JP2013212487A - Magnetic adsorbent particle - Google Patents

Magnetic adsorbent particle Download PDF

Info

Publication number
JP2013212487A
JP2013212487A JP2012154255A JP2012154255A JP2013212487A JP 2013212487 A JP2013212487 A JP 2013212487A JP 2012154255 A JP2012154255 A JP 2012154255A JP 2012154255 A JP2012154255 A JP 2012154255A JP 2013212487 A JP2013212487 A JP 2013212487A
Authority
JP
Japan
Prior art keywords
cesium
magnetic adsorbent
magnetic
adsorbent
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012154255A
Other languages
Japanese (ja)
Other versions
JP5250140B1 (en
Inventor
Akira Ito
章 伊藤
Kunihisa Iwasaki
邦寿 岩崎
Takahisa Kato
隆久 加藤
Shinkichi Mori
信吉 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2012154255A priority Critical patent/JP5250140B1/en
Application granted granted Critical
Publication of JP5250140B1 publication Critical patent/JP5250140B1/en
Publication of JP2013212487A publication Critical patent/JP2013212487A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently separating cesium from a solution containing the cesium.SOLUTION: A method includes separating cesium using a magnetic adsorbent composed of a complex containing magnetic material particles, a cesium adsorbing compound and a binder.

Description

本発明は、少なくともセシウムを含有する溶液から、効率良くセシウムを分離する方法に関するものである。   The present invention relates to a method for efficiently separating cesium from a solution containing at least cesium.

セシウムは、試薬、光電変換素子、光学結晶、光学ガラス等の製造に用いられているレアメタルであり、地熱水等からセシウムを分離回収する技術は、資源確保の観点から重要である。また、原子力利用施設から発生する廃液中には放射性セシウムが含まれており、このものを効率良く分離する技術が開発されてきた。さらに2011年に起きた福島第一原子力発電所の事故においては、放射性セシウムが広範囲に飛散し、様々な物質に付着した放射性セシウムを分離する技術が必要となってきた。   Cesium is a rare metal used in the manufacture of reagents, photoelectric conversion elements, optical crystals, optical glass, and the like, and a technique for separating and recovering cesium from geothermal water or the like is important from the viewpoint of securing resources. Moreover, radioactive cesium is contained in the waste liquid generated from the nuclear power facility, and a technique for efficiently separating this has been developed. Furthermore, in the accident at the Fukushima Daiichi nuclear power plant that occurred in 2011, radioactive cesium was scattered over a wide area, and technology for separating radioactive cesium adhering to various substances has become necessary.

放射線セシウムや重金属等の有害成分を含有する溶液からこれらを分離するため、様々な手法が検討されてきた。最も簡便には、活性炭やイオン交換樹脂等の吸着剤を利用する方法が広く用いられている。特に放射性セシウムの吸着剤としては、ゼオライト、結晶質四チタン酸、スメクタイト、不溶性フェロシアン化物、リンモリブデン酸アンモニウム、シリコチタネート等が古くから知られている。しかし、これらの吸着剤を溶液に添加して使用する場合、吸着剤を処理済みの溶液から分離する必要があり、具体的な方法として、吸着剤とセシウム含有溶液を一定時間接触させてから濾別する方法、吸着剤をカラムに充填して、その中にセシウム含有溶液を流す方法等がある。いずれの場合においても、セシウム含有溶液が何らかの夾雑物を含む場合には、予めこれらを除く必要があり、この除去作業は多大な労力を要する。結果として、夾雑物を含むセシウム溶液から、これまで知られてきた吸着剤単体を用いる方法によりセシウムを分離することは極めて困難であった。   Various methods have been investigated to separate these from solutions containing harmful components such as radioactive cesium and heavy metals. Most simply, a method using an adsorbent such as activated carbon or ion exchange resin is widely used. In particular, as adsorbents for radioactive cesium, zeolite, crystalline tetratitanic acid, smectite, insoluble ferrocyanide, ammonium phosphomolybdate, silicotitanate and the like have been known for a long time. However, when these adsorbents are added to a solution and used, it is necessary to separate the adsorbent from the treated solution. As a specific method, the adsorbent and the cesium-containing solution are contacted for a certain period of time and then filtered. There is another method, such as a method in which a column is filled with an adsorbent and a cesium-containing solution is allowed to flow through the column. In any case, when the cesium-containing solution contains some impurities, it is necessary to remove these in advance, and this removal work requires a great deal of labor. As a result, it has been extremely difficult to separate cesium from a cesium solution containing impurities by a method using a single adsorbent that has been known so far.

一方、近年、超伝導磁石や高勾配磁気分離技術が進歩してきたため、磁性を利用して溶液中の有害成分を分離する技術の実用性が高まり、注目を集めるようになってきた。具体的な手法としては、有害成分自体に磁性を持たせる方法、有害成分と磁性体粒子を混合しておいて凝集剤を加え、磁性のあるフロックを形成する方法、活性炭やゼオライトのような吸着剤に磁性を持たせる方法がある。 On the other hand, since superconducting magnets and high-gradient magnetic separation techniques have recently advanced, the practicality of techniques for separating harmful components in solutions using magnetism has increased and has attracted attention. Specific methods include a method of making the harmful component itself magnetic, a method of mixing the harmful component and magnetic particles and adding a flocculant to form a magnetic floc, adsorption such as activated carbon and zeolite There is a method to make the agent magnetic.

このうち、有害成分自体に磁性を持たせる方法は汎用性に欠ける。また磁性のあるフロックを形成する方法は、大量の磁性体粒子と凝集剤を必要とすることが多く、むしろ処理が煩雑になるという問題がある。一方、吸着剤に磁性を持たせる方法は、有害成分を効果的に吸着できるというメリットが期待できるものの、吸着剤本来の吸着能力を落とすことなく高い磁性を持たせ、安価に製造する実用的な方法がまだない。   Of these, the method of imparting magnetism to the harmful component itself lacks versatility. In addition, the method of forming a magnetic floc often requires a large amount of magnetic particles and an aggregating agent, and there is a problem that the processing becomes rather complicated. On the other hand, the method of giving magnetism to the adsorbent can be expected to have the advantage of being able to adsorb harmful components effectively, but it is practical to produce it at low cost by giving it high magnetism without reducing the adsorbent's original adsorption capacity. There is still no way.

例えば、磁性体の核とこの核を覆いかつ金属イオンを吸着する外皮とを有する磁性吸着剤が提案されている(特許文献1参照)。この吸着剤は、直径1〜10mmの球状磁性体に対して、金属イオン吸着基を持つ高分子化合物を吹き付け、乾燥させて合成されており、吹き付けにおける材料ロスが大きいため高価であり、実用性がない。別のタイプとして、直径1〜10mmの球状磁性体に対して、アルミノ珪酸塩の結晶としてゼオライトを生成させた吸着剤も示されているが、比表面積が極めて小さいため、吸着容量が低いという問題点がある。また、多孔質ガラスビーズ、シリカゲル、アルミナ、ゼオライト等の無機系多孔質物質に磁性金属と有機物質を担持させ、有機物を熱分解して吸着性能を発現させるタイプの磁性吸着剤が提案されている(特許文献2参照)。この吸着剤においては、担磁のために無機系多孔質物質を鉄系化合物の溶液に含浸させた後、熱処理を施している。操作が煩雑なため製造コストが高いうえ、鉄系化合物の吸着量には限界があるため、高い磁性を持たせることができず、実用性がない。さらに、シリカゲル、ゼオライト、活性炭等の多孔質吸着剤に酸化鉄を化合させる方法が提案されている(特許文献3参照)。しかしながら、この方法の場合には磁性吸着剤の担持量が低く、磁気による回収を効率良く行うためには多量の酸化鉄を化合させる必要があるため、結果として吸着容量が著しく低下し、製造コストも高くなるという問題がある。加えて、ゼオライトと磁性体粒子を接着剤(セメント)で結合させた磁性吸着剤も提案されている(特許文献4、5参照)。接着剤にセメントを用いているため、強度を確保するために長期にわたる蒸気乾燥が必要となり、製造上の問題が大きい。   For example, a magnetic adsorbent having a magnetic core and an outer skin that covers the core and adsorbs metal ions has been proposed (see Patent Document 1). This adsorbent is synthesized by spraying a polymer compound having a metal ion adsorbing group on a spherical magnetic material having a diameter of 1 to 10 mm and drying it, and is expensive because of a large material loss in spraying. There is no. As another type, an adsorbent that has produced zeolite as aluminosilicate crystals for a spherical magnetic material with a diameter of 1 to 10 mm is also shown, but the problem is that the adsorption capacity is low because the specific surface area is extremely small. There is a point. In addition, a magnetic adsorbent of a type in which a magnetic metal and an organic substance are supported on an inorganic porous material such as porous glass beads, silica gel, alumina, and zeolite, and the organic material is thermally decomposed to exhibit adsorption performance has been proposed. (See Patent Document 2). In this adsorbent, a heat treatment is performed after impregnating an inorganic porous material in a solution of an iron-based compound for magnetism. Since the operation is complicated, the production cost is high, and the adsorption amount of the iron-based compound is limited, so that high magnetism cannot be imparted and there is no practicality. Furthermore, a method of combining iron oxide with a porous adsorbent such as silica gel, zeolite, activated carbon or the like has been proposed (see Patent Document 3). However, in this method, the amount of the magnetic adsorbent supported is low, and a large amount of iron oxide needs to be combined in order to efficiently recover by magnetism. There is a problem that it becomes higher. In addition, a magnetic adsorbent in which zeolite and magnetic particles are bonded with an adhesive (cement) has also been proposed (see Patent Documents 4 and 5). Since cement is used for the adhesive, steam drying over a long period of time is necessary to ensure strength, which is a major manufacturing problem.

特開平10−99843号公報Japanese Patent Laid-Open No. 10-99843 特開2002−233754号公報JP 2002-233754 A 特開2005−137973号公報JP 2005-137773 A 特開平1−194940号公報JP-A-1-194940 特開2005−177709号公報JP 2005-177709 A

本発明の課題は、セシウムを含有する溶液から、磁気分離技術を用いて効率良くこれら有害成分を分離することが可能であり、かつ比較的簡単な手法により製造可能な磁性吸着剤を提供することにある。   An object of the present invention is to provide a magnetic adsorbent capable of efficiently separating these harmful components from a cesium-containing solution using a magnetic separation technique and capable of being produced by a relatively simple method. It is in.

上記課題を鋭意研究し、磁性体粒子とセシウム吸着性化合物がバインダーと共に結着されている磁性吸着剤を用いることにより、セシウムを含有する溶液から効率良くセシウムを分離することができることを見出して、本発明に到達した。また、セシウム吸着性化合物としては不溶性フェロシアン化物、天然ゼオライトおよび人工ゼオライトのゼオライト類、バーミキュライト、雲母類が好ましいことを見出した。さらに不溶性フェロシアン化物が水溶性樹脂の存在下に製造されていることが好ましく、ゼオライト類の中でもモルデナイト、クリノプチロライト、シャバサイトが好ましいことを見出した。また、バインダーとして水性樹脂エマルジョン、耐水化された水溶性樹脂が好ましいことを見出した。   By intensively researching the above problems, we found that cesium can be efficiently separated from a cesium-containing solution by using a magnetic adsorbent in which magnetic particles and a cesium-adsorbing compound are bound together with a binder. The present invention has been reached. Further, it has been found that insoluble ferrocyanide, natural zeolite and artificial zeolite zeolite, vermiculite and mica are preferable as the cesium-adsorbing compound. Furthermore, it has been found that insoluble ferrocyanide is preferably produced in the presence of a water-soluble resin, and among zeolites, mordenite, clinoptilolite and shabasite are preferred. Further, it has been found that an aqueous resin emulsion and a water-resistant water-resistant resin are preferable as the binder.

本発明においては、磁性体粒子とセシウム吸着性化合物をバインダーと共に結着させた磁性吸着剤をセシウム含有溶液に分散させたのち、磁気分離により回収する。セシウム吸着性化合物を含有する磁性吸着剤は、速やかにセシウムを吸着することができるので吸着処理時間は短くて済む。また、セシウム含有溶液が夾雑物を含んでいても、予めこれらを除くことなく吸着処理を行い、セシウムを吸着した磁性吸着剤だけを磁気分離により回収することができる。夾雑物が汚泥、土壌、焼却灰等に由来する物質であっても、磁気分離には何ら影響しない。その結果、本発明においてはセシウム含有溶液から、極めて短時間かつ簡単な操作によりセシウムを分離することが可能になる。   In the present invention, a magnetic adsorbent obtained by binding magnetic particles and a cesium adsorbing compound together with a binder is dispersed in a cesium-containing solution, and then recovered by magnetic separation. Since the magnetic adsorbent containing the cesium-adsorbing compound can adsorb cesium quickly, the adsorption treatment time can be short. Moreover, even if the cesium-containing solution contains impurities, the adsorption treatment can be performed without removing these in advance, and only the magnetic adsorbent that has adsorbed cesium can be recovered by magnetic separation. Even if contaminants are substances derived from sludge, soil, incineration ash, etc., there is no effect on magnetic separation. As a result, in the present invention, cesium can be separated from the cesium-containing solution by a very short and simple operation.

本発明に用いられる磁性体粒子としては特に制限はなく、磁性を示すあらゆる材料を用いることができる。例えば鉄、ニッケル、コバルト等の金属またはこれらを主成分とする磁性合金の粉末、四三酸化鉄、三二酸化鉄、コバルト添加酸化鉄、バリウムフェライト、ストロンチウムフェライト等の金属酸化物系磁性体の粉末が挙げられる。磁性体粒子の粒径は0.1〜100μmが好ましい。0.1μm未満では、取り扱いに困難が生じることがあり、100μmを超えると、セシウム吸着性化合物との混合がスムースに進まない場合がある。本発明の磁性吸着剤におけるこれら磁性体粒子の含有率は10〜80質量%が好ましく、特に20〜70質量%となるようにするのが好ましい。含有率が10質量%を下回ると磁気分離の効率が低下するので好ましくない。また、含有率が80質量%を上回ると、セシウム吸着性化合物の含有率が低くなるため、セシウム吸着性が低下するので好ましくない。   The magnetic particles used in the present invention are not particularly limited, and any material exhibiting magnetism can be used. For example, powders of metals such as iron, nickel and cobalt or powders of magnetic alloys based on these metals, powders of metal oxide magnetic materials such as iron trioxide, iron sesquioxide, cobalt-added iron oxide, barium ferrite and strontium ferrite Is mentioned. The particle size of the magnetic particles is preferably 0.1 to 100 μm. If it is less than 0.1 μm, handling may be difficult. If it exceeds 100 μm, mixing with the cesium-adsorbing compound may not proceed smoothly. The content of these magnetic particles in the magnetic adsorbent of the present invention is preferably 10 to 80% by mass, particularly preferably 20 to 70% by mass. If the content is less than 10% by mass, the efficiency of magnetic separation decreases, which is not preferable. Moreover, since the content rate of a cesium adsorptive compound will become low when a content rate exceeds 80 mass%, since a cesium adsorptivity falls, it is unpreferable.

本発明に用いられるセシウム吸着性化合物としては特に制限はなく、公知のものを用いることができる。例えば、モルデナイト、クリノプチロライト、アナルサイム、シャバサイト、フェリエライト等の天然ゼオライト、ゼオライトA(A型)、ゼオライトX(X型)、フィリップサイト(P型)等の人工ゼオライト、結晶質四チタン酸、スメクタイト、不溶性フェロシアン化物、リンモリブデン酸アンモニウム、リンタングステン酸アンモニウム、シリコチタネート、黒雲母、白雲母、金雲母、鉄雲母等の天然雲母やNa型合成雲母等の合成雲母の雲母類、バーミキュライト等を挙げることができる。   There is no restriction | limiting in particular as a cesium adsorption compound used for this invention, A well-known thing can be used. For example, natural zeolites such as mordenite, clinoptilolite, analthym, shabasite, ferrierite, artificial zeolites such as zeolite A (A type), zeolite X (X type), Philipsite (P type), crystalline tetratitanium Natural mica such as acid, smectite, insoluble ferrocyanide, ammonium phosphomolybdate, ammonium phosphotungstate, silicotitanate, biotite, muscovite, phlogopite, iron mica, and mica of synthetic mica such as Na-type synthetic mica, Vermiculite etc. can be mentioned.

これらの中で、天然ゼオライトおよび人工ゼオライトのゼオライト類、不溶性フェロシアン化物、雲母類、バーミキュライトは、セシウム吸着性能が高く好ましい。その中でもモルデナイト、クリノプチロライト、シャバサイト等の天然ゼオライト、雲母類、バーミキュライトは、カリウム、ナトリウム、カルシウム等異種イオンが存在する溶液から選択的に効率良くセシウムを吸着するため、より好ましく用いられる。   Among these, natural zeolite and artificial zeolite zeolite, insoluble ferrocyanide, mica, and vermiculite are preferable because of their high cesium adsorption performance. Among them, natural zeolite such as mordenite, clinoptilolite, shabasite, mica, and vermiculite are more preferably used because they selectively adsorb cesium selectively from a solution containing different ions such as potassium, sodium, and calcium. .

セシウム吸着性化合物を粉体として入手し、磁性体粒子およびバインダーと結着させて本発明の磁性体粒子を得る場合、セシウム吸着性化合物の粒径は0.1〜100μmが好ましい。0.1μm未満では、取り扱いに困難が生じることがあり、100μmを超えると、磁性体粒子との混合がスムースに進まない場合がある。本発明の磁性吸着剤におけるこれらセシウム吸着性化合物の含有率は10〜80質量%が好ましく、特に20〜70質量%となるようにするのが好ましい。含有率が10質量%を下回るとセシウムの吸着効率が低下するので好ましくない。また80質量%を上回ると、磁性体粒子の含有率が低くなるために磁気分離の効率が低下するので好ましくない。   When the cesium-adsorbing compound is obtained as a powder and bound to the magnetic particles and the binder to obtain the magnetic particles of the present invention, the particle size of the cesium-adsorbing compound is preferably 0.1 to 100 μm. If it is less than 0.1 μm, handling may be difficult. If it exceeds 100 μm, mixing with the magnetic particles may not proceed smoothly. The content of these cesium-adsorbing compounds in the magnetic adsorbent of the present invention is preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. If the content is less than 10% by mass, the adsorption efficiency of cesium decreases, which is not preferable. On the other hand, if it exceeds 80% by mass, the content of the magnetic particles is lowered, so that the efficiency of magnetic separation is lowered, which is not preferable.

本発明に用いられるセシウム吸着性化合物の中で不溶性フェロシアン化物は、セシウムに対する選択性が高いことから好ましく用いられる。不溶性フェロシアン化物の具体例としては例えば、一般式[M][Fe(CN)(ただし、MはCu、Co、Ni、Zn、Cd、Mn、Fe等の遷移金属であり、aとbはMの価数×a=4×bを満たす整数である)で表わされるフェロシアン化物、またはこれらのMの一部が、一価の陽イオンにより置換されているフェロシアン化物や遷移金属がMo、Ti、W等の酸化物で置き換わったフェロシアン化物で、水に不溶のものを挙げることができる。これらの中では、MとしてCu、Co、Ni、Feの少なくとも1種を含有する不溶性フェロシアン化物が、高いセシウム吸着性を有することから好ましい。 Among the cesium-adsorbing compounds used in the present invention, insoluble ferrocyanide is preferably used because of its high selectivity for cesium. Specific examples of the insoluble ferrocyanide include, for example, the general formula [M] a [Fe (CN) 6 ] b (where M is a transition metal such as Cu, Co, Ni, Zn, Cd, Mn, Fe, a and b are integers satisfying the valence of M × a = 4 × b), or a ferrocyanide in which a part of M is substituted with a monovalent cation, Examples of the ferrocyanide in which the transition metal is replaced with an oxide such as Mo, Ti, and W, and insoluble in water. In these, the insoluble ferrocyanide containing at least 1 sort (s) of Cu, Co, Ni, and Fe as M is preferable from having high cesium adsorption property.

本発明に用いられるバインダーの種類に特に制限はなく、造粒、成形分野において知られているバインダーを用いることができる。具体的には例えば、ポリウレタン系エマルジョン、ポリアクリル酸エステル系エマルジョン、ポリ酢酸ビニル系エマルジョン、ポリ(エチレン/酢酸ビニル)共重合エマルジョン、ポリ(スチレン/ブタジエン)共重合エマルジョン、ポリ塩化ビニル系樹脂エマルジョン、シリコーン樹脂エマルジョン等の有機系水性樹脂エマルジョン、デンプン、ゼラチン、キトサン類、ポリビニルアルコール系樹脂(ポリビニルアルコール、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、シラノール変性ポリビニルアルコール、エチレン−ポリビニルアルコール共重合体、ポリビニルアセタール等)、セルロース系樹脂(メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等)、ポリアクリル酸系樹脂、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド、ポリプロピレンオキシド等の有機系水溶性樹脂、尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、ニトリルゴム等の有機系非水系樹脂を挙げることができる。   There is no restriction | limiting in particular in the kind of binder used for this invention, The binder known in the field of granulation and a shaping | molding can be used. Specifically, for example, polyurethane emulsion, polyacrylate emulsion, polyvinyl acetate emulsion, poly (ethylene / vinyl acetate) copolymer emulsion, poly (styrene / butadiene) copolymer emulsion, polyvinyl chloride resin emulsion , Organic aqueous resin emulsions such as silicone resin emulsion, starch, gelatin, chitosans, polyvinyl alcohol resins (polyvinyl alcohol, cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, silanol-modified polyvinyl alcohol, ethylene-polyvinyl alcohol copolymer, Polyvinyl acetal, etc.), cellulosic resins (methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, Roxypropylcellulose, hydroxyethylmethylcellulose, hydroxypropylmethylcellulose, etc.), polyacrylic acid resins, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, polypropylene oxide, and other organic water-soluble resins, urea resins, epoxy resins, polyurethane resins, nitrile rubber Organic non-aqueous resins such as

これらのバインダーの中で、セシウム吸着性化合物の吸着能の悪化が比較的少なく、容易に磁性体粒子にセシウム吸着性化合物を接着させることができることから、水性樹脂エマルジョン、耐水化された水溶性樹脂が好ましく用いられる。   Among these binders, the deterioration of the adsorptive capacity of the cesium-adsorbing compound is relatively small, and the cesium-adsorbing compound can be easily adhered to the magnetic particles. Is preferably used.

水性樹脂エマルジョンの中でも耐水性の高い磁性吸着剤を与えることから、ポリ(スチレン/ブタジエン)共重合体エマルジョン、ポリ塩化ビニル系樹脂エマルジョン、シリコーン樹脂エマルジョンがより好ましく用いられ、さらに好ましくは、放射性セシウムを夾雑物から効率良く抽出するため、放射性セシウムを含有する液を加熱する場合においても使用可能な耐熱性を有するポリ塩化ビニル系樹脂エマルジョン、シリコーン樹脂エマルジョンが好適に用いられる。   Among water-based resin emulsions, poly (styrene / butadiene) copolymer emulsions, polyvinyl chloride resin emulsions, and silicone resin emulsions are more preferably used because they provide a highly water-resistant magnetic adsorbent, and more preferably radioactive cesium. In order to efficiently extract from the impurities, polyvinyl chloride resin emulsions and silicone resin emulsions having heat resistance that can be used even when a liquid containing radioactive cesium is heated are preferably used.

水溶性樹脂においては、磁性体粒子とセシウム吸着性化合物の双方に親和性を持って安定な磁性吸着剤を形成できる点からポリビニルアルコール系樹脂が好ましい。また、その中でも耐水性の点でエチレン−ポリビニルアルコール共重合体がより好ましい。耐水化処理法としては特に制限はなく、各種アルデヒド化合物、メチロール化合物、エポキシ化合物、イソシアネート化合物による架橋反応等を利用することができる。   In the water-soluble resin, a polyvinyl alcohol-based resin is preferable because it can form a stable magnetic adsorbent having affinity for both the magnetic particles and the cesium-adsorbing compound. Of these, ethylene-polyvinyl alcohol copolymer is more preferable from the viewpoint of water resistance. There is no restriction | limiting in particular as a water-resistant treatment method, The crosslinking reaction by various aldehyde compounds, a methylol compound, an epoxy compound, an isocyanate compound, etc. can be utilized.

本発明の磁性吸着剤におけるバインダーの含有率は5〜50質量%が好ましく、特に10〜30質量%となるようにするのが好ましい。含有率が5質量%を下回ると磁性吸着剤の物理的強度が低下して、磁性吸着剤が分解しやすくなるので好ましくない。含有率が50質量%を上回ると、セシウムの吸着効率が低下するので好ましくない。水溶性樹脂には耐水化処理を施しても良い。   The content of the binder in the magnetic adsorbent of the present invention is preferably 5 to 50% by mass, and more preferably 10 to 30% by mass. When the content is less than 5% by mass, the physical strength of the magnetic adsorbent is lowered, and the magnetic adsorbent is easily decomposed, which is not preferable. If the content exceeds 50% by mass, the adsorption efficiency of cesium decreases, which is not preferable. The water-soluble resin may be subjected to water resistance treatment.

本発明の磁性吸着剤の製造方法としては、磁性体粒子とセシウム吸着性化合物とをバインダー溶液またはエマルジョンと共に混合、乾燥、粉砕する方法がある。別の方法として、磁性体粒子とセシウム吸着性化合物とをモノマーと共に塊状重合させ、乾燥、粉砕する方法もあるが、製造工程の制御のしやすさやコストの点から、前者の方法が有利である。各工程において用いられる装置について、特に制限はない。   As a method for producing the magnetic adsorbent of the present invention, there is a method in which magnetic particles and a cesium adsorbing compound are mixed, dried and pulverized together with a binder solution or an emulsion. As another method, there is a method in which magnetic particles and a cesium-adsorptive compound are polymerized together with a monomer, dried and pulverized, but the former method is advantageous from the viewpoint of ease of control of the manufacturing process and cost. . There is no restriction | limiting in particular about the apparatus used in each process.

セシウム吸着性化合物として不溶性フェロシアン化物を用いる場合には、予め合成しておいた不溶性フェロシアン化物を、磁性体粒子およびバインダーと共に混合、乾燥、粉砕することにより磁性吸着剤を得ることもできるが、不溶性フェロシアン化物をバインダーの存在下に合成し、次いで磁性体粒子と混合、乾燥、粉砕する方法を取ることもできる。後者の方法においてバインダーとして水溶性樹脂を用いると、不溶性フェロシアン化物が微粒子の状態で安定に存在し、その比表面積が大きくなることから高いセシウム吸着能が発現するので有利である。水溶性樹脂の存在下に不溶性フェロシアン化物を合成するには、水溶性樹脂の溶液に可溶性フェロシアン化物を溶かしておき、攪拌しつつここへ遷移金属イオン溶液を添加するか、あるいは逆に、水溶性樹脂の溶液に遷移金属イオンを溶かしておき、攪拌しつつここへ可溶性フェロシアン化物溶液を添加すれば良い。水溶性樹脂の溶液に遷移金属イオンを溶かすと、ゲル状物が分離することがあるので、前者の合成法が好ましい。   When an insoluble ferrocyanide is used as the cesium adsorptive compound, a magnetic adsorbent can be obtained by mixing, drying and pulverizing insoluble ferrocyanide synthesized in advance together with magnetic particles and a binder. Alternatively, an insoluble ferrocyanide can be synthesized in the presence of a binder, and then mixed with magnetic particles, dried, and pulverized. The use of a water-soluble resin as a binder in the latter method is advantageous because an insoluble ferrocyanide is stably present in the form of fine particles and its specific surface area is increased, so that a high cesium adsorption ability is expressed. In order to synthesize an insoluble ferrocyanide in the presence of a water-soluble resin, a soluble ferrocyanide is dissolved in a water-soluble resin solution, and a transition metal ion solution is added thereto while stirring, or conversely, The transition metal ion is dissolved in the water-soluble resin solution, and the soluble ferrocyanide solution may be added thereto while stirring. When the transition metal ion is dissolved in the water-soluble resin solution, the gel-like product may be separated, so the former synthesis method is preferable.

セシウムを含む溶液と本発明の磁性吸着剤の接触方法としては、溶液に磁性吸着剤を投入して攪拌するバッチ処理が、簡便な装置で実施できるので好ましい。攪拌方法としては、攪拌羽根で攪拌する方法、エアレーション等曝気による方法、電磁石制御により磁性体粒子を攪拌する方法等を例示することができる。セシウムを含む溶液と磁性吸着剤の接触時間は、10分〜2時間が好ましい。接触時間が10分より短いと、セシウムの吸着が不十分となることがある。2時間より長く接触させても、吸着がすでに平衡に達しているため作業効率上好ましくないうえに、長時間の攪拌が磁性吸着剤の機械的な強度に悪影響を与えることがある。   As a method for contacting the solution containing cesium and the magnetic adsorbent of the present invention, batch treatment in which the magnetic adsorbent is added to the solution and stirred can be carried out with a simple apparatus, which is preferable. Examples of the stirring method include a method of stirring with a stirring blade, a method of aeration such as aeration, a method of stirring magnetic particles by electromagnet control, and the like. The contact time between the solution containing cesium and the magnetic adsorbent is preferably 10 minutes to 2 hours. When the contact time is shorter than 10 minutes, the adsorption of cesium may be insufficient. Even if the contact time is longer than 2 hours, the adsorption has already reached equilibrium, which is not preferable in terms of work efficiency, and long-time stirring may adversely affect the mechanical strength of the magnetic adsorbent.

セシウムを含む溶液に対する、本発明の磁性吸着剤の添加量に制限はなく、セシウムが目的とするレベルまで除去される添加量を、セシウムの濃度に応じて実験的に定めれば良い。例えばセシウム濃度が0.001質量%(10ppm)の場合、90%以上のセシウムを分離するためには、磁性吸着剤に含まれるセシウム吸着性化合物のセシウム吸着容量が、被処理液内に存在するセシウム量の2〜100倍となるように加えることが好ましい。磁性吸着剤量が2倍を下回るとセシウムの除去が不十分となることがある。また、100倍以上を加えてもセシウム除去レベルには変化がなく、不経済であると共に、場合によっては攪拌や磁気分離作業に対して支障となることがある。   The amount of the magnetic adsorbent of the present invention added to a solution containing cesium is not limited, and the amount of cesium removed to the target level may be determined experimentally according to the concentration of cesium. For example, when the cesium concentration is 0.001% by mass (10 ppm), in order to separate 90% or more of cesium, the cesium adsorption capacity of the cesium-adsorbing compound contained in the magnetic adsorbent exists in the liquid to be treated. It is preferable to add so that it may become 2-100 times the amount of cesium. When the amount of the magnetic adsorbent is less than twice, the removal of cesium may be insufficient. Moreover, even if it is added 100 times or more, the cesium removal level does not change, which is uneconomical, and sometimes hinders stirring and magnetic separation work.

セシウムを吸着した磁性吸着剤は、永久磁石、電磁石、超電導磁石によって短時間に集磁され、セシウムが除かれた溶液から分離される。用いられる磁気分離装置に関して特に制限はない。   The magnetic adsorbent that adsorbs cesium is collected in a short time by a permanent magnet, an electromagnet, or a superconducting magnet, and separated from the solution from which cesium has been removed. There are no particular restrictions on the magnetic separation device used.

以下に、本発明を実施例により詳細に説明するが、本発明は実施例に限定されるものでない。なお、実施例中の百分率は、質量基準である。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples. In addition, the percentage in an Example is a mass reference | standard.

<磁性吸着剤1の合成>
平均粒径5μmの四三酸化鉄(1g)とゼオライト(新東北化学工業(株);ゼオフィルCP;愛子産モルデナイト;1g)を、ポリアクリル酸エステル系エマルジョン(日信化学工業(株);ビニブラン2680;固形分30%;1.5g)と共に乳鉢で混練し、シャーレに広げて80℃で3時間乾燥させた。得られた乾燥固形物をミニブレンダーで粉砕して、磁性吸着剤1を2.4g得た。電子顕微鏡で観察すると、四三酸化鉄がゼオライト表面に結着された構造が確認できた。
<Synthesis of magnetic adsorbent 1>
Ferric trioxide (1 g) with an average particle size of 5 μm and zeolite (New Tohoku Chemical Industry Co., Ltd .; Zeophyl CP; Aiko Mordenite; 1 g) and polyacrylate emulsion (Nisshin Chemical Industry Co., Ltd .; 2680; solid content 30%; 1.5 g) and kneaded in a mortar, spread in a petri dish and dried at 80 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 2.4 g of magnetic adsorbent 1. When observed with an electron microscope, a structure in which triiron tetroxide was bound to the zeolite surface was confirmed.

<磁性吸着剤2の合成>
ポリアクリル酸エステル系エマルジョンをポリ(スチレン/ブタジエン)共重合エマルジョン(旭化成(株);E−1585;固形分約50%;0.9g)に置き換える他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤2を2.2g得た。
<Synthesis of magnetic adsorbent 2>
Similar to the synthesis of magnetic adsorbent 1, except that the polyacrylate emulsion is replaced with a poly (styrene / butadiene) copolymer emulsion (Asahi Kasei Corporation; E-1585; solid content of about 50%; 0.9 g). By operation, 2.2 g of magnetic adsorbent 2 was obtained.

<磁性吸着剤3の合成>
ポリアクリル酸エステル系エマルジョンをポリウレタン系エマルジョン(DIC(株);ハイドランWLS−206;固形分35%;1.29g)に置き換える他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤3を2.4g得た。
<Synthesis of magnetic adsorbent 3>
Magnetic adsorption is carried out in the same manner as the synthesis of magnetic adsorbent 1 except that the polyacrylate emulsion is replaced with polyurethane emulsion (DIC Corporation; Hydran WLS-206; solid content 35%; 1.29 g). 2.4 g of Agent 3 was obtained.

<磁性吸着剤4の合成>
ポリアクリル酸エステル系エマルジョンをポリビニルアルコール(日本合成化学(株);ゴーセファイマーZ320;5%溶液4.5g)およびグリオキシル酸ナトリウム(22mg)に置き換える他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤4を2.1g得た。
<Synthesis of magnetic adsorbent 4>
Similar to the synthesis of magnetic adsorbent 1, except that the polyacrylate emulsion is replaced with polyvinyl alcohol (Nippon Synthetic Chemical Co., Ltd .; Goosephimer Z320; 4.5% 5% solution) and sodium glyoxylate (22 mg). By operation, 2.1 g of magnetic adsorbent 4 was obtained.

<磁性吸着剤5の合成>
ポリアクリル酸エステル系エマルジョンをポリビニルアルコール(日本酢ビ・ポバール(株);DポリマーDF−17;10%溶液2.25g)およびアジピン酸ジヒドラジド(44mg)に置き換える他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤5を2.1g得た。
<Synthesis of magnetic adsorbent 5>
Synthesis of magnetic adsorbent 1 except that polyacrylic acid ester emulsion is replaced with polyvinyl alcohol (Nippon Vinegar Poval Co., Ltd .; D polymer DF-17; 10% solution 2.25 g) and adipic acid dihydrazide (44 mg) In the same manner as described above, 2.1 g of magnetic adsorbent 5 was obtained.

<磁性吸着剤6の合成>
ポリアクリル酸エステル系エマルジョンをポリビニルアルコール((株)クラレ;R1130;10%溶液2.25g)に置き換え、乾燥条件を120℃で3時間とする他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤6を2.2g得た。
<Synthesis of magnetic adsorbent 6>
Operation similar to the synthesis of magnetic adsorbent 1 except that the polyacrylate emulsion was replaced with polyvinyl alcohol (Kuraray Co., Ltd .; R1130; 2.25 g of 10% solution) and the drying conditions were 3 hours at 120 ° C. As a result, 2.2 g of magnetic adsorbent 6 was obtained.

<磁性吸着剤7の合成>
ポリアクリル酸エステル系エマルジョンをポリビニルアルコール((株)クラレ;PVA117;10%溶液2.25g)に置き換える他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤7を2.2g得た。
<Synthesis of magnetic adsorbent 7>
2.2 g of the magnetic adsorbent 7 was operated in the same manner as the synthesis of the magnetic adsorbent 1 except that the polyacrylate emulsion was replaced with polyvinyl alcohol (Kuraray Co., Ltd .; PVA117; 2.25 g of 10% solution). Obtained.

<磁性吸着剤8の合成>
ポリアクリル酸エステル系エマルジョンをポリ(2−ヒドロキシエチルメタクリレート)(10%溶液2.25g)およびデスモジュールBL−3175(住化バイエルウレタン(株);0.1g)に置き換える他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤8を2.1g得た。
<Synthesis of magnetic adsorbent 8>
The magnetic adsorbent was replaced with poly (2-hydroxyethyl methacrylate) (2.25 g of 10% solution) and Desmodur BL-3175 (Suika Bayer Urethane Co., Ltd .; 0.1 g). In the same manner as in the synthesis of 1, 2.1 g of magnetic adsorbent 8 was obtained.

<磁性吸着剤9の合成>
ポリアクリル酸エステル系エマルジョンをカルボキシメチルセルロース(日本製紙ケミカル(株);サンローズ;10%溶液2.25g)およびデスモジュールBL−3175(住友バイエルウレタン(株);0.1g)に置き換える他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤9を2.1g得た。
<Synthesis of magnetic adsorbent 9>
Other than replacing the polyacrylate emulsion with carboxymethylcellulose (Nippon Paper Chemical Co., Ltd .; Sunrose; 2.25 g of 10% solution) and Desmodur BL-3175 (Sumitomo Bayer Urethane Co., Ltd .; 0.1 g) By operating in the same manner as the synthesis of magnetic adsorbent 1, 2.1 g of magnetic adsorbent 9 was obtained.

<磁性吸着剤10の合成>
四三酸化鉄の平均粒径を200μmに換える他は、磁性吸着剤1の合成と同様に操作して、磁性吸着剤10を1.8g得た。この磁性吸着剤においては、鋼球と結着していないゼオライトがあったため、磁性吸着剤を容器に入れ、容器の外から磁石を当てた状態で振ることにより非結着ゼオライトを除いた。電子顕微鏡で観察すると、四三酸化鉄がゼオライト表面に結着された構造が確認できた。
<Synthesis of Magnetic Adsorbent 10>
1.8 g of magnetic adsorbent 10 was obtained in the same manner as in the synthesis of magnetic adsorbent 1 except that the average particle size of iron trioxide was changed to 200 μm. In this magnetic adsorbent, since there was zeolite not bound to the steel ball, the non-bound zeolite was removed by putting the magnetic adsorbent in a container and shaking it with a magnet applied from the outside of the container. When observed with an electron microscope, a structure in which triiron tetroxide was bound to the zeolite surface was confirmed.

<比較吸着剤1の合成>
四三酸化鉄をシリカゲル(メルク(株);シリカゲル60)に置き換える他は、磁性吸着剤1の合成と同様に操作して、比較吸着剤1を2.4g得た。
<Synthesis of comparative adsorbent 1>
2.4 g of comparative adsorbent 1 was obtained in the same manner as in the synthesis of magnetic adsorbent 1 except that the iron trioxide was replaced with silica gel (Merck Corp .; silica gel 60).

<比較吸着剤2の合成>
ゼオライトをシリカゲル(メルク(株);シリカゲル60)に置き換える他は、磁性吸着剤1の合成と同様に操作して、比較吸着剤2を2.4g得た。
<Synthesis of comparative adsorbent 2>
2.4 g of comparative adsorbent 2 was obtained in the same manner as the synthesis of magnetic adsorbent 1 except that the zeolite was replaced with silica gel (Merck Corp .; silica gel 60).

<比較吸着剤3の合成>
ゼオライト(新東北化学工業(株);ゼオフィルCP;愛子産モルデナイト;1g)を、1Mの硝酸第二鉄エタノール溶液10ml中で10分間超音波照射した。遠心分離により固形分を取り出し、400℃で1時間加熱して、比較吸着剤3を1.3g得た。
<Synthesis of comparative adsorbent 3>
Zeolite (New Tohoku Chemical Co., Ltd .; Zeophyl CP; Aiko Mordenite; 1 g) was ultrasonically irradiated in 10 ml of 1M ferric nitrate ethanol solution for 10 minutes. The solid content was taken out by centrifugation and heated at 400 ° C. for 1 hour to obtain 1.3 g of comparative adsorbent 3.

実施例1
塩化セシウム6.33mgを蒸留水500mlに溶かして、セシウム濃度が0.001%(10ppm)の水溶液を調製した。この液50mlに磁性吸着剤1を100mg加え、30分攪拌した。容器の底に磁石を当てて磁性吸着剤を集め、水相をデカンテーションにより別のビーカーに移した。この水相のセシウム濃度をICP−MSで求めたところ1.9ppmであり、81%のセシウムが分離されていた。サンプルを取り出した残りはさらに24時間攪拌を続けたのち、容器外部から磁石を当てて集磁物と溶液のようすを目視により観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 1
6.33 mg of cesium chloride was dissolved in 500 ml of distilled water to prepare an aqueous solution having a cesium concentration of 0.001% (10 ppm). 100 mg of magnetic adsorbent 1 was added to 50 ml of this solution and stirred for 30 minutes. A magnet was applied to the bottom of the container to collect the magnetic adsorbent, and the aqueous phase was transferred to another beaker by decantation. When the cesium concentration of this aqueous phase was determined by ICP-MS, it was 1.9 ppm, and 81% of cesium was separated. After the sample was taken out, the stirring was continued for another 24 hours, and a magnet was applied from the outside of the container to visually observe the current collector and the solution. As a result, no uncollected components were observed and the magnetic adsorbent was decomposed. It was confirmed that there was no.

実施例2
磁性吸着剤1の替わりに磁性吸着剤2を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は0.6ppmであり、除去率は94%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Example 2
The same operation as in Example 1 was performed except that the magnetic adsorbent 2 was used instead of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 0.6 ppm, and the removal rate was 94%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

実施例3
磁性吸着剤1の替わりに磁性吸着剤3を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は1.3ppmであり、除去率は87%であった。24時間攪拌後に、磁石に引き寄せられない成分がごくわずか分離しており、吸着剤の耐水性が若干劣ることが確認された。
Example 3
The same operation as in Example 1 was performed except that the magnetic adsorbent 3 was used in place of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 1.3 ppm and the removal rate was 87%. After stirring for 24 hours, the components that were not attracted to the magnet were very slightly separated, and it was confirmed that the water resistance of the adsorbent was slightly inferior.

実施例4
磁性吸着剤1の替わりに磁性吸着剤4を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は1.0ppmであり、除去率は90%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Example 4
The same operation as in Example 1 was performed except that the magnetic adsorbent 4 was used instead of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 1.0 ppm and the removal rate was 90%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

実施例5
磁性吸着剤1の替わりに磁性吸着剤5を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は0.9ppmであり、除去率は91%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Example 5
The same operation as in Example 1 was performed except that the magnetic adsorbent 5 was used instead of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 0.9 ppm, and the removal rate was 91%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

実施例6
磁性吸着剤1の替わりに磁性吸着剤6を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は1.0ppmであり、除去率は90%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Example 6
The same operation as in Example 1 was performed except that the magnetic adsorbent 6 was used instead of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 1.0 ppm and the removal rate was 90%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

実施例7
磁性吸着剤1の替わりに磁性吸着剤7を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は1.8ppmであり、除去率は82%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Example 7
The same operation as in Example 1 was performed except that the magnetic adsorbent 7 was used instead of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 1.8 ppm, and the removal rate was 82%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

実施例8
磁性吸着剤1の替わりに磁性吸着剤8を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は2.7ppmであり、除去率は73%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Example 8
The same operation as in Example 1 was performed except that the magnetic adsorbent 8 was used instead of the magnetic adsorbent 1. The cesium concentration of the aqueous phase was 2.7 ppm, and the removal rate was 73%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

実施例9
磁性吸着剤1の替わりに磁性吸着剤9を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は2.9ppmであり、除去率は71%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Example 9
The same operation as in Example 1 was performed except that the magnetic adsorbent 9 was used instead of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 2.9 ppm, and the removal rate was 71%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

実施例10
磁性吸着剤1の替わりに磁性吸着剤10を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は3.8ppmであり、除去率は62%であった。24時間攪拌後に、磁石に引き寄せられない成分が若干量分離しており、吸着剤の耐水性が若干劣ることが確認された。
Example 10
The same operation as in Example 1 was performed except that the magnetic adsorbent 10 was used instead of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 3.8 ppm, and the removal rate was 62%. After stirring for 24 hours, some amount of components that were not attracted to the magnet was separated, and it was confirmed that the water resistance of the adsorbent was slightly inferior.

比較例1
磁性吸着剤1の替わりに比較吸着剤1を用い、濾紙を用いた濾過操作によって水相と非磁性吸着剤の分離を行う以外は、実施例1と同様に操作した。水相のセシウム濃度は1.1ppmであり、除去率は89%であった。
Comparative Example 1
The same operation as in Example 1 was carried out except that the comparative adsorbent 1 was used in place of the magnetic adsorbent 1 and the aqueous phase and nonmagnetic adsorbent were separated by filtration using filter paper. The cesium concentration in the aqueous phase was 1.1 ppm and the removal rate was 89%.

比較例2
磁性吸着剤1の替わりに比較吸着剤2を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は10ppmであり、除去率は0%であった。
Comparative Example 2
The same operation as in Example 1 was performed except that the comparative adsorbent 2 was used in place of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 10 ppm, and the removal rate was 0%.

比較例3
磁性吸着剤1の替わりに比較吸着剤3を用いる以外は、実施例1と同様に操作した。水相のセシウム濃度は6.7ppmであり、除去率は33%であった。
Comparative Example 3
The same operation as in Example 1 was performed except that the comparative adsorbent 3 was used in place of the magnetic adsorbent 1. The cesium concentration in the aqueous phase was 6.7 ppm, and the removal rate was 33%.

実施例1〜10の結果から、本発明によればセシウムを含有する水相から、簡単な操作により短時間にセシウムを分離できることが示される。比較例1では高い除去率が出ているものの、吸着剤を水相から分離するためには濾過操作が必要であり、操作上不便である。比較例2では除去効果が全く得られていない。これらの結果から、磁気分離を用いて簡単な操作によりセシウムを分離するためには、吸着剤に磁性体粒子とゼオライトの両方を含めることが必須であることが分かる。実施例1〜10と比較例3の結果からは、磁性体粒子とゼオライトを水性樹脂エマルジョンや耐水化された水溶性樹脂で結着させた構造が、セシウムの高い除去率を確保するために好ましいこと、実施例1と実施例10の比較からは、磁性体粒子がゼオライト表面に結着されている構造が好ましいことが分かる。また実施例1、3と実施例2の比較から水性樹脂エマルジョンとしてはポリ(スチレン/ブタジエン)共重合エマルジョンが好ましいこと、さらに実施例4〜7と実施例8、9の比較から水溶性樹脂としてはポリビニルアルコールが好ましいことが分かる。   From the results of Examples 1 to 10, it is shown that according to the present invention, cesium can be separated in a short time from an aqueous phase containing cesium by a simple operation. Although a high removal rate is obtained in Comparative Example 1, a filtration operation is necessary to separate the adsorbent from the aqueous phase, which is inconvenient in operation. In Comparative Example 2, no removal effect is obtained. From these results, it can be seen that in order to separate cesium by a simple operation using magnetic separation, it is essential to include both magnetic particles and zeolite in the adsorbent. From the results of Examples 1 to 10 and Comparative Example 3, a structure in which magnetic particles and zeolite are bound with an aqueous resin emulsion or a water-soluble water-resistant resin is preferable in order to ensure a high removal rate of cesium. From comparison between Example 1 and Example 10, it can be seen that a structure in which magnetic particles are bound to the zeolite surface is preferable. From the comparison between Examples 1 and 3 and Example 2, it is preferable that the aqueous resin emulsion is a poly (styrene / butadiene) copolymer emulsion. Further, from the comparison between Examples 4 to 7 and Examples 8 and 9, a water-soluble resin is obtained. Shows that polyvinyl alcohol is preferred.

参考例1
無水硫酸銅25.1mgを蒸留水1000mlに溶かして、銅イオン濃度が0.001%(10ppm)の水溶液を調製した。この液50mlに磁性吸着剤1を100mg加えて30分攪拌したのち、水相の一部を取り出し、水相に残留している銅イオン濃度をICP−MSで求めたところ0.2ppmであり、98%の銅イオンが除去されていることが分かった。サンプルを取り出した残りはさらに24時間攪拌を続けたのち、容器外部から磁石を当てて集磁物と溶液のようすを目視により観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Reference example 1
An aqueous solution having a copper ion concentration of 0.001% (10 ppm) was prepared by dissolving 25.1 mg of anhydrous copper sulfate in 1000 ml of distilled water. After adding 100 mg of magnetic adsorbent 1 to 50 ml of this liquid and stirring for 30 minutes, a part of the aqueous phase was taken out, and the copper ion concentration remaining in the aqueous phase was determined by ICP-MS and found to be 0.2 ppm. It was found that 98% of the copper ions were removed. After the sample was taken out, the stirring was continued for another 24 hours, and a magnet was applied from the outside of the container to visually observe the current collector and the solution. As a result, no uncollected components were observed and the magnetic adsorbent was decomposed. It was confirmed that there was no.

参考例2
磁性吸着剤1の替わりに磁性吸着剤2を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は0.01ppmであり、除去率は99.9%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Reference example 2
The same operation as in Reference Example 1 was performed except that the magnetic adsorbent 2 was used instead of the magnetic adsorbent 1. The residual copper ion concentration was 0.01 ppm, and the removal rate was 99.9%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

参考例3
磁性吸着剤1の替わりに磁性吸着剤3を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は0.1ppmであり、除去率は99%であった。24時間攪拌後に、磁石に引き寄せられない成分がごくわずか分離しており、吸着剤の耐水性が若干劣ることが確認された。
Reference example 3
The same operation as in Reference Example 1 was performed except that the magnetic adsorbent 3 was used instead of the magnetic adsorbent 1. The residual copper ion concentration was 0.1 ppm, and the removal rate was 99%. After stirring for 24 hours, the components that were not attracted to the magnet were very slightly separated, and it was confirmed that the water resistance of the adsorbent was slightly inferior.

参考例4
磁性吸着剤1の替わりに磁性吸着剤4を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は0.01ppmであり、除去率は99.9%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Reference example 4
The same operation as in Reference Example 1 was performed except that the magnetic adsorbent 4 was used instead of the magnetic adsorbent 1. The residual copper ion concentration was 0.01 ppm, and the removal rate was 99.9%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

参考例5
磁性吸着剤1の替わりに磁性吸着剤5を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は0.01ppmであり、除去率は99.9%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Reference Example 5
The same operation as in Reference Example 1 was performed except that the magnetic adsorbent 5 was used in place of the magnetic adsorbent 1. The residual copper ion concentration was 0.01 ppm, and the removal rate was 99.9%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

参考例6
磁性吸着剤1の替わりに磁性吸着剤6を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は0.01ppmであり、除去率は99.9%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Reference Example 6
The same operation as in Reference Example 1 was performed except that magnetic adsorbent 6 was used instead of magnetic adsorbent 1. The residual copper ion concentration was 0.01 ppm, and the removal rate was 99.9%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

参考例7
磁性吸着剤1の替わりに磁性吸着剤7を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は0.01ppmであり、除去率は99.9%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Reference Example 7
The same operation as in Reference Example 1 was performed except that the magnetic adsorbent 7 was used instead of the magnetic adsorbent 1. The residual copper ion concentration was 0.01 ppm, and the removal rate was 99.9%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

参考例8
磁性吸着剤1の替わりに磁性吸着剤8を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は0.4ppmであり、除去率は96%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Reference Example 8
The same operation as in Reference Example 1 was performed except that the magnetic adsorbent 8 was used in place of the magnetic adsorbent 1. The residual copper ion concentration was 0.4 ppm, and the removal rate was 96%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

参考例9
磁性吸着剤1の替わりに磁性吸着剤9を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は0.6ppmであり、除去率は94%であった。24時間攪拌後の磁性吸着剤の分解は認められなかった。
Reference Example 9
The same operation as in Reference Example 1 was performed except that the magnetic adsorbent 9 was used in place of the magnetic adsorbent 1. The residual copper ion concentration was 0.6 ppm, and the removal rate was 94%. No decomposition of the magnetic adsorbent after stirring for 24 hours was observed.

参考例10
磁性吸着剤1の替わりに磁性吸着剤10を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は2.2ppmであり、除去率は78%であった。24時間攪拌後に、磁石に引き寄せられない成分が若干量分離しており、吸着剤の耐水性が若干劣ることが確認された。
Reference Example 10
The same operation as in Reference Example 1 was performed except that the magnetic adsorbent 10 was used instead of the magnetic adsorbent 1. The residual copper ion concentration was 2.2 ppm and the removal rate was 78%. After stirring for 24 hours, some amount of components that were not attracted to the magnet was separated, and it was confirmed that the water resistance of the adsorbent was slightly inferior.

参考例11
磁性吸着剤1の替わりに比較吸着剤1を用い、濾紙を用いた濾過操作によって水相と非磁性吸着剤の分離を行う以外は、参考例1と同様に操作した。残留銅イオン濃度は0.01ppmであり、除去率は99.9%であった。
Reference Example 11
The same operation as in Reference Example 1 was conducted except that the comparative adsorbent 1 was used in place of the magnetic adsorbent 1 and the aqueous phase and nonmagnetic adsorbent were separated by filtration using filter paper. The residual copper ion concentration was 0.01 ppm, and the removal rate was 99.9%.

参考例12
磁性吸着剤1の替わりに比較吸着剤2を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は10ppmであり、除去率は0%であった。
Reference Example 12
The same operation as in Reference Example 1 was performed except that the comparative adsorbent 2 was used in place of the magnetic adsorbent 1. The residual copper ion concentration was 10 ppm, and the removal rate was 0%.

参考例13
磁性吸着剤1の替わりに比較吸着剤3を用いる以外は、参考例1と同様に操作した。残留銅イオン濃度は7.5ppmであり、除去率は25%であった。
Reference Example 13
The same operation as in Reference Example 1 was performed except that the comparative adsorbent 3 was used instead of the magnetic adsorbent 1. The residual copper ion concentration was 7.5 ppm, and the removal rate was 25%.

参考例1〜10の結果から、本発明によれば有害成分を含有する水相から、簡単な操作により短時間に銅イオンなどの有害成分を分離できることが示される。参考例11では高い除去率が出ているものの、吸着剤を水相から分離するためには濾過操作が必要であり、操作上不便である。参考例12では除去効果が全く得られていない。これらの結果から、磁気分離を用いて簡単な操作により有害成分を分離するためには、吸着剤に磁性体粒子とゼオライトの両方を含めることが必須であることが分かる。参考例1〜10と参考例13の結果からは、磁性体粒子とゼオライトを水性樹脂エマルジョンや耐水化された水溶性樹脂で結着させた構造が、有害成分の高い除去率を確保するために好ましいこと、参考例1と参考例10の比較からは、磁性体粒子がゼオライト表面に結着されている構造が好ましいことが分かる。また参考例1、3と参考例2の比較から水性樹脂エマルジョンとしてはポリ(スチレン/ブタジエン)共重合エマルジョンが好ましいこと、さらに参考例4〜7と参考例8、9の比較から水溶性樹脂としてはポリビニルアルコールが好ましいことが分かる。   From the results of Reference Examples 1 to 10, it is shown that according to the present invention, harmful components such as copper ions can be separated in a short time from an aqueous phase containing harmful components by a simple operation. Although a high removal rate is obtained in Reference Example 11, a filtration operation is necessary to separate the adsorbent from the aqueous phase, which is inconvenient in operation. In Reference Example 12, no removal effect is obtained. From these results, it can be seen that it is essential to include both magnetic particles and zeolite in the adsorbent in order to separate harmful components by simple operation using magnetic separation. From the results of Reference Examples 1 to 10 and Reference Example 13, the structure in which magnetic particles and zeolite are bound with an aqueous resin emulsion or a water-soluble water-resistant resin is used to ensure a high removal rate of harmful components. The comparison between Reference Example 1 and Reference Example 10 shows that a structure in which magnetic particles are bound to the zeolite surface is preferable. From the comparison between Reference Examples 1 and 3 and Reference Example 2, it is preferable that the aqueous resin emulsion is a poly (styrene / butadiene) copolymer emulsion. Further, from the comparison between Reference Examples 4 to 7 and Reference Examples 8 and 9, a water-soluble resin is used. Shows that polyvinyl alcohol is preferred.

<磁性吸着剤11の合成>
平均粒径5μmの四三酸化鉄(1g)とフェロシアン化鉄(大日精化工業(株);MILORI BLUE 905;0.35g)を、シラノール変性ポリビニルアルコール((株)クラレ;R1130)10%水溶液2.3gと共に乳鉢で混練し、シャーレに広げて80℃で3時間乾燥させた。得られた乾燥固形物をミニブレンダーで粉砕して、磁性吸着剤11を1.4g得た。
<Synthesis of Magnetic Adsorbent 11>
Iron trioxide (1 g) having an average particle diameter of 5 μm and ferrocyanide (Daiichi Seika Kogyo Co., Ltd .; MILORI BLUE 905; 0.35 g) and silanol-modified polyvinyl alcohol (Kuraray Co., Ltd .; R1130) 10% The mixture was kneaded with 2.3 g of an aqueous solution in a mortar, spread on a petri dish, and dried at 80 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 1.4 g of magnetic adsorbent 11.

<磁性吸着剤12の合成>
シラノール変性ポリビニルアルコールを固形分量で同量のポリウレタン樹脂(DIC(株)製;ハイドランCP−7020)に置き換える他は、磁性吸着剤11の合成と同様に操作して、磁性吸着剤12を1.3g得た。
<Synthesis of Magnetic Adsorbent 12>
The magnetic adsorbent 12 is treated in the same manner as the synthesis of the magnetic adsorbent 11 except that the silanol-modified polyvinyl alcohol is replaced with the same amount of polyurethane resin (DIC Co., Ltd .; Hydran CP-7020). 3 g was obtained.

<磁性吸着剤13の合成>
シラノール変性ポリビニルアルコールを固形分量で同量のポリウレタン樹脂(DIC(株)製;ハイドランWLS−206)に置き換える他は、磁性吸着剤11の合成と同様に操作して、磁性吸着剤13を1.3g得た。
<Synthesis of magnetic adsorbent 13>
The magnetic adsorbent 13 is treated in the same manner as the synthesis of the magnetic adsorbent 11 except that the silanol-modified polyvinyl alcohol is replaced with the same amount of polyurethane resin (made by DIC; Hydran WLS-206) in the solid content. 3 g was obtained.

<磁性吸着剤14の合成>
フェロシアン化鉄をフェロシアン化ニッケル(合成品;0.35g)に置き換える他は、磁性吸着剤11の合成と同様に操作して、磁性吸着剤14を1.3g得た。
<Synthesis of Magnetic Adsorbent 14>
1.3 g of magnetic adsorbent 14 was obtained in the same manner as the synthesis of magnetic adsorbent 11 except that iron ferrocyanide was replaced with nickel ferrocyanide (synthetic product; 0.35 g).

<磁性吸着剤15の合成>
フェロシアン化鉄をリンモリブデン酸アンモニウム水和物(和光純薬工業(株);0.35g)に置き換える他は、磁性吸着剤11の合成と同様に操作して、磁性吸着剤15を1.3g得た。
<Synthesis of magnetic adsorbent 15>
The magnetic adsorbent 15 was changed in the same manner as the synthesis of the magnetic adsorbent 11 except that iron ferrocyanide was replaced with ammonium phosphomolybdate hydrate (Wako Pure Chemical Industries, Ltd .; 0.35 g). 3 g was obtained.

<磁性吸着剤16の合成>
フェロシアン化鉄をリンタングステン酸アンモニウム3水和物(和光純薬工業(株);0.35g)に置き換える他は、磁性吸着剤11の合成と同様に操作して、磁性吸着剤16を1.3g得た。
<Synthesis of Magnetic Adsorbent 16>
The magnetic adsorbent 16 is changed to 1 by operating in the same manner as the synthesis of the magnetic adsorbent 11 except that iron ferrocyanide is replaced with ammonium phosphotungstate trihydrate (Wako Pure Chemical Industries, Ltd .; 0.35 g). .3 g was obtained.

<磁性吸着剤17の合成>
シラノール変性ポリビニルアルコール((株)クラレ;R1130)10%水溶液2.3gに、フェロシアン化カリウム3水和物(0.42g)の水溶液1.7mlを加え、攪拌しつつ硫酸ニッケル6水和物(0.26g)の水溶液1mlを添加した。10分かき混ぜたのち、平均粒径5μmの四三酸化鉄(1g)を加えてさらに5分かき混ぜ、シャーレに広げて80℃で3時間乾燥させた。得られた乾燥固形物をミニブレンダーで粉砕して、磁性吸着剤17を1.4g得た。
<Synthesis of magnetic adsorbent 17>
1.7 ml of an aqueous solution of potassium ferrocyanide trihydrate (0.42 g) was added to 2.3 g of a 10% aqueous solution of silanol-modified polyvinyl alcohol (Kuraray Co., Ltd .; R1130), and nickel sulfate hexahydrate (0 1 ml of an aqueous solution of .26 g) was added. After stirring for 10 minutes, triiron tetroxide (1 g) having an average particle size of 5 μm was added and further stirred for 5 minutes, spread on a petri dish and dried at 80 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 1.4 g of a magnetic adsorbent 17.

<磁性吸着剤18の合成>
硫酸ニッケル6水和物を硫酸第一鉄7水和物(0.28g)に置き換える他は、磁性吸着剤17の合成と同様に操作して、磁性吸着剤18を1.4g得た。
<Synthesis of magnetic adsorbent 18>
1.4 g of magnetic adsorbent 18 was obtained in the same manner as the synthesis of magnetic adsorbent 17 except that nickel sulfate hexahydrate was replaced with ferrous sulfate heptahydrate (0.28 g).

<比較吸着剤4の合成>
四三酸化鉄をシリカゲル(メルク(株)製;シリカゲル60)に置き換える他は、磁性吸着剤11の合成と同様に操作して、比較吸着剤4を1.3g得た。
<Synthesis of Comparative Adsorbent 4>
1.3 g of comparative adsorbent 4 was obtained in the same manner as in the synthesis of the magnetic adsorbent 11 except that the triiron tetroxide was replaced with silica gel (manufactured by Merck Ltd .; silica gel 60).

<比較吸着剤5の合成>
フェロシアン化鉄を加えない点を除いては、磁性吸着剤11の合成と同様に操作して、比較吸着剤5を1.2g得た。
<Synthesis of comparative adsorbent 5>
Except for not adding ferric ferrocyanide, 1.2 g of Comparative Adsorbent 5 was obtained in the same manner as the synthesis of Magnetic Adsorbent 11.

実施例11
塩化セシウム6.33mgを蒸留水500mlに溶かして、セシウム濃度が0.001%(10ppm)の水溶液を調製した。この液50mlに磁性吸着剤11を100mg加え、30分攪拌した。容器の底に磁石を当てて磁性吸着剤を集め、水相をデカンテーションにより別のビーカーに移した。この水相のセシウム濃度をICP−MSで求めたところ1.5ppmであり、85%のセシウムが分離されていた。
Example 11
6.33 mg of cesium chloride was dissolved in 500 ml of distilled water to prepare an aqueous solution having a cesium concentration of 0.001% (10 ppm). 100 mg of the magnetic adsorbent 11 was added to 50 ml of this solution and stirred for 30 minutes. A magnet was applied to the bottom of the container to collect the magnetic adsorbent, and the aqueous phase was transferred to another beaker by decantation. When the cesium concentration of this aqueous phase was determined by ICP-MS, it was 1.5 ppm, and 85% of cesium was separated.

実施例12
磁性吸着剤11の替わりに磁性吸着剤12を用いる以外は、実施例11と同様に操作した。セシウムの分離率は82%であった。
Example 12
The same operation as in Example 11 was performed except that the magnetic adsorbent 12 was used instead of the magnetic adsorbent 11. The separation rate of cesium was 82%.

実施例13
磁性吸着剤11の替わりに磁性吸着剤13を用いる以外は、実施例11と同様に操作した。セシウムの分離率は81%であった。
Example 13
The same operation as in Example 11 was performed except that the magnetic adsorbent 13 was used instead of the magnetic adsorbent 11. The separation rate of cesium was 81%.

実施例14
磁性吸着剤11の替わりに磁性吸着剤14を用いる以外は、実施例11と同様に操作した。セシウムの分離率は91%であった。
Example 14
The same operation as in Example 11 was performed except that the magnetic adsorbent 14 was used instead of the magnetic adsorbent 11. The separation rate of cesium was 91%.

実施例15
磁性吸着剤11の替わりに磁性吸着剤15を用いる以外は、実施例11と同様に操作した。セシウムの分離率は75%であった。
Example 15
The same operation as in Example 11 was performed except that the magnetic adsorbent 15 was used instead of the magnetic adsorbent 11. The separation rate of cesium was 75%.

実施例16
磁性吸着剤11の替わりに磁性吸着剤16を用いる以外は、実施例11と同様に操作した。セシウムの分離率は70%であった。
Example 16
The same operation as in Example 11 was performed except that the magnetic adsorbent 16 was used instead of the magnetic adsorbent 11. The separation rate of cesium was 70%.

実施例17
磁性吸着剤11の替わりに磁性吸着剤17を用いる以外は、実施例11と同様に操作した。セシウムの分離率は99%であった。
Example 17
The same operation as in Example 11 was performed except that the magnetic adsorbent 17 was used instead of the magnetic adsorbent 11. The separation rate of cesium was 99%.

実施例18
磁性吸着剤11の替わりに磁性吸着剤18を用いる以外は、実施例11と同様に操作した。セシウムの分離率は98%であった。
Example 18
The same operation as in Example 11 was performed except that the magnetic adsorbent 18 was used instead of the magnetic adsorbent 11. The separation rate of cesium was 98%.

比較例4
磁性吸着剤11の替わりに比較吸着剤4を用い、濾紙を用いた濾過操作によって水相と比較吸着剤4の分離を行う以外は、実施例11と同様に操作した。セシウムの分離率は81%であった。
Comparative Example 4
The same operation as in Example 11 was performed except that the comparative adsorbent 4 was used in place of the magnetic adsorbent 11 and the aqueous phase and the comparative adsorbent 4 were separated by filtration using filter paper. The separation rate of cesium was 81%.

比較例5
磁性吸着剤11の替わりに比較吸着剤5を用いる以外は、実施例11と同様に操作した。セシウムの分離率は0%であった。
Comparative Example 5
The same operation as in Example 11 was performed except that the comparative adsorbent 5 was used instead of the magnetic adsorbent 11. The separation rate of cesium was 0%.

実施例11〜18の結果から、本発明によればセシウムを含有する水相から、簡単な操作により短時間にセシウムを分離できることが分かる。実施例11と比較例4、5の結果から、磁気分離を用いて簡単にセシウムを分離するためには、吸着剤に磁性体粒子とセシウム吸着性化合物の両方を含めることが必須であることが分かる。また実施例11、14と15、16の比較からセシウム吸着性化合物としては不溶性フェロシアン化物が好ましいこと、さらに実施例11と18の比較、14と17の比較から、不溶性フェロシアン化物が水溶性樹脂の存在下に製造されているとさらに高いセシウム分離率が果たせることが分かる。   From the results of Examples 11 to 18, it can be seen that according to the present invention, cesium can be separated from the aqueous phase containing cesium in a short time by a simple operation. From the results of Example 11 and Comparative Examples 4 and 5, it is essential to include both magnetic particles and a cesium-adsorbing compound in the adsorbent in order to easily separate cesium using magnetic separation. I understand. From the comparison of Examples 11, 14, 15 and 16, it is preferable that the cesium-adsorbing compound is an insoluble ferrocyanide. Further, from the comparison between Examples 11 and 18 and 14 and 17, the insoluble ferrocyanide is water-soluble. It can be seen that a higher cesium separation rate can be achieved when the resin is produced in the presence of the resin.

<磁性吸着剤19の合成>
平均粒径5μmの四三酸化鉄(1g)と二ツ井産クリノプチロライト(0.35g)を、シラノール変性ポリビニルアルコール((株)クラレ;R1130)10%水溶液2.3gと共に乳鉢で混練し、シャーレに広げて80℃で3時間乾燥させた。得られた乾燥固形物をミニブレンダーで粉砕して、磁性吸着剤19を1.4g得た。
<Synthesis of Magnetic Adsorbent 19>
Kneaded iron trioxide (1 g) with an average particle size of 5 μm and clinoptilolite (0.35 g) from Futtsui together with 2.3 g of silanol-modified polyvinyl alcohol (Kuraray Co., Ltd .; R1130) 10% aqueous solution in a mortar, It was spread on a petri dish and dried at 80 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 1.4 g of a magnetic adsorbent 19.

<磁性吸着剤20の合成>
二ツ井産クリノプチロライトを板谷産クリノプチロライトに置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤20を1.4g得た。
<Synthesis of Magnetic Adsorbent 20>
1.4 g of the magnetic adsorbent 20 was obtained in the same manner as the synthesis of the magnetic adsorbent 19 except that the clinoptilolite produced by Futtsui was replaced with the clinoptilolite produced by Itaya.

<磁性吸着剤21の合成>
二ツ井産クリノプチロライトをバーミキュライトに置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤21を1.4g得た。
<Synthesis of magnetic adsorbent 21>
1.4 g of the magnetic adsorbent 21 was obtained in the same manner as the synthesis of the magnetic adsorbent 19 except that the clinoptilolite produced by Futtsui was replaced with vermiculite.

<磁性吸着剤22の合成>
二ツ井産クリノプチロライトをシャバサイトに置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤22を1.4g得た。
<Synthesis of Magnetic Adsorbent 22>
1.4 g of magnetic adsorbent 22 was obtained in the same manner as in the synthesis of magnetic adsorbent 19 except that futatsui clinoptilolite was replaced with shabasite.

<磁性吸着剤23の合成>
二ツ井産クリノプチロライトを黒雲母に置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤23を1.4g得た。
<Synthesis of Magnetic Adsorbent 23>
1.4 g of the magnetic adsorbent 23 was obtained in the same manner as the synthesis of the magnetic adsorbent 19 except that the clinoptilolite from Futtsui was replaced with biotite.

<磁性吸着剤24の合成>
二ツ井産クリノプチロライトを白雲母に置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤24を1.4g得た。
<Synthesis of Magnetic Adsorbent 24>
1.4 g of magnetic adsorbent 24 was obtained in the same manner as the synthesis of magnetic adsorbent 19 except that clinoptilolite produced in Futtsui was replaced with muscovite.

<磁性吸着剤25の合成>
二ツ井産クリノプチロライトを鉄雲母に置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤25を1.4g得た。
<Synthesis of magnetic adsorbent 25>
1.4 g of magnetic adsorbent 25 was obtained in the same manner as the synthesis of the magnetic adsorbent 19 except that the clinoptilolite from Futtsui was replaced with iron mica.

<磁性吸着剤26の合成>
二ツ井産クリノプチロライトを金雲母に置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤26を1.4g得た。
<Synthesis of Magnetic Adsorbent 26>
1.4 g of magnetic adsorbent 26 was obtained in the same manner as the synthesis of magnetic adsorbent 19 except that clinoptilolite from Futtsui was replaced with phlogopite.

<磁性吸着剤27の合成>
二ツ井産クリノプチロライトをNa型合成雲母に置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤27を1.4g得た。
<Synthesis of Magnetic Adsorbent 27>
1.4 g of the magnetic adsorbent 27 was obtained in the same manner as the synthesis of the magnetic adsorbent 19 except that the clinoptilolite from Futtsui was replaced with Na-type synthetic mica.

<磁性吸着剤28の合成>
二ツ井産クリノプチロライトをゼオライトA(A型人工ゼオライト)に置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤28を1.4g得た。
<Synthesis of magnetic adsorbent 28>
1.4 g of magnetic adsorbent 28 was obtained in the same manner as the synthesis of magnetic adsorbent 19 except that the clinoptilolite produced in Futtsui was replaced with zeolite A (type A artificial zeolite).

<磁性吸着剤29の合成>
二ツ井産クリノプチロライトをゼオライトX(X型人工ゼオライト)に置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤29を1.4g得た。
<Synthesis of magnetic adsorbent 29>
1.4 g of magnetic adsorbent 29 was obtained in the same manner as the synthesis of magnetic adsorbent 19 except that the clinoptilolite produced in Futtsui was replaced with zeolite X (X-type artificial zeolite).

<磁性吸着剤30の合成>
二ツ井産クリノプチロライトをスメクタイトに置き換える他は、磁性吸着剤19の合成と同様に操作して、磁性吸着剤30を1.4g得た。
<Synthesis of magnetic adsorbent 30>
1.4 g of magnetic adsorbent 30 was obtained in the same manner as the synthesis of the magnetic adsorbent 19 except that the clinoptilolite produced by Futtsui was replaced with smectite.

実施例19
塩化セシウム6.33mg、塩化カルシウム1.38g、塩化カリウム0.953g、塩化ナトリウム1.27gを蒸留水500mlに溶かして、セシウム濃度が0.001%(10ppm)に対して、カルシウム、カリウム、ナトリウム各濃度が0.1%(1000ppm)を含む水溶液を調製した。この液50mlに磁性吸着剤19を20mg加え、30分攪拌した。容器の底に磁石を当てて磁性吸着剤を集め、水相をデカンテーションにより別のビーカーに移した。この水相のセシウム濃度をICP−MSで求めたところ4.0ppmであり、60%のセシウムが分離されていた。
Example 19
Dissolve 6.33mg of cesium chloride, 1.38g of calcium chloride, 0.953g of potassium chloride and 1.27g of sodium chloride in 500ml of distilled water, and with respect to 0.001% (10ppm) cesium concentration, calcium, potassium, sodium An aqueous solution containing 0.1% (1000 ppm) of each concentration was prepared. 20 mg of magnetic adsorbent 19 was added to 50 ml of this solution and stirred for 30 minutes. A magnet was applied to the bottom of the container to collect the magnetic adsorbent, and the aqueous phase was transferred to another beaker by decantation. When the cesium concentration of this aqueous phase was determined by ICP-MS, it was 4.0 ppm, and 60% of cesium was separated.

実施例20
磁性吸着剤19の替わりに磁性吸着剤20を用いる以外は、実施例19と同様に操作した。セシウムの分離率は71%であった。
Example 20
The same operation as in Example 19 was performed except that the magnetic adsorbent 20 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 71%.

実施例21
磁性吸着剤19の替わりに磁性吸着剤21を用いる以外は、実施例19と同様に操作した。セシウムの分離率は45%であった。
Example 21
The same operation as in Example 19 was performed except that the magnetic adsorbent 21 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 45%.

実施例22
磁性吸着剤19の替わりに磁性吸着剤22を用いる以外は、実施例19と同様に操作した。セシウムの分離率は77%であった。
Example 22
The same operation as in Example 19 was performed except that the magnetic adsorbent 22 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 77%.

実施例23
磁性吸着剤19の替わりに磁性吸着剤23を用いる以外は、実施例19と同様に操作した。セシウムの分離率は44%であった。
Example 23
The same operation as in Example 19 was performed except that the magnetic adsorbent 23 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 44%.

実施例24
磁性吸着剤19の替わりに磁性吸着剤24を用いる以外は、実施例19と同様に操作した。セシウムの分離率は40%であった。
Example 24
The same operation as in Example 19 was performed except that the magnetic adsorbent 24 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 40%.

実施例25
磁性吸着剤19の替わりに磁性吸着剤25を用いる以外は、実施例19と同様に操作した。セシウムの分離率は41%であった。
Example 25
The same operation as in Example 19 was performed except that the magnetic adsorbent 25 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 41%.

実施例26
磁性吸着剤19の替わりに磁性吸着剤26を用いる以外は、実施例19と同様に操作した。セシウムの分離率は48%であった。
Example 26
The same operation as in Example 19 was performed except that the magnetic adsorbent 26 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 48%.

実施例27
磁性吸着剤19の替わりに磁性吸着剤27を用いる以外は、実施例19と同様に操作した。セシウムの分離率は50%であった。
Example 27
The same operation as in Example 19 was performed except that the magnetic adsorbent 27 was used in place of the magnetic adsorbent 19. The separation rate of cesium was 50%.

実施例28
磁性吸着剤19の替わりに磁性吸着剤28を用いる以外は、実施例19と同様に操作した。セシウムの分離率は31%であった。
Example 28
The same operation as in Example 19 was performed except that the magnetic adsorbent 28 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 31%.

実施例29
磁性吸着剤19の替わりに磁性吸着剤29を用いる以外は、実施例19と同様に操作した。セシウムの分離率は28%であった。
Example 29
The same operation as in Example 19 was performed except that the magnetic adsorbent 29 was used in place of the magnetic adsorbent 19. The separation rate of cesium was 28%.

実施例30
磁性吸着剤19の替わりに磁性吸着剤30を用いる以外は、実施例19と同様に操作した。セシウムの分離率は25%であった。
Example 30
The same operation as in Example 19 was performed except that the magnetic adsorbent 30 was used instead of the magnetic adsorbent 19. The separation rate of cesium was 25%.

実施例19〜30の結果から、本発明によればセシウムを含有する水相から、簡単な操作により短時間にセシウムを分離できることが分かる。実施例19〜27と実施例28〜30の結果から、カリウム、ナトリウム、カルシウム共存下において磁気分離を用いて簡単にセシウムを分離するためのセシウム吸着性化合物としては、人工ゼオライト、スメクタイトよりもクリノプチロライト、バーミキュライト、シャバサイト、雲母類が好ましく、その中でもクリノプチロライト、シャバサイトは高いセシウム分離率が果たせることが分かる。   From the results of Examples 19 to 30, it can be seen that according to the present invention, cesium can be separated from the aqueous phase containing cesium in a short time by a simple operation. From the results of Examples 19 to 27 and Examples 28 to 30, the cesium-adsorbing compound for easily separating cesium using magnetic separation in the presence of potassium, sodium, and calcium is more clino than artificial zeolite and smectite. Putilolite, vermiculite, shabasite, and mica are preferable. Among them, clinoptilolite and shabasite are found to achieve a high cesium separation rate.

<磁性吸着剤31の合成>
平均粒径5μmの四三酸化鉄(10g)とゼオライト(新東北化学工業(株);ゼオフィルCP;愛子産モルデナイト;4g)を、ポリ(スチレン/ブタジエン)共重合エマルジョン(旭化成(株);E−1585;固形分約50%;30g)と共に乳鉢で混練し、シャーレに広げて80℃で3時間乾燥させた。得られた乾燥固形物をミニブレンダーで粉砕して、磁性吸着剤31を27g得た。バインダー含有量は磁性吸着剤全体に対し51.7%であった。
<Synthesis of magnetic adsorbent 31>
An average particle size of 5 μm iron trioxide (10 g) and zeolite (New Tohoku Chemical Industry Co., Ltd .; Zeophyl CP; Aiko Mordenite; 4 g) are mixed with a poly (styrene / butadiene) copolymer emulsion (Asahi Kasei Co., Ltd .; E -1585; solid content of about 50%; 30 g) and kneaded in a mortar, spread in a petri dish and dried at 80 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 27 g of magnetic adsorbent 31. The binder content was 51.7% with respect to the total magnetic adsorbent.

<磁性吸着剤32の合成>
ポリ(スチレン/ブタジエン)共重合エマルジョンの添加量を30gから24gに置き換える他は、磁性吸着剤31の合成と同様に操作して、磁性吸着剤32を24g得た。バインダー含有量は磁性吸着剤全体に対し46.2%であった。
<Synthesis of Magnetic Adsorbent 32>
24 g of magnetic adsorbent 32 was obtained in the same manner as the synthesis of magnetic adsorbent 31 except that the amount of poly (styrene / butadiene) copolymer emulsion added was changed from 30 g to 24 g. The binder content was 46.2% with respect to the total magnetic adsorbent.

<磁性吸着剤33の合成>
ポリ(スチレン/ブタジエン)共重合エマルジョンの添加量を30gから12gに置き換える他は、磁性吸着剤31の合成と同様に操作して、磁性吸着剤33を17g得た。バインダー含有量は磁性吸着剤全体に対し30.0%であった。
<Synthesis of magnetic adsorbent 33>
17 g of magnetic adsorbent 33 was obtained in the same manner as the synthesis of magnetic adsorbent 31 except that the amount of poly (styrene / butadiene) copolymer emulsion added was changed from 30 g to 12 g. The binder content was 30.0% with respect to the entire magnetic adsorbent.

<磁性吸着剤34の合成>
ポリ(スチレン/ブタジエン)共重合エマルジョンの添加量を30gから4gに置き換える他は、磁性吸着剤31の合成と同様に操作して、磁性吸着剤34を15g得た。バインダー含有量は磁性吸着剤全体に対し12.5%であった。
<Synthesis of magnetic adsorbent 34>
15 g of magnetic adsorbent 34 was obtained in the same manner as the synthesis of magnetic adsorbent 31 except that the amount of poly (styrene / butadiene) copolymer emulsion added was changed from 30 g to 4 g. The binder content was 12.5% based on the entire magnetic adsorbent.

<磁性吸着剤35の合成>
ポリ(スチレン/ブタジエン)共重合エマルジョンの添加量を30gから2gに置き換える他は、磁性吸着剤31の合成と同様に操作して、磁性吸着剤35を14g得た。バインダー含有量は磁性吸着剤全体に対し6.7%であった。
<Synthesis of magnetic adsorbent 35>
14 g of the magnetic adsorbent 35 was obtained in the same manner as the synthesis of the magnetic adsorbent 31 except that the addition amount of the poly (styrene / butadiene) copolymer emulsion was changed from 30 g to 2 g. The binder content was 6.7% based on the entire magnetic adsorbent.

<磁性吸着剤36の合成>
ポリ(スチレン/ブタジエン)共重合エマルジョンの添加量を30gから1gに置き換える他は、磁性吸着剤31の合成と同様に操作して、磁性吸着剤36を13g得た。バインダー含有量は磁性吸着剤全体に対し3.4%であった。
<Synthesis of magnetic adsorbent 36>
13 g of the magnetic adsorbent 36 was obtained in the same manner as the synthesis of the magnetic adsorbent 31 except that the addition amount of the poly (styrene / butadiene) copolymer emulsion was changed from 30 g to 1 g. The binder content was 3.4% based on the entire magnetic adsorbent.

実施例31
塩化セシウム6.33mgを蒸留水500mlに溶かして、セシウム濃度が0.001%(10ppm)を含む水溶液を調製した。この液50mlに磁性吸着剤31をゼオライトの量として6mg加え、30分攪拌した。容器の底に磁石を当てて磁性吸着剤を集め、水相をデカンテーションにより別のビーカーに移した。この水相のセシウム濃度をICP−MSで求めたところ5.0ppmであり、50%のセシウムが分離されていた。セシウム吸着後、永久磁石で磁性吸着剤を回収し、ビーカー内部を観察したが、残留固形物はなかった。
Example 31
6.33 mg of cesium chloride was dissolved in 500 ml of distilled water to prepare an aqueous solution containing a cesium concentration of 0.001% (10 ppm). 6 mg of the magnetic adsorbent 31 as an amount of zeolite was added to 50 ml of this liquid and stirred for 30 minutes. A magnet was applied to the bottom of the container to collect the magnetic adsorbent, and the aqueous phase was transferred to another beaker by decantation. When the cesium concentration of this aqueous phase was determined by ICP-MS, it was 5.0 ppm, and 50% of cesium was separated. After adsorption of cesium, the magnetic adsorbent was recovered with a permanent magnet and the inside of the beaker was observed, but there was no residual solid matter.

実施例32
磁性吸着剤31をゼオライトの量として6mg加える替わりに磁性吸着剤32をゼオライトの量として6mg用いる以外は、実施例31と同様に操作した。セシウムの分離率は61%であった。また、セシウム吸着後、永久磁石で磁性吸着剤を回収し、ビーカー内部を観察したが、残留固形物はなかった。
Example 32
The same operation as in Example 31 was performed except that 6 mg of the magnetic adsorbent 32 was used as the amount of zeolite instead of adding 6 mg of the magnetic adsorbent 31 as the amount of zeolite. The separation rate of cesium was 61%. Moreover, after adsorbing cesium, the magnetic adsorbent was recovered with a permanent magnet and the inside of the beaker was observed, but there was no residual solid.

実施例33
磁性吸着剤31をゼオライトの量として6mg加える替わりに磁性吸着剤33をゼオライトの量として6mg用いる以外は、実施例31と同様に操作した。セシウムの分離率は80%であった。また、セシウム吸着後、永久磁石で磁性吸着剤を回収し、ビーカー内部を観察したが、残留固形物はなかった。
Example 33
The same operation as in Example 31 was performed except that 6 mg of the magnetic adsorbent 33 was used as the amount of zeolite instead of adding 6 mg of the magnetic adsorbent 31 as the amount of zeolite. The separation rate of cesium was 80%. Moreover, after adsorbing cesium, the magnetic adsorbent was recovered with a permanent magnet and the inside of the beaker was observed, but there was no residual solid.

実施例34
磁性吸着剤31をゼオライトの量として6mg加える替わりに磁性吸着剤34をゼオライトの量として6mg用いる以外は、実施例31と同様に操作した。セシウムの分離率は90%であった。また、セシウム吸着後、永久磁石で磁性吸着剤を回収し、ビーカー内部を観察したが、残留固形物はなかった。
Example 34
The same operation as in Example 31 was performed except that 6 mg of the magnetic adsorbent 34 was used as the amount of zeolite instead of adding 6 mg of the magnetic adsorbent 31 as the amount of zeolite. The separation rate of cesium was 90%. Moreover, after adsorbing cesium, the magnetic adsorbent was recovered with a permanent magnet and the inside of the beaker was observed, but there was no residual solid.

実施例35
磁性吸着剤31をゼオライトの量として6mg加える替わりに磁性吸着剤35をゼオライトの量として6mg用いる以外は、実施例31と同様に操作した。セシウムの分離率は97%であった。また、セシウム吸着後、永久磁石で磁性吸着剤を回収し、ビーカー内部を観察したところ、残留固形物が見られた。回収された磁性吸着剤35の乾燥質量から算出した回収率は95%であった。
Example 35
The same operation as in Example 31 was performed except that 6 mg of the magnetic adsorbent 35 was used as the amount of zeolite instead of adding 6 mg of the magnetic adsorbent 31 as the amount of zeolite. The separation rate of cesium was 97%. In addition, after adsorbing cesium, the magnetic adsorbent was recovered with a permanent magnet, and the inside of the beaker was observed to find residual solids. The recovery rate calculated from the dry mass of the recovered magnetic adsorbent 35 was 95%.

実施例36
磁性吸着剤31の替わりに磁性吸着剤36を用いたこと以外は、実施例31と同様の操作を行ったが、容器の底に磁石を当てて磁性吸着剤を集め、デカンテーションした水相に濁りがあったため、水相を濾過処理した後、セシウム濃度をICP−MSで求めた。セシウムの分離率は98%であった。磁石で回収された磁性吸着剤36の乾燥質量から算出した回収率は73%であった。
Example 36
The same operation as in Example 31 was performed except that the magnetic adsorbent 36 was used instead of the magnetic adsorbent 31, but the magnet was applied to the bottom of the container to collect the magnetic adsorbent, and the decanted water phase was collected. Since there was turbidity, the aqueous phase was filtered and the cesium concentration was determined by ICP-MS. The separation rate of cesium was 98%. The recovery rate calculated from the dry mass of the magnetic adsorbent 36 recovered by the magnet was 73%.

実施例31および実施例32の結果から、バインダーの含有量が50%を上回ると、バインダーがセシウム吸着性化合物を覆うことにより、セシウム吸着性が低下するため好ましくない。一方、実施例34、35、36の結果から、バインダーの含有量が磁性吸着剤全体に対して5%を下回ると、磁性体粒子とセシウム吸着性化合物が水中で分離してしまうことで、磁気による磁性吸着剤の回収効率が低下するため好ましくない。   From the results of Example 31 and Example 32, if the binder content exceeds 50%, the binder covers the cesium-adsorbing compound, which is not preferable because the cesium-adsorbing property is lowered. On the other hand, from the results of Examples 34, 35, and 36, when the binder content is less than 5% with respect to the entire magnetic adsorbent, the magnetic particles and the cesium adsorbing compound are separated in water. This is not preferable because the recovery efficiency of the magnetic adsorbent due to is reduced.

<磁性吸着剤37の合成>
平均粒径2μmの四三酸化鉄(10g)、ゼオライト(新東北化学工業(株);ゼオフィルCP;愛子産モルデナイト;10g)、エポキシ樹脂(DIC(株)製;エピクロン EXA4850−150;2g)と共に乳鉢で30分間混練した後、架橋剤(DIC(株)製;ジェファーミンD−400;0.5g)を混合し、さらに乳鉢で30分間混練した後、シャーレに広げて150℃で1時間硬化させた。得られた乾燥固形物をミニブレンダーで粉砕し、磁性吸着剤37を18g得た。
<Synthesis of magnetic adsorbent 37>
Along with iron trioxide (10 g) having an average particle size of 2 μm, zeolite (New Tohoku Chemical Industry Co., Ltd .; Zeophyl CP; Aiko Mordenite; 10 g), epoxy resin (DIC Corporation; Epicron EXA4850-150; 2 g) After kneading in a mortar for 30 minutes, a cross-linking agent (manufactured by DIC Corporation; Jeffamine D-400; 0.5 g) is mixed, further kneaded in a mortar for 30 minutes, then spread on a petri dish and cured at 150 ° C. for 1 hour. I let you. The obtained dry solid was pulverized with a mini blender to obtain 18 g of a magnetic adsorbent 37.

<磁性吸着剤38の合成>
エチレン−ビニルアルコール共重合体((株)クラレ;RS2117)10gを90mlの水に投入し、攪拌しながら水温を上げ、95℃に到達後、2時間温度を保ちながら攪拌し、その後、加温を止め、室温にて徐々に冷却し、濃度調整のため水を加え10%のエチレン−ビニルアルコール共重合体水溶液を得た。
<Synthesis of magnetic adsorbent 38>
10 g of an ethylene-vinyl alcohol copolymer (Kuraray Co., Ltd .; RS2117) was added to 90 ml of water, the water temperature was raised while stirring, and after reaching 95 ° C., stirring was continued for 2 hours, followed by heating. Was gradually cooled at room temperature, and water was added to adjust the concentration to obtain a 10% ethylene-vinyl alcohol copolymer aqueous solution.

次いで、平均粒径2μmの四三酸化鉄(10g)、ゼオライト(新東北化学工業(株);ゼオフィルCP;愛子産モルデナイト;10g)を10%のエチレン−ビニルアルコール共重合体水溶液(20g)と共に混合し、乳鉢で30分間混練した後、シャーレに広げて80℃で3時間硬化させた。得られた乾燥固形物をミニブレンダーで粉砕し、磁性吸着剤38を18g得た。   Subsequently, triiron tetroxide (10 g) having an average particle diameter of 2 μm, zeolite (New Tohoku Chemical Industry Co., Ltd .; Zeophyl CP; Aiko Mordenite; 10 g) together with 10% ethylene-vinyl alcohol copolymer aqueous solution (20 g) After mixing and kneading in a mortar for 30 minutes, the mixture was spread on a petri dish and cured at 80 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 18 g of a magnetic adsorbent 38.

<磁性吸着剤39の合成>
平均粒径2μmの四三酸化鉄(10g)、ゼオライト(新東北化学工業(株);ゼオフィルCP;愛子産モルデナイト;10g)を塩化ビニル樹脂エマルジョン(日信化学工業(株);ビニブラン985;37%;5.4g)と共に混合し、乳鉢で30分間混練した後、シャーレに広げて100℃で3時間乾燥させた。得られた乾燥固形物をミニブレンダーで粉砕し、磁性吸着剤39を18g得た。
<Synthesis of magnetic adsorbent 39>
Ferric trioxide (10 g) having an average particle diameter of 2 μm, zeolite (Shintohoku Chemical Industry Co., Ltd .; Zeophyl CP; Aiko Mordenite; 10 g) and a vinyl chloride resin emulsion (Nisshin Chemical Industry Co., Ltd .; Vinibrand 985; 37) %; 5.4 g), kneaded in a mortar for 30 minutes, spread on a petri dish and dried at 100 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 18 g of magnetic adsorbent 39.

<磁性吸着剤40の合成>
塩化ビニル樹脂エマルジョンをシリコーン樹脂エマルジョン(信越化学工業(株);X−52−8148;固形分47%;4.2g)に置き換える以外は磁性吸着剤39の合成と同様に操作して、磁性吸着剤40を19g得た。
<Synthesis of magnetic adsorbent 40>
Magnetic adsorption is performed in the same manner as the synthesis of the magnetic adsorbent 39 except that the vinyl chloride resin emulsion is replaced with a silicone resin emulsion (Shin-Etsu Chemical Co., Ltd .; X-52-8148; solid content 47%; 4.2 g). 19 g of Agent 40 was obtained.

<磁性吸着剤41の合成>
塩化ビニル樹脂エマルジョンをポリアクリル酸エステル系エマルジョン(日信化学工業(株);ビニブラン2680;固形分30%;6.7g)に置き換え、乾燥温度100℃から80℃に変更した以外は、磁性吸着剤39の合成と同様に操作して、磁性吸着剤41を19g得た。
<Synthesis of magnetic adsorbent 41>
Magnetic adsorption, except that the vinyl chloride resin emulsion was replaced with a polyacrylic acid ester emulsion (Nissin Chemical Industry Co., Ltd .; Viniblanc 2680; solid content 30%; 6.7 g) and the drying temperature was changed from 100 ° C to 80 ° C. In the same manner as in the synthesis of the agent 39, 19 g of the magnetic adsorbent 41 was obtained.

<磁性吸着剤42の合成>
塩化ビニル樹脂エマルジョンをシラノール変性ポリビニルアルコール((株)クラレ;R1130;10%水溶液;20g)に置き換え、乾燥温度100℃から80℃に変更した以外は、磁性吸着剤39の合成と同様に操作して、磁性吸着剤42を17g得た。
<Synthesis of Magnetic Adsorbent 42>
Except that the vinyl chloride resin emulsion was replaced with silanol-modified polyvinyl alcohol (Kuraray Co., Ltd .; R1130; 10% aqueous solution; 20 g) and the drying temperature was changed from 100 ° C. to 80 ° C., the same operation as in the synthesis of the magnetic adsorbent 39 was performed. As a result, 17 g of the magnetic adsorbent 42 was obtained.

実施例37
塩化セシウム6.33mgを蒸留水500mlに溶かして、セシウムイオン濃度が0.001%(10ppm)の水溶液を調製した。還流管の付いたナス型フラスコにこの液100mlに磁性吸着剤37を20mg加え、90℃に加熱しながら30分間攪拌し、室温まで冷却した後、水相の一部を取り出し、水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.6ppmであり、84%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 37
6.33 mg of cesium chloride was dissolved in 500 ml of distilled water to prepare an aqueous solution having a cesium ion concentration of 0.001% (10 ppm). Add 20 mg of magnetic adsorbent 37 to 100 ml of this solution in an eggplant-shaped flask equipped with a reflux tube, stir for 30 minutes while heating to 90 ° C., cool to room temperature, take out part of the aqueous phase, and leave it in the aqueous phase The concentration of cesium ions being obtained was determined by ICP-MS to be 1.6 ppm, and it was found that 84% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例38
塩化セシウム6.33mgを0.01mol/lの塩酸水溶液を500mlに溶かし、セシウムイオン濃度が0.001%(10ppm)の水溶液を調製した。この液100mlに磁性吸着剤37を20mg加え、30℃に加熱しながら30分間攪拌した後、水相の一部を取り出し、水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.5ppmであり、85%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 38
Cesium chloride (6.33 mg) was dissolved in a 0.01 mol / l hydrochloric acid aqueous solution in 500 ml to prepare an aqueous solution having a cesium ion concentration of 0.001% (10 ppm). After adding 20 mg of magnetic adsorbent 37 to 100 ml of this solution and stirring for 30 minutes while heating to 30 ° C., a part of the aqueous phase was taken out and the concentration of cesium ions remaining in the aqueous phase was determined by ICP-MS. It was 1.5 ppm, and it was found that 85% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例39
塩化セシウム6.33mgを1mol/lのクエン酸水溶液500mlに溶かし、セシウムイオン濃度が0.001%(10ppm)の水溶液を調製した。この液100mlに磁性吸着剤37を20mg加え、90℃に加熱しながら30分間攪拌した後、水相の一部を取り出し、水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.3ppmであり、87%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 39
6.33 mg of cesium chloride was dissolved in 500 ml of a 1 mol / l citric acid aqueous solution to prepare an aqueous solution having a cesium ion concentration of 0.001% (10 ppm). After adding 20 mg of magnetic adsorbent 37 to 100 ml of this solution and stirring for 30 minutes while heating to 90 ° C., a part of the aqueous phase was taken out, and the concentration of cesium ions remaining in the aqueous phase was determined by ICP-MS. It was 1.3 ppm, and it was found that 87% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例40
磁性吸着剤37の替わりに磁性吸着剤38を用いる以外は、実施例37と同様に操作した。水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.8ppmであり、82%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 40
The same operation as in Example 37 was performed except that the magnetic adsorbent 38 was used instead of the magnetic adsorbent 37. When the concentration of cesium ions remaining in the aqueous phase was determined by ICP-MS, it was 1.8 ppm, and it was found that 82% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例41
磁性吸着剤37の替わりに磁性吸着剤39を用いる以外は、実施例37と同様に操作した。水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.5ppmであり、85%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 41
The same operation as in Example 37 was performed except that the magnetic adsorbent 39 was used instead of the magnetic adsorbent 37. When the concentration of cesium ions remaining in the aqueous phase was determined by ICP-MS, it was 1.5 ppm, and it was found that 85% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例42
磁性吸着剤37の替わりに磁性吸着剤39を用いる以外は、実施例38と同様に操作した。水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.6ppmであり、84%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 42
The same operation as in Example 38 was performed except that the magnetic adsorbent 39 was used instead of the magnetic adsorbent 37. When the concentration of cesium ions remaining in the aqueous phase was determined by ICP-MS, it was 1.6 ppm, and it was found that 84% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例43
磁性吸着剤37の替わりに磁性吸着剤39を用いる以外は、実施例39と同様に操作した。水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.6ppmであり、84%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 43
The same operation as in Example 39 was performed except that the magnetic adsorbent 39 was used instead of the magnetic adsorbent 37. When the concentration of cesium ions remaining in the aqueous phase was determined by ICP-MS, it was 1.6 ppm, and it was found that 84% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例44
磁性吸着剤37の替わりに磁性吸着剤40を用いる以外は、実施例37と同様に操作した。水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.5ppmであり、85%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 44
The same operation as in Example 37 was performed except that the magnetic adsorbent 40 was used instead of the magnetic adsorbent 37. When the concentration of cesium ions remaining in the aqueous phase was determined by ICP-MS, it was 1.5 ppm, and it was found that 85% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例45
磁性吸着剤37の替わりに磁性吸着剤40を用いる以外は、実施例39と同様に操作した。水相に残留しているセシウムイオン濃度をICP−MSで求めたところ1.4ppmであり、86%のセシウムイオンが除去されていることが分かった。サンプルを取り出した残りをさらに攪拌しながら容器内部に磁石を30秒間挿入した後、磁石を取り出し、攪拌を停止させ、容器内部を観察したところ、集磁されない成分は認められず、磁性吸着剤の分解がないことが確認できた。
Example 45
The same operation as in Example 39 was performed except that the magnetic adsorbent 40 was used instead of the magnetic adsorbent 37. The concentration of cesium ions remaining in the aqueous phase was determined by ICP-MS and found to be 1.4 ppm, indicating that 86% of cesium ions were removed. After the sample was taken out, the magnet was inserted into the container for 30 seconds while further stirring, and then the magnet was taken out, stirring was stopped, and the inside of the container was observed. It was confirmed that there was no decomposition.

実施例46
磁性吸着剤37の替わりに磁性吸着剤41を用いた以外は、実施例37と同様に操作した。除去率は79%であった。また、サンプルを取り出した残りについても実施例37と同様の操作を行ったところ、容器の底に固形物が観察された。採取、乾燥の後、秤量したところ、5mgの成分が確認された。
Example 46
The same operation as in Example 37 was performed except that the magnetic adsorbent 41 was used instead of the magnetic adsorbent 37. The removal rate was 79%. Moreover, when the same operation as Example 37 was performed about the remainder which took out the sample, the solid substance was observed by the bottom of the container. After sampling and drying, 5 mg component was confirmed.

実施例47
磁性吸着剤37の替わりに磁性吸着剤41を用いた以外は、実施例38と同様に操作した。除去率は82%であった。また、サンプルを取り出した残りについても実施例37と同様の操作を行ったところ、容器の底に固形物が観察された。採取、乾燥の後、秤量したところ、10mgの成分が確認された。
Example 47
The same operation as in Example 38 was performed except that the magnetic adsorbent 41 was used instead of the magnetic adsorbent 37. The removal rate was 82%. Moreover, when the same operation as Example 37 was performed about the remainder which took out the sample, the solid substance was observed by the bottom of the container. After sampling and drying, 10 mg of the component was confirmed.

実施例48
磁性吸着剤37の替わりに磁性吸着剤41を用いた以外は、実施例39と同様に操作した。除去率は82%であった。また、サンプルを取り出した残りについても実施例37と同様の操作を行ったところ、容器の底に固形物が観察された。採取、乾燥の後、秤量したところ、8mgの成分が確認された。
Example 48
The same operation as in Example 39 was performed except that the magnetic adsorbent 41 was used instead of the magnetic adsorbent 37. The removal rate was 82%. Moreover, when the same operation as Example 37 was performed about the remainder which took out the sample, the solid substance was observed by the bottom of the container. After sampling and drying, 8 mg component was confirmed.

実施例49
磁性吸着剤37の替わりに磁性吸着剤42を用いた以外は、実施例37と同様に操作した。除去率は83%であった。また、サンプルを取り出した残りについても実施例37と同様の操作を行ったところ、容器の底に固形物が観察された。採取、乾燥の後、秤量したところ、6mgの成分が確認された。
Example 49
The same operation as in Example 37 was performed except that the magnetic adsorbent 42 was used instead of the magnetic adsorbent 37. The removal rate was 83%. Moreover, when the same operation as Example 37 was performed about the remainder which took out the sample, the solid substance was observed by the bottom of the container. After sampling and drying, 6 mg component was confirmed.

実施例50
磁性吸着剤37の替わりに磁性吸着剤42を用いた以外は、実施例38と同様に操作した。除去率は81%であった。また、サンプルを取り出した残りについても実施例37と同様の操作を行ったところ、容器の底に固形物が観察された。採取、乾燥の後、秤量したところ、10mgの成分が確認された。
Example 50
The same operation as in Example 38 was performed except that the magnetic adsorbent 42 was used instead of the magnetic adsorbent 37. The removal rate was 81%. Moreover, when the same operation as Example 37 was performed about the remainder which took out the sample, the solid substance was observed by the bottom of the container. After sampling and drying, 10 mg of the component was confirmed.

実施例51
磁性吸着剤37の替わりに磁性吸着剤42を用いた以外は、実施例39と同様に操作した。除去率は83%であった。また、サンプルを取り出した残りについても実施例37と同様の操作を行ったところ、容器の底に固形物が観察された。採取、乾燥の後、秤量したところ、9mgの成分が確認された。
Example 51
The same operation as in Example 39 was performed except that the magnetic adsorbent 42 was used instead of the magnetic adsorbent 37. The removal rate was 83%. Moreover, when the same operation as Example 37 was performed about the remainder which took out the sample, the solid substance was observed by the bottom of the container. After sampling and drying, 9 mg component was confirmed.

実施例37、40、41、44と実施例46、49の結果から、本発明によれば有害成分を効率的に分離できることが示された。また、加熱、攪拌に対しても、磁性吸着剤は、分解することなく、安定に存在し、効率良く磁性吸着剤が回収できることが確認された。   From the results of Examples 37, 40, 41, and 44 and Examples 46 and 49, it was shown that harmful components can be efficiently separated according to the present invention. Further, it was confirmed that the magnetic adsorbent was present stably without being decomposed even when heated and stirred, and the magnetic adsorbent could be recovered efficiently.

実施例39、43、45と実施例48、51の結果から、本発明によればセシウムを効率的に分離できることが示された。また、クエン酸の存在下での加熱攪拌においても、磁性吸着剤は、分解することなく、安定に存在し、効率良く磁性吸着剤が回収できることが確認された。   From the results of Examples 39, 43, and 45 and Examples 48 and 51, it was shown that cesium can be efficiently separated according to the present invention. Further, it was confirmed that the magnetic adsorbent was stably present without being decomposed even in the heating and stirring in the presence of citric acid, and the magnetic adsorbent could be efficiently recovered.

実施例38、42、実施例47、50の結果から、本発明によれば有害成分を効率的に分離できることが示された。また、酸の存在下の加熱攪拌においても、磁性吸着剤は、分解することなく、安定に存在し、効率良く磁性吸着剤が回収できることが確認された。   From the results of Examples 38 and 42 and Examples 47 and 50, it was shown that harmful components can be efficiently separated according to the present invention. In addition, it was confirmed that the magnetic adsorbent was present stably without being decomposed even under heating and stirring in the presence of an acid, and the magnetic adsorbent could be efficiently recovered.

本発明は、少なくともセシウムを含有する溶液から、効率良くセシウムを分離する方法に関するものである。   The present invention relates to a method for efficiently separating cesium from a solution containing at least cesium.

セシウムは、試薬、光電変換素子、光学結晶、光学ガラス等の製造に用いられているレアメタルであり、地熱水等からセシウムを分離回収する技術は、資源確保の観点から重要である。また、原子力利用施設から発生する廃液中には放射性セシウムが含まれており、このものを効率良く分離する技術が開発されてきた。さらに2011年に起きた福島第一原子力発電所の事故においては、放射性セシウムが広範囲に飛散し、様々な物質に付着した放射性セシウムを分離する技術が必要となってきた。   Cesium is a rare metal used in the manufacture of reagents, photoelectric conversion elements, optical crystals, optical glass, and the like, and a technique for separating and recovering cesium from geothermal water or the like is important from the viewpoint of securing resources. Moreover, radioactive cesium is contained in the waste liquid generated from the nuclear power facility, and a technique for efficiently separating this has been developed. Furthermore, in the accident at the Fukushima Daiichi nuclear power plant that occurred in 2011, radioactive cesium was scattered over a wide area, and technology for separating radioactive cesium adhering to various substances has become necessary.

放射線セシウムや重金属等の有害成分を含有する溶液からこれらを分離するため、様々な手法が検討されてきた。最も簡便には、活性炭やイオン交換樹脂等の吸着剤を利用する方法が広く用いられている。特に放射性セシウムの吸着剤としては、ゼオライト、結晶質四チタン酸、スメクタイト、不溶性フェロシアン化物、リンモリブデン酸アンモニウム、シリコチタネート等が古くから知られている。しかし、これらの吸着剤を溶液に添加して使用する場合、吸着剤を処理済みの溶液から分離する必要があり、具体的な方法として、吸着剤とセシウム含有溶液を一定時間接触させてから濾別する方法、吸着剤をカラムに充填して、その中にセシウム含有溶液を流す方法等がある。いずれの場合においても、セシウム含有溶液が何らかの夾雑物を含む場合には、予めこれらを除く必要があり、この除去作業は多大な労力を要する。結果として、夾雑物を含むセシウム溶液から、これまで知られてきた吸着剤単体を用いる方法によりセシウムを分離することは極めて困難であった。   Various methods have been investigated to separate these from solutions containing harmful components such as radioactive cesium and heavy metals. Most simply, a method using an adsorbent such as activated carbon or ion exchange resin is widely used. In particular, as adsorbents for radioactive cesium, zeolite, crystalline tetratitanic acid, smectite, insoluble ferrocyanide, ammonium phosphomolybdate, silicotitanate and the like have been known for a long time. However, when these adsorbents are added to a solution and used, it is necessary to separate the adsorbent from the treated solution. As a specific method, the adsorbent and the cesium-containing solution are contacted for a certain period of time and then filtered. There is another method, such as a method in which a column is filled with an adsorbent and a cesium-containing solution is allowed to flow through the column. In any case, when the cesium-containing solution contains some impurities, it is necessary to remove these in advance, and this removal work requires a great deal of labor. As a result, it has been extremely difficult to separate cesium from a cesium solution containing impurities by a method using a single adsorbent that has been known so far.

一方、近年、超伝導磁石や高勾配磁気分離技術が進歩してきたため、磁性を利用して溶液中の有害成分を分離する技術の実用性が高まり、注目を集めるようになってきた。具体的な手法としては、有害成分自体に磁性を持たせる方法、有害成分と磁性体粒子を混合しておいて凝集剤を加え、磁性のあるフロックを形成する方法、活性炭やゼオライトのような吸着剤に磁性を持たせる方法がある。   On the other hand, since superconducting magnets and high-gradient magnetic separation techniques have recently advanced, the practicality of techniques for separating harmful components in solutions using magnetism has increased and has attracted attention. Specific methods include a method of making the harmful component itself magnetic, a method of mixing the harmful component and magnetic particles and adding a flocculant to form a magnetic floc, adsorption such as activated carbon and zeolite There is a method to make the agent magnetic.

このうち、有害成分自体に磁性を持たせる方法は汎用性に欠ける。また磁性のあるフロックを形成する方法は、大量の磁性体粒子と凝集剤を必要とすることが多く、むしろ処理が煩雑になるという問題がある。一方、吸着剤に磁性を持たせる方法は、有害成分を効果的に吸着できるというメリットが期待できるものの、吸着剤本来の吸着能力を落とすことなく高い磁性を持たせ、安価に製造する実用的な方法がまだない。   Of these, the method of imparting magnetism to the harmful component itself lacks versatility. In addition, the method of forming a magnetic floc often requires a large amount of magnetic particles and an aggregating agent, and there is a problem that the processing becomes rather complicated. On the other hand, the method of giving magnetism to the adsorbent can be expected to have the advantage of being able to adsorb harmful components effectively, but it is practical to produce it at low cost by giving it high magnetism without reducing the adsorbent's original adsorption capacity. There is still no way.

例えば、磁性体の核とこの核を覆いかつ金属イオンを吸着する外皮とを有する磁性吸着剤が提案されている(特許文献1参照)。この吸着剤は、直径1〜10mmの球状磁性体に対して、金属イオン吸着基を持つ高分子化合物を吹き付け、乾燥させて合成されており、吹き付けにおける材料ロスが大きいため高価であり、実用性がない。別のタイプとして、直径1〜10mmの球状磁性体に対して、アルミノ珪酸塩の結晶としてゼオライトを生成させた吸着剤も示されているが、比表面積が極めて小さいため、吸着容量が低いという問題点がある。また、多孔質ガラスビーズ、シリカゲル、アルミナ、ゼオライト等の無機系多孔質物質に磁性金属と有機物質を担持させ、有機物を熱分解して吸着性能を発現させるタイプの磁性吸着剤が提案されている(特許文献2参照)。この吸着剤においては、担磁のために無機系多孔質物質を鉄系化合物の溶液に含浸させた後、熱処理を施している。操作が煩雑なため製造コストが高いうえ、鉄系化合物の吸着量には限界があるため、高い磁性を持たせることができず、実用性がない。さらに、シリカゲル、ゼオライト、活性炭等の多孔質吸着剤に酸化鉄を化合させる方法が提案されている(特許文献3参照)。しかしながら、この方法の場合には磁性吸着剤の担持量が低く、磁気による回収を効率良く行うためには多量の酸化鉄を化合させる必要があるため、結果として吸着容量が著しく低下し、製造コストも高くなるという問題がある。加えて、ゼオライトと磁性体粒子を接着剤(セメント)で結合させた磁性吸着剤も提案されている(特許文献4、5参照)。接着剤にセメントを用いているため、強度を確保するために長期にわたる蒸気乾燥が必要となり、製造上の問題が大きい。   For example, a magnetic adsorbent having a magnetic core and an outer skin that covers the core and adsorbs metal ions has been proposed (see Patent Document 1). This adsorbent is synthesized by spraying a polymer compound having a metal ion adsorbing group on a spherical magnetic material having a diameter of 1 to 10 mm and drying it, and is expensive because of a large material loss in spraying. There is no. As another type, an adsorbent that has produced zeolite as aluminosilicate crystals for a spherical magnetic material with a diameter of 1 to 10 mm is also shown, but the problem is that the adsorption capacity is low because the specific surface area is extremely small. There is a point. In addition, a magnetic adsorbent of a type in which a magnetic metal and an organic substance are supported on an inorganic porous material such as porous glass beads, silica gel, alumina, and zeolite, and the organic material is thermally decomposed to exhibit adsorption performance has been proposed. (See Patent Document 2). In this adsorbent, a heat treatment is performed after impregnating an inorganic porous material in a solution of an iron-based compound for magnetism. Since the operation is complicated, the production cost is high, and the adsorption amount of the iron-based compound is limited, so that high magnetism cannot be imparted and there is no practicality. Furthermore, a method of combining iron oxide with a porous adsorbent such as silica gel, zeolite, activated carbon or the like has been proposed (see Patent Document 3). However, in this method, the amount of the magnetic adsorbent supported is low, and a large amount of iron oxide needs to be combined in order to efficiently recover by magnetism. There is a problem that it becomes higher. In addition, a magnetic adsorbent in which zeolite and magnetic particles are bonded with an adhesive (cement) has also been proposed (see Patent Documents 4 and 5). Since cement is used for the adhesive, steam drying over a long period of time is necessary to ensure strength, which is a major manufacturing problem.

特開平10−99843号公報Japanese Patent Laid-Open No. 10-99843 特開2002−233754号公報JP 2002-233754 A 特開2005−137973号公報JP 2005-137773 A 特開平1−194940号公報JP-A-1-194940 特開2005−177709号公報JP 2005-177709 A

本発明の課題は、セシウムを含有する溶液から、磁気分離技術を用いて効率良くこれら有害成分を分離することが可能であり、かつ比較的簡単な手法により製造可能な磁性吸着剤粒子を提供することにある。 An object of the present invention is to provide magnetic adsorbent particles that can efficiently separate these harmful components from a cesium-containing solution using a magnetic separation technique and that can be produced by a relatively simple technique. There is.

上記課題を鋭意研究し、水溶性樹脂の存在下で合成された不溶性フェロシアン化物が、磁性体粒子とともに、水溶性樹脂で結着されていることを特徴とする磁性吸着剤粒子を用いることにより、セシウムを含有する溶液から効率良くセシウムを分離することができることを見出して、本発明に到達した。 By using the magnetic adsorbent particles characterized in that the insoluble ferrocyanide synthesized in the presence of a water-soluble resin is bound with a water-soluble resin together with the magnetic particles. The present inventors have found that cesium can be efficiently separated from a solution containing cesium, and reached the present invention.

本発明においては、水溶性樹脂の存在下で合成された不溶性フェロシアン化物が、磁性体粒子とともに、水溶性樹脂で結着されていることを特徴とする磁性吸着剤粒子をセシウム含有溶液に分散させたのち、磁気分離により回収する。セシウム吸着性化合物である不溶性フェロシアン化物を含有する磁性吸着剤粒子は、速やかにセシウムを吸着することができるので吸着処理時間は短くて済む。また、セシウム含有溶液が夾雑物を含んでいても、予めこれらを除くことなく吸着処理を行い、セシウムを吸着した磁性吸着剤粒子だけを磁気分離により回収することができる。夾雑物が汚泥、土壌、焼却灰等に由来する物質であっても、磁気分離には何ら影響しない。その結果、本発明においてはセシウム含有溶液から、極めて短時間かつ簡単な操作によりセシウムを分離することが可能になる。 In the present invention, magnetic adsorbent particles characterized in that an insoluble ferrocyanide synthesized in the presence of a water-soluble resin is bound together with magnetic particles with a water-soluble resin are dispersed in a cesium-containing solution. And then recovered by magnetic separation. Magnetic adsorbent particles containing an insoluble ferrocyanide that is a cesium-adsorbing compound can adsorb cesium quickly, so that the adsorption treatment time is short. Further, even if the cesium-containing solution contains impurities, it is possible to perform adsorption treatment without removing these in advance, and to recover only the magnetic adsorbent particles adsorbing cesium by magnetic separation. Even if contaminants are substances derived from sludge, soil, incineration ash, etc., there is no effect on magnetic separation. As a result, in the present invention, cesium can be separated from the cesium-containing solution by a very short and simple operation.

本発明に用いられる磁性体粒子としては特に制限はなく、磁性を示すあらゆる材料を用いることができる。例えば鉄、ニッケル、コバルト等の金属またはこれらを主成分とする磁性合金の粉末、四三酸化鉄、三二酸化鉄、コバルト添加酸化鉄、バリウムフェライト、ストロンチウムフェライト等の金属酸化物系磁性体の粉末が挙げられる。磁性体粒子の粒径は0.1〜100μmが好ましい。0.1μm未満では、取り扱いに困難が生じることがあり、100μmを超えると、セシウム吸着性化合物との混合がスムースに進まない場合がある。本発明の磁性吸着剤粒子におけるこれら磁性体粒子の含有率は10〜80質量%が好ましく、特に20〜70質量%となるようにするのが好ましい。含有率が10質量%を下回ると磁気分離の効率が低下するので好ましくない。また、含有率が80質量%を上回ると、セシウム吸着性化合物の含有率が低くなるため、セシウム吸着性が低下するので好ましくない。 The magnetic particles used in the present invention are not particularly limited, and any material exhibiting magnetism can be used. For example, powders of metals such as iron, nickel and cobalt or powders of magnetic alloys based on these metals, powders of metal oxide magnetic materials such as iron trioxide, iron sesquioxide, cobalt-added iron oxide, barium ferrite and strontium ferrite Is mentioned. The particle size of the magnetic particles is preferably 0.1 to 100 μm. If it is less than 0.1 μm, handling may be difficult. If it exceeds 100 μm, mixing with the cesium-adsorbing compound may not proceed smoothly. The content of these magnetic particles in the magnetic adsorbent particles of the present invention is preferably 10 to 80% by mass, and more preferably 20 to 70% by mass. If the content is less than 10% by mass, the efficiency of magnetic separation decreases, which is not preferable. Moreover, since the content rate of a cesium adsorptive compound will become low when a content rate exceeds 80 mass%, since a cesium adsorptivity falls, it is unpreferable.

本発明に係るセシウム吸着性化合物としては、少なくとも水溶性樹脂の存在下に合成した不溶性フェロシアン化物を用いる。本発明においては、この不溶性フェロシアン化物とともに、モルデナイト、クリノプチロライト、アナルサイム、シャバサイト、フェリエライト等の天然ゼオライト、ゼオライトA(A型)、ゼオライトX(X型)、フィリップサイト(P型)等の人工ゼオライト、結晶質四チタン酸、スメクタイト、上記の方法で合成したもの以外の不溶性フェロシアン化物、リンモリブデン酸アンモニウム、リンタングステン酸アンモニウム、シリコチタネート、黒雲母、白雲母、金雲母、鉄雲母等の天然雲母やNa型合成雲母等の合成雲母の雲母類、バーミキュライト等を併用しても良いAs cesium adsorbent compounds according to the present invention uses an insoluble ferrocyanide synthesized in the presence of at least a water-soluble resin. In the present invention, with this insoluble ferrocyanide , natural zeolite such as mordenite, clinoptilolite, analcyme, shabasite, ferrierite, zeolite A (A type), zeolite X (X type), Philipsite (P type) ) Artificial zeolite, crystalline tetratitanate, smectite, insoluble ferrocyanide other than those synthesized by the above method, ammonium phosphomolybdate, ammonium phosphotungstate, silicotitanate, biotite, muscovite, phlogopite, Natural mica such as iron mica, synthetic mica mica such as Na-type synthetic mica, vermiculite and the like may be used in combination .

水溶性樹脂の存在下に合成した不溶性フェロシアン化物とその他のセシウム吸着性化合物を併用する場合において、その他のセシウム吸着性化合物を粉体として入手し、磁性体粒子およびバインダーと結着させて本発明の磁性体粒子を得る場合、セシウム吸着性化合物の粒径は0.1〜100μmが好ましい。0.1μm未満では、取り扱いに困難が生じることがあり、100μmを超えると、磁性体粒子との混合がスムースに進まない場合がある。本発明の磁性吸着剤粒子におけるこれらセシウム吸着性化合物の含有率は10〜80質量%が好ましく、特に20〜70質量%となるようにするのが好ましい。含有率が10質量%を下回るとセシウムの吸着効率が低下するので好ましくない。また80質量%を上回ると、磁性体粒子の含有率が低くなるために磁気分離の効率が低下するので好ましくない。 When using an insoluble ferrocyanide synthesized in the presence of a water-soluble resin in combination with other cesium-adsorptive compounds, obtain the other cesium-adsorptive compounds as powders and bind them to magnetic particles and binders. When obtaining the magnetic particles of the invention, the particle diameter of the cesium-adsorbing compound is preferably 0.1 to 100 μm. If it is less than 0.1 μm, handling may be difficult. If it exceeds 100 μm, mixing with the magnetic particles may not proceed smoothly. The content of these cesium-adsorptive compounds in the magnetic adsorbent particles of the present invention is preferably 10 to 80% by mass, and particularly preferably 20 to 70% by mass. If the content is less than 10% by mass, the adsorption efficiency of cesium decreases, which is not preferable. On the other hand, if it exceeds 80% by mass, the content of the magnetic particles is lowered, and the efficiency of magnetic separation is lowered, which is not preferable.

本発明に用いられる不溶性フェロシアン化物は、セシウムに対する選択性が高いことから好ましく用いられる。不溶性フェロシアン化物の具体例としては例えば、一般式[M]a[Fe(CN)]b(ただし、MはCu、Co、Ni、Zn、Cd、Mn、Fe等の遷移金属であり、aとbはMの価数×a=4×bを満たす整数である)で表わされるフェロシアン化物、またはこれらのMの一部が、一価の陽イオンにより置換されているフェロシアン化物や遷移金属がMo、Ti、W等の酸化物で置き換わったフェロシアン化物で、水に不溶のものを挙げることができる。これらの中では、MとしてCu、Co、Ni、Feの少なくとも1種を含有する不溶性フェロシアン化物が、高いセシウム吸着性を有することから好ましい。 - insoluble ferrocyanides that used in the present invention is preferably used because of high selectivity for cesium. Specific examples of the insoluble ferrocyanide include, for example, a general formula [M] a [Fe (CN) 6 ] b (where M is a transition metal such as Cu, Co, Ni, Zn, Cd, Mn, Fe, a and b are integers satisfying the valence of M × a = 4 × b), or a ferrocyanide in which a part of M is substituted with a monovalent cation, Examples of the ferrocyanide in which the transition metal is replaced with an oxide such as Mo, Ti, and W, and insoluble in water. In these, the insoluble ferrocyanide containing at least 1 sort (s) of Cu, Co, Ni, and Fe as M is preferable from having high cesium adsorption property.

本発明に用いられる水溶性樹脂としては、具体的には例えば、デンプン、ゼラチン、キトサン類、ポリビニルアルコール系樹脂(ポリビニルアルコール、カチオン変性ポリビニルアルコール、アニオン変性ポリビニルアルコール、シラノール変性ポリビニルアルコール、エチレン−ポリビニルアルコール共重合体、ポリビニルアセタール等)、セルロース系樹脂(メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース等)、ポリアクリル酸系樹脂、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド、ポリプロピレンオキシド等の有機系水溶性樹脂を挙げることができる。また、本発明の磁性吸着剤粒子を製造するに当たり、本発明に係る不溶性フェロシアン化物と磁性体粒子を結着させるバインダーとして、上記水溶性樹脂と共に造粒、成形分野において知られているバインダーを併用することができる。具体的には例えば、ポリウレタン系エマルジョン、ポリアクリル酸エステル系エマルジョン、ポリ酢酸ビニル系エマルジョン、ポリ(エチレン/酢酸ビニル)共重合エマルジョン、ポリ(スチレン/ブタジエン)共重合エマルジョン、ポリ塩化ビニル系樹脂エマルジョン、シリコーン樹脂エマルジョン等の有機系水性樹脂エマルジョン、ポリアクリル酸系樹脂、ポリアクリルアミド、ポリビニルピロリドン、ポリエチレンオキシド、ポリプロピレンオキシド等の有機系水溶性樹脂、尿素樹脂、エポキシ樹脂、ポリウレタン樹脂、ニトリルゴム等の有機系非水系樹脂を挙げることができる。 The water-soluble resin used in the present invention, specifically For example, de Npun, gelatin, chitosan, polyvinyl alcohol resin (polyvinyl alcohol, cation-modified polyvinyl alcohol, anion-modified polyvinyl alcohol, silanol-modified polyvinyl alcohol, ethylene -Polyvinyl alcohol copolymer, polyvinyl acetal, etc.), cellulose resins (methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropyl methyl cellulose, etc.), polyacrylic acid resins, polyacrylamide, polyvinyl pyrrolidone, polyethylene oxide, may be mentioned an organic water-soluble resins such as polypropylene oxide That. Further, in producing the magnetic adsorbent particles of the present invention, as a binder for binding the insoluble ferrocyanide according to the present invention and magnetic particles, a binder known in the granulation and molding fields together with the water-soluble resin is used. Can be used together. Specifically, for example, polyurethane emulsion, polyacrylate emulsion, polyvinyl acetate emulsion, poly (ethylene / vinyl acetate) copolymer emulsion, poly (styrene / butadiene) copolymer emulsion, polyvinyl chloride resin emulsion Organic water-based resin emulsions such as silicone resin emulsions, polyacrylic acid-based resins, polyacrylamide, polyvinylpyrrolidone, polyethylene oxide, polypropylene oxide, and other organic water-soluble resins, urea resins, epoxy resins, polyurethane resins, nitrile rubber, etc. An organic non-aqueous resin can be mentioned.

これらのバインダーの中で、本発明の磁性吸着剤粒子における不溶性フェロシアン化物を包含するセシウム吸着性化合物の吸着能の悪化が比較的少なく、容易に磁性体粒子にセシウム吸着性化合物を接着させることができることから、水性樹脂エマルジョン、耐水化された水溶性樹脂が好ましく用いられる。 Among these binders, the adsorbability of the cesium adsorbing compound including the insoluble ferrocyanide in the magnetic adsorbent particles of the present invention is relatively small, and the cesium adsorbing compound can be easily adhered to the magnetic particles. Therefore, an aqueous resin emulsion and a water-resistant resin that is water resistant are preferably used.

水性樹脂エマルジョンの中でも耐水性の高い磁性吸着剤粒子を与えることから、ポリ(スチレン/ブタジエン)共重合体エマルジョン、ポリ塩化ビニル系樹脂エマルジョン、シリコーン樹脂エマルジョンがより好ましく用いられ、さらに好ましくは、放射性セシウムを夾雑物から効率良く抽出するため、放射性セシウムを含有する液を加熱する場合においても使用可能な耐熱性を有するポリ塩化ビニル系樹脂エマルジョン、シリコーン樹脂エマルジョンが好適に用いられる。 Poly (styrene / butadiene) copolymer emulsions, polyvinyl chloride resin emulsions, and silicone resin emulsions are more preferably used because of giving water-resistant magnetic adsorbent particles among aqueous resin emulsions, and more preferably radioactive. In order to efficiently extract cesium from impurities, polyvinyl chloride resin emulsions and silicone resin emulsions having heat resistance that can be used even when a liquid containing radioactive cesium is heated are preferably used.

水溶性樹脂においては、磁性体粒子とセシウム吸着性化合物の双方に親和性を持って安定な磁性吸着剤粒子を形成できる点からポリビニルアルコール系樹脂が好ましい。また、その中でも耐水性の点でエチレン−ポリビニルアルコール共重合体がより好ましい。耐水化処理法としては特に制限はなく、各種アルデヒド化合物、メチロール化合物、エポキシ化合物、イソシアネート化合物による架橋反応等を利用することができる。 In the water-soluble resin, a polyvinyl alcohol-based resin is preferable because it can form stable magnetic adsorbent particles having affinity for both the magnetic particles and the cesium-adsorbing compound. Of these, ethylene-polyvinyl alcohol copolymer is more preferable from the viewpoint of water resistance. There is no restriction | limiting in particular as a water-resistant treatment method, The crosslinking reaction by various aldehyde compounds, a methylol compound, an epoxy compound, an isocyanate compound, etc. can be utilized.

本発明の磁性吸着剤粒子におけるバインダーの含有率は5〜50質量%が好ましく、特に10〜30質量%となるようにするのが好ましい。含有率が5質量%を下回ると磁性吸着剤粒子の物理的強度が低下して、磁性吸着剤粒子が分解しやすくなるので好ましくない。含有率が50質量%を上回ると、セシウムの吸着効率が低下するので好ましくない。水溶性樹脂には耐水化処理を施しても良い。 The content of the binder in the magnetic adsorbent particles of the present invention is preferably 5 to 50% by mass, particularly preferably 10 to 30% by mass. When the content is below 5 wt% reduced physical strength of the magnetic adsorbent particles, since the magnetic adsorbent particles are easily decomposed undesirably. If the content exceeds 50% by mass, the adsorption efficiency of cesium decreases, which is not preferable. The water-soluble resin may be subjected to water resistance treatment.

本発明の磁性吸着剤粒子の製造方法としては、磁性体粒子とセシウム吸着性化合物とをバインダー溶液またはエマルジョンと共に混合、乾燥、粉砕する方法がある。別の方法として、磁性体粒子とセシウム吸着性化合物とをモノマーと共に塊状重合させ、乾燥、粉砕する方法もあるが、製造工程の制御のしやすさやコストの点から、前者の方法が有利である。各工程において用いられる装置について、特に制限はない。 As a method for producing the magnetic adsorbent particles of the present invention, there are methods in which magnetic particles and a cesium adsorbing compound are mixed, dried and pulverized together with a binder solution or an emulsion. As another method, there is a method in which magnetic particles and a cesium-adsorptive compound are polymerized together with a monomer, dried and pulverized, but the former method is advantageous from the viewpoint of ease of control of the manufacturing process and cost. . There is no restriction | limiting in particular about the apparatus used in each process.

セシウム吸着性化合物として不溶性フェロシアン化物を用いる場合には、予め合成し乾燥しておいた不溶性フェロシアン化物を、磁性体粒子およびバインダーと共に混合、乾燥、粉砕することにより磁性吸着剤を得ることもできるが、不溶性フェロシアン化物をバインダーの存在下に合成し乾燥せずに、そのまま磁性体粒子と混合、乾燥、粉砕する方法を取ることもできる。後者の方法においてバインダーとして水溶性樹脂を用いると、不溶性フェロシアン化物が微粒子の状態で安定に存在し、その比表面積が大きくなることから高いセシウム吸着能が発現するので有利であるので、本発明においてはセシウム吸着性化合物として水溶性樹脂の存在下でされた不溶性フェロシアン化物を用いる。水溶性樹脂の存在下に不溶性フェロシアン化物を合成するには、水溶性樹脂の溶液に可溶性フェロシアン化物を溶かしておき、攪拌しつつここへ遷移金属イオン溶液を添加するか、あるいは逆に、水溶性樹脂の溶液に遷移金属イオンを溶かしておき、攪拌しつつここへ可溶性フェロシアン化物溶液を添加すれば良い。水溶性樹脂の溶液に遷移金属イオンを溶かすと、ゲル状物が分離することがあるので、前者の合成法が好ましい。 When an insoluble ferrocyanide is used as the cesium-adsorbing compound, a magnetic adsorbent may be obtained by mixing, drying, and grinding the insoluble ferrocyanide synthesized and dried together with the magnetic particles and the binder. However, it is also possible to synthesize the insoluble ferrocyanide in the presence of a binder and mix, dry and pulverize the magnetic particles as they are without drying . When using a water-soluble resin as a binder in the latter method, an insoluble ferrocyanide stably present in a state of fine particles, since it is advantageous because the specific surface area is expressed high cesium adsorption capacity from becoming larger, the present invention In the present invention, an insoluble ferrocyanide formed in the presence of a water-soluble resin is used as a cesium-adsorbing compound . In order to synthesize an insoluble ferrocyanide in the presence of a water-soluble resin, a soluble ferrocyanide is dissolved in a water-soluble resin solution, and a transition metal ion solution is added thereto while stirring, or conversely, The transition metal ion is dissolved in the water-soluble resin solution, and the soluble ferrocyanide solution may be added thereto while stirring. When the transition metal ion is dissolved in the water-soluble resin solution, the gel-like product may be separated, so the former synthesis method is preferable.

セシウムを含む溶液と本発明の磁性吸着剤粒子の接触方法としては、溶液に磁性吸着剤粒子を投入して攪拌するバッチ処理が、簡便な装置で実施できるので好ましい。攪拌方法としては、攪拌羽根で攪拌する方法、エアレーション等曝気による方法、電磁石制御により磁性体粒子を攪拌する方法等を例示することができる。セシウムを含む溶液と磁性吸着剤粒子の接触時間は、10分〜2時間が好ましい。接触時間が10分より短いと、セシウムの吸着が不十分となることがある。2時間より長く接触させても、吸着がすでに平衡に達しているため作業効率上好ましくないうえに、長時間の攪拌が磁性吸着剤粒子の機械的な強度に悪影響を与えることがある。 As a method for contacting the solution containing cesium and the magnetic adsorbent particles of the present invention, batch treatment in which the magnetic adsorbent particles are put into the solution and stirred is preferable because it can be carried out with a simple apparatus. Examples of the stirring method include a method of stirring with a stirring blade, a method of aeration such as aeration, a method of stirring magnetic particles by electromagnet control, and the like. The contact time between the solution containing cesium and the magnetic adsorbent particles is preferably 10 minutes to 2 hours. When the contact time is shorter than 10 minutes, the adsorption of cesium may be insufficient. Even if the contact time is longer than 2 hours, the adsorption has already reached equilibrium, which is not preferable in terms of work efficiency, and long-time stirring may adversely affect the mechanical strength of the magnetic adsorbent particles .

セシウムを含む溶液に対する、本発明の磁性吸着剤粒子の添加量に制限はなく、セシウムが目的とするレベルまで除去される添加量を、セシウムの濃度に応じて実験的に定めれば良い。例えばセシウム濃度が0.001質量%(10ppm)の場合、90%以上のセシウムを分離するためには、磁性吸着剤粒子に含まれるセシウム吸着性化合物のセシウム吸着容量が、被処理液内に存在するセシウム量の2〜100倍となるように加えることが好ましい。磁性吸着剤粒子量が2倍を下回るとセシウムの除去が不十分となることがある。また、100倍以上を加えてもセシウム除去レベルには変化がなく、不経済であると共に、場合によっては攪拌や磁気分離作業に対して支障となることがある。 The amount of the magnetic adsorbent particles of the present invention to be added to the solution containing cesium is not limited, and the amount of cesium removed to the target level may be determined experimentally according to the concentration of cesium. For example, when the cesium concentration is 0.001% by mass (10 ppm), in order to separate 90% or more of cesium, the cesium adsorption capacity of the cesium-adsorbing compound contained in the magnetic adsorbent particles is present in the liquid to be treated. It is preferable to add so that it may become 2-100 times the amount of cesium to do. When the amount of magnetic adsorbent particles is less than twice, removal of cesium may be insufficient. Moreover, even if it is added 100 times or more, the cesium removal level does not change, which is uneconomical, and sometimes hinders stirring and magnetic separation work.

セシウムを吸着した磁性吸着剤粒子は、永久磁石、電磁石、超電導磁石によって短時間に集磁され、セシウムが除かれた溶液から分離される。用いられる磁気分離装置に関して特に制限はない。 The magnetic adsorbent particles having adsorbed cesium are collected in a short time by a permanent magnet, an electromagnet, and a superconducting magnet, and separated from the solution from which cesium has been removed. There are no particular restrictions on the magnetic separation device used.

以下に、本発明を実施例により詳細に説明するが、本発明は実施例に限定されるものでない。なお、実施例中の百分率は、質量基準である。   EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the examples. In addition, the percentage in an Example is a mass reference | standard.

参考磁性吸着剤粒子1製造
平均粒径5μmの四三酸化鉄(1g)とフェロシアン化鉄(大日精化工業(株);MILORI BLUE 905;0.35g)を、シラノール変性ポリビニルアルコール((株)クラレ;R1130)10%水溶液2.3gと共に乳鉢で混練し、シャーレに広げて80℃で3時間乾燥させた。得られた乾燥固形物をミニブレンダーで粉砕して、参考磁性吸着剤粒子1を1.4g得た。
< Production of Reference Magnetic Adsorbent Particles 1 >
Iron trioxide (1 g) having an average particle diameter of 5 μm and ferrocyanide (Daiichi Seika Kogyo Co., Ltd .; MILORI BLUE 905; 0.35 g) and silanol-modified polyvinyl alcohol (Kuraray Co., Ltd .; R1130) 10% The mixture was kneaded with 2.3 g of an aqueous solution in a mortar, spread on a petri dish, and dried at 80 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 1.4 g of reference magnetic adsorbent particles 1 .

参考磁性吸着剤粒子2製造
シラノール変性ポリビニルアルコールを固形分量で同量のポリウレタン樹脂(DIC(株)製;ハイドランCP−7020)に置き換える他は、参考磁性吸着剤粒子1製造と同様に操作して、参考磁性吸着剤粒子2を1.3g得た。
< Production of Reference Magnetic Adsorbent Particles 2 >
Silanol-modified polyvinyl alcohol in solid content equivalent amount of the polyurethane resin (manufactured by DIC (Ltd.); HYDRAN CP-7020) in addition to replacing, the Operating as of Reference magnetic adsorbent particles 1, reference magnetic adsorbent particles 1.3 g of 2 was obtained.

参考磁性吸着剤粒子3製造
シラノール変性ポリビニルアルコールを固形分量で同量のポリウレタン樹脂(DIC(株)製;ハイドランWLS−206)に置き換える他は、参考磁性吸着剤粒子1製造と同様に操作して、参考磁性吸着剤粒子3を1.3g得た。
< Production of Reference Magnetic Adsorbent Particles 3 >
The same amount of polyurethane resin silanol-modified polyvinyl alcohol in the solid content (manufactured by DIC (Ltd.); HYDRAN WLS-206) other replace the, Operating as of Reference magnetic adsorbent particles 1, reference magnetic adsorbent particles 1.3 g of 3 was obtained.

参考磁性吸着剤粒子4製造
フェロシアン化鉄をフェロシアン化ニッケル(合成品;0.35g)に置き換える他は、参考磁性吸着剤粒子1製造と同様に操作して、参考磁性吸着剤粒子4を1.3g得た。
< Production of Reference Magnetic Adsorbent Particles 4 >
Except that iron ferrocyanide was replaced with nickel ferrocyanide (synthetic product; 0.35 g), 1.3 g of reference magnetic adsorbent particles 4 were obtained in the same manner as in the production of reference magnetic adsorbent particles 1 .

参考磁性吸着剤粒子5製造
フェロシアン化鉄をリンモリブデン酸アンモニウム水和物(和光純薬工業(株);0.35g)に置き換える他は、参考磁性吸着剤粒子1製造と同様に操作して、参考磁性吸着剤粒子5を1.3g得た。
< Production of Reference Magnetic Adsorbent Particles 5 >
The ferric ferrocyanide ammonium hydrate phosphomolybdate (Wako Pure Chemical Industries (Ltd.); 0.35 g) other replace, the Operating as of Reference magnetic adsorbent particles 1, reference magnetic adsorbent particles 1.3 g of 5 was obtained.

参考磁性吸着剤粒子6製造
フェロシアン化鉄をリンタングステン酸アンモニウム3水和物(和光純薬工業(株);0.35g)に置き換える他は、参考磁性吸着剤粒子1製造と同様に操作して、参考磁性吸着剤粒子6を1.3g得た。
< Production of Reference Magnetic Adsorbent Particles 6 >
The ferric ferrocyanide phosphotungstic acid ammonium trihydrate (manufactured by Wako Pure Chemical Industries (Ltd.); 0.35 g) other replace, the Operating as of Reference magnetic adsorbent particles 1, reference magnetic adsorbent 1.3 g of particle 6 was obtained.

<磁性吸着剤粒子7製造
シラノール変性ポリビニルアルコール((株)クラレ;R1130)10%水溶液2.3gに、フェロシアン化カリウム3水和物(0.42g)の水溶液1.7mlを加え、攪拌しつつ硫酸ニッケル6水和物(0.26g)の水溶液1mlを添加し10分かき混ぜて、不溶性フェロシアン化物を合成した。その後、平均粒径5μmの四三酸化鉄(1g)を加えてさらに5分かき混ぜ、シャーレに広げて80℃で3時間乾燥させた。得られた乾燥固形物をミニブレンダーで粉砕して、磁性吸着剤粒子7を1.4g得た。
< Manufacture of magnetic adsorbent particles 7 >
1.7 ml of an aqueous solution of potassium ferrocyanide trihydrate (0.42 g) was added to 2.3 g of a 10% aqueous solution of silanol-modified polyvinyl alcohol (Kuraray Co., Ltd .; R1130), and nickel sulfate hexahydrate (0 adding an aqueous solution 1ml of .26G), stir 10 min, it was synthesized insoluble ferrocyanides. Then , triiron tetroxide (1 g) having an average particle diameter of 5 μm was added, stirred for another 5 minutes, spread on a petri dish and dried at 80 ° C. for 3 hours. The obtained dried solid was pulverized with a mini blender to obtain 1.4 g of magnetic adsorbent particles 7 .

<磁性吸着剤粒子8製造
硫酸ニッケル6水和物を硫酸第一鉄7水和物(0.28g)に置き換える他は、磁性吸着剤粒子7製造と同様に操作して、磁性吸着剤粒子8を1.4g得た。
< Manufacture of magnetic adsorbent particles 8 >
1.4 g of magnetic adsorbent particles 8 were obtained in the same manner as in the production of magnetic adsorbent particles 7 except that nickel sulfate hexahydrate was replaced with ferrous sulfate heptahydrate (0.28 g). .

<比較吸着剤粒子1製造
四三酸化鉄をシリカゲル(メルク(株)製;シリカゲル60)に置き換える他は、参考磁性吸着剤粒子1製造と同様に操作して、比較吸着剤粒子1を1.3g得た。
< Manufacture of comparative adsorbent particles 1 >
1.3 g of comparative adsorbent particles 1 were obtained in the same manner as in the production of the reference magnetic adsorbent particles 1 , except that the iron trioxide was replaced with silica gel (manufactured by Merck Co., Ltd .; silica gel 60).

<比較吸着剤粒子2の製造>
フェロシアン化鉄を加えない点を除いては、参考磁性吸着剤粒子1製造と同様に操作して、比較吸着剤粒子2を1.2g得た。
<Manufacture of comparative adsorbent particles 2 >
Except for not adding ferric ferrocyanide, 1.2 g of comparative adsorbent particles 2 was obtained by operating in the same manner as the production of the reference magnetic adsorbent particles 1 .

参考
塩化セシウム6.33mgを蒸留水500mlに溶かして、セシウム濃度が0.001%(10ppm)の水溶液を調製した。この液50mlに参考磁性吸着剤粒子1を100mg加え、30分攪拌した。容器の底に磁石を当てて磁性吸着剤粒子を集め、水相をデカンテーションにより別のビーカーに移した。この水相のセシウム濃度をICP−MSで求めたところ1.5ppmであり、85%のセシウムが分離されていた。
Reference example 1
6.33 mg of cesium chloride was dissolved in 500 ml of distilled water to prepare an aqueous solution having a cesium concentration of 0.001% (10 ppm). 100 mg of the reference magnetic adsorbent particles 1 was added to 50 ml of this liquid and stirred for 30 minutes. A magnet was applied to the bottom of the container to collect the magnetic adsorbent particles , and the aqueous phase was transferred to another beaker by decantation. When the cesium concentration of this aqueous phase was determined by ICP-MS, it was 1.5 ppm, and 85% of cesium was separated.

参考
参考磁性吸着剤粒子1の替わりに参考磁性吸着剤粒子2を用いる以外は、参考と同様に操作した。セシウムの分離率は82%であった。
Reference example 2
But using Reference magnetic adsorbent particles 2 instead of Reference magnetic adsorbent particles 1, it was operated in the same manner as in Reference Example 1. The separation rate of cesium was 82%.

参考
参考磁性吸着剤粒子1の替わりに参考磁性吸着剤粒子3を用いる以外は、参考と同様に操作した。セシウムの分離率は81%であった。
Reference example 3
But using Reference magnetic adsorbent particles 3 instead of Reference magnetic adsorbent particles 1, it was operated in the same manner as in Reference Example 1. The separation rate of cesium was 81%.

参考
参考磁性吸着剤粒子1の替わりに参考磁性吸着剤粒子4を用いる以外は、参考と同様に操作した。セシウムの分離率は91%であった。
Reference example 4
But using Reference magnetic adsorbent particles 4 instead of Reference magnetic adsorbent particles 1, it was operated in the same manner as in Reference Example 1. The separation rate of cesium was 91%.

参考
参考磁性吸着剤粒子1の替わりに参考磁性吸着剤粒子5を用いる以外は、参考と同様に操作した。セシウムの分離率は75%であった。
Reference Example 5
But using Reference magnetic adsorbent particles 5 instead of Reference magnetic adsorbent particles 1, it was operated in the same manner as in Reference Example 1. The separation rate of cesium was 75%.

参考
参考磁性吸着剤粒子1の替わりに参考磁性吸着剤粒子6を用いる以外は、参考と同様に操作した。セシウムの分離率は70%であった。
Reference Example 6
But using Reference magnetic sorbent particles 6 instead of reference magnetic adsorbent particles 1, it was operated in the same manner as in Reference Example 1. The separation rate of cesium was 70%.

実施例
参考磁性吸着剤粒子1の替わりに磁性吸着剤粒子7を用いる以外は、参考と同様に操作した。セシウムの分離率は99%であった。
Example 1
The same operation as in Reference Example 1 was performed except that magnetic adsorbent particles 7 were used in place of reference magnetic adsorbent particles 1 . The separation rate of cesium was 99%.

実施例
参考磁性吸着剤粒子1の替わりに磁性吸着剤粒子8を用いる以外は、参考と同様に操作した。セシウムの分離率は98%であった。
Example 2
The same operation as in Reference Example 1 was performed except that magnetic adsorbent particles 8 were used instead of reference magnetic adsorbent particles 1 . The separation rate of cesium was 98%.

比較例
参考磁性吸着剤粒子1の替わりに比較吸着剤粒子1を用い、濾紙を用いた濾過操作によって水相と比較吸着剤粒子1の分離を行う以外は、参考と同様に操作した。セシウムの分離率は81%であった。
Comparative Example 1
The same operation as in Reference Example 1 was performed except that the comparative adsorbent particle 1 was used in place of the reference magnetic adsorbent particle 1 and the aqueous phase and the comparative adsorbent particle 1 were separated by a filtering operation using filter paper. The separation rate of cesium was 81%.

比較例
参考磁性吸着剤粒子1の替わりに比較吸着剤粒子2を用いる以外は、参考と同様に操作した。セシウムの分離率は0%であった。
Comparative Example 2
The same operation as in Reference Example 1 was performed except that the comparative adsorbent particle 2 was used instead of the reference magnetic adsorbent particle 1 . The separation rate of cesium was 0%.

参考6及び実施例1、2の結果から、本発明によればセシウムを含有する水相から、簡単な操作により短時間にセシウムを分離できることが分かる。参考と比較例の結果から、磁気分離を用いて簡単にセシウムを分離するためには、吸着剤に磁性体粒子とセシウム吸着性化合物の両方を含めることが必須であることが分かる。また参考の比較からセシウム吸着性化合物としては不溶性フェロシアン化物が好ましいこと、さらに参考実施例2の比較、参考実施例1の比較から、不溶性フェロシアン化物が水溶性樹脂の存在下に製造されているとさらに高いセシウム分離率が果たせることが分かる。 From the results of Reference Examples 1 to 6 and Examples 1 and 2 , it can be seen that according to the present invention, cesium can be separated in a short time from an aqueous phase containing cesium by a simple operation. From the results of Reference Example 1 and Comparative Examples 1 and 2 , in order to easily separate cesium using magnetic separation, it is essential that the adsorbent contains both magnetic particles and a cesium-adsorbing compound. I understand. In addition, from the comparison of Reference Examples 1 , 4 and 5 , and 6 , it is preferable that the cesium-adsorbing compound is an insoluble ferrocyanide. Further, from the comparison between Reference Example 1 and Example 2 and from the comparison between Reference Example 4 and Example 1 , it is insoluble. It can be seen that if the ferrocyanide is produced in the presence of a water-soluble resin, a higher cesium separation rate can be achieved.

Claims (5)

磁性体粒子とセシウム吸着性化合物がバインダーで結着されている磁性吸着剤。   A magnetic adsorbent in which magnetic particles and a cesium-adsorbing compound are bound with a binder. 該セシウム吸着性化合物が不溶性フェロシアン化物、天然および人工のゼオライト、バーミキュライト、雲母類から選ばれる少なくとも1種であることを特徴とする、請求項1記載の磁性吸着剤。   2. The magnetic adsorbent according to claim 1, wherein the cesium adsorbing compound is at least one selected from insoluble ferrocyanide, natural and artificial zeolite, vermiculite, and mica. 該不溶性フェロシアン化物が水溶性樹脂の存在下で製造されることを特徴とする、請求項2記載の磁性吸着剤。   3. The magnetic adsorbent according to claim 2, wherein the insoluble ferrocyanide is produced in the presence of a water-soluble resin. 該ゼオライトがモルデナイト、クリノプチロライト、シャバサイトから選ばれる少なくとも1種であることを特徴とする、請求項2記載の磁性吸着剤。   The magnetic adsorbent according to claim 2, wherein the zeolite is at least one selected from mordenite, clinoptilolite, and shabasite. 該バインダーが水性樹脂エマルジョン若しくは耐水化された水溶性樹脂であることを特徴とする、請求項1乃至4のいずれかに記載の磁性吸着剤。   The magnetic adsorbent according to any one of claims 1 to 4, wherein the binder is an aqueous resin emulsion or a water-resistant resin having water resistance.
JP2012154255A 2011-07-12 2012-07-10 Magnetic adsorbent particles Expired - Fee Related JP5250140B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012154255A JP5250140B1 (en) 2011-07-12 2012-07-10 Magnetic adsorbent particles

Applications Claiming Priority (25)

Application Number Priority Date Filing Date Title
JP2011153414 2011-07-12
JP2011153414 2011-07-12
JP2011261090 2011-11-30
JP2011261090 2011-11-30
JP2012035700 2012-02-22
JP2012035699 2012-02-22
JP2012035698 2012-02-22
JP2012035700 2012-02-22
JP2012035697 2012-02-22
JP2012035698 2012-02-22
JP2012035697 2012-02-22
JP2012035696 2012-02-22
JP2012035696 2012-02-22
JP2012035699 2012-02-22
JP2012041954 2012-02-28
JP2012041956 2012-02-28
JP2012041954 2012-02-28
JP2012041956 2012-02-28
JP2012043562 2012-02-29
JP2012043563 2012-02-29
JP2012043563 2012-02-29
JP2012043562 2012-02-29
JP2012052460 2012-03-09
JP2012052460 2012-03-09
JP2012154255A JP5250140B1 (en) 2011-07-12 2012-07-10 Magnetic adsorbent particles

Publications (2)

Publication Number Publication Date
JP5250140B1 JP5250140B1 (en) 2013-07-31
JP2013212487A true JP2013212487A (en) 2013-10-17

Family

ID=49041913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012154255A Expired - Fee Related JP5250140B1 (en) 2011-07-12 2012-07-10 Magnetic adsorbent particles

Country Status (1)

Country Link
JP (1) JP5250140B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181882A (en) * 2012-03-02 2013-09-12 National Agriculture & Food Research Organization Radioactive material collection method, and radioactive material collection device
JP2014159995A (en) * 2013-02-19 2014-09-04 Dainichiseika Color & Chem Mfg Co Ltd Method for removing radioactive cesium and hydrophilic resin composition for removing radioactive cesium
JP2014163893A (en) * 2013-02-27 2014-09-08 Dainichiseika Color & Chem Mfg Co Ltd Method for removing radioactive cesium and hydrophilic resin composition for removing radioactive cesium
JP2014185850A (en) * 2013-03-21 2014-10-02 Dainichiseika Color & Chem Mfg Co Ltd Removal method of radioactive iodine and radioactive cesium, and hydrophilic resin composition for removal of radioactive iodine and radioactive cesium
JP2014206468A (en) * 2013-04-12 2014-10-30 大日精化工業株式会社 Method of removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium
JP2015117981A (en) * 2013-12-18 2015-06-25 大成建設株式会社 Method for decontaminating fly ash containing radioactive cesium and decontamination device
US9412479B2 (en) 2013-02-19 2016-08-09 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method and composition for removing radioactive cesium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5610412B2 (en) * 2013-08-07 2014-10-22 独立行政法人国立環境研究所 Method for insolubilizing water-soluble radioactive cesium, insolubilizing agent used in this method, and hardened cement and concrete obtained by this method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679999A (en) * 1979-12-06 1981-06-30 Hitachi Ltd Radioactive waste processing method
JPH0531477A (en) * 1990-12-17 1993-02-09 Westinghouse Electric Corp <We> Method for removing metal contaminant from solid material using contact with ion-exchange powder
JPH05200224A (en) * 1992-01-17 1993-08-10 Kuraray Chem Corp Sheet like adsorbent having magnetism and fire retardancy
JPH07270597A (en) * 1994-03-30 1995-10-20 Mitsubishi Materials Corp Buffer material or back-filling material for geological disposal of radioactive waste
JPH08105998A (en) * 1994-10-07 1996-04-23 Power Reactor & Nuclear Fuel Dev Corp High volume reduction solidification method for high level radioactive waste liquid
JP2005177709A (en) * 2003-12-22 2005-07-07 Nishi Nippon Gijutsu Kaihatsu Kk Wastewater treatment method and apparatus
JP2005334737A (en) * 2004-05-25 2005-12-08 Futaba Shoji Kk Magnetic adsorbent, photocatalyst supporting adsorbent, magnetic photocatalyst, photocatalyst supporting magnetic adsorbent, and harmful substance decomposing treatment method
JP2006075815A (en) * 2004-09-13 2006-03-23 Shimane Univ Molding for denitrifying/dephosphorizing and method for denitrifying/dephosphorizing sewage or waste water
JP2007229551A (en) * 2006-02-27 2007-09-13 Toda Kogyo Corp Adsorbent
JP2009072773A (en) * 2007-08-29 2009-04-09 Toda Kogyo Corp Adsorbent agent
JP4932054B1 (en) * 2011-04-28 2012-05-16 学校法人慈恵大学 Radioactive substance decontamination system, decontamination method for radioactive substance, and magnetic composite particles for decontamination
JP2012250904A (en) * 2011-05-06 2012-12-20 National Institute Of Advanced Industrial Science & Technology Composite containing metal complex, and radiocesium adsorbent using the same
JP2012251994A (en) * 2011-05-06 2012-12-20 Dainichiseika Color & Chem Mfg Co Ltd Composite containing prussian blue, and radioactive cesium adsorbent using the same
JP2013002865A (en) * 2011-06-14 2013-01-07 Dainichiseika Color & Chem Mfg Co Ltd Adsorbent composition, adsorbent for radioactive cesium, and method for separating radioactive cesium using the adsorbent

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5679999A (en) * 1979-12-06 1981-06-30 Hitachi Ltd Radioactive waste processing method
JPH0531477A (en) * 1990-12-17 1993-02-09 Westinghouse Electric Corp <We> Method for removing metal contaminant from solid material using contact with ion-exchange powder
JPH05200224A (en) * 1992-01-17 1993-08-10 Kuraray Chem Corp Sheet like adsorbent having magnetism and fire retardancy
JPH07270597A (en) * 1994-03-30 1995-10-20 Mitsubishi Materials Corp Buffer material or back-filling material for geological disposal of radioactive waste
JPH08105998A (en) * 1994-10-07 1996-04-23 Power Reactor & Nuclear Fuel Dev Corp High volume reduction solidification method for high level radioactive waste liquid
JP2005177709A (en) * 2003-12-22 2005-07-07 Nishi Nippon Gijutsu Kaihatsu Kk Wastewater treatment method and apparatus
JP2005334737A (en) * 2004-05-25 2005-12-08 Futaba Shoji Kk Magnetic adsorbent, photocatalyst supporting adsorbent, magnetic photocatalyst, photocatalyst supporting magnetic adsorbent, and harmful substance decomposing treatment method
JP2006075815A (en) * 2004-09-13 2006-03-23 Shimane Univ Molding for denitrifying/dephosphorizing and method for denitrifying/dephosphorizing sewage or waste water
JP2007229551A (en) * 2006-02-27 2007-09-13 Toda Kogyo Corp Adsorbent
JP2009072773A (en) * 2007-08-29 2009-04-09 Toda Kogyo Corp Adsorbent agent
JP4932054B1 (en) * 2011-04-28 2012-05-16 学校法人慈恵大学 Radioactive substance decontamination system, decontamination method for radioactive substance, and magnetic composite particles for decontamination
JP2012250904A (en) * 2011-05-06 2012-12-20 National Institute Of Advanced Industrial Science & Technology Composite containing metal complex, and radiocesium adsorbent using the same
JP2012251994A (en) * 2011-05-06 2012-12-20 Dainichiseika Color & Chem Mfg Co Ltd Composite containing prussian blue, and radioactive cesium adsorbent using the same
JP2013002865A (en) * 2011-06-14 2013-01-07 Dainichiseika Color & Chem Mfg Co Ltd Adsorbent composition, adsorbent for radioactive cesium, and method for separating radioactive cesium using the adsorbent

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181882A (en) * 2012-03-02 2013-09-12 National Agriculture & Food Research Organization Radioactive material collection method, and radioactive material collection device
JP2014159995A (en) * 2013-02-19 2014-09-04 Dainichiseika Color & Chem Mfg Co Ltd Method for removing radioactive cesium and hydrophilic resin composition for removing radioactive cesium
US9412479B2 (en) 2013-02-19 2016-08-09 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Method and composition for removing radioactive cesium
JP2014163893A (en) * 2013-02-27 2014-09-08 Dainichiseika Color & Chem Mfg Co Ltd Method for removing radioactive cesium and hydrophilic resin composition for removing radioactive cesium
JP2014185850A (en) * 2013-03-21 2014-10-02 Dainichiseika Color & Chem Mfg Co Ltd Removal method of radioactive iodine and radioactive cesium, and hydrophilic resin composition for removal of radioactive iodine and radioactive cesium
JP2014206468A (en) * 2013-04-12 2014-10-30 大日精化工業株式会社 Method of removing radioactive iodine and radioactive cesium, and hydrophilic resin composition for removing radioactive iodine and radioactive cesium
JP2015117981A (en) * 2013-12-18 2015-06-25 大成建設株式会社 Method for decontaminating fly ash containing radioactive cesium and decontamination device

Also Published As

Publication number Publication date
JP5250140B1 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5250140B1 (en) Magnetic adsorbent particles
Singh et al. Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials
Zhou et al. Adsorption behavior of tetracycline from aqueous solution on ferroferric oxide nanoparticles assisted powdered activated carbon
Reddy et al. Spinel ferrite magnetic adsorbents: alternative future materials for water purification?
Shin et al. Adsorption of radioactive strontium by pristine and magnetic biochars derived from spent coffee grounds
Ding et al. Selective removal of cesium from aqueous solutions with nickel (II) hexacyanoferrate (III) functionalized agricultural residue–walnut shell
Gong et al. Adsorption of heavy metal ions by hierarchically structured magnetite-carbonaceous spheres
Wan et al. Synthesized magnetic manganese ferrite nanoparticles on activated carbon for sulfamethoxazole removal
Wan et al. Selective adsorption of Cd (II) and Zn (II) ions by nano-hydrous manganese dioxide (HMO)-encapsulated cation exchanger
AU2017202855A1 (en) Organic-inorganic composite material for removal of anionic pollutants from water and process for the preparation thereof
Homayonfard et al. Efficient removal of cadmium (II) ions from aqueous solution by CoFe2O4/chitosan and NiFe2O4/chitosan composites as adsorbents
Wen et al. Production of a generic magnetic Fe3O4 nanoparticles decorated tea waste composites for highly efficient sorption of Cu (II) and Zn (II)
Kalkan et al. Experimental study to remediate Acid Fuchsin dye using laccase-modified zeolite from aqueous solutions.
Lin et al. Influence of coexisting calcium and magnesium ions on phosphate adsorption onto hydrous iron oxide
EP2797081A1 (en) Method for removing cesium ions in aqueous solution employing magnetic particles
Yari Moghaddam et al. Adsorption of Cd and Ni from water by graphene oxide and graphene oxide–almond shell composite
Quang et al. Using ZrO2 coated sludge from drinking water treatment plant as a novel adsorbent for nitrate removal from contaminated water
Usanmaz et al. Removal of Cu (II), Ni (II) and Co (II) ions from aqueous solutions by hazelnut husks carbon activated with phosphoric acid
Ogata et al. Adsorption of phosphate ions from an aqueous solution by calcined nickel-cobalt binary hydroxide
Akar et al. Magnetically functionalized alunite as a recyclable and ecofriendly adsorbent for efficient removal of Pb2+
JP2014094336A (en) Magnetic adsorbent for cesium and its manufacturing method
JP2015024387A (en) Magnetic adsorbent and manufacturing method thereof
Nithya et al. In situ synthesis of mesostructured iron oxide nanoparticles embedded in L. camara: adsorption insights and modeling studies
Zhang et al. A facile syntheses of two engineered poly (vinyl alcohol) macroporous hydrogel beads for the application of Cu (II) and Pb (II) removal: batch and fixed bed column
JP2013188716A (en) Magnetic adsorbent

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5250140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees