.03(t,J=9.8Hz,1H,H−4”'),4.85−4.78(m,2H,H−2”,H−2”'),4.61,4.57(d,J=8.0Hz,1H,H−1”),4.57−4.43(m,1H,H−6”),4.26−3.93(m,5H,H−6”',H−4”',H−6”,H−5”'),3.77−3.70(m,1H,H−5”),3.64−3.62(m,1H,H−2),2.60−2.43(m,2H,H−4)2.10−1.9(m,12H,Ac),1.86−1.60(m,2H,H−3),1.23,1.11(d,J=6.2,6.0Hz,3H,H−1).
13C−NMR(100MHz,CDCl)δ171.4(s,Ac),171.0(s,Ac),170.91(s,Ac),170.88(s,Ac),170.8(s,Ac),170.7(s,Ac),170.6(s,Ac),170.4(s,Ac),170.2(s,Ac),169.9(s,Ac),169.7(s,Ac),155.4,155.3(s,C−2'),130.8,130.6(s,C−4'),120.1,120.0(s,C−1'),107.7,107.6(d,C−5'),103.6,103.2(d,C−3'),100.5,99.0(d,C−1”),95.7,95.6(d,C−1”'),78.0,75.5(d,C−2),75.7(d,C−3”),73.0,72.7(d,C−4”),72.6,72.5(d,C−2”),72.4,72.2(d,C−5”),70.2(d,C−2”'),69.6,69.5(d,C−3”'),68.6(d,C−5”'),68.2(d,C−4”'),63.1,62.8(t,C−6”'),61.7(t,C−6”),37.2(t,C−4),25.2,24.4(t,C−3),21.9,20.2(q,C−1),21.14(q,Ac),20.12(q,Ac),21.0(q,Ac),20.90(q,Ac),20.89(q,Ac),20.8(q,Ac),20.77(q,Ac),20.76(q,Ac),20.7(q,Ac).
1 H-NMR (400 MHz, CDCl 3 ) δ 6.88, 687 (d, J = 8.0 Hz, 1H, H-6 ′), 6.33-6.30 (m, 2H, H-3 ′, H −5 ′), 5.41, 5.39 (d, J = 3.9 Hz, 1H, H−1 ″ ′), 5.35 (dd, J = 10 Hz, 1H, H−3 ″ ′), 5 .27-5.22 (m, 1H, H-3 "), 5.04, 5.03 (t, J = 9.8 Hz, 1H, H-4"'), 4.85-4.78 ( m, 2H, H-2 ″, H-2 ″ ′), 4.61, 4.57 (d, J = 8.0 Hz, 1H, H−1 ″), 4.57-4.43 (m, 1H, H-6 "), 4.26-3.93 (m, 5H, H-6"', H-4 "', H-6", H-5 "'), 3.77-3. 70 (m, 1H, H-5 "), 3.64-3.62 (m, 1H, H-2), 2 60-2.43 (m, 2H, H-4) 2.10-1.9 (m, 12H, Ac), 1.86-1.60 (m, 2H, H-3), 1.23 1.11 (d, J = 6.2, 6.0 Hz, 3H, H-1).
13 C-NMR (100 MHz, CDCl 3 ) δ 171.4 (s, Ac), 171.0 (s, Ac), 170.91 (s, Ac), 170.88 (s, Ac), 170.8 ( s, Ac), 170.7 (s, Ac), 170.6 (s, Ac), 170.4 (s, Ac), 170.2 (s, Ac), 169.9 (s, Ac), 169.7 (s, Ac), 155.4, 155.3 (s, C-2 ′), 130.8, 130.6 (s, C-4 ′), 120.1, 120.0 (s , C-1 ′), 107.7, 107.6 (d, C-5 ′), 103.6, 103.2 (d, C-3 ′), 100.5, 99.0 (d, C -1 "), 95.7, 95.6 (d, C-1"'), 78.0, 75.5 (d, C-2), 75.7 (d, C-3 "), 73 .0,72.7 (d, -4 "), 72.6, 72.5 (d, C-2"), 72.4, 72.2 (d, C-5 "), 70.2 (d, C-2"'), 69.6, 69.5 (d, C-3 ″ ′), 68.6 (d, C-5 ″ ′), 68.2 (d, C-4 ″ ′), 63.1, 62.8 (T, C-6 "'), 61.7 (t, C-6"), 37.2 (t, C-4), 25.2, 24.4 (t, C-3), 21. 9, 20.2 (q, C-1), 21.14 (q, Ac), 20.12 (q, Ac), 21.0 (q, Ac), 20.90 (q, Ac), 20 .89 (q, Ac), 20.8 (q, Ac), 20.77 (q, Ac), 20.76 (q, Ac), 20.7 (q, Ac).

<2-β-D-maltosyl-4-(2',4'-dihydrooxyphenyl)butane (7)>
ジフェノール22a(173mg、217μmol)をメタノール5mLに溶解し、氷冷下、攪拌しながら28%ナトリウムメトキシドのメタノール溶液(630μL、3.25mmol)を加えた。反応液を1時間後に室温へもどし、さらに1時間攪拌した。反応液を再び氷冷し、Amberlite(登録商標)IR120−Hで中和した後、Amberlite(登録商標)IR120をろ別して得られたろ液を減圧濃縮した。残渣をSep−Pak(登録商標)(0〜40%アセトニトリル水溶液)で分画し、ジアステレオマー7a(R体)及び7b(S体)の混合物7(71.3mg、141μmol)を収率65%で得た。得られたジアステレオマー混合物7の一部を、分取逆相HPLC(10%アセトニトリル水溶液、流速1mL/分、検出波長254nm)で精製及びジアステレオマーの分割を行い、下記の7a(溶出時間13.5分)及び下記の7b(溶出時間14.7分)を得た。
<2-β-D-maltosyl-4- (2 ', 4'-dihydrooxyphenyl) butane (7)>
Diphenol 22a (173 mg, 217 μmol) was dissolved in 5 mL of methanol, and 28% sodium methoxide in methanol (630 μL, 3.25 mmol) was added with stirring under ice cooling. The reaction solution was returned to room temperature after 1 hour, and further stirred for 1 hour. The reaction solution was ice-cooled again and neutralized with Amberlite (registered trademark) IR120-H + , and the filtrate obtained by filtering Amberlite (registered trademark) IR120 was concentrated under reduced pressure. The residue was fractionated with Sep-Pak (registered trademark) (0 to 40% acetonitrile aqueous solution) to obtain a mixture 7 (71.3 mg, 141 μmol) of diastereomer 7a (R form) and 7b (S form) with a yield of 65 %. A part of the obtained diastereomer mixture 7 was purified by preparative reverse phase HPLC (10% acetonitrile aqueous solution, flow rate 1 mL / min, detection wavelength 254 nm), and the diastereomer was separated, and the following 7a (elution time) 13.5 minutes) and the following 7b (elution time 14.7 minutes) were obtained.

[7a(R体):]
H−NMR(400MHz,CDOD)δ6.90(d,J=8.2Hz,1H,H−6'),6.25(d,J=2.4Hz,1H,H−3'),6.20(dd,J=8.1,2.4Hz,1H,H−5'),5.15(d,J=3.8Hz,H−1”'),4.41(d,J=7.8Hz,1H,H−1”),3.91−3.82(m,4H,H−6”,H−6”',H−2),3.72−3.55(m,5H,H−5”',H−6”,H−3”,H−3”',H−4”'),3.52(dd,J=9.7,3.8Hz,1H,H−2”'),3.37−3.21(m,4H,H−5”,H−4”,H−2”,H−2”'),2.66−2.49(m,2H,H−4)1.90−1.64(m,2H,H−3),1.21(d,J=6.2Hz,3H,H−1).
13C−NMR(100MHz,CDOD)δ157.3(s,C−4'),156.9(s,C−2'),131.5(d,C−6'),121.1(s,C−1'),107.4(d,C−5'),103.5(d,C−3'),102.9(d,C−1”),102.2(d,C−1”'),81.4(d,C−4”),78.1(d,C−3”),76.5(d,C−3”'),75.8(d,C−2),75.1(d,C−5”),74.8(d,C−5”'),74.7(d,C−2”),74.2(d,C−2”'),71.5(d,C−4”'),62.7(t,C−6”'),62.2(t,C−6”),38.7(t,C−4),26.5(t,C−3),20.0(q,C−1).
[7a (R form):]
1 H-NMR (400 MHz, CD 3 OD) δ 6.90 (d, J = 8.2 Hz, 1H, H-6 ′), 6.25 (d, J = 2.4 Hz, 1H, H-3 ′) , 6.20 (dd, J = 8.1, 2.4 Hz, 1H, H-5 ′), 5.15 (d, J = 3.8 Hz, H-1 ″ ′), 4.41 (d, J = 7.8 Hz, 1H, H-1 "), 3.91-3.82 (m, 4H, H-6", H-6 "', H-2), 3.72-3.55 ( m, 5H, H-5 ″ ′, H-6 ″, H-3 ″, H-3 ″ ′, H-4 ″ ′), 3.52 (dd, J = 9.7, 3.8 Hz, 1H , H-2 "'), 3.37-3.21 (m, 4H, H-5", H-4 ", H-2", H-2 "'), 2.66-2.49 ( m, 2H, H-4) 1.90-1.64 (m, 2H, H-3), 1.21 (d, J = 6.2 Hz) 3H, H-1).
13 C-NMR (100 MHz, CD 3 OD) δ 157.3 (s, C-4 ′), 156.9 (s, C-2 ′), 131.5 (d, C-6 ′), 121.1 (S, C-1 ′), 107.4 (d, C-5 ′), 103.5 (d, C-3 ′), 102.9 (d, C-1 ″), 102.2 (d , C-1 ″ ′), 81.4 (d, C-4 ″), 78.1 (d, C-3 ″), 76.5 (d, C-3 ″ ′), 75.8 (d , C-2), 75.1 (d, C-5 "), 74.8 (d, C-5"'), 74.7 (d, C-2 "), 74.2 (d, C -2 "'), 71.5 (d, C-4"'), 62.7 (t, C-6 "'), 62.2 (t, C-6"), 38.7 (t, C-4), 26.5 (t, C-3), 20.0 (q, C-1).

[7b(S体):]
H−NMR(400MHz,CDOD)δ6.88(d,J=8.2Hz,1H,H−6'),6.26(d,J=2.4Hz,1H,H−3'),6.21(dd,J=8.2,2.4Hz,1H,H−5'),5.16(d,J=3.8Hz,H−1”'),4.36(d,J=7.8Hz,1H,H−1”),3.87−3.78(m,4H,H−6”,H−6”',H−2),3.70−3.52(m,5H,H−5”',H−6”,H−3”,H−3”',H−4”'),3.44(dd,J=9.7,3.8Hz,1H,H−2”'),3.37−3.21(m,4H,H−5”,H−4”,H−2”,H−2”'),2.64−2.52(m,2H,H−4)1.89−1.64(m,2H,H−3),1.27(d,J=6.2Hz,3H,H−1).
13C−NMR(100MHz,CDOD)δ157.4(s,C−4'),156.9(s,C−2'),131.5(d,C−6'),121.0(s,C−1'),107.4(d,C−5'),103.8(d,C−1”),103.5(d,C−3'),102.9(d,C−1”'),81.3(d,C−4”),77.9(d,C−3”),77.5(d,C−2),76.5(d,C−3”'),75.1(d,C−5”),75.0(d,C−5”'),74.8(d,C−2”),74.2(d,C−2”'),71.5(d,C−4”),62.8(t,C−6”'),62.2(t,C−6”),38.2(t,C−4),26.4(t,C−3),22.1(q,C−1).
[7b (S body):]
1 H-NMR (400 MHz, CD 3 OD) δ 6.88 (d, J = 8.2 Hz, 1H, H-6 ′), 6.26 (d, J = 2.4 Hz, 1H, H-3 ′) , 6.21 (dd, J = 8.2, 2.4 Hz, 1H, H-5 ′), 5.16 (d, J = 3.8 Hz, H−1 ″ ′), 4.36 (d, J = 7.8 Hz, 1H, H-1 "), 3.87-3.78 (m, 4H, H-6", H-6 "', H-2), 3.70-3.52 ( m, 5H, H-5 ″ ′, H-6 ″, H-3 ″, H-3 ″ ′, H-4 ″ ′), 3.44 (dd, J = 9.7, 3.8 Hz, 1H , H-2 "'), 3.37-3.21 (m, 4H, H-5", H-4 ", H-2", H-2 "'), 2.64-2.52 ( m, 2H, H-4) 1.89-1.64 (m, 2H, H-3), 1.27 (d, J = 6.2 Hz) 3H, H-1).
13 C-NMR (100 MHz, CD 3 OD) δ 157.4 (s, C-4 ′), 156.9 (s, C-2 ′), 131.5 (d, C-6 ′), 121.0 (S, C-1 ′), 107.4 (d, C-5 ′), 103.8 (d, C-1 ″), 103.5 (d, C-3 ′), 102.9 (d , C-1 ″ ′), 81.3 (d, C-4 ″), 77.9 (d, C-3 ″), 77.5 (d, C-2), 76.5 (d, C -3 "'), 75.1 (d, C-5"), 75.0 (d, C-5 "'), 74.8 (d, C-2"), 74.2 (d, C -2 "'), 71.5 (d, C-4"), 62.8 (t, C-6 "'), 62.2 (t, C-6"), 38.2 (t, C -4), 26.4 (t, C-3), 22.1 (q, C-1).

[実施例6:ロドデンドロール誘導体8(rac-4-(2',4'-hydroxyphenyl)butan-2-ol)の合成]
ロドデンドロール誘導体8の合成経路をScheme7に示す。
[Example 6: Synthesis of rhododendrol derivative 8 (rac-4- (2 ', 4'-hydroxyphenyl) butan-2-ol)]
The synthesis route of rhododendrol derivative 8 is shown in Scheme 7.

Figure 2013213024
Figure 2013213024

上記したロドデンドロール誘導体2の合成と同様に、アルコール12を調製した。
アルコール12(200mg、551μmol)を酢酸エチル5mLに溶かし、Pd(OH)/C(水酸化パラジウム/活性炭素)(18.6mg)を加えて水素雰囲気下で激しく攪拌した。3時間攪拌を続けた後、反応液をセライトでろ過し、ろ液を減圧濃縮した。得られた残渣をシリカゲルクロマトグラフィー(60%酢酸エチル/ヘキサン)により精製し、白色結晶の誘導体8(93.3mg、512μmol)を収率93%で得た。
Alcohol 12 was prepared in the same manner as the synthesis of rhododendrol derivative 2 described above.
Alcohol 12 (200 mg, 551 μmol) was dissolved in 5 mL of ethyl acetate, Pd (OH) 2 / C (palladium hydroxide / activated carbon) (18.6 mg) was added, and the mixture was vigorously stirred under a hydrogen atmosphere. After stirring for 3 hours, the reaction solution was filtered through celite, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel chromatography (60% ethyl acetate / hexane) to obtain white crystal derivative 8 (93.3 mg, 512 μmol) in a yield of 93%.

H−NMR(400MHz,acetone−d)δ8.21(s,1H,ArOH),8.01(s,1H,ArOH),6.85(d,J=8.1Hz,1H,H−6'),6.33(d,J=2.5Hz,1H,H−3'),6.24(dd,J=8.1,2.5Hz,1H,H−5'),3.69(,J=6.0Hz,1H,H−2),3.40(s,1H,OH),2.57(dd,J=Hz,2H,H−4),1.62(m,2H,H−3),1.12(d,J=6.2Hz,3H,H−1).
13C−NMR(100MHz,acetone−d)δ,157.2(s,C−2'),156.7(s,C−4'),131.2(d,C−6'),120.2(s,C−1'),107.4(d,C−5'),103.5(d,C−3'),67.1(d,C−2),40.6(t,C−4),26.3(t,C−3),23.8(q,C−1).
1 H-NMR (400 MHz, acetone-d 6 ) δ 8.21 (s, 1 H, ArOH), 8.01 (s, 1 H, ArOH), 6.85 (d, J = 8.1 Hz, 1 H, H − 6 ′), 6.33 (d, J = 2.5 Hz, 1H, H-3 ′), 6.24 (dd, J = 8.1, 2.5 Hz, 1H, H-5 ′), 3. 69 (, J = 6.0 Hz, 1H, H-2), 3.40 (s, 1H, OH), 2.57 (dd, J = Hz, 2H, H-4), 1.62 (m, 2H, H-3), 1.12 (d, J = 6.2 Hz, 3H, H-1).
13 C-NMR (100 MHz, acetone-d 6 ) δ, 157.2 (s, C-2 ′), 156.7 (s, C-4 ′), 131.2 (d, C-6 ′), 120.2 (s, C-1 ′), 107.4 (d, C-5 ′), 103.5 (d, C-3 ′), 67.1 (d, C-2), 40.6 (T, C-4), 26.3 (t, C-3), 23.8 (q, C-1).

[生理活性の評価]
DOPA49mgを精製水に溶解し、5mMのDOPA水溶液を調製した。合成した各ロドデンドロール誘導体1〜8をDMSOに溶解し、3mMのサンプル溶液を調製した。チロシナーゼは、マッシュルーム由来のチロシナーゼ(「E.C.1.14.18.1」、購入先:Sigma−Aldrich)を用い、50mMのリン酸ナトリウム緩衝液に溶解し、0.67mg/mLのチロシナーゼ溶液を調製した。
[Evaluation of physiological activity]
49 mg of DOPA was dissolved in purified water to prepare a 5 mM DOPA aqueous solution. Each synthesized rhododendrol derivative 1-8 was dissolved in DMSO to prepare a 3 mM sample solution. Tyrosinase was dissolved in 50 mM sodium phosphate buffer using mushroom-derived tyrosinase ("EC 1.14.18.1", purchased from Sigma-Aldrich), and 0.67 mg / mL tyrosinase A solution was prepared.

キュベット(3mL容)に、DMSOで10段階(0〜0.1mM)に希釈したサンプル溶液0.1mL、250mMリン酸ナトリウム緩衝液0.6mL、5mMのDOPA水溶液0.3mL、精製水1.9mL及びチロシナーゼ溶液0.1mLを加え、よく混合し、分光光度計で475nmの吸光値の変化を計測した。各測定は30℃で30秒間行い、1秒ごとに吸光値をコンピュータに保存した。得られた吸光度を直線回帰し、ブランク測定時の傾きを100%として50%阻害濃度(IC50)を算出した。表1中のIC50に示されるデータは、50%阻害するロドデンドロール誘導体1,2,5〜8の濃度を示し、値が低いほどチロシナーゼに対する阻害活性が強いことを示している。 In a cuvette (3 mL volume), sample solution 0.1 mL diluted with DMSO in 10 stages (0 to 0.1 mM), 250 mM sodium phosphate buffer 0.6 mL, 5 mM DOPA aqueous solution 0.3 mL, purified water 1.9 mL Then, 0.1 mL of tyrosinase solution was added and mixed well, and the change in absorbance at 475 nm was measured with a spectrophotometer. Each measurement was performed at 30 ° C. for 30 seconds, and the absorbance value was stored in a computer every second. The obtained absorbance was linearly regressed, and the 50% inhibitory concentration (IC 50 ) was calculated with the slope at blank measurement as 100%. The data shown as IC 50 in Table 1 indicate the concentrations of rhododendrol derivatives 1, 2, 5 to 8 that inhibit 50%, and the lower the value, the stronger the inhibitory activity against tyrosinase.

Figure 2013213024
Figure 2013213024

表1からわかるように、DOPAを基質としてチロシナーゼ阻害活性試験を行った結果、酵素反応液中のロドデンドロール誘導体1の濃度を100μMに調整しても、50%阻害濃度(IC50)は求められなかった。しかしながら、ロドデンドロール誘導体2、5〜7のR体及びS体、ロドデンドロール誘導体8は、共に代表的なチロシナーゼ阻害剤であるコウジ酸よりも強い阻害活性を示した。特に、アグリコンのオキシメチンの立体配置がロドデンドロール誘導体1と逆であるR体は、いずれもコウジ酸の4倍程度の強い阻害活性を持つことが明らかになった。 As can be seen from Table 1, as a result of the tyrosinase inhibitory activity test using DOPA as a substrate, even if the concentration of rhododendrol derivative 1 in the enzyme reaction solution was adjusted to 100 μM, the 50% inhibitory concentration (IC 50 ) was obtained. I couldn't. However, the R and S forms of rhododendrol derivatives 2 and 5-7, and rhododendrol derivative 8 both showed stronger inhibitory activity than kojic acid, which is a typical tyrosinase inhibitor. In particular, it has been clarified that the R form in which the configuration of oxymethine in the aglycone is opposite to that of rhododendrol derivative 1 has an inhibitory activity about 4 times that of kojic acid.

また、芳香環の2,4位にヒドロキシ基があるロドデンドロール誘導体2は、ポリフェノールオキシダーゼ阻害活性を有し、また、芳香環の3,4位にヒドロキシ基があるロドデンドロール誘導体3は、フリーラジカル捕捉能とリポキシゲナーゼ阻害活性を有し、また、芳香環の3,5位にヒドロキシ基があるロドデンドロール誘導体4は、キサンチンオキシダーゼ阻害活性を有す。   Moreover, the rhododendrol derivative 2 having a hydroxy group at positions 2 and 4 of the aromatic ring has polyphenol oxidase inhibitory activity, and the rhododendrol derivative 3 having a hydroxy group at positions 3 and 4 of the aromatic ring is The rhododendrol derivative 4 having a free radical scavenging ability and a lipoxygenase inhibitory activity and having a hydroxy group at the 3,5-positions of the aromatic ring has a xanthine oxidase inhibitory activity.

Claims (3)

式Aで示されるロドデンドロール誘導体であることを特徴とする化合物(式A中、(1)R及びRがヒドロキシル基でR及びRが水素原子である場合、(2)R及びRがヒドロキシル基でR及びRが水素原子である場合、及び、(3)R及びRがヒドロキシル基でR及びRが水素原子である場合、のいずれかである。式A中、Rは、水素原子、炭素数2以上10以下のアルキル基、フェニル基、シクロ環化合物、含酸素複素環化合物、又は、単糖類若しくはオリゴ糖類のいずれかの残基又はそれらのメチル化物である。)。
Figure 2013213024
A compound characterized by being a rhododendrol derivative represented by the formula A (in the formula A, when (1) R 1 and R 3 are hydroxyl groups and R 2 and R 4 are hydrogen atoms, (2) R Either when 2 and R 3 are hydroxyl groups and R 1 and R 4 are hydrogen atoms, and (3) when R 2 and R 4 are hydroxyl groups and R 1 and R 3 are hydrogen atoms In formula A, R 5 represents a hydrogen atom, an alkyl group having 2 to 10 carbon atoms, a phenyl group, a cyclocyclic compound, an oxygen-containing heterocyclic compound, or any residue of a monosaccharide or oligosaccharide, or Their methylates).
Figure 2013213024
式Bで示されるロドデンドロール誘導体型骨格構造を持つ化合物であることを特徴とする化合物(式B中、(1)R及びRがヒドロキシル基でR及びRが水素原子である場合、(2)R及びRがヒドロキシル基でR及びRが水素原子である場合、及び、(3)R及びRがヒドロキシル基でR及びRが水素原子である場合、のいずれかである。式B中、Rは、式C1〜C3に示す構造式のいずれかであり、式C3中、Rは、炭素数2以上10以下のアルキル基、フェニル基、シクロ環化合物、含酸素複素環化合物、又は、単糖類若しくはオリゴ糖類のいずれかの残基又はそれらのメチル化物である。)。
Figure 2013213024
Figure 2013213024
A compound having a rhododendrol derivative-type skeleton structure represented by formula B (in formula B, (1) R 1 and R 3 are hydroxyl groups and R 2 and R 4 are hydrogen atoms (2) when R 2 and R 3 are hydroxyl groups and R 1 and R 4 are hydrogen atoms; and (3) R 2 and R 4 are hydroxyl groups and R 1 and R 3 are hydrogen atoms. In formula B, R 6 is any one of the structural formulas shown in formulas C1 to C3, and in formula C3, R 7 is an alkyl group having 2 to 10 carbon atoms, a phenyl group. , A cyclic compound, an oxygen-containing heterocyclic compound, a residue of monosaccharide or oligosaccharide, or a methylated product thereof).
Figure 2013213024
Figure 2013213024
請求項1に記載の式Aで示される化合物又は請求項2に記載の式Bで示される化合物であることを特徴とする生理活性剤。   A bioactive agent, which is a compound represented by the formula A according to claim 1 or a compound represented by the formula B according to claim 2.
JP2013038329A 2012-03-04 2013-02-28 Rhododendrol derivative Pending JP2013213024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013038329A JP2013213024A (en) 2012-03-04 2013-02-28 Rhododendrol derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012047471 2012-03-04
JP2012047471 2012-03-04
JP2013038329A JP2013213024A (en) 2012-03-04 2013-02-28 Rhododendrol derivative

Publications (1)

Publication Number Publication Date
JP2013213024A true JP2013213024A (en) 2013-10-17

Family

ID=49586664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013038329A Pending JP2013213024A (en) 2012-03-04 2013-02-28 Rhododendrol derivative

Country Status (1)

Country Link
JP (1) JP2013213024A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960924A (en) * 2020-08-13 2020-11-20 常州大学 Preparation method of 4-butyl resorcinol

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960924A (en) * 2020-08-13 2020-11-20 常州大学 Preparation method of 4-butyl resorcinol
CN111960924B (en) * 2020-08-13 2023-01-17 常州大学 Preparation method of 4-butyl resorcinol

Similar Documents

Publication Publication Date Title
EP3730507A1 (en) Nicotinoyl riboside and nicotinamide riboside compositions for use in reducing toxicity induced by hmg-coa reductase inhibitors
JP5336494B2 (en) Ascorbic acid derivative, process for producing the same and use of such intermediates and derivatives thereof in cosmetics
Uhrig et al. Synthesis of antioxidative and anti-inflammatory drugs glucoconjugates
Tai et al. Structural evidence for the DPPH radical-scavenging mechanism of 2-O-α-d-glucopyranosyl-l-ascorbic acid
EP2202237A1 (en) Hydrosoluble [6)-O-alpha-d-glcp-(1-&gt;]n-6-o-bêta-d-glcp-(1-&gt;-phenllic derivatives with dermocosmetic, nutritional and therapeutic applications, and compositions containing said water soluble compounds
Sipos et al. Preparation of 1-C-glycosyl aldehydes by reductive hydrolysis
JP6262569B2 (en) Resveratrol derivative and tyrosinase activity inhibitor
JP2023164651A (en) Resorcinol derivative, and tyrosinase activity inhibitor including the same
Iwadate et al. Rhododendrol glycosides as stereospecific tyrosinase inhibitors
Ponticelli et al. Synthesis and antiperoxidant activity of new phenolic O-glycosides
JP2013213024A (en) Rhododendrol derivative
JP5893442B2 (en) Tyrosinase activity inhibitor
Yang et al. Synthesis and immunosuppressive activity of L-rhamnopyranosyl flavonoids
EP1544207B1 (en) Process for producing glycoside
WO2017102802A1 (en) Resorcinol derivatives for their cosmetic use
JP2002193990A (en) Hydrochalcone glycoside and cosmetic formulated with the same as effective component
JP5150894B2 (en) Tyrosinase activity inhibitor and method for producing the same
TANAKA et al. Glutathione-mediated conversion of the ellagitannin geraniin into chebulagic acid
JP2004224762A (en) Naphthol glycoside and bleaching external preparation composition containing the same
JP4473511B2 (en) Method for synthesizing naphthol glycoside and its intermediate
JP6173440B2 (en) New whitening agent
Hanaya et al. Efficient total syntheses of natural pterin glycosides: limipterin and tepidopterin
JP3935447B2 (en) Grab lysine glycoside, method for producing the same, and skin external preparation containing grabridine glycoside
KR20050006622A (en) Novel Whitening Agents and Cosmetic Formulations containing them
PL237701B1 (en) 2&#39;-Methoxy-5&#39;-O-β-D-(4&#34;-O-methylglucopyranosyl)-flavanone and method of preparing 2&#39;-methoxy-5&#39;-O-β-D-(4&#34;-O-methylglucopyranosyl)-flavanones