JP2013210338A - Lamp body optical axis inspection device and reference position determination method of lamp body optical axis inspection - Google Patents

Lamp body optical axis inspection device and reference position determination method of lamp body optical axis inspection Download PDF

Info

Publication number
JP2013210338A
JP2013210338A JP2012082009A JP2012082009A JP2013210338A JP 2013210338 A JP2013210338 A JP 2013210338A JP 2012082009 A JP2012082009 A JP 2012082009A JP 2012082009 A JP2012082009 A JP 2012082009A JP 2013210338 A JP2013210338 A JP 2013210338A
Authority
JP
Japan
Prior art keywords
support base
light
signal
optical axis
lamp body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012082009A
Other languages
Japanese (ja)
Inventor
Masakazu Kimura
雅和 木村
Toshiyuki Saito
俊幸 斉藤
Yutaka Ishiyama
豊 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012082009A priority Critical patent/JP2013210338A/en
Publication of JP2013210338A publication Critical patent/JP2013210338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)

Abstract

PROBLEM TO BE SOLVED: To promptly determine an inspection reference range without requiring a manual operation in a lamp body optical axis inspection.SOLUTION: A lamp body optical axis inspection device includes: a support base 34 which can rotate by supporting a lamp body 2 to be inspected; a driving part 35 or 36 which receives a rotation signal to drive the support base 34 by rotation; a light receiving part 4 which receives light from the lamp body 2 supported by the support base 34 to output a corresponding signal; and a control part 10 which includes rotation control means for transmitting the rotation signal for rotating the support base 34 in a predetermined direction to the driving part 35 or 36, and calculation means for calculating an inspection reference position of the support base 34 on the basis of signals from the light receiving part 4 for every predetermined rotation angle of the support base 34 and a rotation angle of the support base 34.

Description

本発明は、灯体の光軸を検査するための装置及び灯体光軸の検査基準位置を決定する方法に関する。   The present invention relates to an apparatus for inspecting an optical axis of a lamp body and a method for determining an inspection reference position of the lamp optical axis.

光軸検査が必要とされる灯体としては、例えば自動車のヘッドライトがある。自動車のヘッドライトの検査では、光源から所定の距離離れた平面上において、主光軸の位置が所定の範囲内か否かあるいは所定の場所の明るさが所定の明るさか否か等の検査を行う。   An example of a lamp that requires optical axis inspection is an automobile headlight. In the inspection of a headlight of an automobile, an inspection such as whether or not the position of the main optical axis is within a predetermined range or whether or not the brightness of a predetermined place is a predetermined brightness on a plane separated from the light source by a predetermined distance. Do.

主光軸の位置が所定の範囲内か否かを検査する方法としては、自動車から所定の距離離れたスクリーン上の等照度閉曲線の幾何学的中心を主光軸として、その主光軸が検査基準範囲内か否かを検査する方法が提案されている(特許文献1参照)。   As a method for inspecting whether the position of the main optical axis is within a predetermined range, the main optical axis is inspected using the geometric center of the iso-illuminated closed curve on the screen at a predetermined distance from the automobile as the main optical axis. A method for inspecting whether or not it is within a reference range has been proposed (see Patent Document 1).

また、上記のような前記検査基準範囲を定めるに際しては、あらかじめ実際のスクリーン上に2点の発光体を設け、これら発光体からの光で検査基準範囲を定める方法が提案されている(特許文献2参照)。   Further, in order to determine the inspection reference range as described above, a method has been proposed in which two light emitters are provided on an actual screen in advance and the inspection reference range is determined by light from these light emitters (Patent Literature). 2).

特公平2−25132号公報Japanese Patent Publication No. 2-25132 特開昭58−106437号公報JP 58-106437 A

しかしながら、従来の方法では、上記のように車両から所定距離離れたスクリーン上に検査範囲を定めるため、発光体を設ける等の作業が必要であり、手間がかかっていた。   However, in the conventional method, as described above, since the inspection range is defined on the screen that is separated from the vehicle by a predetermined distance, an operation such as providing a light emitter is necessary, which is troublesome.

本発明は、人手による作業を要することなく、迅速に検査基準範囲を定めることができる装置を提供することを目的とする。   An object of this invention is to provide the apparatus which can determine an inspection reference | standard range rapidly, without requiring a manual operation | work.

第1発明の灯体光軸検査装置は、検査対象の灯体を支持して回転可能な支持台と、回転信号を受けて該支持台を回転駆動する駆動部と、前記支持台に支持された灯体からの光を受けて対応する信号を出力する受光部と、前記支持台を所定の方向に回転させるための回転信号を前記駆動部に送る回転制御手段と、前記支持台の所定の回転角度ごとの前記受光部からの信号及び前記支持台の回転角度に基づいて前記支持台の検査基準位置を算出する演算手段とを備えることを特徴とする。   A lamp optical axis inspection apparatus according to a first aspect of the present invention is supported by a support base that can rotate while supporting a lamp body to be inspected, a drive unit that receives a rotation signal and rotationally drives the support base, and the support base. A light receiving unit that receives light from the lamp body and outputs a corresponding signal; a rotation control unit that sends a rotation signal for rotating the support base in a predetermined direction to the drive unit; And calculating means for calculating an inspection reference position of the support base based on a signal from the light receiving unit for each rotation angle and a rotation angle of the support base.

第1発明によれば、前記制御手段から送られる回転信号に応じて前記駆動部が前記支持台を所定の方向に回転させる。前記支持台の回転に伴い、該支持台に支持された検査対象の灯体が回転し、該灯体から出た光を前記受光部で受けたときの状況が変化する。その受光状況の変化は、前記受光部から出力される信号で検出される。そして、前記演算手段が、前記支持台の所定の回転角度ごとの前記信号及び前記支持台の回転角度に基づいて検査基準位置を算出する。こうして得られた検査基準位置を座標軸の原点とすることで迅速且つ容易に検査範囲を定めることができる。   According to the first invention, the drive unit rotates the support base in a predetermined direction in accordance with a rotation signal sent from the control means. With the rotation of the support base, the lamp body to be inspected supported by the support base rotates, and the situation when the light received from the lamp body is received by the light receiving unit changes. The change in the light receiving state is detected by a signal output from the light receiving unit. And the said calculating means calculates a test | inspection reference position based on the said signal for every predetermined rotation angle of the said support stand, and the rotation angle of the said support stand. By using the inspection reference position thus obtained as the origin of the coordinate axis, the inspection range can be quickly and easily determined.

第2発明は、第1発明において、前記駆動部はパルスモータを備え、前記パルスモータの駆動パルスにより前記所定の回転角度を制御することを特徴とする。これによれば、パルスモータの駆動パルスによって回転角度を制御するので、正確かつ高い精度で検査基準位置を定めることができる。   A second invention is characterized in that, in the first invention, the drive unit includes a pulse motor, and the predetermined rotation angle is controlled by a drive pulse of the pulse motor. According to this, since the rotation angle is controlled by the drive pulse of the pulse motor, the inspection reference position can be determined accurately and with high accuracy.

第3発明は、第1発明又は第2発明において、前記受光部は照度センサであり、前記光の信号は前記照度センサが受光した光の照度に係る信号であり、前記検査基準位置は前記支持台を前記照度の変位量が最大となる位置から前記支持台を所定角度回転させた位置とすることを特徴とする。   A third invention is the first invention or the second invention, wherein the light receiving unit is an illuminance sensor, the light signal is a signal related to the illuminance of light received by the illuminance sensor, and the inspection reference position is the support The stage is set to a position obtained by rotating the support stage by a predetermined angle from a position where the amount of displacement of the illuminance is maximized.

第4発明は、検査対象の灯体を支持して回転可能な支持台と、回転信号を受けて該支持台を回転駆動する駆動部と、前記支持台に支持された前記検査対象から出た光を受けてその光に対応する信号を出力する受光部と、前記受光部からの信号及び前記支持台の回転角度に基づいて前記支持台の検査基準位置を算出する制御部とを備えた灯体光軸検査装置により、灯体光軸検査基準位置を決定する方法であって、前記制御部が、前記支持台を所定の方向に回転させるための回転信号を前記駆動部に送る回転制御ステップと、前記支持台の所定の回転角度ごとの前記受光部からの信号及び前記支持台の回転角度に基づいて前記支持台の検査基準位置を算出する演算ステップとを実行することを特徴とする。   4th invention came out from the said test object supported by the said support stand which supported the lamp | ramp which supports the test object, the drive part which receives the rotation signal and rotationally drives this support stand, and the said support stand. A light receiving unit that receives light and outputs a signal corresponding to the light, and a control unit that calculates an inspection reference position of the support base based on a signal from the light receiving unit and a rotation angle of the support base A rotation control step of determining a lamp optical axis inspection reference position by a body optical axis inspection device, wherein the control unit sends a rotation signal for rotating the support base in a predetermined direction to the driving unit. And a calculation step of calculating an inspection reference position of the support base based on a signal from the light receiving unit for each predetermined rotation angle of the support base and a rotation angle of the support base.

第4発明によれば、前記制御部から送られる回転信号に応じて前記駆動部が前記支持台を所定の方向に回転させる。前記支持台の回転に伴い、該支持台に支持された検査対象の灯体が回転し、該灯体から出た光を前記受光部で受けたときの状況が変化する。その受光状況の変化は、前記受光部から出力される信号で検出される。そして、前記制御部が、前記支持台の所定の回転角度ごとの前記信号及び前記支持台の回転角度に基づいて検査基準位置を算出する。こうして得られた検査基準位置を座標軸の原点とすることで迅速且つ容易に検査範囲を定めることができる。   According to the fourth invention, the drive unit rotates the support base in a predetermined direction in accordance with a rotation signal sent from the control unit. With the rotation of the support base, the lamp body to be inspected supported by the support base rotates, and the situation when the light received from the lamp body is received by the light receiving unit changes. The change in the light receiving state is detected by a signal output from the light receiving unit. And the said control part calculates an inspection reference position based on the said signal for every predetermined rotation angle of the said support stand, and the rotation angle of the said support stand. By using the inspection reference position thus obtained as the origin of the coordinate axis, the inspection range can be quickly and easily determined.

本発明の実施形態の光軸検査装置の構成図。The block diagram of the optical axis inspection apparatus of embodiment of this invention. 本発明の実施形態における設置部を示す図で、(A)は正面図、(B)は平面図。It is a figure which shows the installation part in embodiment of this invention, (A) is a front view, (B) is a top view. 本発明の実施形態における入光部、光反射体及び受光部の配置を示す図。The figure which shows arrangement | positioning of the light-incidence part in the embodiment of this invention, a light reflector, and a light-receiving part. 本発明の実施形態における受光部を構成するセンサを示す図で、(A)は照度及び色度センサの配置を示す図、(B)は照度センサ、(C)は色度センサ。It is a figure which shows the sensor which comprises the light-receiving part in embodiment of this invention, (A) is a figure which shows arrangement | positioning of illumination intensity and a chromaticity sensor, (B) is an illumination intensity sensor, (C) is a chromaticity sensor. 本発明の実施形態における設置部、制御部及び受光部の機能ブロック図。The functional block diagram of the installation part in the embodiment of this invention, a control part, and a light-receiving part. 本発明の実施形態における制御部の動作を示すフローチャート。The flowchart which shows operation | movement of the control part in embodiment of this invention. 本発明のEMAX位置と検査基準位置の関係を示した図。The figure which showed the relationship between the EMAX position of this invention, and a test | inspection reference position.

以下、灯体である車両のヘッドライトを検査対象とし、検査距離を10mとする光軸検査装置について説明する。   Hereinafter, an optical axis inspection apparatus will be described in which the headlight of a vehicle, which is a lamp body, is an inspection target and the inspection distance is 10 m.

図1を参照して、本実施形態の光軸検査装置1は、検査対象の灯体2を設置する設置部3、設置部3に直面した入光部13、受光部4、制御部10、入光部13と受光部4の間に設置された第1の鏡5、第2の鏡6、第3の鏡7、第4の鏡8及び第5の鏡9とを有し、各鏡5ないし9と光の経路と受光部4とを筐体11で覆っている。   Referring to FIG. 1, an optical axis inspection apparatus 1 according to this embodiment includes an installation unit 3 for installing a lamp body 2 to be inspected, a light incident unit 13 facing the installation unit 3, a light receiving unit 4, a control unit 10, The first mirror 5, the second mirror 6, the third mirror 7, the fourth mirror 8, and the fifth mirror 9 installed between the light incident portion 13 and the light receiving portion 4, each mirror 5 to 9, the light path, and the light receiving unit 4 are covered with a casing 11.

後述のように検査を行う場合には、設置部3に検査対象の灯体2を設置する。   When the inspection is performed as described later, the inspection object lamp 2 is installed in the installation unit 3.

なお、以下において、設置部3側を左側、設置部3と反対側(図1の場合、受光部4側)を右側、縦方向を上下側として記載する。これらの方向は、図1の各方向と一致する。   In the following description, the installation unit 3 side is described as the left side, the opposite side to the installation unit 3 (in the case of FIG. 1, the light receiving unit 4 side) as the right side, and the vertical direction as the upper and lower sides. These directions coincide with the directions in FIG.

図2(A)及び(B)に示すように、設置部3は、一つの側面に俯角軸駆動部35と他の一つの側面に回転軸駆動部36とを備え、駆動部35及び36は、それぞれパルスモータ31とエンコーダ33とを備える。また、検査対象の灯体2を支持して所定の方向に回転可能な支持台34を設置部3の上部に備える。   As shown in FIGS. 2A and 2B, the installation unit 3 includes a depression shaft driving unit 35 on one side surface and a rotation shaft driving unit 36 on the other side surface. Each includes a pulse motor 31 and an encoder 33. In addition, a support base 34 that supports the lamp body 2 to be inspected and is rotatable in a predetermined direction is provided on the upper portion of the installation unit 3.

俯角軸駆動部35のパルスモータ31からの動力を受けて支持台34が俯角方向(上下方向)に回転する。回転軸駆動部36のパルスモータ31からの動力を受けて支持台34が水平方向に回転する。支持台34上に灯体2を設置することにより、灯体2を所定の方向に回転させることができる。   The support base 34 rotates in the depression direction (vertical direction) in response to the power from the pulse motor 31 of the depression axis drive unit 35. The support base 34 rotates in the horizontal direction upon receiving power from the pulse motor 31 of the rotary shaft drive unit 36. By installing the lamp body 2 on the support stand 34, the lamp body 2 can be rotated in a predetermined direction.

エンコーダ33は、パルスモータ31の駆動に伴って駆動信号を出力する。   The encoder 33 outputs a drive signal as the pulse motor 31 is driven.

図3を参照して、入光部13と各鏡5ないし9と受光部4の構成について説明する。   With reference to FIG. 3, the structure of the light entrance part 13, each mirror 5 thru | or 9, and the light-receiving part 4 is demonstrated.

第1の鏡5は、入光部13の右側2.0mの位置に、上向きで、かつ該鏡の右側を45度の角度で上側に傾けて設置される。   The first mirror 5 is installed at a position of 2.0 m on the right side of the light incident portion 13 and is inclined upward and the right side of the mirror is inclined upward at an angle of 45 degrees.

第2の鏡6は、第1の鏡5の上側0.8mの位置に、下向きで、かつ該鏡の右側を45度の角度で下側に傾けて設置される。   The second mirror 6 is installed at a position of 0.8 m on the upper side of the first mirror 5 and is inclined downward and the right side of the mirror is inclined downward at an angle of 45 degrees.

第3の鏡7は、第2の鏡6の左側1.6mの位置に、上向きで、かつ該鏡の左側を45度の角度で上側に傾けて設置される。   The third mirror 7 is installed at a position 1.6 m on the left side of the second mirror 6 and is inclined upward and the left side of the mirror is inclined upward at an angle of 45 degrees.

第4の鏡8は、第3の鏡7の上側1.0mの位置に、下向きで、かつ該鏡の左側を45度の角度で下側に傾けて設置される。   The fourth mirror 8 is installed at a position 1.0 m above the third mirror 7 so as to face downward and tilt the left side of the mirror downward at an angle of 45 degrees.

第5の鏡9は、第4の鏡8の右側2.1mの位置に、下向きで、かつ該鏡の右側を45度の角度で下側に傾けて設置される。   The fifth mirror 9 is installed at a position 2.1 m on the right side of the fourth mirror 8 with the right side of the mirror inclined downward at an angle of 45 degrees.

各鏡5ないし9は、取り付け角度を調整可能な取り付け部材14を介して筐体11の内壁に取り付けられている。   Each of the mirrors 5 to 9 is attached to the inner wall of the housing 11 via an attachment member 14 whose attachment angle can be adjusted.

受光部4は、第5の鏡9の下側2.5mの位置に設置される。   The light receiving unit 4 is installed at a position 2.5 m below the fifth mirror 9.

本実施形態における光の経路について説明する。   The light path in this embodiment will be described.

まず、入光部13に直面した場所に設置された検査対象の灯体2から右方向に発光された光は、入光部13から入り、右方向に向かう第1経路21を通って、第1の鏡5により上方に反射される。第1の鏡5が反射した光は、上方に向かう第2経路22を通って、第2の鏡6により左方向に反射される。第2の鏡6が反射した光は、左方向に向かう第3経路23を通って、第3の鏡7により上方に反射される。第3の鏡7が反射した光は、上方向に向かう第4経路24を通って、第4の鏡8により右方向に反射される。第4の鏡8が反射した光は、右方向に向かう第5経路25を通って、第5の鏡9により下方向に反射される。第5の鏡9が反射した光は、下方に向かう第6経路26を通って、受光部4に到達する。   First, light emitted in the right direction from the lamp body 2 to be inspected installed in a place facing the light incident portion 13 enters the light incident portion 13, passes through the first path 21 toward the right direction, and passes through the first path 21. Reflected upward by one mirror 5. The light reflected by the first mirror 5 passes through the second path 22 going upward, and is reflected leftward by the second mirror 6. The light reflected by the second mirror 6 is reflected upward by the third mirror 7 through the third path 23 directed leftward. The light reflected by the third mirror 7 passes through the fourth path 24 directed upward, and is reflected rightward by the fourth mirror 8. The light reflected by the fourth mirror 8 is reflected downward by the fifth mirror 9 through the fifth path 25 toward the right. The light reflected by the fifth mirror 9 reaches the light receiving unit 4 through the sixth path 26 directed downward.

第1経路21から第6経路26の合計の長さは10mであり、第1経路21の長さは合計の長さの5分の1である2.0m、第2経路22の長さは合計の長さの25分の2である0.8m、第3経路23の長さは合計の長さの25分の4である1.6m、第4経路24の長さは合計の長さの10分の1である1.0m、第5経路25の長さは全体の長さの100分の21である2.1m、第6経路26の長さは全体の長さの4分の1である2.5mとなっている。   The total length of the first route 21 to the sixth route 26 is 10 m, the length of the first route 21 is 2.0 m which is one fifth of the total length, and the length of the second route 22 is The length of the third path 23 is 0.8 m which is 2/25 of the total length, the length of the third path 23 is 1.6 m which is 4/25 of the total length, and the length of the fourth path 24 is the total length. The length of the fifth path 25 is 2.1 m which is 21/100 of the total length, and the length of the sixth path 26 is a quarter of the total length. 1 is 2.5 m.

このようにして、灯体2から発光された光は、合計10mの経路を経て、受光部4に到達する。   In this way, the light emitted from the lamp body 2 reaches the light receiving unit 4 through a total path of 10 m.

受光部4は、図4(A)に示すように、照度センサ41及び色度センサ42を備える。色度センサ42は、照度センサ41から距離d離れた位置に、平面上から角度θだけ上方に傾けて設置する。距離d及び角度θは、例えばd= 350 mm、θ= 0.2度とする。   The light receiving unit 4 includes an illuminance sensor 41 and a chromaticity sensor 42 as shown in FIG. The chromaticity sensor 42 is installed at a position away from the illuminance sensor 41 by a distance d and inclined upward by an angle θ from the plane. The distance d and the angle θ are, for example, d = 350 mm and θ = 0.2 degrees.

照度センサ41は、図4(B)に示すように、方形の筐体の上部に円形の凸部があり、凸部中央に光入孔41aを有している。上方から来た光を光入孔41aで受け、受けた光に応じた信号を出力する。   As shown in FIG. 4B, the illuminance sensor 41 has a circular convex portion at the top of a rectangular casing, and has a light entrance hole 41a at the center of the convex portion. Light coming from above is received by the light entrance hole 41a, and a signal corresponding to the received light is output.

色度センサ42は、図4(C)に示すように、方形の筐体の上部に円形の凸部があり、凸部中央に光入孔42aを有している。上方から来た光を光入孔42aで受け、受けた光に応じた信号を出力する。   As shown in FIG. 4C, the chromaticity sensor 42 has a circular convex portion at the top of a rectangular casing, and has a light entrance hole 42a at the center of the convex portion. Light coming from above is received by the light entrance hole 42a, and a signal corresponding to the received light is output.

上記のようにd= 350 mm、θ=0.2度である場合、測定対象の灯体2を所定方向(例えば、上下方向に所定角度(例えば、0.4度)傾けることにより、照度センサ41で受けた光軸を色度センサ42で受けることができる。   When d = 350 mm and θ = 0.2 degrees as described above, the illumination sensor 41 receives the lamp 2 to be measured by tilting the lamp body 2 to be measured in a predetermined direction (for example, a vertical angle (for example, 0.4 degrees)). The optical axis can be received by the chromaticity sensor 42.

筐体11は、光を透過しない材料で形成された壁12を有する。壁12は、図示しない取り外し可能な円盤形の穴を有する。壁12により、内部に不要な光が入ることを防ぐことができる。また、壁12の円盤を外したり、鏡をつけた円盤に取り換えたりすることで柔軟な光の経路を構築することができる。各筐体11は相互に連結可能であり、本実施形態では、この筐体11を連結することにより、光の経路及び受光部4を覆っている。   The housing 11 has a wall 12 made of a material that does not transmit light. The wall 12 has a removable disk-shaped hole (not shown). The wall 12 can prevent unnecessary light from entering the inside. Also, a flexible light path can be constructed by removing the disk on the wall 12 or replacing it with a disk with a mirror. The housings 11 can be connected to each other. In this embodiment, the housings 11 are connected to cover the light path and the light receiving unit 4.

制御部10は、受光部4で受光した光の所定の回転角度ごとの照度の変化量に基づき、検査基準位置を算出する機能を有する。   The control unit 10 has a function of calculating the inspection reference position based on the amount of change in illuminance for each predetermined rotation angle of the light received by the light receiving unit 4.

図5に示すように、制御部10のCPU101は、コントローラ38及びモータドライバ37を介して俯角軸駆動部35及び回転軸駆動部36のパルスモータ31に回転信号を出力する。また、CPU101はエンコーダ33と接続され、エンコーダ33を介して各パルスモータ31の駆動信号を受信する。また、CPU101は、照度センサ41又は色度センサ42から、A/D変換器43及びコントローラ44を介して、照度センサ41又は色度センサ42が受光した光の信号を受信する。   As shown in FIG. 5, the CPU 101 of the control unit 10 outputs a rotation signal to the pulse motor 31 of the depression shaft driving unit 35 and the rotation shaft driving unit 36 via the controller 38 and the motor driver 37. The CPU 101 is connected to the encoder 33 and receives a drive signal of each pulse motor 31 via the encoder 33. Further, the CPU 101 receives a light signal received by the illuminance sensor 41 or the chromaticity sensor 42 from the illuminance sensor 41 or the chromaticity sensor 42 via the A / D converter 43 and the controller 44.

以下、図6を参照して、制御部10における検査基準位置の算出処理を説明する。   Hereinafter, with reference to FIG. 6, the calculation process of the inspection reference position in the control unit 10 will be described.

事前に、灯体2を支持台34に配置した後、制御部10のスイッチを入れる。制御部10のスイッチが入ると、灯体2が点灯する。その後、制御部10が以下のSTEP1ないし12を実行する。   In advance, after the lamp body 2 is arranged on the support base 34, the control unit 10 is switched on. When the control unit 10 is switched on, the lamp 2 is turned on. Then, the control part 10 performs the following STEP1 thru | or 12.

STEP1で、回転信号を俯角軸駆動部35及び回転軸駆動部36のそれぞれのパルスモータ31へ出力することにより、支持台34(及び灯体2)を所定の初期位置に設定する。   In STEP 1, the support base 34 (and the lamp body 2) is set to a predetermined initial position by outputting a rotation signal to the respective pulse motors 31 of the depression axis drive unit 35 and the rotation axis drive unit 36.

STEP2で、ループ回数をカウントするための変数iを初期化(初期値0)する。   In STEP2, a variable i for counting the number of loops is initialized (initial value 0).

STEP3で、照度センサ41にトリガーを出力し、コントローラ44から照度データを取り込む。   In STEP 3, a trigger is output to the illuminance sensor 41, and illuminance data is acquired from the controller 44.

STEP4で、照度センサ41で受光した光をA/D変換器43により変換した後、その光の照度を算出し、E(i)として図示しない記憶部に記憶する。   In STEP 4, after the light received by the illuminance sensor 41 is converted by the A / D converter 43, the illuminance of the light is calculated and stored as E (i) in a storage unit (not shown).

STEP5で、照度の差分dE(i) = E(i) -E(i-1) を算出する。   In STEP 5, the illuminance difference dE (i) = E (i) −E (i−1) is calculated.

STEP6で、dE(i)の最大値をdEmaxとして、図示しない記憶部に記憶する。   In STEP 6, the maximum value of dE (i) is stored as dEmax in a storage unit (not shown).

STEP7で、ループ変数iが所定の値nと等しいか否かを判定する。   In STEP 7, it is determined whether or not the loop variable i is equal to a predetermined value n.

iが所定の値nと等しくない(n未満)である場合には、STEP8で、俯角軸駆動部35のパルスモータ31に回転信号を送り、支持台34を上下方向に所定角度回転させる。この際、エンコーダ33を介して、俯角軸駆動部35のパルスモータ31の駆動を正確に制御することにより、支持台34の回転角度を正確に制御できる。STEP8の後、STEP9で、iをインクリメントし、再度STEP3からの処理を実行する。   If i is not equal to the predetermined value n (less than n), in STEP 8, a rotation signal is sent to the pulse motor 31 of the depression shaft drive unit 35, and the support base 34 is rotated in the vertical direction by a predetermined angle. At this time, the rotation angle of the support base 34 can be accurately controlled by accurately controlling the driving of the pulse motor 31 of the depression axis drive unit 35 via the encoder 33. After STEP8, in STEP9, i is incremented and the processing from STEP3 is executed again.

iが所定の値nと等しい場合には、STEP10で、STEP1から9を繰り返し、照度の差分の最大値dEmaxとなる支持台34の位置(dE(i)=dEmaxとなるiで示される支持台34の位置、以下「EMAX位置」という)を複数求め、複数のEMAX位置から、明暗境界線53を求める。   When i is equal to the predetermined value n, STEP 1 to STEP 9 are repeated in STEP 10, and the position of the support 34 where the maximum difference dEmax of the illuminance difference (the support stand indicated by i where dE (i) = dEmax is established) 34 positions (hereinafter referred to as “EMAX positions”), and a light / dark boundary line 53 is determined from the plurality of EMAX positions.

STEP11で、水平方向においても、STEP1からSTEP10と同様の処理を行い、明暗境界線56を求める。   In STEP 11, the same processing as in STEP 1 to STEP 10 is performed in the horizontal direction to obtain the light / dark boundary line 56.

STEP12で、明暗境界線53及び56から交点57を求め、その点から上方向に5度より小さい所定角度分をずらした点58となる支持台34の位置を検査基準位置として決定する。   In STEP 12, an intersection 57 is obtained from the light / dark boundary lines 53 and 56, and the position of the support base 34 which is a point 58 shifted by a predetermined angle smaller than 5 degrees upward from that point is determined as the inspection reference position.

図7を参照して検査基準位置とEMAX位置の関係を説明する。   The relationship between the inspection reference position and the EMAX position will be described with reference to FIG.

灯体2の光の明暗境界線付近において、灯体2を上下方向に回転して、上記STEP2から9を実行し、EMAX位置を求める。このとき、灯体の光軸の移動線は線51となり、EMAX位置は、明暗境界点52となる。これらの走査は複数回行い、走査により求めた複数の境界点52から、明暗境界線53を求める。   In the vicinity of the light / dark boundary line of the light of the lamp body 2, the lamp body 2 is rotated in the vertical direction, and the above STEPs 2 to 9 are executed to obtain the EMAX position. At this time, the movement line of the optical axis of the lamp body is a line 51, and the EMAX position is a light / dark boundary point 52. These scans are performed a plurality of times, and a light / dark boundary line 53 is obtained from a plurality of boundary points 52 obtained by scanning.

次に、灯体2を、上下方向のEMAX位置を元にして定めた水平方向の初期位置に設定する。初期位置に設定した後は、線54の灯体2の水平方向への回転を行い、EMAX位置、すなわち、明暗境界点55を求める。水平軸方向の走査も複数回行い、走査により求めた複数の境界点55から、明暗境界線56を求める。   Next, the lamp body 2 is set to the horizontal initial position determined based on the EMAX position in the vertical direction. After the initial position is set, the line 54 is rotated in the horizontal direction to obtain the EMAX position, that is, the light / dark boundary point 55. Scanning in the horizontal axis direction is also performed a plurality of times, and a light / dark boundary line 56 is obtained from a plurality of boundary points 55 obtained by scanning.

明暗境界線53及び56の交点57から5度より小さい所定角度分ずらした点58となる支持台34の位置を検査基準位置とする。   The position of the support base 34 that is a point 58 shifted by a predetermined angle smaller than 5 degrees from the intersection 57 of the light and dark boundary lines 53 and 56 is set as an inspection reference position.

なお、検査基準位置は、光の分布との関係から定まる位置を決定できればよいので、EMAX位置(明暗境界点)52もしくは55又はその位置を所定角度ずらした位置を検査基準位置としてもよい。   The inspection reference position only needs to be a position determined from the relationship with the light distribution, so the EMAX position (bright / dark boundary point) 52 or 55 or a position shifted by a predetermined angle may be used as the inspection reference position.

前記のようにして求めた検査基準位置を基準にして、灯体2を回転して所定の測定点に移動させ、制御部10は前記所定の測定点の照度又は色度を取得する。このような処理により、自動車のヘッドライト等の光度、色度等を検査することができる。   Based on the inspection reference position obtained as described above, the lamp body 2 is rotated and moved to a predetermined measurement point, and the control unit 10 acquires the illuminance or chromaticity of the predetermined measurement point. With such a process, it is possible to inspect the light intensity, chromaticity, etc. of the headlight of an automobile.

本実施形態によれば、入光部13から受光部4までの光の経路の長さを10mとしながら、装置1の設置体積を2.5m×2.5m×所定の幅程度に収めることができ、装置自体をコンパクトにすることができる。   According to the present embodiment, the installation volume of the apparatus 1 can be reduced to about 2.5 m × 2.5 m × predetermined width while the length of the light path from the light incident unit 13 to the light receiving unit 4 is 10 m. The device itself can be made compact.

また、実施形態によれば、実距離として10mを確保できるから、LEDランプ等の多眼ランプであっても、精度の高い検査を行うことができる。   In addition, according to the embodiment, 10 m can be secured as an actual distance, so that even a multi-eye lamp such as an LED lamp can perform a highly accurate inspection.

また、実施形態によれば、光が入り込まない材料で形成された壁12を有する筐体11により光の経路を覆っているから、他の光が入り込まない状況での検査をすることができ、検査の精度を高めることができる。   In addition, according to the embodiment, since the light path is covered by the housing 11 having the wall 12 formed of a material that does not allow light to enter, it is possible to perform inspection in a situation where other light does not enter, Inspection accuracy can be increased.

また、実施形態によれば、受光部4の受光状況に基づいて、自動で検査基準位置を算出する、事前準備工程を行うことができる。   Further, according to the embodiment, it is possible to perform a preliminary preparation step of automatically calculating the inspection reference position based on the light reception state of the light receiving unit 4.

また、実施形態によれば、パルスモータ31をエンコーダ33を介して駆動信号により制御することで正確な角度制御をすることができる。   In addition, according to the embodiment, accurate angle control can be performed by controlling the pulse motor 31 with the drive signal via the encoder 33.

また、実施形態によれば、自動で精度よく検査基準位置を算出できるから、検査基準位置合わせを手動で行わなくても済むようになり煩雑さがなくなる。   In addition, according to the embodiment, since the inspection reference position can be automatically and accurately calculated, it is not necessary to manually perform the inspection reference position alignment, thereby eliminating the complexity.

また、実施形態によれば、照度センサ41と色度センサ42が少し離れて配置されているから、検査対象の灯体(を支持した支持台)の角度を変えることで、例えば、照度センサ41を使用して検査基準位置を算出した後に色度センサ42による検査を行うこと等ができる。   Further, according to the embodiment, since the illuminance sensor 41 and the chromaticity sensor 42 are arranged slightly apart from each other, for example, the illuminance sensor 41 can be changed by changing the angle of the inspection target lamp (the support base that supports it). After the inspection reference position is calculated using, the inspection by the chromaticity sensor 42 can be performed.

また、実施形態によれば、明暗境界線53及び56の交点57から所定角度分ずらした点58となる支持台34の位置を検査基準位置として定めているので、灯体2の光の分布を元にした検査基準位置となり、より精度よく検査を行うことができる。   In addition, according to the embodiment, the position of the support base 34 that is the point 58 shifted by a predetermined angle from the intersection 57 of the light and dark boundary lines 53 and 56 is determined as the inspection reference position. It becomes the original inspection reference position, and the inspection can be performed with higher accuracy.

なお、本実施形態は検査対象の灯体を車両ヘッドライトとしたものであるが、光軸を検査するものであれば検査対象は車両ヘッドライトに限られず、例えば信号灯を検査対象としてもよい。   In this embodiment, the lamp body to be inspected is a vehicle headlight. However, as long as the optical axis is inspected, the inspection target is not limited to the vehicle headlight. For example, a signal lamp may be the inspection target.

1・・・灯体光軸検査装置、2・・・灯体、3・・・設置部、4・・・受光部、5・・・第1の鏡、6・・・第2の鏡、7・・・第3の鏡、8・・・第4の鏡、9・・・第5の鏡、10・・・制御部、11・・・筐体、13・・・入光部、31・・・パルスモータ、34・・・支持台、35・・・俯角軸駆動部、36・・・回転軸駆動部、41・・・照度センサ、42・・・色度センサ。   DESCRIPTION OF SYMBOLS 1 ... Lamp body optical axis inspection apparatus, 2 ... Lamp body, 3 ... Installation part, 4 ... Light receiving part, 5 ... 1st mirror, 6 ... 2nd mirror, 7 ... 3rd mirror, 8 ... 4th mirror, 9 ... 5th mirror, 10 ... control unit, 11 ... housing, 13 ... light incident unit, 31 ... Pulse motor, 34 ... Support base, 35 ... Depression axis drive unit, 36 ... Rotary axis drive unit, 41 ... Illuminance sensor, 42 ... Chromaticity sensor.

Claims (4)

検査対象の灯体を支持して回転可能な支持台と、
回転信号を受けて該支持台を回転駆動する駆動部と、
前記支持台に支持された灯体からの光を受けて対応する信号を出力する受光部と、
前記支持台を所定の方向に回転させるための回転信号を前記駆動部に送る回転制御手段と、
前記支持台の所定の回転角度ごとの前記受光部からの信号及び前記支持台の回転角度に基づいて前記支持台の検査基準位置を算出する演算手段とを備えることを特徴とする灯体光軸検査装置。
A support base that can rotate while supporting the lamp to be inspected;
A driving unit that receives the rotation signal and rotationally drives the support;
A light receiving unit that receives light from the lamp supported by the support base and outputs a corresponding signal;
A rotation control means for sending a rotation signal for rotating the support base in a predetermined direction to the drive unit;
A lamp optical axis comprising: a calculation means for calculating an inspection reference position of the support base based on a signal from the light receiving unit and a rotation angle of the support base for each predetermined rotation angle of the support base. Inspection device.
前記駆動部はパルスモータを備え、前記パルスモータの駆動パルスにより前記所定の回転角度を制御することを特徴とする請求項1に記載の灯体光軸検査装置。   2. The lamp optical axis inspection apparatus according to claim 1, wherein the driving unit includes a pulse motor, and the predetermined rotation angle is controlled by a driving pulse of the pulse motor. 前記受光部は照度センサであり、前記光の信号は前記照度センサが受光した光の照度に係る信号であり、前記検査基準位置は前記支持台を前記照度の変位量が最大となる位置から前記支持台を所定角度回転させた位置とすることを特徴とする請求項2に記載の灯体光軸検査装置。   The light receiving unit is an illuminance sensor, the light signal is a signal related to the illuminance of light received by the illuminance sensor, and the inspection reference position moves the support base from a position where the displacement amount of the illuminance is maximum. 3. The lamp optical axis inspection device according to claim 2, wherein the support base is at a position rotated by a predetermined angle. 検査対象の灯体を支持して回転可能な支持台と、回転信号を受けて該支持台を回転駆動する駆動部と、前記支持台に支持された前記検査対象から出た光を受けてその光に対応する信号を出力する受光部と、前記受光部からの信号及び前記支持台の回転角度に基づいて前記支持台の検査基準位置を算出する制御部とを備えた灯体光軸検査装置により、灯体光軸検査基準位置を決定する方法であって、前記制御部が、
前記支持台を所定の方向に回転させるための回転信号を前記駆動部に送る回転制御ステップと、
前記支持台の所定の回転角度ごとの前記受光部からの信号及び前記支持台の回転角度に基づいて前記支持台の検査基準位置を算出する演算ステップとを実行することを特徴とする灯体光軸検査基準位置決定方法。
A support base that can rotate while supporting the lamp body to be inspected, a drive unit that rotationally drives the support base in response to a rotation signal, and a light that is emitted from the inspection target supported by the support base A lamp optical axis inspection apparatus comprising: a light receiving unit that outputs a signal corresponding to light; and a control unit that calculates an inspection reference position of the support base based on a signal from the light receiving unit and a rotation angle of the support base. The lamp body optical axis inspection reference position is determined by the control unit,
A rotation control step of sending a rotation signal for rotating the support base in a predetermined direction to the drive unit;
A lamp light characterized by performing a calculation step of calculating an inspection reference position of the support base based on a signal from the light receiving unit at every predetermined rotation angle of the support base and a rotation angle of the support base. Axis inspection reference position determination method.
JP2012082009A 2012-03-30 2012-03-30 Lamp body optical axis inspection device and reference position determination method of lamp body optical axis inspection Pending JP2013210338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012082009A JP2013210338A (en) 2012-03-30 2012-03-30 Lamp body optical axis inspection device and reference position determination method of lamp body optical axis inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012082009A JP2013210338A (en) 2012-03-30 2012-03-30 Lamp body optical axis inspection device and reference position determination method of lamp body optical axis inspection

Publications (1)

Publication Number Publication Date
JP2013210338A true JP2013210338A (en) 2013-10-10

Family

ID=49528286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012082009A Pending JP2013210338A (en) 2012-03-30 2012-03-30 Lamp body optical axis inspection device and reference position determination method of lamp body optical axis inspection

Country Status (1)

Country Link
JP (1) JP2013210338A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126444A (en) * 1984-11-26 1986-06-13 Unyusho Senpaku Gijutsu Kenkyusho Method and device for detecting irradiation direction of passing-by beam of automobile headlight
JPH06174593A (en) * 1992-12-08 1994-06-24 Koito Mfg Co Ltd Luminous intensity distribution characteristic measuring apparatus for automotive lamp

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61126444A (en) * 1984-11-26 1986-06-13 Unyusho Senpaku Gijutsu Kenkyusho Method and device for detecting irradiation direction of passing-by beam of automobile headlight
JPH06174593A (en) * 1992-12-08 1994-06-24 Koito Mfg Co Ltd Luminous intensity distribution characteristic measuring apparatus for automotive lamp

Similar Documents

Publication Publication Date Title
US10823558B2 (en) Surveying instrument
EP3056856B1 (en) Surveying instrument and three-dimensional camera
US10767991B2 (en) Laser scanner
US11150346B2 (en) Measuring method and laser scanner
US20170168142A1 (en) Measuring Instrument
US10520307B2 (en) Surveying instrument
US10921430B2 (en) Surveying system
EP3056857A1 (en) Posture detecting device and data acquiring device
JP4228132B2 (en) Position measuring device
KR100612834B1 (en) 3 Dimensional Location Measurement Sensor
JP2006313116A (en) Distance tilt angle detection device, and projector with detection device
US20170168145A1 (en) Laser radar device
US8857068B2 (en) Rotary laser irradiating system and rotary laser system
JP5107813B2 (en) Vehicle lamp and its optical axis adjustment system
JP6653028B2 (en) Method for comparing a receiving laser beam and a rotating laser beam incident on a laser receiver
US20140373370A1 (en) Laser surveying device
US9429652B2 (en) Apparatus for measuring distance
US20170108334A1 (en) Measuring Device
JP2013210338A (en) Lamp body optical axis inspection device and reference position determination method of lamp body optical axis inspection
JPH0783658A (en) Surveying apparatus
JP2013210337A (en) Theatrical light optical axis inspecting device
JP4828159B2 (en) Infrared tracking device
CN110908224B (en) Projection apparatus and control method thereof
JP5423491B2 (en) Reference position calculation system and reference position calculation method
CN219871792U (en) Laser radar emission angle calibration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405