JP2013205015A - 光検査装置およびその方法 - Google Patents

光検査装置およびその方法 Download PDF

Info

Publication number
JP2013205015A
JP2013205015A JP2012070542A JP2012070542A JP2013205015A JP 2013205015 A JP2013205015 A JP 2013205015A JP 2012070542 A JP2012070542 A JP 2012070542A JP 2012070542 A JP2012070542 A JP 2012070542A JP 2013205015 A JP2013205015 A JP 2013205015A
Authority
JP
Japan
Prior art keywords
light
sample
defect
interference
optical inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012070542A
Other languages
English (en)
Inventor
Kenji Nakahira
健治 中平
Toshifumi Honda
敏文 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012070542A priority Critical patent/JP2013205015A/ja
Priority to US14/378,478 priority patent/US9360434B2/en
Priority to PCT/JP2013/053177 priority patent/WO2013145898A1/ja
Publication of JP2013205015A publication Critical patent/JP2013205015A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/0008Industrial image inspection checking presence/absence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/061Sources
    • G01N2201/06113Coherent sources; lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • G01N2201/0697Pulsed lasers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed
    • G01N2201/0698Using reference pulsed source

Abstract

【課題】
本発明は、量子ノイズの影響を抑制し、光量が微弱でも良好な欠陥検出性能が得られる光検査装置およびその方法を提供することを目的とする。
【解決手段】
本発明は、上記課題を解決するため、試料に光を照射する光源と、試料に対して透過または散乱または反射した対象光と参照光とを、前記対象光に比べ、干渉後の光のほうが強度が弱くなるように干渉させる光干渉部と、前記光干渉部による干渉後の光の光子数を測定する光子計数器と、前記光子計数器により得られた検出光子数から欠陥の有無を識別する欠陥識別部とを備える光検査装置を提供する。
【選択図】 図1

Description

本発明は、光検査装置およびその方法に関する。
半導体基板や薄膜基板等の製造ラインにおいて、製品の高い歩留まりを得るために、試料表面に存在する微小な欠陥を検査する光検査装置が広く用いられている(例えば、特許文献1、2)。一般に光検査装置では、数十μmの幅に集光した光を試料表面上に照射し、欠陥からの透過または散乱または反射された光(以下、対象光と呼ぶ)を集光・検出して欠陥検出を行う。現在実用化されている装置では、数十nm以上の欠陥を検査することができる。
特開平9−304289号公報 特開2006−201179号公報
ここで、微細加工技術の進歩に伴い、より微小な欠陥を検査したいという要求が高まっている。微小な欠陥では、欠陥から得られる光は微弱となるため、微弱光にも適用可能なより高性能な欠陥検出技術が必要となる。特に、微弱光では量子ノイズと呼ばれる量子力学の不確定性原理に基づく不可避な揺らぎの影響が無視できなくなるため、量子ノイズの影響を抑えることが重要となる。
欠陥検査を行う方法として、ホモダイン検出やヘテロダイン検出のように試料から得られる光と参照光との振幅差・位相差に関する情報に基づいて欠陥の有無を識別する方法がある。
特許文献1、2の光検査装置では、まず対象光と参照光を干渉させた光を検出器により電気信号に変換した後、得られた電気信号に対して欠陥検出を行っていた。この際、量子力学によると、検出器により光を検出した後では本質的に量子ノイズの影響を抑制することはできないため、検出前に量子ノイズの影響を抑制する処理が必要となる。しかし、従来の装置では、参照光との干渉において量子ノイズの影響を抑制するための工夫が行われておらず、光量が微弱になると良好な欠陥検出性能が得られなかった。
上記問題点に鑑み、本発明は、量子ノイズの影響を抑制し、光量が微弱でも良好な欠陥検出性能が得られる光検査装置およびその受信方法を提供することを目的とする。
本発明は、上記課題を解決するため、試料に光を照射する光源と、試料に対して透過または散乱または反射した対象光と参照光とを、前記対象光に比べ、干渉後の光のほうが強度が弱くなるように干渉させる光干渉部と、前記光干渉部による干渉後の光の光子数を測定する光子計数器と、前記光子計数器により得られた検出光子数から欠陥の有無を識別する欠陥識別部とを備える光検査装置を提供する。
また、本発明は、試料に光を照射する光照射ステップと、試料からの透過または散乱または反射により得られる対象光と参照光とを前記対象光に比べ、干渉後の光のほうが強度が弱くなるように干渉させる光干渉ステップと、前記干渉後の光の光子数を測定する光子計数ステップと、前記光子計数ステップにより得られた検出光子数に基づいて欠陥の有無を識別する欠陥識別ステップとを有することを特徴とする光検査方法を提供する。
本発明によれば、量子ノイズの影響を抑制し、光量が微弱でも良好な欠陥検出性能が得られる光検査装置およびその方法を提供することができる。
実施例1による光検査装置の構成図である。 実施例2による光検査装置の構成図である。 実施例2による位相シフタの構成図である。 実施例3による光検査装置の構成図である。 実施例3の変形例による光検査装置の構成図である。 実施例1による光子計数器の構成図である。 実施例1による光子計数器の構成図である。 実施例4による光検査装置の構成図である。 実施例4の変形例による光検査装置の構成図である。 実施例1による欠陥の代表例を表す図である。 実施例1による対象光の状態を位相空間表現により表した図である。 実施例1による干渉光の状態を位相空間表現により表した図である。 実施例1による干渉光の状態を位相空間表現により表した図である。 実施例1による検出光子数に関する確率分布を表すグラフである。 実施例2による欠陥サイズと検出率の関係の概略を示したグラフである。 実施例2による試料表面凹凸と検出率の関係の概略を示したグラフである。 実施例5による光検査装置の構成図である。 実施例5の変形例による光検査装置の構成図である。 実施例6による光検査装置の構成図である。 実施例6の変形例による光検査装置の構成図である。 実施例7による光検査装置の構成図である。 実施例8による光検査装置の構成図である。 実施例9による光検査装置の構成図である。 実施例2によるインターフェイス画面を表す図である。 実施例2による処理フローを表す図である。 実施例2による振幅抑制器の構成図である。 実施例1の変形例1による光計数器を示す図である。 実施例1の変形例2による光計数器を示す図である。 実施例10による光検査装置の構成図である。
以下、本発明に係る各実施例について図面を用いて説明する。
図1を用いて本発明の実施例1に係る光を試料に照射することにより試料表面に存在する微小な欠陥を検査する光検査装置を説明する。本実施例では、試料111に光を照射する光源102と、試料111からの透過または散乱または反射により得られる対象光114と、欠陥がある場合または欠陥がない場合の少なくとも一方において、対象光に比べて干渉後の光のほうが振幅が小さくなるように対象光114と参照光113とを干渉させる光干渉器103と、光干渉器103による干渉後の光の光子数を測定する光子計数器104と、光子計数器104により得られた検出光子数に基づいて欠陥の有無を識別する欠陥識別部105とを備えることを特徴とする。
光検査装置101は、試料111に光を照射する光源102と、試料から散乱または反射された光と参照光113を干渉させる光干渉器103と、干渉後の光の光子数を計数する光子計数器104と、検出光子数を用いて欠陥の有無の識別を行う欠陥識別部105から構成される。試料111に照射する光は、空間分解能を高めるため試料111上で集光し、その集光した光を試料111上で走査することが多いが、これに限らない。光干渉器103では、ビームスプリッタ(図ではBSと記載)112や偏光器等を用いて光を干渉させる。さらに、光干渉器103では、図9を用いて後述するように、検出光子数に関する確率分布が、欠陥がある場合と欠陥がない場合でできるだけ重ならないように、光を変換する光変換器106を有する。光変換器106により、参照光113から振幅と位相を制御した参照光を生成し、この参照光をビームスプリッタ112への入力とする。
このように、振幅及び位相を制御した参照光との干渉により干渉前よりも光の強度(振幅)を弱くした後で、光子計数を行うことにより、図7および図9を用いて後述するように、量子ノイズの影響を抑制し、欠陥検出感度を向上する(または欠陥検出感度を維持した上で検査時間を短縮する)ことが可能となる。
なお、光源102では、用途や検査条件等に応じて適した光を照射すれば良い。例えば、単一の発振周波数を持つレーザ光であっても良いし、複数の発振周波数を持っていても良い。また、断続的な光であるパルス光であっても良いし、連続的な光であっても良い。光の状態が偏光していても良いし、光の振幅・位相・周波数のいずれかが変調していても良い。通常のレーザ光の状態であるコヒーレント状態の光であっても良いし、スクイーズド状態の光であっても良いし、光子数状態の光であっても良い。
対象光は、試料から散乱または反射された光に限らず、試料から透過された光であっても良い。光干渉器では、一種類の参照光のみと干渉させるだけでなく、二種類以上の参照光と干渉させても良い。参照光の光の種類は試料に照射する光と同じでなくとも良い。例えば、図6等を用いて後述するように、光源102ではコヒーレント状態の光を照射して、参照光113にはスクイーズド状態の光を用いても良い。参照光との干渉はビームスプリッタを用いなくても良く、例えば偏光板を用いて干渉を行なっても良い。光子計数器104の出力である検出光子数は、通常は電気信号である。欠陥識別部105では、アナログまたはディジタルの電気回路により、欠陥の有無を識別する。複数の空間モードの光(例えばライン状の光)に対して干渉および光子計数を行なっても良い。この場合、光子計数器としてラインセンサを用いることにより実現できる。複数の空間モードの光を用いれば、試料の広い空間に光を照射して、その空間を幾つかに分割して得られる個々の小空間に対して、欠陥有無の識別を並列に行うことができる。
図5A、図5Bは本実施例に係る光子計数器104である。光子計数を行う際には、量子効率が高く、暗計数率が低く、応答速度が十分である光子計数器104を用いる必要がある。ここで,量子効率とは光子計数器に到達する光子を光子計数器が正しく計数できる割合、暗計数率とは光子が到達していないにも関わらず光子を計数する(すなわち誤検出する)割合である。量子効率が高く暗計数率が低い光子検出器104として、ガイガーモード・アバランシェフォトダイオードや光電子増倍管が挙げられる。しかし、これらの光子検出器104は、単体としては応答速度が十分に高くはない。そこで、複数の光子検出器104を使用し、各々の光子検出器104に対応する受光面502を、501のように2次元格子状に配列する。または、近年実用化されているマルチピクセルフォトンカウンタを用いても良い。このように、本実施例では、光子計数器104において、複数個のガイガーモード・アバランシェフォトダイオード、複数個の光電子増倍管、マルチピクセルフォトンカウンタのうち何れかを用いることを特徴とする。全ての干渉光が受光面に当たるようにし、かつできるだけ多くの受光面に当たるように干渉光のスポットサイズを調整しておく。
このように、複数個のガイガーモード・アバランシェフォトダイオード、複数個の光電子増倍管、マルチピクセルフォトンカウンタの何れかを用いることにより、量子効率、暗計数率、応答速度を両立できる。干渉光に対してこれらの光子計数器194により光子計数を行うことで、高い欠陥検出性能を実現できる。
図5Bは、干渉光を的確に受光面512に導くために光検出器511の前段にレンズを配置した光子計数器104の一例である。光検出器511の受光面512に対して干渉光のスポットサイズが大きい場合には、凸レンズ513を受光面512の前面に配置することにより、干渉光のスポットサイズを小さくした後、光検出器511に入力するようにする。または、ライトガイド514を用いてスポットサイズを小さくしても良い。逆に、受光面512に対して干渉光のスポットサイズが小さい場合には、ライトガイド515を用いてスポットサイズを大きくする。ライトガイド514、515の代わりに凹レンズを用いても良い。ライトガイド514、515の形状は、干渉光が的確に受光面512に当たるように設計する。ライトガイド514、515のような単純な形状ではなく、より複雑な形状となっていても良い。例えば、ライトガイド514、515の入力側は円形で、ライトガイド514、515の出力側は光検出器の受光面501に効率良く当たるように正方形であっても良い。また、光検出器の受光面501は正方形である必要はなく、ライトガイド514、515の設計が容易となるような形(例えば円形)であっても良い。
図19は、本実施例の変形例1に係る光子計数器である。図19に示す変形例は、スリット1905と、レンズ1902と、光子計数器1904とから構成される。光子計数器1904は複数の光子検出器1906から構成される。光子計数器1904には、複数個のガイガーモード・アバランシェフォトダイオード、複数個の光電子増倍管、マルチピクセルフォトンカウンタの何れかを用いることができる。光がy方向に伸びたスリット1905を通過する際、x方向に対して回折する。レンズ1902はx方向に対しては平坦であるがy方向に対して凸の形状であり、光のy成分に対して集光するように働く。この結果、光1901は、光子計数器1904の受光面では領域1903のようにy方向には広がらずx方向に広がった分布をとる。これにより、各y成分について、x方向に並んだ複数の光子検出器を用いて光子計数を行うことができる。本実施例の変形例1によれば、光子計数器1904を、y方向に対して6個分の光子計数器が並んだラインセンサとして使用することができる。このため、y方向に広がった複数の空間モードの光に対して同時に光子計数を行うことができる。x方向に光を広げる手段として、スリット1905の代わりに凹レンズやレンズ拡散板などを用いても良い。
図20は本実施例の変形例2に係る光子計数器である。BS2003は図1におけるBS112の一例、ラインセンサ2005は光子計数器104の一例である。ラインセンサ2005には、図19で説明した構成を用いることができる(ただし、この図の例ではz軸を中心に90度回転させて用いる必要がある)。対象光2001と、振幅・位相が制御された参照光2002が、BS2003により干渉し、干渉後の光の光子数をラインセンサ2005を用いて計数する。ラインセンサ2005からは個々のセンサから検出光子数が出力される。それぞれの検出光子数に基づいて、欠陥識別部により各空間モードに対する欠陥の有無を識別する。
本実施例の変形例1、2によれば、ラインセンサを用いて並列に欠陥検査を行う場合にも、各々の欠陥検査において、振幅及び位相を制御した参照光との干渉を行った後で、光子計数を行うことにより、量子ノイズの影響を抑制することができる。
図7を用いて、欠陥がない場合とある場合における対象光および干渉光の位相と振幅の関係を説明する。
図7Aは、欠陥の形状や種類の例である。701は、欠陥がない位置における試料715の例である。716の矢印は、照射光および対象光を表している。702は、欠陥711を含んだ試料の例である。照射光が欠陥に当たり、欠陥からの散乱光または反射光が発生している。701の場合と比べると欠陥の高さの分だけ光路長が異なるため、対象光の位相が701の場合とは異なる。703は欠陥711と同じ高さの欠陥712を含んだ試料の例である。欠陥の高さが同じであるため光路長は同じであるが、試料の種類や形状が異なると、試料と光の相互作用の仕方が変化するために、一般に対象光の振幅や位相は変化する。704は、欠陥がない位置における701の例とは異なる試料713の例である。この例では、試料713は欠陥がない状態でも凹凸を持っている。705は、試料713が欠陥714を含んだ場合の例である。試料713の一部が欠けており、これも欠陥の一種である。欠陥がない試料713と比べると光路長や試料と光の相互作用が異なるため、この場合でも対象光の振幅や位相に影響を与える。
706は、欠陥がない位置における試料717の例である。この例では、試料からの透過光を対象光718としている。707は、欠陥719を含んだ試料の例である。欠陥719により、透過光の状態が変化する。検査したい試料や欠陥の種類等によって、試料からの透過光を対象光とすべきか、散乱光または反射光を対象光とすべきかは変化する。しかし、何れの場合でも欠陥がある場合とない場合では対象光の状態は変化し、その変化を検出することができれば欠陥の有無を識別することができる。
図7Bおよび図7Cは、それぞれ、対象光および干渉光の状態を表す位相空間表現の例である。これらの図において原点(x=x=0となる点)からの距離が光の振幅、x軸(横軸)との角度が光の位相を表す。ノイズが全く重畳しておらず振幅や位相が決まった値しかとらないならば、光の状態は位相空間表現において1点で表されるが、実際には量子ノイズが必ず重畳するために振幅・位相に関して不確定である。従って、このような不確定さを持った光の状態は、(x、x)座標で表された2次元空間に対する確率密度分布で表現される。ここでは、確率がある一定以上となるような状態の集合を円や楕円の内部で示す。不確定さを持った振幅および位相の平均値を、単にそれぞれ振幅および位相と呼ぶことにする。図7Bにおけるグラフ721の領域723は、欠陥がない場合(例えば701の場合)の対象光の状態である。領域724は、欠陥がある場合(例えば702の場合)の状態である。領域723と比べると対象光の振幅は同じであるが、位相が異なっている。グラフ722の領域725は、領域723と同じく欠陥がない場合の対象光の状態である。一方、領域726は、領域724とは別の欠陥がある場合(例えば703の場合)の状態である。領域725と比べると対象光の位相のみでなく振幅も異なっている。
図7Cは、グラフ721やグラフ722で示した対象光に対応する干渉光の状態を示している。参照光との干渉により、グラフ731やグラフ732のように、位相空間表現で示した2次元グラフ上でグラフ721やグラフ722の対象光に対して一定量の位置シフトをさせることができる。なお、説明の容易化のため、これらのグラフではさらに原点を中心とした回転も行なっている。干渉後に光子計数を行う場合には本グラフにおける振幅を計測することになるため、この回転の操作は計測結果である検出光子数には何の影響も及ぼさない。
軸およびx軸に対する位置シフト量は、参照光の振幅および位相によって制御することができる。対象光および参照光が、(x、x)座標でそれぞれ(a、a)および(b、b)で表されるような振幅・位相を持つコヒーレント状態の光である場合、ビームスプリッタを用いて干渉させた後の干渉光は、(x、x)座標で(c、c)=(acos(θ/2)−bsin(θ/2)、acos(θ/2)−bsin(θ/2))で表されるような振幅・位相を持つコヒーレント状態の光となる。ここで、cos(θ/2)は対象光に対するビームスプリッタの透過率を表し、対象光をできるだけ透過させるため1にできるだけ近い値とする(その際、sin(θ/2)はゼロに近い値となるため、b、bは非常に大きな値に設定する)。このため、(b、b)を設定することにより、x軸およびx軸に対して任意の位置シフトを施すことができる。グラフ731は、欠陥なしの場合における干渉光の振幅・位相が原点となるように干渉を行った後の干渉光の状態である。このような位置シフトを行うことで、ホモダインやヘテロダインと比べると欠陥有無の識別性能が向上する。グラフ732は、欠陥なしの場合における干渉光の振幅・位相が原点から少しだけずれるように干渉を行った後の干渉光の状態である。これにより、グラフ731の場合よりも識別性能が向上する(図9にて後述)。グラフ733は、コヒーレント状態でなくスクイーズド状態の光を用いて干渉させた場合、または干渉後にスクイージングを行った場合の光の状態である。コヒーレント状態以外の光を用いることにより欠陥がない場合の領域761と欠陥がある場合の領域762との間が広がり、振幅に対する揺らぎをより抑えることができ、量子ノイズの抑制が可能となる。
干渉光の状態を図7Cのようにするためには、参照光の振幅および位相を制御することが必須となる。また、一般的なフォトダイオードのような光子数の計数が不可能な検出器ではなく、光子計数を行える検出器が必要となる。位相空間表現上の点(c、c)で表されるコヒーレント状態の干渉光に対して光子計数を行うと、検出光子数は平均λ=c +c のポアソン分布に従う。ポアソン分布の分散はλであるため、(c、c)が原点に近い場合ほど検出光子数の揺らぎを抑制することができる(特に、真空状態と呼ばれる、c=c=0となるコヒーレント状態では、揺らぎはなく検出光子数は常にゼロとなる)。このため、図7Bの対象光と比べて図7Cのように干渉光の強度を弱くすることにより、量子ノイズを抑制することが可能となる。なお、ホモダイン検出やヘテロダイン検出では、通常、干渉後の光の振幅が非常に大きくなるように干渉させる。この場合には平均光子数が非常に多くなるため光子計数を行うことは困難であり、また光子計数を行ったとしても前述の理由により揺らぎは非常に大きくなる。
なお、図7Cでは欠陥なしの場合の干渉光のほうが振幅が小さくなるように干渉を行なっているが、欠陥ありの場合の干渉光のほうが振幅が小さくなるように干渉を行なっても良い。
図9は、本実施例における検出光子数に関する確率分布を表すグラフである。グラフ901およびグラフ902は、それぞれ、干渉光の状態が図7Cにおけるグラフ731およびグラフ732で表される場合の検出光子数に関する確率分布である。本実施例では、グラフ731において、欠陥なしおよび欠陥ありの場合の振幅を0.0および0.7であるとした。またグラフ732では各々の場合について振幅が1.0だけ大きくなるようにシフト量を変更し、振幅は1.0および1.7であるとした。また、説明の容易化のために、ここでは欠陥なしおよび欠陥ありに対する事前確率P(欠陥なし)、P(欠陥あり)が共に1/2であるとする。(すなわち、欠陥がない検査箇所と欠陥がある検査箇所が等確率で現れるものとする。)実線911および破線912は、それぞれ欠陥がない場合および欠陥がある場合の検出光子数nに関する条件付き確率分布P(n|欠陥なし)、P(n|欠陥あり)である。それぞれのグラフでは、前述の通り振幅の2乗の平均を持つポアソン分布に従う。従って、グラフ901では、欠陥なしと仮定した場合の条件付き確率は光子検出数が0である確率が1.0となり、その他の確率が0.0となる。一方、欠陥ありと仮定した場合の条件付き確率は、光子検出数が0である確率が約0.60で、光子検出数が1である確率が約0.31となり、光子検出数が増えるにつれ、その確率は下がっていく分布となる。また、グラフ902では、欠陥なしと仮定した場合の条件付き確率は光子検出数が0または1である確率が約0.39で、光子検出数が増えるにつれ、その確率は下がっていく分布となる。一方、欠陥ありと仮定した場合の条件付き確率は、光子検出数が2である確率が約0.21で最大であり、光子検出数が増えても減っても、その確率は下がっていく分布となる。
欠陥識別部では、検出光子数に基づいて欠陥の有無を判定する。本実施例では、適切な閾値Tを用いて、検出光子数がT個以上の場合には欠陥あり、検出光子数がT個未満の場合には欠陥なしと識別する。グラフ901においては、T=1の場合が平均誤識別率(欠陥識別結果が間違いである確率)は最小となり、グラフ902においては、T=2の場合が平均誤識別率は最小となる。なお、誤識別率は、誤検出率(欠陥なしの場合をありと識別する確率)、欠陥見逃し率(欠陥ありの場合をなしと識別する確率)の両方を含むものである。グラフ901および902では、それぞれT=1およびT=2の場合における各検出光子数に対する誤識別率(条件付き確率)を棒グラフで示している。棒グラフで示した値を全ての検出光子数で積算した値に、事前確率1/2を乗算した値が全体の誤識別率となり、それぞれ、約0.31、および約0.24となる。(例えば、グラフ901では、誤検出率は検出光子数n=1以上の場合に欠陥なしと識別される確率に検出工指数n=0の場合に欠陥ありと識別される確率を加えたものである。式で表すと、P(n≧1|欠陥なし)×P(欠陥なし)+P(n=0|欠陥あり)×P(欠陥あり)≒0×0.5+0.62×0.5=0.31となる。)このように、グラフ731のように欠陥がない場合の振幅をゼロとするよりも、グラフ732のようにゼロから少しずらすことにより、平均誤識別率を小さくすることが可能である。
なお、本実施例では、検出光子数に対して閾値を設定して欠陥の有無を識別したが、これに限らない。例えば、実際の検査環境では、欠陥の種類が特定できない場合など、検出光子数に対する確率分布が単純なポアソン分布に従わないことも多いが、この場合には単純な閾値処理のみでは良好な識別が行えないこともある。閾値処理よりも複雑な識別の例として、各検出光子数について欠陥ありの確率分布のほうが欠陥なしの確率分布より大きいならば欠陥ありと識別し、それ以外の場合には欠陥なしと識別する方法を用いても良い。また、複数の波長の光を照射して、各波長の光に対して光子計数を行う場合、各波長の光の検出光子数に対して個別に識別を行う代わりに、複数の波長に対する検出光子数の情報を用いて一括で識別を行なっても良い。
図8は、図7Cと同様に干渉光の状態を位相空間表現により表した図である。ただし、欠陥なしの場合も欠陥ありの場合も、ともに量子ノイズ以外の要因による不確定さを含み、状態がより複雑に揺らいでいる。欠陥なしの場合には、試料表面の凹凸度合いやノイズ等により、干渉光の状態は常に一定とはならないことが揺らぎの要因として挙げられる。また、欠陥ありの場合においても、例えば711や712で示した欠陥のサイズや形状が異なれば対象光の状態は一般に異なり、したがって干渉光の状態も異なる。しかし、このような干渉光の状態がより不確定に揺らいでいる場合でも、干渉光の強度が弱くなるように干渉を行った後光子計数を行う方法により、量子ノイズの影響を抑えることが可能である。
以上より、本実施例によれば、欠陥がなしまたはありの場合の少なくとも一方において、対象光よりも干渉後の光のほうが振幅が小さくなるように干渉を行うことによって、光子計測において、量子ノイズによる誤識別率が低くなり、良好な欠陥検出性能を得ることができる。
図2を用いて本発明の実施例2に係る光検査装置を説明する。参照光213は、振幅抑制器202および位相シフタ203により適した振幅・位相に変化させた後、ビームスプリッタ204により対象光211と干渉させ、干渉光214を得ている。この際、図10で後述するように、要求性能および試料状態によって、参照光213の最適な振幅・位相は異なるため、制御器201により、要求性能および試料状態に応じて振幅抑制量および位相シフト量を調整する。さらに、制御器201では、欠陥識別部216の識別方法を制御しても良い。要求性能とは、要求される欠陥検出の感度(欠陥サイズ等)、スループット、検出対象とする欠陥の種類、誤識別率、誤検出率(欠陥なしの場合をありと識別する確率)、欠陥見逃し率(欠陥ありの場合をなしと識別する確率)等の情報を表す。また、試料状態とは、欠陥なしの場合または欠陥ありの場合における表面凹凸度合いや反射率、試料厚さ、材質等の情報を表す。
図3は本実施例に係る光の位相シフト量を変更する位相シフタである。まず、位相シフタへの入力光311が1/4波長板301に入射した後、そこから透過した光が1/2波長板302、1/4波長板303に順次入射する。1/4波長板303から透過される光が位相シフタの出力光312となる。3枚の波長板301〜303は、異方性のある材質で作られている。また、各波長板は円筒形の形状をしており、光はその中心軸を通る。入力光は偏光しているものとする。この構成において、1/2波長板を回転させると、入力光の偏光方向との角度に応じて入力光の位相がシフトする。そこで、1/2波長板を回転させるための回転器304を備え、この回転器304を要求性能や試料状態313に応じて位相制御器305により制御することで、光の位相を変更することができる。
光の位相シフト量を変更する位相シフタは、図3で示した実施例とは別の構成であっても良い。例えば、液晶変調器を用いる方法や、MEMS変調器を用いる方法、可変遅延光路を用いる方法を用いても良い。
図18を本実施例に係る光の振幅抑制量を変更する振幅抑制器である。まず、振幅抑制器への入力光1811が偏光板1801に入射した後、そこから透過した光が偏光板1802に入射し、その透過光が振幅抑制器の出力光1812となる。各偏光板1801、1802は円筒形の形状をしており、光はその中心軸を通る。入力光は0°方向に偏光しており、偏光板1801および1802はそれぞれφおよび0°方向の偏光の光を透過するものとする。このとき、偏光板1801および偏光板1802の透過率はともにcosφとなる。このため、出力光は入力光と同じ0°の偏光状態であるが、その振幅はcosφ倍に抑制される。そこで、偏光板1801を回転させるための回転器1803を備え、この回転器を要求性能や試料状態に応じて振幅制御器1804により制御することで、光の振幅抑制量を調整することができる。本実施例では、2枚の偏光板を用いた振幅抑制器について説明したが、これに限らない。
図10Aは、欠陥サイズと検出率の関係の概略を示したグラフである。横軸が欠陥サイズ、縦軸が検出率を表す。欠陥サイズ以外の条件(照射光の強度等)は同じとしている。一般に、欠陥サイズが大きいほど対象光の光量は大きくなるため、高い検出率を得ることができる。グラフ1011、1012は、それぞれ欠陥サイズがA、Bの場合にできるだけ高い検出率が得られるように参照光の振幅・位相、照射光の振幅・位相、および欠陥識別部での識別方法を調整した場合の性能を表す。欠陥サイズがA、Bの場合に、それぞれ点1001、1002で示した検出率が得られる。参照光の振幅・位相等を調整しなければ、点1001と1002で示す性能を達成させることはできない。一方、要求する欠陥サイズは、用途により異なる。例えば、サイズAの欠陥を検出できるような高感度な検出が必要となる場合もあるし、サイズBより大きい欠陥が検出できれば良い場合もある。
図10Bは、試料表面凹凸度合いと検出率の関係の概略を示したグラフである。試料表面凹凸度合いとは、試料表面凹凸の単位面積あたりの個数または大きさを示した度合いである。横軸が表面凹凸度合い、縦軸が検出率を表す。図10Aと同じく、表面凹凸以外の条件は同じとしている。表面凹凸度合いが大きいとノイズが大きくなるため、表面凹凸度合いが小さいほど、検出率は高くなる。グラフ1021、1022は、それぞれ試料表面凹凸度合いがC、Dの場合にできるだけ高い検出率を得るために参照光の振幅・位相、および欠陥識別部での識別方法を調整した場合の性能を表す。図10Aの場合と同様に、参照光の振幅・位相等を調整しない限り、個々の表面凹凸度合いに対して最良の検出率を得ることはできない。
そこで、本実施例では、光干渉器または欠陥識別部において、欠陥検出の要求性能、試料状態の少なくとも一つに応じて、参照光の振幅、または参照光の位相、または光源により照射する照射光の振幅、または照射光の位相のうち少なくとも一つを変更する。量子ノイズの抑制を可能とするための最適な検査方法は、欠陥検出の要求性能および試料状態によって異なる。そのため、本実施例により、要求値に応じて照射光または参照光を調整したり欠陥識別方法を調整することで、適切な検査を行うことができる。要求スループットなどの他の要求性能や試料状態に対しても図10Aや図10Bと同様のトレードオフの関係があり、同様の調整により良好な性能を得ることができる。
図16は本実施例に係る要求性能、試料状態、検査条件について入力を促したり表示をするためのインターフェイス画面である。本画面は、要求性能表示領域1641、試料状態表示領域1642、検査条件表示領域1643、および決定ボタン1631とクリアボタン1632からなる。要求性能表示領域1641には、検出対象とする欠陥に関する情報として、例えば欠陥可能欠陥サイズの入力を促すテキストボックス1601がある。また、欠陥検出性能に関する情報として、誤検出率および欠陥見逃し率の入力を促すテキストボックス1602および1603がある。また、試料状態表示領域1642には、試料状態に関する情報として、例えば試料凹凸度合いを表す領域1611および反射率を表す領域1612がある。これらの値は、事前に試料状態を調べるための評価を行うことにより値を算出し、本画面ではその結果を表示するのみでも良いし、ユーザに入力を促しても良い。検査条件表示領域1643では、照射電力の入力を促すテキストボックス1621がある。また、スループットを表示する領域1622がある。スループットは、要求性能、試料状態、および他の検査条件を用いて算出し、その結果を表示する。スループットを算出する代わりに、スループットはユーザから入力してもらい、他の値(例えば誤検出率)を自動で計算するようにしても良い。
図16のインターフェース画面によれば、z要求性能、試料状態のうち必要な値をユーザに入力してもらい、その値に応じて照射光または参照光の振幅・位相、または欠陥識別方法を調整し、要求値に合わせて適切に量子ノイズを抑制した検査を行うことができる。
図17は本実施例に係る要求性能、試料状態、および検査条件に応じて、照射光または参照光の振幅・位相、または欠陥識別方法を調整する処理フローである。まず処理1701にて、振幅・位相に対する制御量の候補を選択する。具体的には、図7Cで説明した位相空間表現を考慮して、例えば欠陥なしの場合における干渉光の振幅がゼロに近い値となるような制御量の中から候補を選択する。また、欠陥なしの場合と欠陥ありの場合における干渉光の平均的な位相はできるだけ揃っているほうが、一般に良好な検出性能が得られるため、位相が揃うような条件の中から候補を選択する。次に処理1702にて、k(反復回数を表す変数)に1を代入する。処理1703および処理1704にて、k番目の候補を表す第kの振幅・位相制御量に対して、欠陥ありの場合および欠陥なしの場合の確率分布をそれぞれ算出する(これらの処理の結果、図9のようなグラフが描けることになる)。処理1701、1703、および1704では、試料状態や検査条件の情報を利用できる。次に、処理1705にて、確率分布に基づいて最適閾値を算出し、処理1706にて最適閾値を用いた場合の欠陥検出性能を算出する。処理1705、1706では、要求性能の情報を利用できる。次に、処理1707にて、kが処理1701で選択した全候補数に等しいか否かを調べ、等しくなければ処理1708にてkに1を加えた後、処理1703〜1707を繰り返す。kが全候補数に等しくなったら、処理1709にて、全候補のうち最良の性能が得られるような振幅・位相制御量および閾値を設定する。
なお、処理1705では、最適閾値を算出するための評価規準として、平均誤識別率を最小とする方法や、欠陥見逃し率を一定とした上での誤検出率を最小とする方法など、幾つかの規準が考えられるが、検査目的に適した規準を選択すれば良い。または、図16のようなインターフェイス画面を通してこの規準をユーザに選択させても良い。また、本実施例では欠陥識別方法として閾値に基づく方法について説明したが、前述の通りこれに限らない。
以上より、本実施例によれば、要求性能および試料状態に応じて振幅抑制量および位相シフト量を調整することで、要求性能および試料状態に応じて良好な検出率を得ることができる。
図4A、図4Bを用いて本発明の実施例3に係る光検査装置を説明する。図4Aの実施例では、光源401により生成した光をビームスプリッタ402により分割して、一方を試料照射器403により試料に照射し、他方を参照光とする。振幅抑制器404および位相シフタ405により参照光の振幅・位相を制御した後、ビームスプリッタ406により対象光と干渉させ、光子計数器407に入力する。図4Bは別の実施例である。図4Aと同様に、光源401により生成した光を照射光と参照光の両方に使用する。ただし、参照光ではなく照射光に対して位相シフタ411により位相シフトを行う。干渉時に対象光と参照光の位相差が意図した値となれば良いため、必ずしも参照光を位相シフトさせる必要はなく、図4Bのように照射光を位相シフトさせるか、または対象光を位相シフトさせても良い。同様に、振幅制御を照射光に対して行なっても良い。
本実施例によれば、光源により生成した光を二つに分割し、一方を試料に照射して、他方を参照光とすることにより、別々の光源を用いる場合に比べて、対象光と参照光との振幅の差および位相の差を制御しやすくなる。
図6A、図6Bを用いて本発明の実施例4に係るスクイーズドさせた光を用いた光検査装置を説明する。本実施例は、光干渉器において参照光または干渉光をスクイーズドさせることを特徴とする。本実施例では、図4で説明した実施例と同様に、光源により生成した光を二つに分割し、一方を試料に照射して、他方を参照光としている。
図6Aに示す構成は、図4Aで示した構成と類似しているが、位相シフタ405により位相を制御した後の参照光に対してスクイーザ601によりスクイージングを行なっている。図6Bに示す構成も、同様に図4Aで示した構成と類似しているが、干渉光に対してスクイーザ602によりスクイージングを行なっている。
スクイージングを行うと、グラフ733で説明したように、位相空間表現において揺らぎの大きさをx軸、x軸上で非等方的となるようにでき、干渉光の振幅に対する揺らぎをより抑えることが可能となる。
参照光の強度は十分大きくかつ調整可能であるため、図6Aに示すように参照光に対してスクイージングを行っても参照光の振幅制御は容易に行える。また、図6Bに示すように強度の弱い干渉光が対象である場合、光の強度をできるだけ維持した上でスクイージングを行う必要がある。しかし、スクイーズド状態の光はコヒーレント状態の光と比べると伝播時の歪が一般に大きいため、、図6Bに示すようにスクイージング直後に光子計数を行うことができれば歪の影響を小さくできるという利点がある。
本実施例によれば、スクイーズドさせた光を用いることにより、光源からのレーザ光であるコヒーレント光を用いた場合に比べて検出光子数に対する揺らぎの大きさを制御できるため、量子ノイズを実施例1−3と比較してさらに抑えることが可能である。
図11A、図11Bを用いて本発明の実施例5に係る光検査装置を説明する。図11Aは、光源1101から試料1105に対して上方から垂直に光を照射する。光は、レンズ1103により試料上で集光される。試料からの光はレンズ1104により集光され、受信器1102に入力される。受信器1102は、光干渉器および光子計数器から構成される。受信器は複数個備わっていても良く、例えば、レンズ1109と受信器1108のように、光1107とは異なる方位への散乱光または反射光を受信するような配置であっても良い。受信器1102、1108の出力である検出光子数を用いて欠陥識別部1110により欠陥の有無を識別する。試料1105はステージ1121の上に設置されており、ステージ1121をxy方向に動かすことにより、試料上の光照射位置を制御することができる。受信器1102、1108の前段に、偏光素子1131、1132を置き、試料表面での微小凹凸から発生する散乱光を抑制し、欠陥からの散乱光との識別を行いやすくするようにしても良い。図11Bでは、図11Aと類似の構成であるが、光が試料1116に対して垂直方向ではなく斜め方向から照射されるように光源1111を配置している。光源1111からの光は、レンズ1112により試料上で集光される。
本実施例によれば、試料に光を集光し、集光位置からの光を1個または複数個の受信器を用いて光子計数を行い、各受信器での検出光子数に基づいて欠陥の有無を識別することにより、異なる角度からの散乱光を検出でき、より高精度に欠陥を検出することができる。
図12A、図12Bを用いて本発明の実施例6に係る光検査装置を説明する。図12Aでは、光源1201から試料1204に対して光を照射する。光源1201からの光は近接場光発生器1203に入力され、その先端1222から近接場光を放出する。近接場光発生器1222は近接場光が試料に到達する程度にまで試料1204に近接させる。試料からの散乱光または反射光は、照射光と同じ光路1206を通り、ビームスプリッタ1202により反射して受信器1205に入力される。ビームスプリッタ1202は、光源1201からの照射光は透過し、試料からの光は反射するようにしておく。これは、例えば、光源からの光を偏光させておき、1/4波長板1207を光路に配置し、かつビームスプリッタ1202を偏光ビームスプリッタとすることにより実現できる。受信器1205は、参照光の光源、光干渉器および光子計数器から構成される。受信器1205の出力である検出光子数を用いて欠陥識別部1208により欠陥の有無を識別する。試料1204はステージ1221の上に設置されており、ステージ1221をxy方向に動かすことにより、試料上の光照射位置を制御することができる。
図12Bは、近接場光を試料に照射する本実施例の変形例を示す図である。近接場光発生器1203は、近接場ヘッド1212と近接場ヘッド支持部1211からなり、近接場ヘッド1212は、その先端から放出される近接場光が試料に到達する程度にまで試料1214に近接させる。試料から散乱または反射した光をレンズ1213で集光して受信器1215に入力する。図11の構成と比較し、図12の構成を用いることにより、試料上のより狭い領域に光を集光することができるため、微小な欠陥からの散乱光または反射光を強い強度で得ることができる。
図12Aは、さらに高さ計測器1209を備えており、近接場光発生器1203と試料1204の表面との相対的な高さを計測する。この計測結果に応じて、ステージ高さ調整器1210により、ステージ1221の高さを調整することにより、近接場光発生器1222と試料1204の表面との相対的な高さが一定値を保つようにする。図12Bでも同様に、高さ計測器1224とステージ高さ調整器1225を備えており、近接場ヘッド1212と試料1214の表面との相対的な高さが一定値を保つように調整する。実施例5と同様に、受信器1205、1215の前段に偏光素子を置き、試料表面での微小凹凸から発生する散乱光または反射光を抑制し、欠陥からの散乱光または反射光との識別を行いやすくするようにしても良い。
本実施例では、試料の高さを調整することにより照射光および対象光の光路長を調整して、対象光と参照光の位相を揃えているが、試料の高さの代わりに光検査装置の内部の部品(例えばミラーやビームスプリッタ、偏光器等)の相対位置を調整しても良い。このような位置調整により対象光や参照光の光路長を調整する代わりに、参照光のみ光路長を調整しても良い。また、試料の相対位置に応じて、位相シフタ等を用いて対象光や参照光の位相を直接調整することにより対象光と参照光の位相を揃えても良い。このように位相調整部(ステージ高さ調整器1203、光検査装置の内部の部品の相対位置の調整部、位相シフタなど)により、対象光と参照光の位相を調整して揃えることにより、より高精度に欠陥を検出することができる。
以上より、本実施例によれば、近接場光を用いることにより、微小な欠陥からの散乱光または反射光を強い強度で得ることができる。また、試料表面と近接場光発生器1203(先端1222または近接場ヘッド1212)との相対的な高さを検出してフィードバックをかけることにより、対象光と参照光の位相を揃えることができる。実施例9で後述するする試料に別の光を照射する方法では、試料の反射率等の変動が激しい場合には参照光の振幅を安定させることが困難である。一方、本実施例のように相対的な高さを調整する方法を用いることで実施例9の方法では安定した振幅の参照光を得ることが困難な場合にも安定した振幅の参照光を得ることができる。
図13を用いて本発明の実施例7に係る光検査装置を説明する。本実施例の構成は、図4Bで示した構成と比較すると、ビームスプリッタとして、その一種である偏光ビームスプリッタ(図ではPBSと記載)1301、1302を用いている点が特徴である。偏光ビームスプリッタ1302に入力される対象光と参照光は互いに直交した偏光状態とする。また、偏光ビームスプリッタ1302において対象光は全て透過し、参照光は全て反射するようにしておく。その結果、偏光ビームスプリッタ1302の出力1304は、偏光状態が直交した対象光および参照光を含む光とすることができる。この光を偏光器1303に入力することにより、対象光と参照光を干渉させる。対象光の偏光角を0°、参照光の偏光角を90°とし、偏光器1303では偏光角θの光を透過するものとすると、偏光器1303により対象光および参照光の透過率はそれぞれcosθおよびsinθとなる。そこで、θをゼロに近い値として対象光の強度をできるだけ落とさないようにする。また、設定したθに合わせて参照光や照射光の振幅・位相を制御する。偏光器から反射される光による悪影響がある場合には、対象光を偏光器に対して垂直ではなく、ある程度の角度をずらして入力しても良い。
光は伝播中にもノイズが重畳し、量子ノイズと同様にS/N低下の要因となる。参照光と対象光ができるだけ同じ光路を通るようにすると、光の伝播中に参照光と対象光に同様のノイズが重畳するため、干渉により参照光と対象光の差分をとることで重畳したノイズの影響を低減することができる。そこで、図13において偏光ビームスプリッタ1301と1302の間の光路長は十分に短くなるような構成としておく。これにより、伝播中に重畳するノイズの影響と量子ノイズの両方を低減することができる。この際、対象光と参照光が干渉するまでは、参照光と対象光を異なる光として処理をする必要があるが、偏光状態を直交させることで、本実施例のように偏光ビームスプリッタにより光を分離することが可能となる。偏光器を用いることで、偏光状態が直交した二つの光を干渉させることができる。
以上より、本実施例によれば、参照光と対象光が同じ光路を通るようにして、ノイズの影響を低減することにより、欠陥識別性能を向上させることができる。
図14を用いて本発明の実施例8に係る光検査装置を説明する。実施例1と同一の構成については、同じ符号を付し、その説明を省略する。本実施例では、光源1401から試料111に光を照射すると同時に、参照光1402を生成する。試料に照射する光と参照光は、単一の光源から生成する。光変換器1403により参照光1402の振幅・位相を制御した後、ビームスプリッタ112により対象光と干渉させる。
本実施例によれば、単一の光源から生成した光を、試料に照射する光と参照光の両方に用いることで、別々の光源を用いる場合に比べ、両者の光の位相を容易に揃えることができ、量子ノイズを抑制し、欠陥識別性能を向上させることができる。
図15を用いて本発明の実施例9に係る光検査装置を説明する。実施例8で示した構成と比較して、光源1401により生成された光1501そのものを参照光とする代わりに、光1501に対して光変換器1502により振幅・位相を制御した後、試料に照射し、試料から得られた光1504を参照光とする点に特徴がある。
対象光と参照光の位相は高い精度で揃える必要がある。しかし、試料表面は通常平らではなく凹凸を有しているため、試料に照射した光の光路長が試料表面の凹凸に応じて変化する。そこで、位相を揃える方法として、本実施例のように照射光とは別の光を近傍位置に照射して、その別の位置に照射した光に対して試料から透過または散乱または反射された光を参照光として用いる。
本実施例によれば、試料表面に大きな凹凸があるような場合でも、対象光の光路長の変化に合わせて参照光の光路長も変わるため、安定して位相を揃えることができ、欠陥識別性能を向上させることができる。
図21を用いて本発明の実施例10に係る光検査装置を説明する。図21では、光子計数器2101および欠陥識別部2102を示している。検査の高効率化のため、試料の広い領域に光を照射して、照射する領域を徐々に変えながら検査を行う場合があり、このような場合には同一箇所を複数回照射することになる。このとき、光子計数器2101の構成により各検査箇所における検出光子数の和をデータベース2125に格納することができる。具体的には、検出光子数読出器2122により、過去に照射したときの光子計数結果を読み出す。また、干渉光2112に対して光子計数器2121により光子計数を行う。その光子計数結果と、過去の光子計数結果の和を、加算器2123にて計算し、その結果を検出光子数書出器2124によりデータベース2125に書き出す。この処理を繰り返すことにより、同一箇所に複数回照射したときに個々の照射で得られた検出光子数の和をデータベース2125に保存することができる。欠陥識別部2102では、データベースから読み込んだ値を用いて欠陥有無の識別をする。光子計数器2121にはラインセンサを用いても良く、この場合、検査箇所2111は複数の箇所の情報を含む。
本実施例によれば、同一箇所に複数回照射したときに個々の照射で得られた検出光子数の和をデータベース2125に保存することにより、広い領域の検査を高効率かつ高精度に行うことができる。
なお、本発明は、上記した実施形態に限定されるものではなく、さまざまな変形例が含まれる。例えば、上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。
101…光検査装置
102…光源
103…光干渉器
104…光子計数器
105…欠陥識別部
106…光変換器
111…試料
112…ビームスプリッタ
113…参照光
201…制御器
202…振幅抑制器
203…位相シフタ
204…ビームスプリッタ
211…対象光
212…要求性能・試料状態
213…参照光
214…干渉光
215…光子計数器
216…欠陥識別部
301〜303…波長板
304…回転器
305…位相制御器
311…位相シフタの入力光
312…位相シフタの出力光
313…要求性能・試料状態
401…光源
402…ビームスプリッタ
403…試料照射器
404…振幅抑制器
405…位相シフタ
406…ビームスプリッタ
407…光子計数器
411…位相シフタ
412〜413…ミラー

Claims (20)

  1. 試料に光を照射する光源と、
    試料に対して透過、散乱または反射した対象光と参照光とを、前記対象光に比べ、干渉後の光のほうが強度が弱くなるように干渉させる光干渉部と、
    前記光干渉部による干渉後の光の光子数を測定する光子計数器と、
    前記光子計数器により得られた検出光子数から欠陥の有無を識別する欠陥識別部とを備える光検査装置。
  2. 前記光子計数器は、複数個のガイガーモード・アバランシェフォトダイオード、複数個の光電子増倍管、マルチピクセルフォトンカウンタのうち何れかを用いることを特徴とする請求項1記載の光検査装置。
  3. 前記光干渉器は、欠陥検出の要求性能または試料状態の少なくとも一つに応じて、前記対象光または前記参照光の振幅または位相のうち少なくとも一つを変更することを特徴とする請求項1記載の光検査装置。
  4. 前記欠陥識別部は、欠陥検出の要求性能または試料状態の少なくとも一つに応じて識別方法を変更することを特徴とする請求項1記載の光検査装置。
  5. 前記光干渉器は、前記参照光または前記干渉後の光をスクイーズドさせることを特徴とする請求項1記載の光検査装置。
  6. 前記光干渉器は、偏光状態が直交した前記参照光と前記対象光が光前記偏光器により干渉することを特徴とする請求項1記載の光検査装置。
  7. 前記光源により生成した光の一部を試料に照射して対象光とし、他の一部を前記参照光とすることを特徴とする請求項1記載の光検査装置。
  8. 前記光源は、前記試料に対して前記対象光を得るために照射する光とは別の位置に光を照射し、前記光干渉器は、前記別の位置における試料からの透過または散乱または反射により得られる光を前記参照光として前記対象光と干渉させることを特徴とする請求項1記載の光検査装置。
  9. 前記光源から近接場光を生成する近接場光発生器を備えることを特徴とする請求項1記載の光検査装置。
  10. 前記対象光と前記参照光との位相を調整する位相調整部を設けることを特徴とする請求項9に記載の光検査装置。
  11. 試料に光を照射する光照射ステップと、
    試料からの透過または散乱または反射により得られる対象光と参照光とを前記対象光に比べ、干渉後の光のほうが強度が弱くなるように干渉させる光干渉ステップと、
    前記干渉後の光の光子数を測定する光子計数ステップと、
    前記光子計数ステップにより得られた検出光子数に基づいて欠陥の有無を識別する欠陥識別ステップ
    とを有することを特徴とする光検査方法。
  12. 前記光子計数ステップは、複数個のガイガーモード・アバランシェフォトダイオード、複数個の光電子増倍管、マルチピクセルフォトンカウンタのうち何れかを用いることを特徴とする請求項11記載の光検査方法。
  13. 前記光干渉ステップでは、欠陥検出の要求性能または試料状態の少なくとも一つに応じて、前記対象光または前記参照光の振幅または位相のうち少なくとも一つを変更することを特徴とする請求項11記載の光検査方法。
  14. 前記欠陥識別ステップでは、欠陥検出の要求性能または試料状態の少なくとも一つに応じて、識別方法を変更することを特徴とする請求項11記載の光検査方法。
  15. 前記光干渉ステップでは、前記参照光または前記干渉後の光をスクイーズドさせることを特徴とする請求項11記載の光検査方法。
  16. 前記光干渉ステップでは、偏光状態が直交した前記参照光と前記対象光とが干渉することを特徴とする請求項11記載の光検査方法。
  17. 前記光照射ステップでは、一部の光を試料に照射して、他の一部の光を前記参照光とすることを特徴とする請求項11記載の光検査方法。
  18. 前記光照射ステップでは、前記試料に対して前記対象光を得るために照射する光とは別の位置に光を照射し、前記光干渉ステップでは、前記別の位置における試料からの透過または散乱または反射により得られる光を前記参照光とすることを特徴とする請求項11記載の光検査方法。
  19. 近接場光発生器により、前記光源から近接場光を生成する近接場発生ステップを有することを特徴とする請求項11に記載の光検査方法。
  20. 前記対象光と前記参照光との位相を調整する位相調整ステップを有することを特徴とする請求項19記載の光検査方法。
JP2012070542A 2012-03-27 2012-03-27 光検査装置およびその方法 Pending JP2013205015A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012070542A JP2013205015A (ja) 2012-03-27 2012-03-27 光検査装置およびその方法
US14/378,478 US9360434B2 (en) 2012-03-27 2013-02-12 Optical inspection apparatus and method thereof
PCT/JP2013/053177 WO2013145898A1 (ja) 2012-03-27 2013-02-12 光検査装置およびその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012070542A JP2013205015A (ja) 2012-03-27 2012-03-27 光検査装置およびその方法

Publications (1)

Publication Number Publication Date
JP2013205015A true JP2013205015A (ja) 2013-10-07

Family

ID=49259181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012070542A Pending JP2013205015A (ja) 2012-03-27 2012-03-27 光検査装置およびその方法

Country Status (3)

Country Link
US (1) US9360434B2 (ja)
JP (1) JP2013205015A (ja)
WO (1) WO2013145898A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507052A (ja) * 2017-01-07 2020-03-05 イラミーナ インコーポレーテッド 固体検査装置およびその使用方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080727A1 (en) * 2015-11-11 2017-05-18 Asml Netherlands B.V. Method and apparatus for predicting performance of a metrology system
US11333484B2 (en) * 2018-04-19 2022-05-17 Ariel Scientific Innovations Ltd. Method and system for interferometry
WO2020038573A1 (en) * 2018-08-23 2020-02-27 Abb Schweiz Ag Method for inspection of a target object, control system and inspection system
CN109668838B (zh) * 2018-11-13 2020-07-03 浙江大学 一种可同时检测光学元件表面和亚表面缺陷的装置及方法
CN109406520A (zh) * 2018-12-03 2019-03-01 青岛小优智能科技有限公司 一种mems微振镜技术产生的结构光的痕迹提取装置及方法
CN110796107A (zh) * 2019-11-04 2020-02-14 南京北旨智能科技有限公司 电力巡检图像缺陷识别方法和***、电力巡检无人机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0758267B2 (ja) 1987-02-16 1995-06-21 株式会社日立製作所 パタ−ン欠陥検査方法及び装置
US4764013A (en) * 1987-03-23 1988-08-16 The United States Of America As Represented By The United States Department Of Energy Interferometric apparatus and method for detection and characterization of particles using light scattered therefrom
EP0459392B1 (en) * 1990-05-30 1999-08-18 Hitachi, Ltd. Method and apparatus for processing a minute portion of a specimen
US5486919A (en) * 1992-04-27 1996-01-23 Canon Kabushiki Kaisha Inspection method and apparatus for inspecting a particle, if any, on a substrate having a pattern
JPH06194320A (ja) 1992-12-25 1994-07-15 Hitachi Ltd 半導体製造ラインにおける鏡面基板の検査方法およびその装置並びに半導体製造方法
JP3686160B2 (ja) 1995-04-10 2005-08-24 株式会社日立ハイテクノロジーズ ウエハ表面検査方法および検査装置
US5883714A (en) * 1996-10-07 1999-03-16 Phase Metrics Method and apparatus for detecting defects on a disk using interferometric analysis on reflected light
JPH10185782A (ja) 1996-10-24 1998-07-14 Hamamatsu Photonics Kk 蛍光性単一分子を基板表面に並べる方法及び基板表面の構造欠陥を可視化する方法
US6018391A (en) * 1997-01-28 2000-01-25 Advantest Corporation Method and apparatus for inspecting foreign matter by examining frequency differences between probing light beam and reference light beam
US5892583A (en) * 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US6597446B2 (en) * 2001-03-22 2003-07-22 Sentec Corporation Holographic scatterometer for detection and analysis of wafer surface deposits
WO2006124572A2 (en) * 2005-05-12 2006-11-23 The University Of Akron Dual wavelength polarized near-field imaging apparatus
JP4343911B2 (ja) 2006-02-06 2009-10-14 株式会社日立製作所 欠陥検査装置
JP2011085569A (ja) 2009-09-15 2011-04-28 Toshiba Corp パターン検査装置およびパターン検査方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020507052A (ja) * 2017-01-07 2020-03-05 イラミーナ インコーポレーテッド 固体検査装置およびその使用方法
JP2020079794A (ja) * 2017-01-07 2020-05-28 イラミーナ インコーポレーテッド 固体検査装置およびその使用方法

Also Published As

Publication number Publication date
US20150015893A1 (en) 2015-01-15
WO2013145898A1 (ja) 2013-10-03
US9360434B2 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
WO2013145898A1 (ja) 光検査装置およびその方法
KR102601473B1 (ko) 입자 측정을 위한 시스템 및 방법
CN104748835B (zh) 干涉量分离激光干涉测振仪非线性误差修正方法及装置
TWI494557B (zh) 使用表面聲波計量學之基板分析
CN110687051B (zh) 一种检测设备及方法
US20170003221A1 (en) Particle measuring device
JP2017502295A (ja) 非イメージングコヒーレントラインスキャナシステムおよび光学検査方法
US11561170B2 (en) Method and system for performing terahertz near-field measurements
US11415525B2 (en) Carrier lifespan measurement method and carrier lifespan measurement device
CN108088815A (zh) 基于石墨烯表面波的高灵敏多光束折射率探测装置和方法
JP5659048B2 (ja) 光検査方法及びその装置
US11280776B2 (en) Concentration measurement method and concentration measurement device
JP6278457B2 (ja) 非破壊検査方法およびその装置
JP2011196766A (ja) 光透過性を有する被測定物の形状測定方法
JP5223478B2 (ja) 散乱特性評価装置
TWI818047B (zh) 檢測設備及其檢測方法
CN108982365A (zh) 一种共振传感装置
CN113125808A (zh) 聚焦式原子力显微镜
JPWO2019049250A1 (ja) 分光測定装置
JP2016142685A (ja) テラヘルツ装置
JP2004093408A (ja) 光部品の測定装置及びその測定方法