JP2013205044A - Pressure measuring apparatus for power storage device and method thereof - Google Patents

Pressure measuring apparatus for power storage device and method thereof Download PDF

Info

Publication number
JP2013205044A
JP2013205044A JP2012070970A JP2012070970A JP2013205044A JP 2013205044 A JP2013205044 A JP 2013205044A JP 2012070970 A JP2012070970 A JP 2012070970A JP 2012070970 A JP2012070970 A JP 2012070970A JP 2013205044 A JP2013205044 A JP 2013205044A
Authority
JP
Japan
Prior art keywords
storage device
pressure
temperature
electricity storage
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070970A
Other languages
Japanese (ja)
Inventor
Makiko Kichise
万希子 吉瀬
Seiji Yoshioka
省二 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012070970A priority Critical patent/JP2013205044A/en
Publication of JP2013205044A publication Critical patent/JP2013205044A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pressure measuring apparatus for a power storage device in which a pressure inside the power storage device can be measured accurately even if a disturbance is applied to the power storage device and a temperature of the power storage device itself is elevated suddenly, for example.SOLUTION: The pressure measuring apparatus comprises a pipe (2) of which one end is connected to a power storage device in such a manner that an internal pressure can be measured, a pressure detector (3) connected to another end of the pipe for detecting the pressure inside the power storage device, and temperature managers (4, 5) for performing temperature management by heating or cooling the pipe including the pressure detector.

Description

この発明は、蓄電デバイス内部の圧力を測定する装置及びその方法に関するものである。   The present invention relates to an apparatus and a method for measuring the pressure inside an electricity storage device.

蓄電デバイスの代表として挙げられるリチウム二次電池は、携帯機器のみならず、EV(電気自動車)や家庭用蓄電池等の大型電源として近年急激に普及している。このリチウム二次電池は、正極活物質にリチウム金属酸化物を、負極活物質にカーボンを、電解液には有機溶媒とリチウム塩からなり、正極活物質と負極活物質の間をリチウムイオンが可逆的にインターカレート−デインターカレートすることにより充放電が行われている。このリチウム二次電池は通常の可逆的な充放電においてはほとんどガスが発生しないが、過充電、過放電や過熱により、電解液が電極表面で分解し、反応生成物としてのガスが発生する。また、電池が過度に劣化すると同様にガスが発生する場合がある。このように電池内におけるガスの発生は電池において発生した事象を解析するための有効な情報であり、ガスが発生した際に電池の内圧を測定してガスの発生量を知ることは、電池内部での反応の解析を進める上で非常に有効である。   In recent years, lithium secondary batteries, which are representative of power storage devices, have rapidly spread as large-scale power sources for not only portable devices but also EVs (electric vehicles) and household storage batteries. This lithium secondary battery consists of a lithium metal oxide as a positive electrode active material, carbon as a negative electrode active material, an organic solvent and a lithium salt as an electrolyte, and lithium ions are reversible between the positive electrode active material and the negative electrode active material. In general, charging / discharging is performed by intercalating and deintercalating. The lithium secondary battery generates almost no gas during normal reversible charging / discharging, but due to overcharging, overdischarging, or overheating, the electrolytic solution is decomposed on the electrode surface to generate gas as a reaction product. Further, when the battery is excessively deteriorated, gas may be generated as well. As described above, the generation of gas in the battery is effective information for analyzing an event occurring in the battery. When the gas is generated, measuring the internal pressure of the battery to know the generation amount of the gas This is very effective for the analysis of the reaction.

このため、蓄電池に直接圧力センサを取り付け、充放電時の圧力変化や電池製造時の圧力管理を行っている例がある(例えば下記特許文献1及び2参照)。   For this reason, there is an example in which a pressure sensor is directly attached to a storage battery and pressure change during charge / discharge and pressure management during battery manufacture are performed (for example, see Patent Documents 1 and 2 below).

特開平9−120845号公報JP-A-9-120845 特開2010−102928号公報JP 2010-102928 A

このような従来の蓄電デバイスの圧力測定装置にあっては、圧力測定部が蓄電デバイスに直接若しくは蓄電デバイスのごく近傍に設置されているため、蓄電デバイスが過渡的な状態になり、温度が急激に上昇した際には、圧力センサの温度自体も高温になり機能しなくなってしまう、若しくは蓄電デバイスの正確な圧力を測定することができなかった。   In such a conventional pressure measuring device for an electricity storage device, since the pressure measuring unit is installed directly on the electricity storage device or in the vicinity of the electricity storage device, the electricity storage device becomes in a transitional state and the temperature rapidly increases. When the temperature rises, the temperature of the pressure sensor itself becomes too high to function, or the accurate pressure of the electricity storage device cannot be measured.

この発明は、上記のような問題点を解決するためになされたものであり、例えば蓄電デバイスに外乱が加わり、蓄電デバイス自体の温度が急上昇した場合においても、蓄電デバイス内部の圧力を正確に測定可能な蓄電デバイスの圧力測定装置等を提供することを目的としている。   The present invention has been made to solve the above-described problems. For example, even when a disturbance is applied to the power storage device and the temperature of the power storage device itself rises rapidly, the pressure inside the power storage device is accurately measured. An object of the present invention is to provide a pressure measuring device for an electricity storage device that can be used.

この発明は、一端が蓄電デバイスに内部圧力が測定可能に接続された配管と、前記配管の他端に接続されて前記蓄電デバイス内部の圧力を検出する圧力検出部と、前記圧力検出部を含む前記配管を加熱または冷却して温度管理を行う温度管理部と、を備えたことを特徴とする蓄電デバイスの圧力測定装置等にある。   The present invention includes a pipe having one end connected to the electricity storage device so that the internal pressure can be measured, a pressure detection unit connected to the other end of the pipe and detecting the pressure inside the electricity storage device, and the pressure detection unit And a temperature management unit that performs temperature management by heating or cooling the pipe.

この発明によれば、上記の構成としたことにより、蓄電デバイスの温度が急上昇した際においても、圧力検出部の温度が一定であるため、蓄電デバイスの内部温度によらず正確な圧力計側が行える。   According to the present invention, since the temperature of the power storage device rapidly increases, the temperature of the pressure detection unit is constant even when the temperature of the power storage device rapidly rises, so that an accurate pressure gauge side can be performed regardless of the internal temperature of the power storage device. .

この発明による蓄電デバイスの圧力測定装置の構成図である。It is a block diagram of the pressure measuring apparatus of the electrical storage device by this invention. この発明の実施の形態2による蓄電デバイスの圧力測定装置に特に係る部分の具体的な構成を示した図である。It is the figure which showed the specific structure of the part which concerns especially on the pressure measuring device of the electrical storage device by Embodiment 2 of this invention. この発明による蓄電デバイスの圧力測定装置の変形例を説明するための部分構成図である。It is a partial block diagram for demonstrating the modification of the pressure measuring apparatus of the electrical storage device by this invention. この発明による蓄電デバイスの圧力測定装置の別の変形例を説明するための部分構成図である。It is a partial block diagram for demonstrating another modification of the pressure measuring apparatus of the electrical storage device by this invention. 実施例1における温度、電圧、圧力を説明するための図である。It is a figure for demonstrating the temperature in Example 1, a voltage, and a pressure. 比較例1における温度、電圧、圧力を説明するための図である。It is a figure for demonstrating the temperature in the comparative example 1, a voltage, and a pressure.

この発明では、例えば蓄電デバイスに外乱が加わり、蓄電デバイス自体の温度が急上昇した場合においても、蓄電デバイス内部の圧力を正確に測定し、蓄電デバイス内部で発生した事象の解析が行える。   In the present invention, for example, even when a disturbance is applied to the power storage device and the temperature of the power storage device itself rises rapidly, the pressure inside the power storage device can be accurately measured and an event occurring inside the power storage device can be analyzed.

以下、この発明による蓄電デバイスの圧力測定装置及びその方法を各実施の形態に従って図面を用いて説明する。なお、各実施の形態において、同一もしくは相当部分は同一符号で示し、重複する説明は省略する。   Hereinafter, a pressure measuring device and method for an electricity storage device according to the present invention will be described with reference to the drawings according to each embodiment. In each embodiment, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted.

実施の形態1.
図1はこの発明による蓄電デバイスの圧力測定装置の構成図である。1は蓄電デバイス、2は配管、3aは圧力検出部3を構成する圧力検出器、4はヒータ4aaと放熱フィン4abを含む加温・冷却機構4a、および加温・冷却機構4aの温度管理をする温度管理器4bを含む温度管理部、5は蓄電デバイス1および配管2の温度をそれぞれ検出する温度センサ5a,5bおよび温度センサ5a,5bからの信号を受ける温度検出器5cを含む温度検出部、6は配管2に挿入された開閉バルブ、7は蓄電デバイス1の電圧を検出する電圧検出部を構成する電圧検出器、100は圧力検出器3a、温度センサ5a、電圧検出器7等からの信号を受けて圧力、温度、電圧の測定、これらに基づく種々の解析を行うと共に温度管理器4b、各開閉バルブ6、ガズ流量調整弁20(図4参照)等の測定動作制御を行う測定制御装置である。
Embodiment 1 FIG.
FIG. 1 is a configuration diagram of a pressure measuring device for an electricity storage device according to the present invention. 1 is an electricity storage device, 2 is a pipe, 3a is a pressure detector constituting the pressure detector 3, 4 is a heating / cooling mechanism 4a including a heater 4aa and a heat radiation fin 4ab, and temperature management of the heating / cooling mechanism 4a. A temperature management unit 5 including a temperature management unit 4b, and a temperature detection unit 5 including temperature sensors 5a and 5b for detecting temperatures of the power storage device 1 and the pipe 2 and a temperature detector 5c for receiving signals from the temperature sensors 5a and 5b, respectively. , 6 is an open / close valve inserted in the pipe 2, 7 is a voltage detector constituting a voltage detector for detecting the voltage of the electricity storage device 1, and 100 is from the pressure detector 3a, the temperature sensor 5a, the voltage detector 7, etc. In response to the signal, the pressure, temperature and voltage are measured, and various analyzes based on these are performed, and the measurement operation control of the temperature controller 4b, each on-off valve 6 and the gas flow rate adjusting valve 20 (see FIG. 4) is controlled. A control device.

以下、この発明の実施の形態1の蓄電デバイスの圧力測定装置について説明する。配管2は一端が蓄電デバイス1に蓄電デバイス内部の圧力検出が可能なように接続され、他端が圧力センサ、圧力ゲージなどで圧力を測定し、測定した圧力を電気信号に変換して出力する圧力検出部の、上記圧力センサ、圧力ゲージ等からなる圧力検出器3aが接続されている。配管2は一般的なSUS(ステインレス鋼)や銅製の配管で、フレキシブルチューブのように自由度のあるものでもよい。   Hereinafter, the pressure measuring device of the electrical storage device of Embodiment 1 of this invention is demonstrated. One end of the pipe 2 is connected to the electricity storage device 1 so that the pressure inside the electricity storage device can be detected, and the other end is measured with a pressure sensor, a pressure gauge, or the like, and the measured pressure is converted into an electrical signal and output. A pressure detector 3a composed of the pressure sensor, pressure gauge, and the like of the pressure detector is connected. The pipe 2 is a general SUS (stainless steel) or copper pipe, and may be flexible like a flexible tube.

圧力検出器3aは加温・冷却機構4a、温度管理器4bを含む温度管理部4により一定温度に保持されている。加温・冷却機構4aは温度管理器4bにより圧力検出器3aが一定温度になるように制御されている。即ち、蓄電デバイス1の温度が低い場合には、加温・冷却機構4aで圧力検出器3aの加熱を行い、また、蓄電デバイス1の温度が高い場合には加温・冷却機構4aで圧力検出器3aの冷却をおこなう。   The pressure detector 3a is maintained at a constant temperature by a temperature management unit 4 including a heating / cooling mechanism 4a and a temperature management unit 4b. The heating / cooling mechanism 4a is controlled by the temperature controller 4b so that the pressure detector 3a has a constant temperature. That is, when the temperature of the electricity storage device 1 is low, the pressure detector 3a is heated by the heating / cooling mechanism 4a, and when the temperature of the electricity storage device 1 is high, the pressure is detected by the heating / cooling mechanism 4a. The vessel 3a is cooled.

なお、加温・冷却機構4aとしては例えばヒータと、放熱フィンと冷却用ファン、又は螺旋配管に水等の比熱の高い液体を還流させたものからなり、温度管理器4bはその温度管理する制御を行う。   The heating / cooling mechanism 4a is composed of, for example, a heater, a heat radiating fin, a cooling fan, or a spiral pipe in which a liquid having a high specific heat such as water is circulated. I do.

この構成により、蓄電デバイス1の温度が急上昇した際においても、圧力検出器3aの温度がコントロールされているため圧力検出器3aの機能を損なうことなく蓄電デバイス1の正確な圧力が計測できる。   With this configuration, even when the temperature of the power storage device 1 rapidly rises, the accurate pressure of the power storage device 1 can be measured without impairing the function of the pressure detector 3a because the temperature of the pressure detector 3a is controlled.

なおこの場合、例えば後述する温度検出部の配管2の温度を検出する温度センサ5bからの信号を温度検出器5cを介して測定制御装置100に入力して、測定制御装置100が温度管理器4bに制御信号を送ってフィードバック制御を行う。   In this case, for example, a signal from a temperature sensor 5b for detecting the temperature of the pipe 2 of the temperature detection unit described later is input to the measurement control device 100 via the temperature detector 5c, and the measurement control device 100 is connected to the temperature manager 4b. A feedback control is performed by sending a control signal to.

実施の形態2.
図2は図1のうち、この発明の実施の形態2による蓄電デバイスの圧力測定装置に特に係る部分の具体的な構成を示した図である。図2において、蓄電デバイス1近傍の配管2には加温・冷却機構4aを構成する放熱フィン(冷却機構)4abが設けられている。この放熱フィン4abにより配管2を冷却して蓄電デバイス1で発生した熱が圧力センサ、圧力ゲージ等からなる圧力検出器3aに伝わることを防ぎ、圧力検出器3aの損傷を防いでいる。そして蓄電デバイス1の温度が急上昇した場合でも、蓄電デバイス1の正確な圧力が計測できる。圧力検出器3aはA/D変換器3b、さらには測定制御装置100に接続される。
なお、圧力検出器3aとA/D変換器3bで圧力検出部を構成する。
Embodiment 2. FIG.
FIG. 2 is a diagram showing a specific configuration of a portion related to the pressure measuring device for an electricity storage device according to Embodiment 2 of the present invention in FIG. In FIG. 2, a heat dissipating fin (cooling mechanism) 4 ab constituting the heating / cooling mechanism 4 a is provided in the pipe 2 in the vicinity of the electricity storage device 1. The heat radiation fin 4ab cools the pipe 2 to prevent heat generated in the power storage device 1 from being transmitted to the pressure detector 3a including a pressure sensor, a pressure gauge, and the like, thereby preventing damage to the pressure detector 3a. And even when the temperature of the electrical storage device 1 rises rapidly, the exact pressure of the electrical storage device 1 can be measured. The pressure detector 3 a is connected to the A / D converter 3 b and further to the measurement control device 100.
The pressure detector 3a and the A / D converter 3b constitute a pressure detector.

放熱フィン4abは図2では薄板状の形状であるが、円盤状、スパイラル状のフィンでもよく、ヒートシンクの役割を果たせばどのような形状でもよい。また、放熱フィンにファン(図示省略)等で風を送って、冷却効果を高めることが可能である(共に冷却機構を構成する)。配管2は蓄電デバイス1の外装缶に開けた開口部にネジ式に固定された接続プラグ1aにより接続されている。接続プラグ1aの両側(蓄電デバイス1側と配管2側)にはネジが形成されている。配管2との接続には継ぎ手1bが使用されていて、この継ぎ手1bはユニオン継ぎ手やフェルール継ぎ手等接続がしやすく、気密性が保てるものが適している。配管2はSUSやテフロン(登録商標)などの材質で、耐腐食性、高温耐性の高いものが好ましい。配管2を長くする場合には、フレキシブルチューブを用いることができる。   The heat dissipating fins 4ab have a thin plate shape in FIG. 2, but may be disk-shaped or spiral fins, or any shape as long as they serve as a heat sink. In addition, it is possible to enhance the cooling effect by sending air to the radiating fins with a fan (not shown) or the like (both constitute a cooling mechanism). The pipe 2 is connected to an opening opened in the outer can of the electricity storage device 1 by a connection plug 1a fixed in a screw manner. Screws are formed on both sides of the connection plug 1a (the electricity storage device 1 side and the pipe 2 side). A joint 1b is used for connection to the pipe 2, and a suitable joint 1b that can be easily connected, such as a union joint or a ferrule joint, and can maintain airtightness is suitable. The pipe 2 is preferably made of a material such as SUS or Teflon (registered trademark) and has high corrosion resistance and high temperature resistance. When making the piping 2 long, a flexible tube can be used.

また、接続プラグ1aと蓄電デバイス1の外装缶の間にリング状のシール材が固着されていると、蓄電デバイス1の内圧が急上昇した場合でも発生ガスが漏洩することなく配管2に運ばれる。シール材はテフロン(登録商標)やメタル製の耐熱性、耐腐食性の高いガスケットが適しており、これによって気密性が高まる。蓄電デバイス1の外装缶と接続プラグ1aの接続後に接着剤もしくはシール材を塗布することにより、機密性をあげることも可能である。   Further, when a ring-shaped sealing material is fixed between the connection plug 1a and the outer can of the power storage device 1, even when the internal pressure of the power storage device 1 rises rapidly, the generated gas is conveyed to the pipe 2 without leaking. As the sealing material, Teflon (registered trademark) or a metal-made gasket having high heat resistance and corrosion resistance is suitable, which increases the airtightness. It is possible to improve confidentiality by applying an adhesive or a sealing material after connecting the outer can of the electricity storage device 1 and the connection plug 1a.

配管2の蓄電デバイス1と反対側の先には圧力検出器3aが接続されており、圧力検出器3aから、測定した圧力をアナログ信号からデジタル信号に変換して出力するA/D変換器3bを通じて出力された信号は、例えばパーソナルコンピュータ(PC)からなる測定制御装置100でデータ処理される。圧力検出器3a近傍の配管2には加温・冷却機構4aを構成する例えばヒータ4aaが巻かれ(加温機構)、温度管理器4bで温度管理されている。配管2の温度が低い場合、発生ガスの一部が固化して配管2内壁に付着することがあり、これを防ぐために配管2が加温されている。   A pressure detector 3a is connected to the end of the pipe 2 opposite to the power storage device 1, and an A / D converter 3b that converts the measured pressure from an analog signal to a digital signal and outputs the pressure from the pressure detector 3a. The signal output through is processed by a measurement control device 100 made up of a personal computer (PC), for example. For example, a heater 4aa constituting a heating / cooling mechanism 4a is wound around the pipe 2 in the vicinity of the pressure detector 3a (heating mechanism), and the temperature is managed by the temperature manager 4b. When the temperature of the pipe 2 is low, a part of the generated gas may solidify and adhere to the inner wall of the pipe 2, and the pipe 2 is heated to prevent this.

実施の形態3.
この発明の実施の形態3による蓄電デバイスの圧力測定装置では、図1に示すように蓄電デバイス1及び配管2には温度センサ5a,5bが取り付けられており、温度センサ5a,5bと、これらの測定した値を入力する温度検出器5cで温度検出部5を構成している。測定制御装置100は圧力検出器3aで測定した圧力、及び温度検出部5で測定した温度の値から、発生ガス量を演算する(発生ガスの定量化)。これにより、蓄電デバイス1と配管2に含まれたガスの平均温度及び測定圧力から発生ガスの圧力を正確に求めることができる
Embodiment 3 FIG.
In the pressure measuring device for an electricity storage device according to Embodiment 3 of the present invention, as shown in FIG. 1, temperature sensors 5a and 5b are attached to the electricity storage device 1 and the pipe 2, and the temperature sensors 5a and 5b, A temperature detector 5c that inputs the measured value constitutes the temperature detector 5. The measurement control device 100 calculates the amount of generated gas from the pressure measured by the pressure detector 3a and the temperature measured by the temperature detector 5 (quantization of generated gas). Thereby, the pressure of generated gas can be calculated | required correctly from the average temperature and measurement pressure of the gas contained in the electrical storage device 1 and the piping 2. FIG.

また図3に示すように、配管2の圧力検出器3aの近傍に開閉可能な開閉バルブ6を挿入し、例えば測定制御装置100の制御により、開閉バルブ6を閉じて開閉バルブ6の出力側に接続されている圧力検出器3aを切り離し、代わりにガス捕集容器8を接続することにより、ガスをガス捕集容器8内に採集することができる。この開閉バルブ6はボールバルブ、バタフライバルブ等のバルブが適する。ガス捕集容器8はアルミラミネート製、ポリエチレンやポリプロピレン製の容器、ポリビニール製等発生ガスを収集し、密封できるものであればどのような形状でもよい。   As shown in FIG. 3, an openable / closable valve 6 is inserted in the vicinity of the pressure detector 3 a of the pipe 2, and the open / close valve 6 is closed to the output side of the open / close valve 6 under the control of the measurement control device 100, for example. The gas can be collected in the gas collection container 8 by disconnecting the connected pressure detector 3a and connecting the gas collection container 8 instead. The opening / closing valve 6 is suitably a valve such as a ball valve or a butterfly valve. The gas collection container 8 may have any shape as long as it can collect and seal the generated gas such as aluminum laminate, polyethylene or polypropylene, and polyvinyl.

また、開閉バルブ6の出力側にコネクタ10を接続して、圧力検出器3a、ガス捕集容器8を該コネクタ10に取り換えながら接続してもよい。さらに図4に示すようにコネクタは複数方向に分岐している分岐コネクタ10aでもよい。分岐コネクタ10aの場合、分岐後の各々の配管に開閉バルブ6を取り付けることにより、目的に応じてガスの流れる方向を切り替えることができる。また、ガス捕集容器8の代わりに直接、ガス分析装置11を接続することにより、ガスの成分を分析することができる。この場合は、開閉バルブ6とガス分析装置11の間に、ニードル弁等のガス流量調整弁20を接続することが好ましい。これによって、一定量のガスをガス分析装置11に送ることが可能である。また、例えば測定制御装置100などでの制御により、開閉バルブ6を一定間隔で開閉し、開いた時の圧力変化ΔPを測定すれば、初期に比べてどの程度変化したかを定量化することが可能である。   Alternatively, the connector 10 may be connected to the output side of the opening / closing valve 6 so that the pressure detector 3 a and the gas collection container 8 are replaced with the connector 10 and connected. Further, as shown in FIG. 4, the connector may be a branch connector 10a that branches in a plurality of directions. In the case of the branch connector 10a, the gas flow direction can be switched according to the purpose by attaching the opening / closing valve 6 to each pipe after branching. Further, the gas component can be analyzed by directly connecting the gas analyzer 11 instead of the gas collection container 8. In this case, it is preferable to connect a gas flow rate adjusting valve 20 such as a needle valve between the opening / closing valve 6 and the gas analyzer 11. Thereby, a certain amount of gas can be sent to the gas analyzer 11. Further, for example, if the pressure change ΔP when the open / close valve 6 is opened / closed and measured when it is opened by the control of the measurement control device 100 or the like, the degree of change compared to the initial value can be quantified. Is possible.

例えば測定制御装置100の制御により、開閉バルブ6を間欠的に開閉して測定した蓄電デバイス1の内圧と蓄電デバイス1の温度から蓄電デバイス1内部で発生した事象を解析することができる。
また、開閉バルブ6を間欠的に開閉して測定した内圧と蓄電デバイス1の温度から発生ガスを定量化することができる。
For example, under the control of the measurement control device 100, an event occurring inside the electricity storage device 1 can be analyzed from the internal pressure of the electricity storage device 1 and the temperature of the electricity storage device 1 measured by opening and closing the on-off valve 6 intermittently.
Further, the generated gas can be quantified from the internal pressure measured by opening and closing the on-off valve 6 intermittently and the temperature of the electricity storage device 1.

さらに、図1に示したように電圧検出器7、温度検出器5cにより蓄電デバイス1の圧力測定時に、電圧、温度のデータを同時に測定することによって、測定制御装置100で蓄電デバイス1の圧力、電圧、温度の変化を解析して圧力が変化した原因を特定することができる。これによって蓄電デバイス1の内部状態をより正確に把握することが可能である。   Further, as shown in FIG. 1, when the pressure of the electricity storage device 1 is measured by the voltage detector 7 and the temperature detector 5c, the voltage of the electricity storage device 1 is measured by the measurement control device 100 by simultaneously measuring the voltage and temperature data. The cause of the pressure change can be identified by analyzing the change in voltage and temperature. As a result, the internal state of the electricity storage device 1 can be grasped more accurately.

また、蓄電デバイス1での配管2の取り付け場所を接続プラグ1aに代えてガス放出弁20とすることで、ガス放出弁20の作動圧力以上の圧力になってもガス放出弁20からガスが噴出することがないため、より高い圧力まで圧力を測定することが可能である。   Further, by replacing the connection plug 1a with the gas discharge valve 20 at the place where the pipe 2 is attached in the electricity storage device 1, gas is ejected from the gas discharge valve 20 even when the pressure exceeds the operating pressure of the gas discharge valve 20. Therefore, it is possible to measure the pressure up to a higher pressure.

実施例1.
露点−80℃のアルゴンドライボックスに、電圧3.0Vの市販リチウムイオン電池(1)(容量30Ah)を入れ、この電池(1)の側面をマイクログラインダーで直径12mmの円形に開口した。その後、開口部に内径12mm、外径18mmのガスケットを重ね、外径12mmの接続プラグ(1a)を接続し、この接続プラグ(1a)に配管(2)、及び圧力センサ(3a)、開閉バルブ(6)を予め接続した継ぎ手(コネクタ)(8)を接続した。配管(2)、圧力センサ(3a)、及び開閉バルブ(6)は各々真空ボックスで真空引きした後にアルゴンドライボックス内に入れて接続しておいた。
Example 1.
A commercially available lithium ion battery (1) having a voltage of 3.0 V (capacity 30 Ah) was placed in an argon dry box having a dew point of −80 ° C., and the side surface of the battery (1) was opened in a circular shape having a diameter of 12 mm with a micro grinder. Thereafter, a gasket having an inner diameter of 12 mm and an outer diameter of 18 mm is stacked on the opening, and a connection plug (1a) having an outer diameter of 12 mm is connected. The pipe (2), pressure sensor (3a), and open / close valve are connected to the connection plug (1a). A joint (connector) (8) to which (6) was previously connected was connected. The pipe (2), the pressure sensor (3a), and the opening / closing valve (6) were each evacuated in a vacuum box and then connected in an argon dry box.

この電池(1)を大気中に取り出し、圧力センサ(3a)と表示計(100)を接続した。蓄電デバイス(1)に電圧計測用のケーブル(電圧検出器7)を接続し、温度検出用の熱電対(温度センサ5a,5b)を貼付した。蓄電デバイス(1)近傍の配管には放熱フィン(4ab)を取り付け、圧力センサ(3a)付近の配管(2)にはテープヒータ(4aa)を巻き、その外側を断熱材で覆った。このヒータ(4aa)の出力を温度管理器(4b)で40℃になるように調整した。充電状態の蓄電デバイス(1)に別のテープヒータを巻きつけ、このテープヒータを7℃/minの昇温速度で200℃まで昇温した。この時の電圧(V)、温度(T)及び圧力(P)の関係を図5に示す。温度の上昇に従って電解液溶媒の揮発や電極表面における電解液の分解により徐々に内圧(P)が上昇し、電圧(V)降下に伴い蓄電デバイス内部に過大な電流が流れ、温度(T)が上昇しまた電解液の分解により急激に内圧(P)が増加し、ある一定圧力に到達すると、ガス放出弁(20)が作動してガスが放出され、内圧が急激に低下している。   The battery (1) was taken out into the atmosphere, and the pressure sensor (3a) and the indicator (100) were connected. A voltage measurement cable (voltage detector 7) was connected to the electricity storage device (1), and thermocouples (temperature sensors 5a and 5b) for temperature detection were attached. A heat radiating fin (4ab) was attached to the pipe near the electric storage device (1), a tape heater (4aa) was wound around the pipe (2) near the pressure sensor (3a), and the outside was covered with a heat insulating material. The output of the heater (4aa) was adjusted to 40 ° C. by the temperature controller (4b). Another tape heater was wound around the charged electricity storage device (1), and the temperature of the tape heater was increased to 200 ° C. at a temperature increase rate of 7 ° C./min. FIG. 5 shows the relationship between voltage (V), temperature (T), and pressure (P) at this time. As the temperature rises, the internal pressure (P) gradually rises due to the volatilization of the electrolyte solvent and the decomposition of the electrolyte on the electrode surface. As the voltage (V) drops, an excessive current flows inside the electricity storage device, and the temperature (T) When the pressure rises and the internal pressure (P) suddenly increases due to the decomposition of the electrolytic solution and reaches a certain pressure, the gas release valve (20) is actuated to release the gas, and the internal pressure drops rapidly.

比較例1.
上記実施例1において、配管(2)を用いずに、圧力センサ(3a)を直接接続プラグ(1a)に取り付けたこと以外は全て、上記実施例1と同様にした時の電圧(V)、温度(T)及び圧力(P)の関係を図6に示す。図5の配管(2)を用いた場合と比較すると、圧力(P)が高く計測され、電圧(V)降下時の急激な圧力(P)増加により圧力センサ(3a)の測定限界を超えたため、測定不能となった。
Comparative Example 1
In Example 1, the voltage (V) was the same as in Example 1 except that the pressure sensor (3a) was directly attached to the connection plug (1a) without using the pipe (2). The relationship between temperature (T) and pressure (P) is shown in FIG. Compared to the case of using the pipe (2) in FIG. 5, the pressure (P) was measured higher, and the measurement limit of the pressure sensor (3a) was exceeded due to a sudden increase in pressure (P) when the voltage (V) dropped. It became impossible to measure.

以上の結果より、実施例1に示したように圧力測定部(3)を蓄電デバイス(1)から離れた位置に設置し、配管(2)の温度をコントロールすることにより正確な圧力(P)が測定できる。   From the above results, as shown in Example 1, the pressure measuring unit (3) is installed at a position away from the electricity storage device (1), and the temperature of the pipe (2) is controlled, so that the accurate pressure (P) Can be measured.

1 蓄電デバイス、1a 接続プラグ、1b 継ぎ手、2 配管、3 圧力検出部、3a 圧力検出器、3b A/D変換器、4 温度管理部、4a 加温・冷却機構、4aa ヒータ、4ab 放熱フィン、4b 温度管理器、5 温度検出部、5a,5b 温度センサ、5c 温度検出器、6 開閉バルブ、7 電圧検出器、8 ガス捕集容器、10 コネクタ、10a 分岐コネクタ、11 ガス分析装置、12 ガス流量調整弁、20 ガス放出弁、100 測定制御装置。   DESCRIPTION OF SYMBOLS 1 Power storage device, 1a Connection plug, 1b Joint, 2 Piping, 3 Pressure detection part, 3a Pressure detector, 3b A / D converter, 4 Temperature management part, 4a Heating / cooling mechanism, 4aa heater, 4ab Radiation fin, 4b Temperature controller, 5 Temperature detector, 5a, 5b Temperature sensor, 5c Temperature detector, 6 Open / close valve, 7 Voltage detector, 8 Gas collection container, 10 Connector, 10a Branch connector, 11 Gas analyzer, 12 Gas Flow control valve, 20 gas release valve, 100 measurement control device.

Claims (8)

一端が蓄電デバイスに内部圧力が測定可能に接続された配管と、
前記配管の他端に接続されて前記蓄電デバイス内部の圧力を検出する圧力検出部と、
前記圧力検出部を含む前記配管を加熱または冷却して温度管理を行う温度管理部と、
を備えたことを特徴とする蓄電デバイスの圧力測定装置。
A pipe having one end connected to the electricity storage device so that the internal pressure can be measured;
A pressure detector connected to the other end of the pipe to detect the pressure inside the electricity storage device;
A temperature management unit that performs temperature management by heating or cooling the pipe including the pressure detection unit; and
A pressure measuring device for an electricity storage device, comprising:
前記配管の前記蓄電デバイス近傍に設けられた冷却機構をさらに備えることを特徴とする請求項1に記載の蓄電デバイスの圧力測定装置。   The pressure measuring device for an electricity storage device according to claim 1, further comprising a cooling mechanism provided near the electricity storage device of the pipe. 前記蓄電デバイス及び前記配管の温度を検出する温度検出部と、
前記温度検出部により検出された温度と前記圧力検出部により検出された圧力から発生ガスを定量化する測定制御装置と、
を備えたことを特徴とする請求項1に記載の蓄電デバイスの圧力測定装置。
A temperature detector for detecting the temperature of the electricity storage device and the piping;
A measurement control device for quantifying the generated gas from the temperature detected by the temperature detector and the pressure detected by the pressure detector;
The pressure measuring device for an electricity storage device according to claim 1, comprising:
前記蓄電デバイスと前記圧力検出部の間の前記配管に挿入された開閉バルブを備えたことを特徴とする請求項1に記載の蓄電デバイスの圧力測定装置。   The pressure measuring device for an electricity storage device according to claim 1, further comprising an opening / closing valve inserted into the pipe between the electricity storage device and the pressure detection unit. 前記蓄電デバイス及び前記配管の温度を検出する温度検出部と、
前記蓄電デバイスと前記圧力検出部の間の前記配管に挿入された開閉バルブと、
前記開閉バルブを間欠的に開閉して前記温度検出部と前記圧力検出部により前記蓄電デバイスの圧力と温度を測定する測定制御装置と、
を備えたことを特徴とする請求項1に記載の蓄電デバイスの圧力測定装置。
A temperature detector for detecting the temperature of the electricity storage device and the piping;
An on-off valve inserted in the pipe between the electricity storage device and the pressure detection unit,
A measurement control device that intermittently opens and closes the opening and closing valve and measures the pressure and temperature of the power storage device by the temperature detection unit and the pressure detection unit;
The pressure measuring device for an electricity storage device according to claim 1, comprising:
前記配管の取り付け位置が、前記蓄電デバイスのガス放出弁であることを特徴とする請求項1から5までのいずれか1項に記載の蓄電デバイスの圧力測定装置。   The pressure measuring device for an electricity storage device according to any one of claims 1 to 5, wherein the pipe is attached to a gas release valve of the electricity storage device. 前記蓄電デバイスの電圧を検出する電圧検出部と、温度を検出する温度検出部と、前記圧力検出部の圧力と前記電圧検出部の電圧と前記温度検出部の温度から前記蓄電デバイスの状態を測定する測定制御装置と、を備えたことを特徴とする請求項1に記載の蓄電デバイスの圧力測定装置。   A voltage detection unit that detects a voltage of the power storage device, a temperature detection unit that detects a temperature, a pressure of the pressure detection unit, a voltage of the voltage detection unit, and a temperature of the temperature detection unit, and measures the state of the power storage device The pressure measurement device for an electricity storage device according to claim 1, further comprising: a measurement control device that performs measurement. 配管の一端を蓄電デバイスの内部圧力が測定可能なように接続し、他端に前記蓄電デバイス内部の圧力を検出する圧力検出部を接続し、前記圧力検出部を含む前記配管を加熱または冷却して温度管理を行いながら前記蓄電デバイスの圧力測定を行う蓄電デバイスの圧力測定方法。   One end of the pipe is connected so that the internal pressure of the power storage device can be measured, and the other end is connected to a pressure detection unit that detects the pressure inside the power storage device, and the pipe including the pressure detection unit is heated or cooled. A pressure measuring method for the electricity storage device, wherein the pressure of the electricity storage device is measured while performing temperature control.
JP2012070970A 2012-03-27 2012-03-27 Pressure measuring apparatus for power storage device and method thereof Pending JP2013205044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012070970A JP2013205044A (en) 2012-03-27 2012-03-27 Pressure measuring apparatus for power storage device and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070970A JP2013205044A (en) 2012-03-27 2012-03-27 Pressure measuring apparatus for power storage device and method thereof

Publications (1)

Publication Number Publication Date
JP2013205044A true JP2013205044A (en) 2013-10-07

Family

ID=49524300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070970A Pending JP2013205044A (en) 2012-03-27 2012-03-27 Pressure measuring apparatus for power storage device and method thereof

Country Status (1)

Country Link
JP (1) JP2013205044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827680A (en) * 2018-06-15 2018-11-16 中国电子科技集团公司第十八研究所 Device and method for testing performance of chemical heater
WO2020116851A1 (en) * 2018-12-03 2020-06-11 주식회사 엘지화학 Internal pressure measuring jig for cylindrical battery cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108827680A (en) * 2018-06-15 2018-11-16 中国电子科技集团公司第十八研究所 Device and method for testing performance of chemical heater
WO2020116851A1 (en) * 2018-12-03 2020-06-11 주식회사 엘지화학 Internal pressure measuring jig for cylindrical battery cell
US11824171B2 (en) 2018-12-03 2023-11-21 Lg Energy Solution, Ltd. Internal pressure measuring jig for cylindrical battery cell

Similar Documents

Publication Publication Date Title
Wang et al. Real-time monitoring of internal temperature evolution of the lithium-ion coin cell battery during the charge and discharge process
Zhang et al. In situ measurement of radial temperature distributions in cylindrical Li-ion cells
Jhu et al. Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter
Shah et al. Measurement of multiscale thermal transport phenomena in Li-ion cells: A review
Jhu et al. Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology
TWI396359B (en) Battery charging system and method thereof
CN203324211U (en) Device for measuring specific heat capacity and calorific value of battery
JP6190783B2 (en) Secondary battery and method for measuring gas generated in secondary battery
US20140295222A1 (en) Multi-terminal battery with sensor terminal
Zhang et al. Reaction temperature sensing (RTS)-based control for Li-ion battery safety
CN204216119U (en) X-ray diffractometer original position battery package and heating-cooling device
US10107696B2 (en) Methods and devices for electrochemical system analysis
WO2023065951A1 (en) Energy storage unit thermal runaway experiment platform and control method therefor
Ke et al. Potential of ultrasonic time-of-flight and amplitude as the measurement for state of charge and physical changings of lithium-ion batteries
JP6778617B2 (en) Systems and methods for distinguishing short circuits in batteries
JP2013205044A (en) Pressure measuring apparatus for power storage device and method thereof
Huang et al. In situ measurement of temperature distributions in a Li-ion cell during internal short circuit and thermal runaway
Chatterjee et al. Performance analysis of Li-ion battery under various thermal and load conditions
JP6531388B2 (en) Non-aqueous electrolyte secondary battery and method of evaluating gas generation amount in battery using the battery.
Shirazi et al. Numerical study of composite electrode's particle size effect on the electrochemical and heat generation of a Li-ion battery
Li et al. Implementing expansion force-based early warning in LiFePO4 batteries with various states of charge under thermal abuse scenarios
CN219348943U (en) Battery test electrode and battery in-situ test device
Xiao et al. Online Monitoring of Internal Temperature in Lithium-Ion Batteries
Yu et al. A novel heat generation acquisition method of cylindrical battery based on core and surface temperature measurements
JP2017090254A (en) Measurement cell