JP2013209450A - Epoxy resin composition for sealing semiconductor - Google Patents

Epoxy resin composition for sealing semiconductor Download PDF

Info

Publication number
JP2013209450A
JP2013209450A JP2012079094A JP2012079094A JP2013209450A JP 2013209450 A JP2013209450 A JP 2013209450A JP 2012079094 A JP2012079094 A JP 2012079094A JP 2012079094 A JP2012079094 A JP 2012079094A JP 2013209450 A JP2013209450 A JP 2013209450A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
mass
copper wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012079094A
Other languages
Japanese (ja)
Inventor
Shingo Ito
慎吾 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2012079094A priority Critical patent/JP2013209450A/en
Publication of JP2013209450A publication Critical patent/JP2013209450A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve connection reliability under a high temperature environment.SOLUTION: An epoxy resin composition for sealing a semiconductor comprises an epoxy resin and a curing agent to seal a copper wire and a semiconductor element connected to the copper wire. The epoxy resin composition for sealing the semiconductor further comprises a compound having a benzotriazole skeleton.

Description

本発明は、半導体封止用エポキシ樹脂組成物、その硬化体及び半導体装置に関する。   The present invention relates to an epoxy resin composition for semiconductor encapsulation, a cured product thereof, and a semiconductor device.

近年、金線に代わる安価なボンディングワイヤとして、銅ワイヤが提案されている。   In recent years, copper wires have been proposed as inexpensive bonding wires that replace gold wires.

特許文献1には、銅を主成分とする芯材と、該芯材の上に芯材と成分又は組成の一方又は両方の異なる導電性金属と銅を含有する外皮層を有するボンディングワイヤが記載されている。このボンディングワイヤにおいて、外皮層の厚さを0.001〜0.02μmとすることで、材料費が安価で、ボール接合性、ワイヤ接合性等に優れ、ループ形成性も良好である、狭ピッチ用細線化、パワー系IC用途の太径化にも適応する銅系ボンディングワイヤを提供することが可能となると記載されている。   Patent Document 1 describes a bonding wire having a core material containing copper as a main component, and an outer skin layer containing copper and a conductive metal different from one or both of the core material and its component or composition on the core material. Has been. In this bonding wire, by making the thickness of the outer skin layer 0.001 to 0.02 μm, the material cost is low, the ball bonding property, the wire bonding property, etc. are excellent, and the loop forming property is also good. It is described that it becomes possible to provide a copper-based bonding wire that can be adapted for thinning a wire and increasing the diameter of a power IC.

特開2007−12776号公報JP 2007-12776 A

しかしながら、上記銅ワイヤが接続された半導体素子をエポキシ樹脂で封止すると、高温保管特性(HTSL,High Temperature Storage Life)が低下することがあった。本発明者の知見によれば、高温保管特性が不良の半導体装置では、半導体素子上の金属パッドと銅ワイヤとの接合部における腐食(酸化劣化)によって、接合部の電気抵抗の上昇又は接合部の断線が発生していた。したがって、このような接合部の電気抵抗の上昇又は接合部の断線を防止できれば、半導体装置の高温保管性を向上できることが期待された。   However, when the semiconductor element to which the copper wire is connected is sealed with an epoxy resin, the high-temperature storage characteristics (HTSL, High Temperature Storage Life) may be deteriorated. According to the knowledge of the present inventor, in a semiconductor device having poor high-temperature storage characteristics, the electrical resistance of the joint or the joint is increased due to corrosion (oxidation degradation) at the joint between the metal pad on the semiconductor element and the copper wire. Disconnection occurred. Therefore, it was expected that the high-temperature storage property of the semiconductor device could be improved if such an increase in electrical resistance at the junction or disconnection of the junction could be prevented.

本発明は上記事情に鑑みてなされたものであり、その目的とするところは、高温保管した際の半導体素子上の金属パッドと銅ワイヤとの接合部の腐食(酸化劣化)を低減して、高温環境下における接続信頼性を向上できる半導体封止用樹脂組成物、その硬化体及びこれを有する半導体装置を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to reduce the corrosion (oxidation degradation) of the joint between the metal pad and the copper wire on the semiconductor element when stored at high temperature, An object of the present invention is to provide a resin composition for encapsulating a semiconductor capable of improving connection reliability in a high temperature environment, a cured product thereof, and a semiconductor device having the same.

本発明は、エポキシ樹脂と硬化剤とを含み、銅ワイヤ及び前記銅ワイヤが接続された半導体素子を封止する半導体封止用エポキシ樹脂組成物であって、ベンゾトリアゾール骨格を有する化合物を含む、半導体封止用エポキシ樹脂組成物、及びその硬化体を提供するものである。   The present invention includes an epoxy resin and a curing agent, and is an epoxy resin composition for semiconductor encapsulation that seals a copper wire and a semiconductor element to which the copper wire is connected, and includes a compound having a benzotriazole skeleton, The present invention provides an epoxy resin composition for semiconductor encapsulation and a cured product thereof.

また、本発明は、
基板に搭載された半導体素子と、
前記半導体素子に設けられた電極パッドと、
前記基板に設けられた接続端子と前記電極パッドとを接続する銅ワイヤと、
上記の半導体封止用エポキシ樹脂組成物の硬化体と、
を備える、半導体装置を提供するものである。
The present invention also provides:
A semiconductor element mounted on a substrate;
An electrode pad provided in the semiconductor element;
A copper wire connecting the connection terminal provided on the substrate and the electrode pad;
Cured body of the above epoxy resin composition for semiconductor encapsulation,
A semiconductor device is provided.

この発明によれば、半導体封止用エポキシ樹脂組成物にベンゾトリアゾール骨格を有する化合物を含ませることにより、エポキシ樹脂に起因する酸性成分を、ベンゾトリアゾール骨格を有する化合物により中和することができる。したがって、金属パッドと銅ワイヤとの接合部の腐食を低減して、高温保管特性を向上させた信頼性の高い半導体装置を実現することが可能になる。   According to this invention, the acidic component resulting from an epoxy resin can be neutralized with the compound which has a benzotriazole skeleton by including the compound which has a benzotriazole skeleton in the epoxy resin composition for semiconductor sealing. Therefore, it is possible to realize a highly reliable semiconductor device with reduced high-temperature storage characteristics by reducing corrosion at the joint between the metal pad and the copper wire.

本発明によれば、高温環境下における接続信頼性を向上させることができる。   According to the present invention, connection reliability in a high temperature environment can be improved.

実施の形態に係る半導体装置を模式的に示した断面図である。1 is a cross-sectional view schematically showing a semiconductor device according to an embodiment.

以下、本発明の実施の形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.

本発明は、(A)エポキシ樹脂と(B)硬化剤とを含み、銅ワイヤ及び銅ワイヤが接続された半導体素子を封止する半導体封止用エポキシ樹脂組成物である。成分(C)としてベンゾトリアゾール骨格を有する化合物を更に含む。   The present invention is an epoxy resin composition for semiconductor encapsulation that includes (A) an epoxy resin and (B) a curing agent and seals a copper wire and a semiconductor element to which the copper wire is connected. The component (C) further includes a compound having a benzotriazole skeleton.

(A)エポキシ樹脂としては、1分子内にエポキシ基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。
なお、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、テトラメチルビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂は結晶性を有するものが好ましい。
(A) The epoxy resin is a monomer, oligomer, or polymer in general having two or more epoxy groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, bisphenol A type epoxy resin, Bisphenol type epoxy resin such as bisphenol F type epoxy resin, tetramethylbisphenol F type epoxy resin, biphenyl type epoxy resin, stilbene type epoxy resin; Novolak type epoxy resin such as phenol novolac type epoxy resin and cresol novolac type epoxy resin; Polyfunctional epoxy resins such as methane type epoxy resins and alkyl-modified triphenol methane type epoxy resins; phenol aralkyl type epoxy resins having a phenylene skeleton, phenol aralkyl types having a biphenylene skeleton Aralkyl-type epoxy resins such as poxy resins; Dihydroxynaphthalene-type epoxy resins, naphthol-type epoxy resins such as epoxy resins obtained by glycidyl etherification of dihydroxynaphthalene dimers; Triglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, etc. Triazine nucleus-containing epoxy resins; bridged cyclic hydrocarbon compound-modified phenolic epoxy resins such as dicyclopentadiene-modified phenolic epoxy resins, and the like. These may be used alone or in combination of two or more. .
The bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, tetramethyl bisphenol F type epoxy resin, biphenyl type epoxy resin, and stilbene type epoxy resin preferably have crystallinity.

好ましくは、(A)エポキシ樹脂として、下記式(1)で表されるエポキシ樹脂、下記式(2)で表されるエポキシ樹脂、及び、下記式(3)で表されるエポキシ樹脂からなる群から選択される少なくとも1種を含有するものを用いることができる。   Preferably, (A) the epoxy resin represented by the following formula (1), the epoxy resin represented by the following formula (2), and the epoxy resin represented by the following formula (3) are used as the epoxy resin. What contains at least 1 sort (s) selected from can be used.

Figure 2013209450
Figure 2013209450

式(1)中、Arはフェニレン基又はナフチレン基を表し、Arがナフチレン基の場合、グリシジルエーテル基はα位、β位のいずれに結合していてもよく、Arはフェニレン基、ビフェニレン基及びナフチレン基のうちのいずれか1つの基を表し、R及びRはそれぞれ独立に炭素数1〜10の炭化水素基を表し、gは0〜5の整数であり、hは0〜8の整数であり、nは重合度を表し、その平均値は1〜3である。 In Formula (1), Ar 1 represents a phenylene group or a naphthylene group, and when Ar 1 is a naphthylene group, the glycidyl ether group may be bonded to either the α-position or the β-position, Ar 2 represents a phenylene group, It represents any one of a biphenylene group and a naphthylene group, R 5 and R 6 each independently represent a hydrocarbon group having 1 to 10 carbon atoms, g is an integer of 0 to 5, and h is 0 8 is an integer, n 3 represents a polymerization degree, the average value is 1-3.

Figure 2013209450
Figure 2013209450

式(2)中、複数存在するRはそれぞれ独立に水素原子又は炭素数1〜4の炭化水素基を表し、nは重合度を表し、その平均値は0〜4である。 In Formula (2), a plurality of R 9s each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, n 5 represents a degree of polymerization, and an average value thereof is 0 to 4.

Figure 2013209450
Figure 2013209450

式(3)中、複数存在するR10及びR11はそれぞれ独立に水素原子又は炭素数1〜4の炭化水素基を表し、nは重合度を表し、その平均値は0〜4である。 In formula (3), a plurality of R 10 and R 11 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, n 6 represents a degree of polymerization, and an average value thereof is 0 to 4. .

(A)エポキシ樹脂の含有量は、エポキシ樹脂組成物全体に対して、3質量%以上であることが好ましく、5質量%以上であることがより好ましい。こうすることで、粘度上昇によるワイヤ切れを引き起こす恐れを少なくすることができる。また、エポキシ樹脂(A)の含有量は、エポキシ樹脂組成物全体に対して、18質量%以下であることが好ましく、13質量%以下であることがより好ましく、11質量%以下がさらに好ましい。こうすることで、吸水率増加による耐湿信頼性の低下等を引き起こす恐れを少なくすることができる。   (A) The content of the epoxy resin is preferably 3% by mass or more, and more preferably 5% by mass or more with respect to the entire epoxy resin composition. By doing so, the possibility of causing wire breakage due to an increase in viscosity can be reduced. Moreover, it is preferable that it is 18 mass% or less with respect to the whole epoxy resin composition, as for content of an epoxy resin (A), it is more preferable that it is 13 mass% or less, and 11 mass% or less is further more preferable. By doing so, it is possible to reduce the possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption.

(B)硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤の3タイプに大別することができる。   (B) As a hardening | curing agent, it can divide roughly into three types, for example, a polyaddition type hardening | curing agent, a catalyst type hardening | curing agent, and a condensation type hardening | curing agent.

重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m−フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、ポリビニルフェノールなどのフェノール樹脂系硬化剤;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。   Examples of polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylenediamine (MPDA). In addition to aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY), organic acid dihydrazide, and the like; alicyclics such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides, including acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), aromatic anhydrides such as benzophenone tetracarboxylic acid (BTDA); novolac-type phenolic resin, polyvinyl Phenolic resin curing agent such as phenol; polysulfide, thioester, polymercaptan compounds such as thioethers; isocyanate prepolymer, isocyanate compounds such as blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resins.

触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6−トリスジメチルアミノメチルフェノール(DMP−30)などの3級アミン化合物;2−メチルイミダゾール、2−エチル−4−メチルイミダゾール(EMI24)などのイミダゾール化合物;BF錯体などのルイス酸などが挙げられる。 Examples of the catalyst-type curing agent include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF 3 complexes.

縮合型の硬化剤としては、例えば、レゾール型フェノール樹脂;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。   Examples of the condensation type curing agent include a resol type phenol resin; a urea resin such as a methylol group-containing urea resin; and a melamine resin such as a methylol group-containing melamine resin.

これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点からフェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。   Among these, a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like. The phenol resin-based curing agent is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited. For example, phenol novolak resin, cresol novolak Resin, novolak type resin such as bisphenol novolac; polyfunctional phenol resin such as triphenolmethane type phenol resin; modified phenol resin such as terpene modified phenol resin and dicyclopentadiene modified phenol resin; phenylene skeleton and / or biphenylene skeleton Aralkyl type resins such as phenol aralkyl resins, naphthol aralkyl resins having a phenylene and / or biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F, etc. Type may be used in combination of two or more be used alone.

好ましくは、(B)硬化剤として、下記式(4)で表される化合物からなる群から選択される少なくとも1種の硬化剤を用いることができる。   Preferably, as the (B) curing agent, at least one curing agent selected from the group consisting of compounds represented by the following formula (4) can be used.

Figure 2013209450
Figure 2013209450

式(4)中、Arはフェニレン基又はナフチレン基を表し、Arがナフチレン基の場合、水酸基はα位、β位のいずれに結合していてもよく、Arはフェニレン基、ビフェニレン基及びナフチレン基のうちのいずれか1つの基を表し、R及びRはそれぞれ独立に炭素数1〜10の炭化水素基を表し、iは0〜5の整数であり、jは0〜8の整数であり、nは重合度を表し、その平均値は1〜3である。 In formula (4), Ar 3 represents a phenylene group or a naphthylene group, and when Ar 3 is a naphthylene group, the hydroxyl group may be bonded to either the α-position or the β-position, and Ar 4 represents a phenylene group or a biphenylene group. And any one of naphthylene groups, R 7 and R 8 each independently represents a hydrocarbon group having 1 to 10 carbon atoms, i is an integer of 0 to 5, and j is 0 to 8 N 4 represents the degree of polymerization, and the average value is 1 to 3.

(B)硬化剤の含有量は、エポキシ樹脂組成物中に、2質量%以上であることが好ましく、3質量%以上であることがより好ましく、4質量%以上であることがさらに好ましい。こうすることで、充分な流動性を得ることができる。また、(B)硬化剤の含有量は、エポキシ樹脂組成物中に、15質量%以下であることが好ましく、11質量%以下であることがより好ましく、8質量%以下であることがさらに好ましい。こうすることで、吸水率増加による耐湿信頼性の低下等を引き起こす恐れを少なくすることができる。   (B) Content of a hardening | curing agent is 2 mass% or more in an epoxy resin composition, It is more preferable that it is 3 mass% or more, It is further more preferable that it is 4 mass% or more. By doing so, sufficient fluidity can be obtained. In addition, the content of the (B) curing agent in the epoxy resin composition is preferably 15% by mass or less, more preferably 11% by mass or less, and further preferably 8% by mass or less. . By doing so, it is possible to reduce the possibility of causing a decrease in moisture resistance reliability due to an increase in water absorption.

また、(B)硬化剤としてフェノール樹脂系硬化剤を用いる場合におけるエポキシ樹脂とフェノール樹脂系硬化剤との配合比率としては、全エポキシ樹脂のエポキシ基数(EP)と全フェノール樹脂系硬化剤のフェノール性水酸基数(OH)との当量比(EP)/(OH)が0.8〜1.3であることが好ましい。当量比がこの範囲であると、エポキシ樹脂組成物の硬化性の低下、又は樹脂硬化物の物性の低下等を引き起こす恐れが少ない。   In addition, when (B) a phenol resin curing agent is used as the curing agent, the blending ratio of the epoxy resin and the phenol resin curing agent is the number of epoxy groups (EP) of all epoxy resins and the phenol of all phenol resin curing agents. It is preferable that equivalence ratio (EP) / (OH) with the number of functional hydroxyl groups (OH) is 0.8 to 1.3. When the equivalent ratio is within this range, there is little possibility of causing a decrease in the curability of the epoxy resin composition or a decrease in the physical properties of the resin cured product.

(C)ベンゾトリアゾール骨格を有する化合物は、下記式(5)〜(7)で示す骨格を有していれば限定されず、下記式(5)〜(7)で示すベンゾトリアゾールのほか、下記式(5)〜(7)で示す骨格において水素原子を脂肪族又は芳香族炭化水素基、ハロゲン基等の官能基に置換した誘導体も含まれる。   (C) The compound having a benzotriazole skeleton is not limited as long as it has a skeleton represented by the following formulas (5) to (7). In addition to the benzotriazole represented by the following formulas (5) to (7), Derivatives in which hydrogen atoms in the skeletons represented by formulas (5) to (7) are substituted with functional groups such as aliphatic or aromatic hydrocarbon groups and halogen groups are also included.

Figure 2013209450
Figure 2013209450

Figure 2013209450
Figure 2013209450

Figure 2013209450
Figure 2013209450

成分(C)の化合物としては、高温で発生する酸性ガスの中和の観点から、分子量(Mw)が150〜500のものが好ましく、200〜450のものがより好ましい。   The compound of component (C) is preferably one having a molecular weight (Mw) of 150 to 500, more preferably 200 to 450, from the viewpoint of neutralization of acidic gas generated at high temperature.

また、成分(C)の化合物は、室温(23℃)で液状または固形が好ましく、室温で固形のものがより好ましい。固形の場合、メジアン径が0.01μm以上10μm以下が好ましく、0.02μm以上7μm以下がより好ましく、0.05μm以上3μm以下のものがさらに好ましい。
なお、本明細書において、メジアン径は、例えば、レーザー回折散乱式粒度分布測定装置等を用いて測定することができる。
The compound of component (C) is preferably liquid or solid at room temperature (23 ° C.), and more preferably solid at room temperature. In the case of a solid, the median diameter is preferably 0.01 μm to 10 μm, more preferably 0.02 μm to 7 μm, and even more preferably 0.05 μm to 3 μm.
In the present specification, the median diameter can be measured using, for example, a laser diffraction / scattering particle size distribution measuring apparatus.

また、成分(C)化合物は、融点が50℃以上250℃以下が好ましく、50℃以上200℃以下がより好ましく、70℃以上180℃以下がさらに好ましい。融点がこの範囲の化合物を用いることで、組成物中で適度な分散性を保つとともに、酸性ガスのトラップ能力を維持できるため、酸性ガスを効率的に中和することができ、硬化性や金型汚れ等に係る成形性も良好に保つことができる。   Moreover, as for a component (C) compound, melting | fusing point is 50 to 250 degreeC, 50 to 200 degreeC is more preferable, 70 to 180 degreeC is further more preferable. By using a compound having a melting point within this range, it is possible to maintain an appropriate dispersibility in the composition and to maintain the trapping ability of the acid gas. The moldability related to mold stains and the like can also be kept good.

成分(C)として、例えば、式(7)で示す1H−ベンゾトリアゾール;式(6)で示す2H−ベンゾトリアゾール;2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−5'−t−オクチルフェニル)ベンゾトリアゾール、ヒドロキシフェニルベンゾトリアゾール誘導体(CASNO.125304−04−3)、2−(2−ヒドロキシ−3−tert−ブチル−5−メチルフェニル)−5−クロロベンゾトリアゾール等の式(6)で示す2H−ベンゾトリアゾールの誘導体などが挙げられ、これらは1種単独で用いても2種以上組み合わせて用いてもよい。   Examples of the component (C) include 1H-benzotriazole represented by the formula (7); 2H-benzotriazole represented by the formula (6); 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2 ′ -Hydroxy-5'-t-octylphenyl) benzotriazole, hydroxyphenylbenzotriazole derivatives (CASNO. 125304-04-3), 2- (2-hydroxy-3-tert-butyl-5-methylphenyl) -5 Examples thereof include derivatives of 2H-benzotriazole represented by formula (6) such as chlorobenzotriazole, and these may be used alone or in combination of two or more.

成分(C)の化合物としては、1分子中の窒素含有量が10質量%以上40質量%以下の化合物が好ましく、高温で発生する酸性ガスの中和及び成形性の観点から、1分子中の窒素含有量が13質量%以上40質量%以下の化合物がより好ましく、13質量%以上38質量%以下のものがさらに好ましい。このような化合物としては、式(7)で示す1H−ベンゾトリアゾール、式(6)で示す2H−ベンゾトリアゾール;2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、2−(2'−ヒドロキシ−5'−t−オクチルフェニル)ベンゾトリアゾールが例示される。   The compound of component (C) is preferably a compound having a nitrogen content of 10% by mass or more and 40% by mass or less in one molecule. From the viewpoint of neutralization of acid gas generated at high temperature and moldability, A compound having a nitrogen content of 13% by mass to 40% by mass is more preferable, and a compound having a nitrogen content of 13% by mass to 38% by mass is more preferable. Examples of such a compound include 1H-benzotriazole represented by the formula (7), 2H-benzotriazole represented by the formula (6); 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2′- Hydroxy-5'-t-octylphenyl) benzotriazole is exemplified.

具体的な商品名としては、TINUVIN P、TINUVIN 571、TINUVIN 329(いずれもチバ・ジャパン(株)製)が挙げられる。   Specific product names include TINUVIN P, TINUVIN 571, and TINUVIN 329 (all manufactured by Ciba Japan Co., Ltd.).

成分(C)の化合物の含有量は、高温で発生する酸性ガスの中和と成形時の流動性の観点から、エポキシ樹脂組成物全体に対して、0.01〜5質量%であることが好ましく、0.05〜4質量%であることがより好ましく、0.1〜3質量%であることが更に好ましい。   The content of the component (C) compound is 0.01 to 5% by mass with respect to the entire epoxy resin composition from the viewpoint of neutralization of acidic gas generated at high temperature and fluidity during molding. Preferably, it is 0.05-4 mass%, More preferably, it is 0.1-3 mass%.

また、エポキシ樹脂組成物には、(D)充填材、及び(E)硬化促進剤を含んでいてもよい。   Moreover, the epoxy resin composition may contain (D) a filler and (E) a curing accelerator.

(D)充填材としては、一般の半導体封止用エポキシ樹脂組成物に使用されているものを用いることができる。例えば、溶融球状シリカ、溶融破砕シリカ、結晶シリカ、タルク、アルミナ、チタンホワイト、窒化珪素等の無機充填材、オルガノシリコーンパウダー、ポリエチレンパウダー等の有機充填材が挙げられ、中でも、溶融球状シリカが特に好ましい。これらの充填材は、1種を単独で用いても2種以上を併用しても差し支えない。また、(D)充填材の形状としては、エポキシ樹脂組成物の溶融粘度の上昇を抑え、更に充填材の含有量を高めるためには、できるだけ真球状であり、かつ粒度分布がブロードであることが好ましい。また、充填材がカップリング剤により表面処理されていてもかまわない。さらに、必要に応じて充填材をエポキシ樹脂又はフェノール樹脂等で予め処理して用いてもよく、処理の方法としては、溶媒を用いて混合した後に溶媒を除去する方法や、直接充填材に添加し、混合機を用いて混合処理する方法等がある。   (D) As a filler, what is used for the general epoxy resin composition for semiconductor sealing can be used. Examples thereof include inorganic fillers such as fused spherical silica, fused crushed silica, crystalline silica, talc, alumina, titanium white, and silicon nitride, and organic fillers such as organosilicone powder and polyethylene powder. preferable. These fillers may be used alone or in combination of two or more. The shape of the filler (D) is as spherical as possible and the particle size distribution is broad in order to suppress an increase in the melt viscosity of the epoxy resin composition and further increase the filler content. Is preferred. The filler may be surface-treated with a coupling agent. Furthermore, if necessary, the filler may be pre-treated with an epoxy resin or a phenol resin, and the treatment method includes a method of removing the solvent after mixing with a solvent, or a direct addition to the filler. In addition, there is a method of mixing using a mixer.

(D)充填材の含有量は、エポキシ樹脂組成物の充填性、半導体装置の信頼性の観点から、エポキシ樹脂組成物全体に対して、65質量%以上であることが好ましく、75質量%以上であることがより好ましく、80質量%以上がさらに好ましい。こうすることで、低吸湿性、低熱膨張性が得られるため耐湿信頼性が不十分となる恐れを少なくすることができる。また、(D)充填材の含有量は、成形性を考慮すると、エポキシ樹脂組成物全体に対して、93質量%以下であることが好ましく、91質量%以下であることがより好ましく、90質量%以下がさらに好ましい。こうすることで、流動性が低下し成形時に充填不良等が生じたり、高粘度化による半導体装置内のワイヤ流れ等の不都合が生じたりする恐れを少なくすることができる。   (D) The content of the filler is preferably 65% by mass or more, and 75% by mass or more with respect to the entire epoxy resin composition, from the viewpoint of the filling property of the epoxy resin composition and the reliability of the semiconductor device. More preferably, it is more preferably 80% by mass or more. By doing so, low moisture absorption and low thermal expansion can be obtained, so that the risk of insufficient moisture resistance reliability can be reduced. In addition, the content of the (D) filler is preferably 93% by mass or less, more preferably 91% by mass or less, and more preferably 90% by mass with respect to the entire epoxy resin composition in consideration of moldability. % Or less is more preferable. By doing so, it is possible to reduce the possibility that fluidity is lowered and poor filling or the like occurs during molding, or inconvenience such as wire flow in the semiconductor device due to high viscosity.

(E)硬化促進剤は、エポキシ樹脂のエポキシ基と硬化剤(たとえば、フェノール樹脂系硬化剤のフェノール性水酸基)との架橋反応を促進させるものであればよく、一般の半導体封止用エポキシ樹脂組成物に使用するものを用いることができる。例えば、1、8−ジアザビシクロ(5、4、0)ウンデセン−7等のジアザビシクロアルケン及びその誘導体;トリフェニルホスフィン、メチルジフェニルホスフィン等の有機ホスフィン類;2−メチルイミダゾール等のイミダゾール化合物;テトラフェニルホスホニウム・テトラフェニルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート;ホスフィン化合物とキノン化合物との付加物等が挙げられ、これらは1種類を単独で用いても2種以上を併用しても差し支えない。   (E) The curing accelerator is not limited as long as it promotes the crosslinking reaction between the epoxy group of the epoxy resin and the curing agent (for example, the phenolic hydroxyl group of the phenol resin-based curing agent). What is used for a composition can be used. For example, diazabicycloalkenes such as 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof; organic phosphines such as triphenylphosphine and methyldiphenylphosphine; imidazole compounds such as 2-methylimidazole; tetra Examples include tetra-substituted phosphonium and tetra-substituted borates such as phenylphosphonium and tetraphenylborate; adducts of phosphine compounds and quinone compounds, and these may be used alone or in combination of two or more. .

(E)硬化促進剤の含有量は、エポキシ樹脂組成物全体に対して、0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。こうすることで、硬化性の低下を引き起こす恐れを少なくすることができる。また、(E)硬化促進剤の含有量は、エポキシ樹脂組成物全体に対して、1質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。こうすることで、流動性の低下を引き起こす恐れを少なくすることができる。   (E) It is preferable that content of a hardening accelerator is 0.05 mass% or more with respect to the whole epoxy resin composition, and it is more preferable that it is 0.1 mass% or more. By doing so, the possibility of causing a decrease in curability can be reduced. Moreover, it is preferable that it is 1 mass% or less with respect to the whole epoxy resin composition, and, as for content of (E) hardening accelerator, it is more preferable that it is 0.5 mass% or less. By doing so, the possibility of causing a decrease in fluidity can be reduced.

エポキシ樹脂組成物には、さらに必要に応じて、炭酸カルシウム、硼酸カルシウム、メタケイ酸カルシウム、水酸化アルミニウム、ベーマイト等の中和剤;ハイドロタルサイト、酸化マグネシウム、炭酸マグネシウムなどの腐食防止剤;酸化ビスマス水和物等の無機イオン交換体;エポキシシラン、γ−グリシドキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン等のカップリング剤;カーボンブラック、ベンガラ等の着色剤;シリコーンゴム等の低応力成分;カルナバワックス等の天然ワックス、合成ワックス、ステアリン酸亜鉛等の高級脂肪酸及びその金属塩類もしくはパラフィン等の離型剤;水酸化アルミニウム、水酸化マグネシウム、ホウ酸亜鉛、モリブデン酸亜鉛、ホスファゼン等の難燃剤、酸化防止剤等の各種添加剤を適宜配合してもよい。   If necessary, the epoxy resin composition further includes neutralizing agents such as calcium carbonate, calcium borate, calcium metasilicate, aluminum hydroxide, boehmite; corrosion inhibitors such as hydrotalcite, magnesium oxide, magnesium carbonate; Inorganic ion exchangers such as bismuth hydrate; coupling agents such as epoxy silane, γ-glycidoxypropyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-aminopropyltrimethoxysilane; carbon black, bengara, etc. Coloring agents; Low stress components such as silicone rubber; Natural waxes such as carnauba wax; Synthetic waxes; Mold release agents such as higher fatty acids such as zinc stearate and their metal salts or paraffin; Aluminum hydroxide, magnesium hydroxide, boron Zinc acid, molybdic acid Lead, flame retardants such as phosphazene, various additives such as an antioxidant may be appropriately blended.

エポキシ樹脂組成物は、前述の各成分を、例えば、ミキサー等を用いて15℃〜28℃で混合したもの、さらにその後、ロール、ニーダー、押出機等の混練機で溶融混練し、冷却後粉砕したものなど、必要に応じて適宜分散度や流動性等を調整したものを用いることができる。   The epoxy resin composition is obtained by mixing the above-mentioned components at 15 ° C. to 28 ° C. using, for example, a mixer, and then melt-kneading with a kneader such as a roll, a kneader, or an extruder, and grinding after cooling. Those having an appropriate degree of dispersion and fluidity can be used as necessary.

本発明の半導体封止用エポキシ樹脂組成物の硬化体は、上記のエポキシ樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で成形硬化して得ることができる。トランスファーモールドなどの成形方法で成形硬化されたエポキシ樹脂組成物の硬化体は、必要に応じて80℃〜200℃程度の温度で、10分〜24時間程度の時間をかけて完全硬化させることで得ることもできる。   The cured body of the epoxy resin composition for semiconductor encapsulation of the present invention can be obtained by molding and curing the above epoxy resin composition by a conventional molding method such as transfer molding, compression molding, injection molding or the like. The cured product of the epoxy resin composition molded and cured by a molding method such as transfer mold is completely cured at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 24 hours as necessary. It can also be obtained.

つづいて、本発明の半導体装置について図1を用いつつ説明する。本発明の半導体装置10は、基板として、ダイパッド部3aと、インナーリード部3bを有するリードフレーム3を備え、ダイパッド部3aに搭載された半導体素子1と、リードフレーム3と半導体素子1とを電気的に接続している銅ワイヤ4と、上記のエポキシ樹脂組成物の硬化体からなり、半導体素子1と銅ワイヤ4とを封止している、封止樹脂5とを有する。   Next, the semiconductor device of the present invention will be described with reference to FIG. The semiconductor device 10 of the present invention includes a lead frame 3 having a die pad portion 3a and an inner lead portion 3b as a substrate, and electrically connects the semiconductor element 1 mounted on the die pad portion 3a, the lead frame 3 and the semiconductor element 1 to each other. And a sealing resin 5 made of a cured product of the epoxy resin composition and sealing the semiconductor element 1 and the copper wire 4.

半導体素子1としては、特に限定されるものではなく、例えば、集積回路、大規模集積回路、固体撮像素子等が挙げられる。   The semiconductor element 1 is not particularly limited, and examples thereof include an integrated circuit, a large-scale integrated circuit, and a solid-state imaging element.

リードフレーム3としては特に制限はなく、リードフレーム3に代えて回路基板を用いてもよい。具体的には、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリア(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)、クワッド・フラット・ノンリーデッド・パッケージ(QFN)、スモールアウトライン・ノンリーデッド・パッケージ(SON)、リードフレーム・BGA(LF−BGA)、モールド・アレイ・パッケージタイプのBGA(MAP−BGA)などの従来公知の半導体装置に用いられるリードフレーム又は回路基板を用いることができる。   The lead frame 3 is not particularly limited, and a circuit board may be used instead of the lead frame 3. Specifically, Dual Inline Package (DIP), Plastic Leaded Chip Carrier (PLCC), Quad Flat Package (QFP), Low Profile Quad Flat Package (LQFP), Small Outline・ J lead package (SOJ), thin small outline package (TSOP), thin quad flat package (TQFP), tape carrier package (TCP), ball grid array (BGA), chip size・ Package (CSP), Quad Flat Non-Leaded Package (QFN), Small Outline Non-Leaded Package (SON), Leadframe BGA (LF-BGA), Mold Array Package It can be used a lead frame or a circuit board used in the conventional semiconductor device, such as a BGA (MAP-BGA) of Jitaipu.

半導体素子1は、複数の半導体素子が積層されたものであってもよい。この場合、1段目の半導体素子はフィルム接着剤、熱硬化性接着剤等のダイボンド材硬化体2を介してダイパッド部3aに接着される。2段目以降の半導体素子は絶縁性のフィルム接着剤により順次積層させることができる。そして、各層の適切な場所に、予め前工程で電極パッド6が形成されている。   The semiconductor element 1 may be a stack of a plurality of semiconductor elements. In this case, the first-stage semiconductor element is bonded to the die pad portion 3a via a die bond material cured body 2 such as a film adhesive or a thermosetting adhesive. The semiconductor elements in the second and subsequent stages can be sequentially laminated with an insulating film adhesive. And the electrode pad 6 is previously formed in the pre-process in the appropriate place of each layer.

電極パッド6は、アルミニウム(Al)を主成分とするものからなることが好ましい。電極パッド6中のAlの含有量は、電極パッド6全体に対して98質量%以上が好ましい。電極パッド6中に含まれるAl以外の成分としては、銅(Cu)シリコン(Si)等が挙げられる。電極パッド6は、下層の銅回路端子の表面に一般的なチタン系バリア層を形成し、さらにAlを蒸着、スパッタリング、無電解メッキなど、一般的な半導体素子の電極パッドの形成方法を適用することにより作製することができる。   The electrode pad 6 is preferably made of a material mainly composed of aluminum (Al). The content of Al in the electrode pad 6 is preferably 98% by mass or more with respect to the entire electrode pad 6. Examples of components other than Al contained in the electrode pad 6 include copper (Cu) silicon (Si) and the like. For the electrode pad 6, a general titanium-based barrier layer is formed on the surface of the underlying copper circuit terminal, and a general method for forming an electrode pad of a semiconductor element, such as vapor deposition, sputtering, or electroless plating, is applied. Can be produced.

銅ワイヤ4は、リードフレーム3と、リードフレーム3のダイパッド部3aに搭載された半導体素子1とを電気的に接続するために使用される。銅ワイヤ4の表面には、自然に又はプロセス上不可避的に酸化膜が形成されていてもよい。本発明において、銅ワイヤ4とは、このようにワイヤ表面に形成された酸化膜を具備するものも含まれる。   The copper wire 4 is used to electrically connect the lead frame 3 and the semiconductor element 1 mounted on the die pad portion 3 a of the lead frame 3. An oxide film may be formed on the surface of the copper wire 4 naturally or unavoidably in the process. In the present invention, the copper wire 4 includes those having an oxide film formed on the surface of the wire in this way.

銅ワイヤ4のワイヤ径は、30μm以下、さらに好ましくは25μm以下でありかつ15μm以上であることが好ましい。この範囲であれば銅ワイヤ先端のボール形状が安定し、ボンディング部の接続信頼性を向上させることができる。また、銅ワイヤ自身の硬さによりワイヤ流れを低減することが可能となる。   The wire diameter of the copper wire 4 is 30 μm or less, more preferably 25 μm or less, and preferably 15 μm or more. Within this range, the ball shape at the tip of the copper wire is stable, and the connection reliability of the bonding portion can be improved. Further, the wire flow can be reduced by the hardness of the copper wire itself.

銅ワイヤ4中の銅の含有量は、銅ワイヤ4全体に対して、99.9〜100質量%であることが好ましく、99.99〜99.999質量%であることがより好ましい。銅の含有量が銅ワイヤ全体に対して99.99質量%以上の銅ワイヤ4であれば、ボール部分が充分な柔軟性を有しているため、ボンディング時にパッド側にダメージを与えるおそれがなく、特に好ましい。銅ワイヤ4は銅のみからなることが理想であるが、銅ワイヤ4中、銅の含有量は、99.99999質量%以下であることが現実的である。尚、本発明の半導体装置で用いることができる銅ワイヤ4は、芯線である銅にBa、Ca、Sr、Be、Al又は希土類金属を0.001〜0.1質量%ドープすることでさらにボール形状と接合強度を改善させることができる。   The copper content in the copper wire 4 is preferably 99.9 to 100% by mass and more preferably 99.99 to 99.999% by mass with respect to the entire copper wire 4. If the copper wire 4 has a copper content of 99.99% by mass or more with respect to the entire copper wire, the ball portion has sufficient flexibility, so there is no risk of damaging the pad side during bonding. Is particularly preferred. The copper wire 4 is ideally made of only copper, but the copper content in the copper wire 4 is realistically 99.99999% by mass or less. In addition, the copper wire 4 that can be used in the semiconductor device of the present invention is further formed by doping 0.001 to 0.1% by mass of Ba, Ca, Sr, Be, Al, or rare earth metal into the copper core wire. The shape and bonding strength can be improved.

銅ワイヤ4と電極パッド6との接合部において、銅ワイヤ4の先端には、ボール4aが形成されている。   A ball 4 a is formed at the tip of the copper wire 4 at the joint between the copper wire 4 and the electrode pad 6.

また、銅ワイヤ4は、その表面にパラジウムを含む金属材料で構成された被覆層を有していてもよい。これにより、銅ワイヤ先端のボール形状が安定し、ボンディング部の接続信頼性を向上させることができる。また、芯線である銅の酸化劣化を防止する効果も得られ、ボンディング部の耐熱性を向上させることができる。   Moreover, the copper wire 4 may have the coating layer comprised with the metal material containing palladium on the surface. Thereby, the ball shape at the tip of the copper wire is stabilized, and the connection reliability of the bonding portion can be improved. Moreover, the effect which prevents the oxidation deterioration of copper which is a core wire is also acquired, and the heat resistance of a bonding part can be improved.

銅ワイヤにおけるパラジウムを含む金属材料から構成された被覆層の厚みとしては、0.001〜0.02μmであることが好ましく、0.005〜0.015μmであることがより好ましい。上記上限値以下であると、ワイヤボンド時に芯線である銅と被覆材のパラジウムを含む金属材料とが十分に溶けて安定なボール形状を形成させることができ、ボンディング部の耐熱性をよりいっそう向上させることができる。また、上記下限値以下であると、芯線の銅の酸化劣化を防止でき、同様にボンディング部の耐熱性を更に向上させることができる。   As thickness of the coating layer comprised from the metal material containing palladium in a copper wire, it is preferable that it is 0.001-0.02 micrometer, and it is more preferable that it is 0.005-0.015 micrometer. If it is below the above upper limit value, copper as the core wire and metal material containing palladium as the covering material can be sufficiently melted at the time of wire bonding to form a stable ball shape, further improving the heat resistance of the bonding part. Can be made. Moreover, the oxidation deterioration of copper of a core wire can be prevented as it is below the said lower limit, and the heat resistance of a bonding part can be improved further similarly.

銅ワイヤは、銅合金を溶解炉で鋳造し、その鋳塊をロール圧延し、さらにダイスを用いて伸線加工を行い、連続的にワイヤを掃引しながら加熱する後熱処理を施して得ることができる。また、半導体装置10で用いることができる銅ワイヤにおけるパラジウムを含む金属材料から構成された被覆層は、予め狙いのワイヤ径の線を準備し、これを、パラジウムを含む電解溶液又は無電解溶液に浸漬し、連続的に掃引してメッキすることで被覆層を形成することができる。この場合、被覆の厚さは掃引速度で調整することができる。また、狙いよりも太い線を準備して、これを電解溶液又は無電解溶液に浸漬し連続的に掃引して被覆層を形成し、さらに所定の径になるまで伸線する手法も取れる。   A copper wire can be obtained by casting a copper alloy in a melting furnace, rolling the ingot, performing wire drawing using a die, and heating after continuously sweeping the wire. it can. Moreover, the coating layer comprised from the metal material containing palladium in the copper wire which can be used with the semiconductor device 10 prepares the wire | line of the target wire diameter previously, and this is made into the electrolytic solution or electroless solution containing palladium. The coating layer can be formed by dipping, continuously sweeping and plating. In this case, the thickness of the coating can be adjusted by the sweep rate. Further, a method of preparing a wire thicker than intended, immersing it in an electrolytic solution or an electroless solution, continuously sweeping it to form a coating layer, and drawing the wire to a predetermined diameter can be taken.

つづいて、半導体装置10の製造方法の一例について説明する。
まず、公知の半導体製造プロセスによって半導体素子1の最上層の保護膜8の一部を開口して電極パッド6を形成する。保護膜8はSiN等の絶縁膜から形成される。次いで、更に公知の後工程プロセスにより電極パッド6を備えた半導体素子1をリードフレーム3上のダイパッド部3aに設置し、銅ワイヤ4により電極パッド6とインナーリード部3bとをワイヤボンディングする。
Next, an example of a method for manufacturing the semiconductor device 10 will be described.
First, an electrode pad 6 is formed by opening a part of the uppermost protective film 8 of the semiconductor element 1 by a known semiconductor manufacturing process. The protective film 8 is formed from an insulating film such as SiN. Next, the semiconductor element 1 provided with the electrode pad 6 is placed on the die pad portion 3a on the lead frame 3 by a further known post-process, and the electrode pad 6 and the inner lead portion 3b are wire-bonded with the copper wire 4.

ボンディングは、たとえば以下の手順で行う。まず、銅ワイヤ4の先端に所定の径のボール4aを形成する。ついで、ボール4aを電極パッド6上面に対して実質的に垂直に降下させ、ボール4aと電極パッド6とを接触させながら、超音波振動を与える。これにより、ボール4aの底部が電極パッド6に接触して接合面が形成される。   Bonding is performed by the following procedure, for example. First, a ball 4 a having a predetermined diameter is formed at the tip of the copper wire 4. Next, the ball 4 a is lowered substantially perpendicularly to the upper surface of the electrode pad 6, and ultrasonic vibration is applied while the ball 4 a and the electrode pad 6 are in contact with each other. As a result, the bottom of the ball 4a contacts the electrode pad 6 to form a bonding surface.

なお、リードフレーム3のインナーリード部3bと半導体素子1とは、ワイヤのリバースボンドで接合されていてもよい。リバースボンドでは、まず半導体素子1の電極パッド6に銅ワイヤ4の先端に形成されたボールを接合し、銅ワイヤ4を切断してステッチ接合用のバンプを形成する。次にリードフレーム3の金属メッキされたインナーリード部3bに対してワイヤの先端に形成されたボールを接合し、半導体素子のバンプにステッチ接合する。リバースボンドでは正ボンディングより半導体素子1上のワイヤ高さを低くすることができるため、半導体素子1の接合高さを低くすることができる。   Note that the inner lead portion 3b of the lead frame 3 and the semiconductor element 1 may be joined by a reverse bond of a wire. In reverse bonding, a ball formed at the tip of the copper wire 4 is first bonded to the electrode pad 6 of the semiconductor element 1, and the copper wire 4 is cut to form a stitch bonding bump. Next, a ball formed at the tip of the wire is bonded to the metal-plated inner lead portion 3b of the lead frame 3, and stitch bonded to the bumps of the semiconductor element. In reverse bonding, the height of the wire on the semiconductor element 1 can be made lower than that in the positive bonding, so that the bonding height of the semiconductor element 1 can be reduced.

次いで、本発明の半導体封止用エポキシ樹脂組成物を用いて、半導体素子1等の電子部品を封止し、トランスファーモールド、コンプレッションモールド、インジェクションモールド等の従来からの成形方法で硬化成形して得られる。トランスファーモールドなどの成形方法で封止された半導体装置は、そのまま、或いは80℃〜200℃程度の温度で、10分〜10時間程度の時間をかけて完全硬化させた後、電子機器等に搭載される。   Next, using the epoxy resin composition for semiconductor encapsulation of the present invention, an electronic component such as the semiconductor element 1 is encapsulated and cured by a conventional molding method such as transfer molding, compression molding, injection molding or the like. It is done. A semiconductor device sealed by a molding method such as a transfer mold is mounted on an electronic device or the like as it is or after being completely cured at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours. Is done.

このように製造された半導体装置10では、製造プロセスや使用時にボンディング部に熱がかかると、銅ワイヤ4から金属が電極パッド6に拡散してワイヤとパッドとの接合部に合金層が形成されるが、エポキシ樹脂から発生する酸性成分や酸化物成分は、合金層に到達する前に、炭酸型層状複水酸化物粒子にトラップされて中和することができるため、ボンディング部の腐食(酸化)による断線を防止することができる。したがって、本発明によれば、ボンディング後に高温プロセスを採用する場合や、使用環境が高温下である場合(例えば、自動車などのエンジン周辺に設置される場合)においても、高い接続信頼性を維持することが可能である。   In the semiconductor device 10 manufactured in this way, when heat is applied to the bonding portion during the manufacturing process or use, the metal diffuses from the copper wire 4 to the electrode pad 6 and an alloy layer is formed at the bonding portion between the wire and the pad. However, the acidic component and oxide component generated from the epoxy resin can be trapped and neutralized by the carbonate-type layered double hydroxide particles before reaching the alloy layer. ) Can be prevented. Therefore, according to the present invention, high connection reliability is maintained even when a high temperature process is employed after bonding or when the usage environment is at a high temperature (for example, around an engine such as an automobile). It is possible.

以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。   As mentioned above, although embodiment of this invention was described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

実施例1〜6、比較例1〜3
ミキサーを用いて表1に示す各成分を15〜28℃で混合し、次いで70℃〜100℃でロール混練した。冷却後、粉砕してエポキシ樹脂組成物を得た。なお、表1中、各成分の詳細は下記のとおりである。また、表1中の単位は、質量%である。
Examples 1-6, Comparative Examples 1-3
Each component shown in Table 1 was mixed at 15 to 28 ° C using a mixer, and then roll-kneaded at 70 to 100 ° C. After cooling, it was pulverized to obtain an epoxy resin composition. In Table 1, the details of each component are as follows. Moreover, the unit in Table 1 is mass%.

<(A)エポキシ樹脂>
エポキシ−OCN:EOCN−1020−55、日本化薬(株)製、エポキシ当量200
エポキシ−Biphenyl:YX−4000K、三菱化学(株)製、エポキシ当量185
エポキシ−BA:NC3000P、日本化薬(株)製、エポキシ当量276
<(A) Epoxy resin>
Epoxy-OCN: EOCN-1020-55, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 200
Epoxy-Biphenyl: YX-4000K, manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 185
Epoxy-BA: NC3000P, Nippon Kayaku Co., Ltd., epoxy equivalent 276

<(B)硬化剤>
硬化剤−PN:PR−HF−3、住友ベークライト(株)製、水酸基当量105
硬化剤−XL:XLC−4L、三井化学(株)製、水酸基当量168
硬化剤−BA:MEH−7851SS、明和化成(株)、水酸基当量203
<(B) Curing agent>
Curing agent-PN: PR-HF-3, manufactured by Sumitomo Bakelite Co., Ltd., hydroxyl equivalent 105
Curing agent-XL: XLC-4L, manufactured by Mitsui Chemicals, hydroxyl equivalent 168
Curing agent-BA: MEH-7851SS, Meiwa Kasei Co., Ltd., hydroxyl equivalent 203

<(C)中和剤>
N−1:式(7)で示す1H−ベンゾトリアゾール、分子量(Mw)119、窒素含有量35.3質量%、融点100℃の固形、メジアン径0.08μm
N−2:2−(5−メチル−2−ヒドロキシフェニル)ベンゾトリアゾール、TINUVIN P、長瀬産業社製、分子量(Mw)225、窒素含有量18.7質量%、融点130℃の固形、メジアン径0.10μm
N−3:2−[2−ヒドロキシ−3,5−ビス(α,α−ジメチルベンジル)フェニル]−2H−ベンゾトリアゾール、TINUVIN 234、長瀬産業社製、分子量(Mw)448、窒素含有量9.4質量%、融点140℃の固形、メジアン径11μm
N−4:2−(2'−ヒドロキシ−5'−t−オクチルフェニル)ベンゾトリアゾール、TINUVIN 329、長瀬産業社製、分子量(Mw)323、窒素含有量13.0質量%、融点103℃以上の固形、メジアン径5μm
N−5:メチル−3−[3−t−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニル]プロピオネート−ポリエチレングリコール(分子量約300)との縮合物、TINUVIN 213、長瀬産業社製、分子量(Mw)600〜650、窒素含有量6.5〜7.0質量%、室温で液状
N−6:ヒドロキシフェニルベンゾトリアゾール誘導体(CASNO.125304−04−3)、TINUVIN 571、長瀬産業社製、分子量(Mw)393、窒素含有量10.7質量%、室温で液状
なお、メジアン径は、(株)島津製作所製レーザー回折散乱式粒度分布計SALD−7000を使用して測定した。
<(C) Neutralizing agent>
N-1: 1H-benzotriazole represented by formula (7), molecular weight (Mw) 119, nitrogen content 35.3% by mass, solid at melting point 100 ° C., median diameter 0.08 μm
N-2: 2- (5-methyl-2-hydroxyphenyl) benzotriazole, TINUVIN P, manufactured by Nagase Sangyo Co., Ltd., molecular weight (Mw) 225, nitrogen content 18.7% by mass, melting point 130 ° C. solid, median diameter 0.10 μm
N-3: 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, TINUVIN 234, manufactured by Nagase Sangyo Co., Ltd., molecular weight (Mw) 448, nitrogen content 9 .4 mass%, melting point 140 ° C. solid, median diameter 11 μm
N-4: 2- (2′-hydroxy-5′-t-octylphenyl) benzotriazole, TINUVIN 329, manufactured by Nagase Sangyo Co., Ltd., molecular weight (Mw) 323, nitrogen content 13.0% by mass, melting point 103 ° C. or higher Solid, median diameter 5μm
N-5: condensate with methyl-3- [3-t-butyl-5- (2H-benzotriazol-2-yl) -4-hydroxyphenyl] propionate-polyethylene glycol (molecular weight about 300), TINUVIN 213, Nagase Sangyo Co., Ltd., molecular weight (Mw) 600-650, nitrogen content 6.5-7.0 mass%, liquid N-6 at room temperature: hydroxyphenylbenzotriazole derivative (CASNO. 125304-04-3), TINUVIN 571 , Manufactured by Nagase Sangyo Co., Ltd., molecular weight (Mw) 393, nitrogen content 10.7% by mass, liquid at room temperature Note that the median diameter is measured using a laser diffraction scattering particle size distribution analyzer SALD-7000 manufactured by Shimadzu Corporation. It was measured.

<(D)充填材>
シリカ:FB−820、電気化学工業(株)製、溶融球状シリカ、平均粒径26.5μm、105μm以上の粒子1%以下
<(D) Filler>
Silica: FB-820, manufactured by Denki Kagaku Kogyo Co., Ltd., fused spherical silica, average particle size of 26.5 μm, particles of 105 μm or more 1% or less

<(E)硬化促進剤>
トリフェニルホスフィン(TPP)、北興化学工業(株)製
<(E) Curing accelerator>
Triphenylphosphine (TPP), manufactured by Hokuko Chemical Co., Ltd.

<その他の成分>
カップリング剤:エポキシシラン
着色剤:カーボンブラック
離型剤:カルナバワックス
<Other ingredients>
Coupling agent: Epoxysilane Colorant: Carbon black Release agent: Carnauba wax

実施例1〜6、比較例1〜3のエポキシ樹脂組成物の物性を以下の方法により測定した。その結果を表1に示す。   The physical properties of the epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 3 were measured by the following methods. The results are shown in Table 1.

<スパイラルフロー(SF)>
低圧トランスファー成形機(コータキ精機(株)製「KTS−15」)を用いて、EMMI−1−66に準じたスパイラルフロー測定用の金型に、金型温度175℃、注入圧力6.9MPa、硬化時間120秒の条件で、実施例1〜6、比較例1〜3のエポキシ樹脂組成物をそれぞれ注入し、流動長(単位:cm)を測定した。
<Spiral flow (SF)>
Using a low-pressure transfer molding machine (“KTS-15” manufactured by Kotaki Seiki Co., Ltd.), a mold for spiral flow measurement according to EMMI-1-66, a mold temperature of 175 ° C., an injection pressure of 6.9 MPa, Under the conditions of a curing time of 120 seconds, the epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 3 were injected, and the flow length (unit: cm) was measured.

<ゲルタイム(GT)>
175℃に加熱した熱板上で実施例1〜6、比較例1〜3のエポキシ樹脂組成物をそれぞれ溶融後、へらで練りながら硬化するまでの時間(単位:秒)を測定した。
<Geltime (GT)>
After melting the epoxy resin compositions of Examples 1 to 6 and Comparative Examples 1 to 3 on a hot plate heated to 175 ° C., the time (unit: second) until curing while kneading with a spatula was measured.

<高温保管特性>
アルミニウム製電極パッド(アルミニウム純度99.9質量%、厚み1μm)を備えるTEG(TEST ELEMENT GROUP)チップ(3.5mm×3.5mm)を352ピンBGA(基板は厚さ0.56mm、ビスマレイミド・トリアジン樹脂/ガラスクロス基板、パッケージサイズは30mm×30mm、厚さ1.17mm)のダイパッド部に接着し、TEGチップの電極パッドと基板の電極パッドとをデイジーチェーン接続となるように、銅ワイヤ(銅純度99.99質量%、径25μm)を用いてワイヤピッチ80μmでワイヤボンディングした。これを、低圧トランスファー成形機(TOWA製「Yシリーズ」)を用いて、金型温度175℃、注入圧力6.9MPa、硬化時間2分の条件で、実施例1〜6、比較例1〜3のエポキシ樹脂組成物を用いて封止成形して、352ピンBGAパッケージを作製した。このパッケージを175℃、4時間の条件で後硬化した後、半導体装置を得た。得られた半導体装置について半導体装置のHTSL(高温保存試験)を行った。具体的には、150℃及び175℃で処理し、不良が発生する時間を調べた。不良の判定は、作製したパッケージ10個を用いて評価し、初期抵抗に対する処理後の抵抗値が1.2倍を超えたパッケージが発生した時間を不良時間とした。その結果を表1に示す。表1中単位は、時間(hour)である。
<High temperature storage characteristics>
A TEG (TEST ELEMENT GROUP) chip (3.5 mm × 3.5 mm) with an aluminum electrode pad (aluminum purity 99.9 mass%, thickness 1 μm) is a 352-pin BGA (substrate thickness 0.56 mm, bismaleimide A copper wire (triazine resin / glass cloth substrate, package size 30 mm x 30 mm, thickness 1.17 mm) is bonded to the die pad portion, and the TEG chip electrode pad and the substrate electrode pad are daisy chain connected. Wire bonding was performed at a wire pitch of 80 μm using a copper purity of 99.99 mass% and a diameter of 25 μm. Examples 1 to 6 and Comparative Examples 1 to 3 were prepared using a low-pressure transfer molding machine ("Y series" manufactured by TOWA) under conditions of a mold temperature of 175 ° C, an injection pressure of 6.9 MPa, and a curing time of 2 minutes. A 352-pin BGA package was produced by sealing using the epoxy resin composition. After the package was post-cured at 175 ° C. for 4 hours, a semiconductor device was obtained. The obtained semiconductor device was subjected to HTSL (high temperature storage test) of the semiconductor device. Specifically, the treatment was performed at 150 ° C. and 175 ° C., and the time during which defects occurred was examined. The determination of the defect was evaluated using 10 manufactured packages, and the time when the package in which the resistance value after the treatment with respect to the initial resistance exceeded 1.2 times was defined as the defect time. The results are shown in Table 1. The unit in Table 1 is time.

Figure 2013209450
Figure 2013209450

1 半導体素子
2 ダイボンド材硬化体
3 リードフレーム
3a ダイパッド部
3b インナーリード部
4 銅ワイヤ
4a ボール
5 封止樹脂
6 電極パッド
8 保護膜
10 半導体装置
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Die-bonding material hardening body 3 Lead frame 3a Die pad part 3b Inner lead part 4 Copper wire 4a Ball 5 Sealing resin 6 Electrode pad 8 Protective film 10 Semiconductor device

Claims (9)

エポキシ樹脂と硬化剤とを含み、銅ワイヤ及び前記銅ワイヤが接続された半導体素子を封止する半導体封止用エポキシ樹脂組成物であって、
ベンゾトリアゾール骨格を有する化合物を含む、半導体封止用エポキシ樹脂組成物。
An epoxy resin composition for encapsulating a semiconductor comprising an epoxy resin and a curing agent, and encapsulating a copper wire and a semiconductor element to which the copper wire is connected,
An epoxy resin composition for semiconductor encapsulation, comprising a compound having a benzotriazole skeleton.
ベンゾトリアゾール骨格を有する前記化合物は、1分子中の窒素含有量が10質量%以上40質量%以下の化合物である、請求項1に記載の半導体封止用エポキシ樹脂組成物。   2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the compound having a benzotriazole skeleton is a compound having a nitrogen content of 10% by mass to 40% by mass in one molecule. 充填材を含む、請求項1又は2に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to claim 1 or 2, comprising a filler. ベンゾトリアゾール骨格を有する前記化合物が、分子量(Mw)150〜500の化合物である、請求項1乃至3いずれか一項に記載の半導体封止用エポキシ樹脂組成物。   The epoxy resin composition for semiconductor encapsulation according to any one of claims 1 to 3, wherein the compound having a benzotriazole skeleton is a compound having a molecular weight (Mw) of 150 to 500. 前記銅ワイヤ中の銅の含有量が、前記銅ワイヤ全体に対して、99.99質量%以上である、請求項1乃至4いずれか一項に記載の半導体封止用エポキシ樹脂組成物。   5. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein a content of copper in the copper wire is 99.99% by mass or more with respect to the entire copper wire. 請求項1乃至5いずれか一項に記載の半導体封止用エポキシ樹脂組成物の硬化体。   The hardened | cured material of the epoxy resin composition for semiconductor sealing as described in any one of Claims 1 thru | or 5. 基板に搭載された半導体素子と、
前記半導体素子に設けられた電極パッドと、
前記基板に設けられた接続端子と前記電極パッドとを接続する銅ワイヤと、
請求項6に記載された半導体封止用エポキシ樹脂組成物の硬化体と、
を備える、半導体装置。
A semiconductor element mounted on a substrate;
An electrode pad provided in the semiconductor element;
A copper wire connecting the connection terminal provided on the substrate and the electrode pad;
A cured body of the epoxy resin composition for semiconductor encapsulation according to claim 6;
A semiconductor device comprising:
前記電極パッドがアルミニウムを主成分として含む、請求項7に記載の半導体装置。   The semiconductor device according to claim 7, wherein the electrode pad includes aluminum as a main component. 前記基板が、リードフレーム又は回路基板である、請求項7又は8に記載の半導体装置。   The semiconductor device according to claim 7, wherein the substrate is a lead frame or a circuit substrate.
JP2012079094A 2012-03-30 2012-03-30 Epoxy resin composition for sealing semiconductor Pending JP2013209450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012079094A JP2013209450A (en) 2012-03-30 2012-03-30 Epoxy resin composition for sealing semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012079094A JP2013209450A (en) 2012-03-30 2012-03-30 Epoxy resin composition for sealing semiconductor

Publications (1)

Publication Number Publication Date
JP2013209450A true JP2013209450A (en) 2013-10-10

Family

ID=49527606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012079094A Pending JP2013209450A (en) 2012-03-30 2012-03-30 Epoxy resin composition for sealing semiconductor

Country Status (1)

Country Link
JP (1) JP2013209450A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208440A (en) * 1991-07-30 1993-08-20 Protechnic Sa Method for producing heat adhesion item, device for executing the same and item obtained thereby
JP2015007146A (en) * 2013-06-24 2015-01-15 日立化成株式会社 Element sealing epoxy resin molding material and electronic part device
JP2015098521A (en) * 2013-11-19 2015-05-28 住友ベークライト株式会社 Sealing resin composition and electronic component device
WO2015182371A1 (en) * 2014-05-28 2015-12-03 住友ベークライト株式会社 Sealing resin composition and semiconductor device
JP2017165980A (en) * 2017-06-05 2017-09-21 日立化成株式会社 Element sealing epoxy resin molding material and electronic component device
JP2018115339A (en) * 2018-04-12 2018-07-26 住友ベークライト株式会社 Sealing resin composition and electronic component device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208440A (en) * 1991-07-30 1993-08-20 Protechnic Sa Method for producing heat adhesion item, device for executing the same and item obtained thereby
JP2015007146A (en) * 2013-06-24 2015-01-15 日立化成株式会社 Element sealing epoxy resin molding material and electronic part device
JP2015098521A (en) * 2013-11-19 2015-05-28 住友ベークライト株式会社 Sealing resin composition and electronic component device
WO2015182371A1 (en) * 2014-05-28 2015-12-03 住友ベークライト株式会社 Sealing resin composition and semiconductor device
JP2015224290A (en) * 2014-05-28 2015-12-14 住友ベークライト株式会社 Sealing resin composition and semiconductor device
KR20170015305A (en) * 2014-05-28 2017-02-08 스미토모 베이클리트 컴퍼니 리미티드 Sealing resin composition and semiconductor device
CN106459373A (en) * 2014-05-28 2017-02-22 住友电木株式会社 Sealing resin composition and semiconductor device
KR102171661B1 (en) 2014-05-28 2020-10-29 스미토모 베이클리트 컴퍼니 리미티드 Resin composition for encapsulation and semiconductor device
JP2017165980A (en) * 2017-06-05 2017-09-21 日立化成株式会社 Element sealing epoxy resin molding material and electronic component device
JP2018115339A (en) * 2018-04-12 2018-07-26 住友ベークライト株式会社 Sealing resin composition and electronic component device

Similar Documents

Publication Publication Date Title
JP5532258B2 (en) Semiconductor device
WO2011070739A1 (en) Epoxy resin composition for semiconductor encapsulation, cured product thereof, and semiconductor device using epoxy resin composition
JP5393207B2 (en) Semiconductor device
WO2011093038A1 (en) Semiconductor device
WO2012070529A1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
KR101678256B1 (en) Semiconductor device
JP2015137344A (en) Epoxy resin composition for encapsulation and semiconductor device
JP6330658B2 (en) Semiconductor device
JP2013209450A (en) Epoxy resin composition for sealing semiconductor
JP6094573B2 (en) Semiconductor device
JP2008166314A (en) Semiconductor device and epoxy resin composition for sealing
JP2015017165A (en) Epoxy resin composition for sealing, and semiconductor device
JP6341203B2 (en) Semiconductor device
WO2011030516A1 (en) Semiconductor device
WO2013145609A1 (en) Epoxy resin composition for semiconductor sealing, cured body thereof, and semiconductor device