JP2013204952A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2013204952A
JP2013204952A JP2012075522A JP2012075522A JP2013204952A JP 2013204952 A JP2013204952 A JP 2013204952A JP 2012075522 A JP2012075522 A JP 2012075522A JP 2012075522 A JP2012075522 A JP 2012075522A JP 2013204952 A JP2013204952 A JP 2013204952A
Authority
JP
Japan
Prior art keywords
heat exchanger
port
gas
liquid
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012075522A
Other languages
Japanese (ja)
Inventor
Atsushi Sakuragi
淳 櫻木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2012075522A priority Critical patent/JP2013204952A/en
Publication of JP2013204952A publication Critical patent/JP2013204952A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigeration cycle device capable of preventing defrosting water from being refrozen to suppress growth of ice even in a refrigeration cycle using a gas-liquid separator.SOLUTION: In a refrigeration cycle device, an outdoor heat exchanger 70 includes a bottom heat exchanger 72 provided below an outdoor heat exchanger and an upper heat exchanger 71 provided above the outdoor heat exchanger. In a cooling operation, a refrigerant discharged from a compressor 10 passes through a four-way valve 20 to flow in the bottom heat exchanger 72 from the upper heat exchanger 71, and then passes through an expansion valve 40 to flow in an indoor heat exchanger 30 from a gas-liquid separator 50 to be sucked in the compressor 10. In a heating operation, the refrigerant discharged from the compressor 10 passes through the four-way valve 20 to flow in expansion means 40 from the bottom heat exchanger 72, and then passes through the gas-liquid separator 50 to flow in the upper heat exchanger 71 to be sucked in the compressor 10.

Description

本発明は、気液分離器およびベースヒーティング回路を有する冷凍サイクル装置に関する。   The present invention relates to a refrigeration cycle apparatus having a gas-liquid separator and a base heating circuit.

従来の冷凍サイクル装置の1例を、図3を用いて説明する。   An example of a conventional refrigeration cycle apparatus will be described with reference to FIG.

従来の冷凍サイクル装置では、室外熱交換器9,9aの最下段に過冷却コイル6が設けられている。室内熱交換器4は、冷房絞り機構13を介して過冷却コイル6に接続されている。またこの過冷却コイル6は、並列に配置された暖房絞り機構7および逆止弁12を介してディストリビュータ8に接続されている。なお、図中の10は室外熱交換器9,9aへ送風を行う室外ファンである。   In the conventional refrigeration cycle apparatus, the supercooling coil 6 is provided at the lowest stage of the outdoor heat exchangers 9 and 9a. The indoor heat exchanger 4 is connected to the supercooling coil 6 via the cooling throttle mechanism 13. The supercooling coil 6 is connected to the distributor 8 via a heating throttle mechanism 7 and a check valve 12 arranged in parallel. In addition, 10 in the figure is an outdoor fan that blows air to the outdoor heat exchangers 9 and 9a.

暖房運転時、圧縮機2から吐出された高温高圧のガス冷媒は、四方弁3を通り、室内熱交換器4で室内ファン5によって送られて来る風によって凝縮された後冷房絞り機構13を通り、過冷却コイル6に入って過冷却される。過冷却された冷媒は、次に暖房絞り機構7で断熱膨張し、ディストリビュータ8で複数の冷媒流路に分岐されて室外熱交換器9,9aで蒸発し、四方弁3からアキュームレータ11を経て、圧縮機2に吸入される。   During the heating operation, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 passes through the four-way valve 3, is condensed by the air sent by the indoor fan 5 in the indoor heat exchanger 4, and then passes through the cooling throttle mechanism 13. Then, it enters the supercooling coil 6 and is supercooled. The supercooled refrigerant is then adiabatically expanded by the heating throttle mechanism 7, branched into a plurality of refrigerant flow paths by the distributor 8, evaporated by the outdoor heat exchangers 9, 9a, passed from the four-way valve 3 through the accumulator 11, It is sucked into the compressor 2.

上記した構成によると、暖房運転時に過冷却コイル6を流れる冷媒は、室内熱交換器4で凝縮され冷房絞り機構13を通った高温中圧の冷媒である。よって暖房運転中もしくは除霜運転時に、室外熱交換器9の表面で凝縮水が発生しそれが室外熱交換器9の最下段の過冷却コイル6に流れても、過冷却コイル6の近傍で結氷することはない。   According to the configuration described above, the refrigerant flowing through the supercooling coil 6 during the heating operation is a high-temperature medium-pressure refrigerant that has been condensed by the indoor heat exchanger 4 and passed through the cooling throttle mechanism 13. Therefore, even during the heating operation or the defrosting operation, even if condensed water is generated on the surface of the outdoor heat exchanger 9 and flows to the supercooling coil 6 at the lowest stage of the outdoor heat exchanger 9, it is near the supercooling coil 6. There is no freezing.

このように、凝縮水が結氷しやすい室外熱交換器9,9aの最下段において結氷(着霜)を防ぐものが提案されている。(特許文献1)   Thus, what prevents icing (frosting) at the lowest stage of the outdoor heat exchangers 9 and 9a where condensed water is likely to freeze has been proposed. (Patent Document 1)

このような冷凍サイクル装置においては、凝縮器で凝縮された冷媒は膨張弁によって減圧され、気相冷媒と液相冷媒とが混在する気液二相状態の冷媒となって蒸発器に流入する。冷媒が気液二相状態で蒸発器に流入すると、液相の冷媒が流入する場合と比べて冷媒が蒸発器を通過する際の圧力損失が大きくなり、吸入圧力が低くなるため冷凍サイクル装置のエネルギ効率が低下する。   In such a refrigeration cycle apparatus, the refrigerant condensed in the condenser is depressurized by the expansion valve, and flows into the evaporator as a gas-liquid two-phase refrigerant in which gas-phase refrigerant and liquid-phase refrigerant are mixed. When the refrigerant flows into the evaporator in a gas-liquid two-phase state, the pressure loss when the refrigerant passes through the evaporator becomes larger than the case where the liquid-phase refrigerant flows in, and the suction pressure becomes lower. Energy efficiency is reduced.

上記の問題を解決するため、冷媒が蒸発器に流入する前に、気液分離器を用いて気液二相冷媒を気相冷媒と液相冷媒とに分離し、液相冷媒のみを蒸発器に流入させることにより、冷媒が蒸発器を通過する際の圧力損失を低減し、空気調和機のエネルギ効率を向上する技術が提案されている。   In order to solve the above problem, before the refrigerant flows into the evaporator, the gas-liquid separator is used to separate the gas-liquid two-phase refrigerant into the gas-phase refrigerant and the liquid-phase refrigerant, and only the liquid-phase refrigerant is evaporated. A technique for reducing the pressure loss when the refrigerant passes through the evaporator and causing the energy efficiency of the air conditioner to be improved has been proposed.

しかし上記した構成だと、暖房時には減圧された後の冷媒が過冷却コイル6に流通するため、冷媒の温度は減圧される前よりも低くなる。よって、加熱器としての効果が低くなるという問題があった。   However, with the above-described configuration, the refrigerant after being depressurized flows through the supercooling coil 6 during heating, so that the temperature of the refrigerant is lower than before the depressurization. Therefore, there was a problem that the effect as a heater became low.

また上記した構成では、気液分離器に流入する冷媒の圧力は凝縮器における冷媒の圧力よりも低く、蒸発器における冷媒の圧力よりも高い中圧となる。これは、低圧の冷媒を気液分離器で分離させるようにした場合と比べると、凝縮器出口の過冷却度が同じであっても、冷媒の乾き度が低くなる。よって分離される気体量が少なくなり、気液分離の効果が低くなる。   In the above-described configuration, the pressure of the refrigerant flowing into the gas-liquid separator is an intermediate pressure that is lower than the pressure of the refrigerant in the condenser and higher than the pressure of the refrigerant in the evaporator. As compared with the case where the low-pressure refrigerant is separated by the gas-liquid separator, the degree of dryness of the refrigerant is low even if the degree of supercooling at the condenser outlet is the same. Therefore, the amount of gas to be separated is reduced and the effect of gas-liquid separation is reduced.

また気液分離器で分離された液冷媒を過冷却コイル6から室外熱交換器9,9aへ流通することになるため、以下のような問題も生じる。上記した構成では過冷却コイル6における圧力損失が低くなるため、過冷却コイル6内での蒸発温度低下が小さくなる。よって蒸発器となる室外熱交換器9,9aの出口温度を所定の温度に調整した場合、過冷却コイル6を流通する冷媒の温度を低くしなくてはならず、ベースヒーティングの効果が得られない。   Further, since the liquid refrigerant separated by the gas-liquid separator is circulated from the supercooling coil 6 to the outdoor heat exchangers 9 and 9a, the following problems also occur. In the above-described configuration, the pressure loss in the supercooling coil 6 is reduced, and thus the evaporation temperature drop in the supercooling coil 6 is reduced. Therefore, when the outlet temperature of the outdoor heat exchangers 9 and 9a serving as the evaporator is adjusted to a predetermined temperature, the temperature of the refrigerant flowing through the supercooling coil 6 must be lowered, and the effect of base heating can be obtained. I can't.

特開平5−346270号公報JP-A-5-346270

そこで本発明の目的は、気液分離器を用いた冷凍サイクルにおいて、底部熱交換部における着霜を防ぎ、氷の成長を抑制する冷凍サイクル装置を提供することである。   Therefore, an object of the present invention is to provide a refrigeration cycle apparatus that prevents frost formation at the bottom heat exchange section and suppresses ice growth in a refrigeration cycle using a gas-liquid separator.

上記課題を解決するため、本発明の冷凍サイクル装置は、圧縮機と、流入口と流出口とを有する底部熱交換器と、前記底部熱交換器の流出口に接続される減圧器と、前記減圧器に接続される気液口、および、気液分離後の液体を吐き出す液体口を有する気液分離器と、前記圧縮機の吸込口および吐出口のうちいずれかに切り替え可能に接続される第一口、および、前記気液分離器の液体口および前記底部熱交換器の流入口のうちいずれかに切り替え可能に接続される第二口を有する室外熱交換器と、前記気液分離器の前記液体口および前記底部熱交換器の流入口のうちいずれかに切り替え可能に接続される第一口、および、前記圧縮機の吸込口および前記圧縮機の吐出口のうちいずれかに切り替え可能に接続される第二口を有する室内熱交換器と、を備え、前記底部熱交換器は前記室外熱交換器の下部に設けたものである。 In order to solve the above problems, a refrigeration cycle apparatus of the present invention includes a compressor, a bottom heat exchanger having an inlet and an outlet, a decompressor connected to the outlet of the bottom heat exchanger, liquid inlet connected to the pressure reducer, and a gas-liquid separator having a liquid outlet for discharging the liquid after the gas-liquid separator is connected switchably to any one of the suction port and discharge port of the compressor An outdoor heat exchanger having a first port, and a second port that is switchably connected to one of a liquid port of the gas-liquid separator and an inlet port of the bottom heat exchanger, and the gas-liquid separator A first port connected to be switched to any one of the liquid port and the inlet of the bottom heat exchanger, and a switch to either the suction port of the compressor or the discharge port of the compressor Indoor heat exchange with second port connected to When, wherein the bottom heat exchanger is one which is provided at a lower portion of the outdoor heat exchanger.

また、圧縮機と、流入口と流出口とを有する底部熱交換器と、前記底部熱交換器の流出口に接続される減圧器と、前記減圧器に接続される気液口、および、気液分離後の液体を吐き出す液体口を有する気液分離器と、前記圧縮機の吸込口および吐出口のうちいずれかに切り替え可能に接続される第一口、および、前記底部熱交換器の流入口に前記底部熱交換器からの流れを規制する第一逆止弁を介して接続される第二口を有する室外熱交換器と、前記底部熱交換器の流入口に前記底部熱交換器からの流れを規制する第二逆止弁を介して接続される第一口、および、前記圧縮機の吸込口および前記圧縮機の吐出口のうちいずれかに切り替え可能に接続される第二口を有する室内熱交換器と、前記気液分離器の液体口と、前記第二逆止弁と前記室内熱交換器の第一口の間とを接続する経路に設けられた前記室内熱交換器からの流れを規制する第三逆止弁と、前記気液分離器の液体口と、前記第一逆止弁と前記室外熱交換器の第二口の間とを接続する経路に設けられた前記室外熱交換器からの流れを規制する第四逆止弁と、を備え、前記底部熱交換器は前記室外熱交換器の下部に設けたものである。   A compressor, a bottom heat exchanger having an inlet and an outlet, a decompressor connected to the outlet of the bottom heat exchanger, a gas-liquid port connected to the decompressor, and a gas A gas-liquid separator having a liquid port for discharging the liquid after liquid separation, a first port connected to one of a suction port and a discharge port of the compressor, and a flow of the bottom heat exchanger An outdoor heat exchanger having a second port connected to an inlet via a first check valve that regulates a flow from the bottom heat exchanger, and an inlet of the bottom heat exchanger from the bottom heat exchanger to the inlet A first port connected via a second check valve that regulates the flow of the compressor, and a second port that is switchably connected to either the suction port of the compressor or the discharge port of the compressor An indoor heat exchanger, a liquid port of the gas-liquid separator, the second check valve and the chamber A third check valve for restricting a flow from the indoor heat exchanger provided in a path connecting between the first ports of the heat exchanger, a liquid port of the gas-liquid separator, and the first reverse A fourth check valve for restricting a flow from the outdoor heat exchanger provided in a path connecting between the stop valve and the second port of the outdoor heat exchanger, and the bottom heat exchanger includes: It is provided in the lower part of the outdoor heat exchanger.

また、上述した冷凍サイクル装置において、前記気液分離器は気液分離後の気体を吐き出す気体口を有しており、前記気体口は前記圧縮機の低圧側に接続されているものである。   In the refrigeration cycle apparatus described above, the gas-liquid separator has a gas port for discharging the gas after gas-liquid separation, and the gas port is connected to the low-pressure side of the compressor.

本発明の冷凍サイクル装置では、暖房運転時、圧縮機から吐出された冷媒が室内熱交換器へと流入し、室外熱交換器の下部に設けられた底部熱交換器から膨張手段へと流入した後、気液分離器で分離された冷媒が上部熱交換器を経て、前記圧縮機へと吸入されるようにしている。したがって、前記底部熱交換器に流れ込む冷媒は前記室内熱交換器で凝縮して液化された高温高圧の液冷媒であるため、室外熱交換器の除霜水の結氷を防ぎ、氷の成長を抑制することができる。さらに、冷房運転時、前記圧縮機から吐出された冷媒が前記上部熱交換器へと流入し、前記底部熱交換器から前記膨張手段へと流入した後、前記気液分離器を経て前記室内熱交換器へと流入し、前記圧縮機へと吸入されるようになっている。これにより冷房運転時には、前記底部熱交換器を過冷却器として機能させることができる。 In the refrigeration cycle apparatus of the present invention, during the heating operation, the refrigerant discharged from the compressor flows into the indoor heat exchanger, and flows into the expansion means from the bottom heat exchanger provided at the lower part of the outdoor heat exchanger. Thereafter, the refrigerant separated by the gas-liquid separator is sucked into the compressor through the upper heat exchanger. Therefore, since the refrigerant flowing into the bottom heat exchanger is a high-temperature and high-pressure liquid refrigerant condensed and liquefied in the indoor heat exchanger, it prevents ice from defrosted water in the outdoor heat exchanger and prevents ice growth. can do. Further, during the cooling operation, the refrigerant discharged from the compressor flows into the upper heat exchanger, flows from the bottom heat exchanger into the expansion means, and then passes through the gas-liquid separator and the indoor heat. It flows into the exchanger and is sucked into the compressor. Thus, during the cooling operation, the bottom heat exchanger can function as a supercooler.

また流路変更手段に複数の逆止弁を用いることで、外部制御部材を用いずに冷凍サイクルを構成することができる。   Moreover, a refrigerating cycle can be comprised without using an external control member by using a several check valve for a flow-path change means.

また、気液分離器によって分離されたガス冷媒を圧縮機の吸入側配管に流入させることにより、蒸発器通過時の圧力損失を低減し、吸入圧の低下を抑えることができるため、冷凍サイクルの運転効率を向上させることができる。   In addition, by flowing the gas refrigerant separated by the gas-liquid separator into the suction side piping of the compressor, the pressure loss when passing through the evaporator can be reduced and the reduction of the suction pressure can be suppressed. Driving efficiency can be improved.

第1の実施形態における冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device in a 1st embodiment. 第2の実施形態における冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device in a 2nd embodiment. 従来の冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit diagram of the conventional refrigeration cycle apparatus.

以下に、本発明にかかる冷凍サイクル装置の実施の形態を図面に基づいて詳細に説明する。なお、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Hereinafter, embodiments of a refrigeration cycle apparatus according to the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited to the following embodiment, A various deformation | transformation is possible in the range which does not deviate from the main point of this invention.

[全体構成について]
図1は、本発明による冷凍サイクル装置の第1の実施例としての空気調和装置の全体構成図である。本実施例の空気調和機の室外熱交換器70は、上部に設けられる上部熱交換器71と、下部に設けられる底部熱交換器72とで構成されている。この空気調和機の冷媒回路は、概略的には、圧縮機10と、四方弁20と、室内熱交換器30と、分岐管60と、上部熱交換器71とを冷媒配管により順次接続して構成されている。また、室内熱交換器30と分岐管60との間には、四方弁整流回路110と、底部熱交換器72と、膨張手段40と、気液分離器50とが接続されている。
[Overall configuration]
FIG. 1 is an overall configuration diagram of an air conditioner as a first embodiment of a refrigeration cycle apparatus according to the present invention. The outdoor heat exchanger 70 of the air conditioner of the present embodiment includes an upper heat exchanger 71 provided at the upper part and a bottom heat exchanger 72 provided at the lower part. The refrigerant circuit of this air conditioner generally includes a compressor 10, a four-way valve 20, an indoor heat exchanger 30, a branch pipe 60, and an upper heat exchanger 71 that are sequentially connected by a refrigerant pipe. It is configured. Further, between the indoor heat exchanger 30 and the branch pipe 60, a four-way valve rectifier circuit 110, a bottom heat exchanger 72, expansion means 40, and a gas-liquid separator 50 are connected.

圧縮機10は、図示しないインバータにより回転数が制御されるモータ(例えば、3相ブラシレスモータ)によって駆動される能力可変型圧縮機である。圧縮機10の吐出側は四方弁20を介して室内熱交換器30あるいは室外熱交換器70へ切り替え可能に接続されている。圧縮機10の吸入側は、冷媒配管105を介して四方弁20に接続されており、室内熱交換器30あるいは室外熱交換器70からの冷媒が流通するようになっている。   The compressor 10 is a variable capacity compressor driven by a motor (for example, a three-phase brushless motor) whose rotational speed is controlled by an inverter (not shown). The discharge side of the compressor 10 is connected to the indoor heat exchanger 30 or the outdoor heat exchanger 70 via the four-way valve 20 so as to be switchable. The suction side of the compressor 10 is connected to the four-way valve 20 via a refrigerant pipe 105 so that the refrigerant from the indoor heat exchanger 30 or the outdoor heat exchanger 70 circulates.

四方弁20は、冷媒の流れる方向を切り替えるための弁である。四方弁20には4つのポートが備えられており、圧縮機10の吐出側と、室内熱交換器30の第二口31に接続される冷媒配管101と、圧縮機10の吸入側に接続される冷媒配管105と、室外熱交換器70に接続される冷媒配管104とに接続されている。 The four-way valve 20 is a valve for switching the direction in which the refrigerant flows. The four-way valve 20 is provided with four ports, and is connected to the discharge side of the compressor 10, the refrigerant pipe 101 connected to the second port 31 of the indoor heat exchanger 30, and the suction side of the compressor 10. The refrigerant pipe 105 and the refrigerant pipe 104 connected to the outdoor heat exchanger 70 are connected .

空気調和機が暖房運転を行う際は、圧縮機10から吐出された冷媒が室内熱交換器30に接続される冷媒配管101へと流れるように四方弁20を切り替えて(図1の四方弁20における実線で示す状態)、室内熱交換器30を凝縮器として機能させる。この時圧縮機の吸入側は、冷媒配管105、四方弁20および冷媒配管104を介して上部熱交換器71の第一口73に接続されている。   When the air conditioner performs the heating operation, the four-way valve 20 is switched so that the refrigerant discharged from the compressor 10 flows to the refrigerant pipe 101 connected to the indoor heat exchanger 30 (four-way valve 20 in FIG. 1). ), The indoor heat exchanger 30 is caused to function as a condenser. At this time, the suction side of the compressor is connected to the first port 73 of the upper heat exchanger 71 via the refrigerant pipe 105, the four-way valve 20 and the refrigerant pipe 104.

空気調和機が冷房運転を行う際は、圧縮機10から吐出された冷媒が室外熱交換器70に接続される冷媒配管104へと流れるように四方弁20を切り替えて(図1の四方弁20における破線で示す状態)、室内熱交換器30を蒸発器として機能させる。この時圧縮機10の吸入側は、冷媒配管105、四方弁20および冷媒配管101を介して室内熱交換器30の第二口31に接続されている。   When the air conditioner performs the cooling operation, the four-way valve 20 is switched so that the refrigerant discharged from the compressor 10 flows to the refrigerant pipe 104 connected to the outdoor heat exchanger 70 (four-way valve 20 in FIG. 1). ), The indoor heat exchanger 30 is caused to function as an evaporator. At this time, the suction side of the compressor 10 is connected to the second port 31 of the indoor heat exchanger 30 via the refrigerant pipe 105, the four-way valve 20 and the refrigerant pipe 101.

室内熱交換器30は、第二口31が四方弁20と冷媒配管101を介して接続され、第一口32が四方弁整流回路110内の整流用四方弁80と冷媒配管102を介して接続されている。室内熱交換器30は、上述したように、暖房運転を行う際には凝縮器として室内空気を加熱し、冷房運転を行う際には蒸発器として室内空気を冷却する。   In the indoor heat exchanger 30, the second port 31 is connected to the four-way valve 20 through the refrigerant pipe 101, and the first port 32 is connected to the rectifying four-way valve 80 in the four-way valve rectifier circuit 110 through the refrigerant pipe 102. Has been. As described above, the indoor heat exchanger 30 heats indoor air as a condenser when performing a heating operation, and cools indoor air as an evaporator when performing a cooling operation.

分岐管60は、一端が四方弁整流回路110内の整流用四方弁80と冷媒配管103を介して接続され、他端が上部熱交換器71の第二口74に接続されている。後述する上部熱交換器71には複数の冷媒流路が設けられており、分岐管60にて冷媒配管103から上部熱交換器71に流入する冷媒が分岐されるようになっている。したがって本実施例における上部熱交換器71は、複数の第二口74を有している。   One end of the branch pipe 60 is connected to the four-way valve 80 for rectification in the four-way valve rectifier circuit 110 via the refrigerant pipe 103, and the other end is connected to the second port 74 of the upper heat exchanger 71. A plurality of refrigerant flow paths are provided in the upper heat exchanger 71 described later, and the refrigerant flowing from the refrigerant pipe 103 into the upper heat exchanger 71 is branched by the branch pipe 60. Therefore, the upper heat exchanger 71 in this embodiment has a plurality of second ports 74.

上部熱交換器71には複数の冷媒流路が設けられており、複数の第二口74が分岐管60と接続され、他端は冷媒配管104を介して四方弁20と接続されている。上部熱交換器71の第一口73は、四方弁20が切り替えられることによって、暖房運転時は蒸発器として機能し、冷房運転時は凝縮器として機能する。   The upper heat exchanger 71 is provided with a plurality of refrigerant flow paths, the plurality of second ports 74 are connected to the branch pipe 60, and the other end is connected to the four-way valve 20 via the refrigerant pipe 104. The first port 73 of the upper heat exchanger 71 functions as an evaporator during heating operation and functions as a condenser during cooling operation by switching the four-way valve 20.

[四方弁整流回路]
四方弁整流回路110は、整流用四方弁80を用いて、四方弁整流回路110に接続されている底部熱交換器72および気液分離器50の冷媒流通方向を一方向にする回路である。
[4-way valve rectifier circuit]
The four-way valve rectifier circuit 110 is a circuit that uses the rectifier four-way valve 80 to make the refrigerant flow direction of the bottom heat exchanger 72 and the gas-liquid separator 50 connected to the four-way valve rectifier circuit 110 in one direction.

整流用四方弁80には、底部熱交換器72の第一口75に接続される底部接続往路管131と、室内熱交換器30の第一口31に接続される冷媒配管102と、気液分離器50の液体口53に接続される液流出管121と、分岐管60に接続される冷媒配管103とが接続されている。   The rectifying four-way valve 80 includes a bottom connection forward pipe 131 connected to the first port 75 of the bottom heat exchanger 72, a refrigerant pipe 102 connected to the first port 31 of the indoor heat exchanger 30, and a gas-liquid A liquid outflow pipe 121 connected to the liquid port 53 of the separator 50 and a refrigerant pipe 103 connected to the branch pipe 60 are connected.

空気調和機が暖房運転を行う際は、底部接続往路管131と冷媒配管102とが連通するよう、また、冷媒配管103と液流出管121とが連通するように整流用四方弁80を切り替える(図1の整流用四方弁80における実線で示す状態)。この時、室内熱交換器30の第一口32は、冷媒配管102、整流用四方弁80および底部接続往路管131を介して底部熱交換器72の第一口75に接続されるとともに、気液分離器50の液体口53は、液流出管121、整流用四方弁80および冷媒配管103を介して分岐管60に接続されている。   When the air conditioner performs the heating operation, the rectifying four-way valve 80 is switched so that the bottom connection forward pipe 131 and the refrigerant pipe 102 communicate with each other, and the refrigerant pipe 103 and the liquid outlet pipe 121 communicate with each other ( The state shown by the solid line in the rectifying four-way valve 80 in FIG. 1). At this time, the first port 32 of the indoor heat exchanger 30 is connected to the first port 75 of the bottom heat exchanger 72 via the refrigerant pipe 102, the rectifying four-way valve 80 and the bottom connection forward pipe 131, and The liquid port 53 of the liquid separator 50 is connected to the branch pipe 60 via the liquid outflow pipe 121, the rectifying four-way valve 80 and the refrigerant pipe 103.

空気調和機が冷房運転を行う際は、底部接続往路管131と冷媒配管103とが連通するよう、また、冷媒配管102と液流出管121とが連通するように整流用四方弁80を切り替える(図1の整流用四方弁80における破線で示す状態)。この時、分岐管60は、冷媒配管103、整流用四方弁80および底部接続往路管131を介して底部熱交換器72の第一口75に接続されるとともに、気液分離器50の液体口53は、液流出管121、整流用四方弁80および冷媒配管102を介して室内熱交換器30の第一口32に接続されている。   When the air conditioner performs the cooling operation, the rectifying four-way valve 80 is switched so that the bottom connection outgoing pipe 131 and the refrigerant pipe 103 communicate with each other, and the refrigerant pipe 102 and the liquid outlet pipe 121 communicate with each other ( The state shown by the broken line in the four-way valve 80 for rectification in FIG. 1). At this time, the branch pipe 60 is connected to the first port 75 of the bottom heat exchanger 72 via the refrigerant pipe 103, the rectifying four-way valve 80 and the bottom connection forward pipe 131, and the liquid port of the gas-liquid separator 50. 53 is connected to the first port 32 of the indoor heat exchanger 30 via the liquid outflow pipe 121, the rectifying four-way valve 80 and the refrigerant pipe 102.

[底部熱交換器]
底部熱交換器72の上方には上部熱交換器71が設けられている。暖房運転時には上部熱交換器71が凝縮器となるため、熱交換器の表面に凝縮水が生じる。底部熱交換器72の温度が低い場合、上部熱交換器71から垂れてきた凝縮水が底部熱交換器72で結氷する恐れがある。
[Bottom heat exchanger]
An upper heat exchanger 71 is provided above the bottom heat exchanger 72. Since the upper heat exchanger 71 serves as a condenser during heating operation, condensed water is generated on the surface of the heat exchanger. When the temperature of the bottom heat exchanger 72 is low, the condensed water dripping from the top heat exchanger 71 may be frozen in the bottom heat exchanger 72.

底部熱交換器72は、第一口75が四方弁整流回路110の整流用四方弁80に底部接続往路管131を介して接続され、第二口76が膨張手段40に底部接続復路管132を介して接続されている。暖房運転時、底部熱交換器72には室内熱交換器30で凝縮し液化された高温高圧の液冷媒が流れ込むため、室外熱交換器70に生じる凝縮水の結氷を防ぎ、氷の成長を抑制することができる。   The bottom heat exchanger 72 has a first port 75 connected to the four-way valve 80 for rectification of the four-way valve rectifier circuit 110 via a bottom connection forward tube 131, and a second port 76 connected to the expansion means 40 with a bottom connection return tube 132. Connected through. During heating operation, the high-temperature and high-pressure liquid refrigerant condensed and liquefied in the indoor heat exchanger 30 flows into the bottom heat exchanger 72, thereby preventing condensation of condensed water generated in the outdoor heat exchanger 70 and preventing ice growth. can do.

また、冷房運転時、底部熱交換器72には上部熱交換器71で凝縮された冷媒が整流用四方弁80および底部接続往路管131を介して流通する。したがって、冷房運転時、底部熱交換器72は過冷却器として機能する。   Further, during the cooling operation, the refrigerant condensed in the upper heat exchanger 71 flows through the bottom heat exchanger 72 via the four-way valve 80 for rectification and the bottom connection forward pipe 131. Therefore, during the cooling operation, the bottom heat exchanger 72 functions as a supercooler.

[気液分離器]
膨張手段40は、一端が底部熱交換器72の第二口76と底部接続復路管132を介して接続され、他端が気液分離器の気液口51と接続されている。
[Gas-liquid separator]
One end of the expansion means 40 is connected to the second port 76 of the bottom heat exchanger 72 via the bottom connection return pipe 132 and the other end is connected to the gas-liquid port 51 of the gas-liquid separator.

気液分離器50は、気液口51、液体口53および気体口52を有しており、気液口51は膨張手段40と接続されており、液体口53は、整流用四方弁80と液流出管121を介して接続されている。気体口52は冷媒配管105に、調節弁90を有するガスインジェクション管140を介して接続されている。   The gas-liquid separator 50 has a gas-liquid port 51, a liquid port 53, and a gas port 52. The gas-liquid port 51 is connected to the expansion means 40, and the liquid port 53 is connected to the rectifying four-way valve 80. The liquid outlet pipe 121 is connected. The gas port 52 is connected to the refrigerant pipe 105 via a gas injection pipe 140 having a control valve 90.

気液分離器50によって分離されたガス冷媒を、ガスインジェクション管140を介して圧縮機10の吸入側配管(冷媒配管105)に流入させることにより、蒸発器での圧力損失を防ぎ冷凍サイクルの運転効率を向上させることができる。   By causing the gas refrigerant separated by the gas-liquid separator 50 to flow into the suction side pipe (refrigerant pipe 105) of the compressor 10 via the gas injection pipe 140, the pressure loss in the evaporator is prevented and the operation of the refrigeration cycle is performed. Efficiency can be improved.

ここで、底部熱交換器72における加熱量の制御について説明する。加熱量の制御は、膨張手段40に流入する冷媒の温度Th1と、室内熱交換器30における冷媒の温度Th2とを用いて、調節弁90の開度を調整することで行う。底部熱交換器72に流入する冷媒の温度が高い場合(Th1とTh2の差が大きく、加熱量が多い場合)には、調節弁90の開度を小さくして気液分離器50から圧縮機10の吸入側配管(冷媒配管105)に流入する冷媒の量を低下させる。   Here, control of the heating amount in the bottom heat exchanger 72 will be described. The amount of heating is controlled by adjusting the opening of the control valve 90 using the temperature Th1 of the refrigerant flowing into the expansion means 40 and the temperature Th2 of the refrigerant in the indoor heat exchanger 30. When the temperature of the refrigerant flowing into the bottom heat exchanger 72 is high (when the difference between Th1 and Th2 is large and the amount of heating is large), the opening degree of the control valve 90 is reduced to reduce the compressor from the gas-liquid separator 50 to the compressor. The amount of refrigerant flowing into the 10 suction side pipes (refrigerant pipe 105) is reduced.

気液分離器50から圧縮機10の吸入側配管に流入する冷媒の量を低下させると、高圧側(膨張手段40で減圧される前)の冷媒回路における冷媒流量が減少するため、室内熱交換器30における過冷却度が大きくなる。そのため、底部熱交換器72を流れる冷媒の温度が低くなり加熱量が減少する。   When the amount of refrigerant flowing from the gas-liquid separator 50 into the suction side piping of the compressor 10 is reduced, the refrigerant flow rate in the refrigerant circuit on the high pressure side (before being depressurized by the expansion means 40) is reduced. The degree of supercooling in the vessel 30 increases. Therefore, the temperature of the refrigerant flowing through the bottom heat exchanger 72 is lowered and the amount of heating is reduced.

これとは逆に底部熱交換器72での加熱量が少ない場合は、調節弁90の開度を大きくすることで底部熱交換器72での加熱量を増加させることが可能となる。   On the other hand, when the heating amount in the bottom heat exchanger 72 is small, the heating amount in the bottom heat exchanger 72 can be increased by increasing the opening of the control valve 90.

次に第2の実施形態の冷凍サイクル装置を図2を用いて説明する。なお、本実施例では、第一の実施例と共通する部分の説明は省略する。第一の実施例と異なるのは、第一の実施例における四方弁整流回路110を、後述する第一ないし第四逆止弁81〜84により構成されるブリッジ回路111で代替した点である。   Next, a refrigeration cycle apparatus according to a second embodiment will be described with reference to FIG. In the present embodiment, description of portions common to the first embodiment is omitted. The difference from the first embodiment is that the four-way valve rectifier circuit 110 in the first embodiment is replaced with a bridge circuit 111 constituted by first to fourth check valves 81 to 84 described later.

[ブリッジ回路]
ブリッジ回路111は、第一ないし第四逆止弁81〜84をブリッジ状に接続した回路である。ブリッジ回路111は、第一ブリッジ流路106と第四ブリッジ流路109とが冷媒配管103と接続される接続端151と、第二ブリッジ流路107と第三ブリッジ流路108とが冷媒配管102と接続される接続端152と、第一ブリッジ流路106と第二ブリッジ流路107とが底部接続往路管131と接続される接続端153と、第三ブリッジ流路108と第四ブリッジ流路109とが気液分離器50の液体口53に接続された液流出管121と接続される接続端154とを有している。
[Bridge circuit]
The bridge circuit 111 is a circuit in which the first to fourth check valves 81 to 84 are connected in a bridge shape. The bridge circuit 111 includes a connection end 151 in which the first bridge channel 106 and the fourth bridge channel 109 are connected to the refrigerant pipe 103, and a second bridge channel 107 and a third bridge channel 108 in the refrigerant pipe 102. A connection end 152 connected to the bottom end, a connection end 153 where the first bridge channel 106 and the second bridge channel 107 are connected to the bottom connection forward pipe 131, a third bridge channel 108 and a fourth bridge channel. 109 has a connection end 154 connected to the liquid outflow pipe 121 connected to the liquid port 53 of the gas-liquid separator 50.

第一ブリッジ流路106には接続端153から接続端151への流れを規制する第一逆止弁81が設けられ、第二ブリッジ流路107には接続端153から接続端152への流れを規制する第二逆止弁82が設けられ、第三ブリッジ流路108には接続端152から接続端154への流れを規制する第三逆止弁83が設けられ、第四ブリッジ流路109とには接続端151から接続端154への流れを規制する第四逆止弁84が設けられている。   The first bridge channel 106 is provided with a first check valve 81 that restricts the flow from the connection end 153 to the connection end 151, and the second bridge channel 107 has a flow from the connection end 153 to the connection end 152. A second check valve 82 for restriction is provided, and a third check valve 83 for restricting the flow from the connection end 152 to the connection end 154 is provided in the third bridge flow path 108. Is provided with a fourth check valve 84 for restricting the flow from the connection end 151 to the connection end 154.

ブリッジ回路111には気液分離器50が接続されている。気液分離器50の気液口51には、底部接続復路管132からの冷媒が膨張手段40を介して流入するようになっており、液体口53は液流出管121を介して接続端154に接続されている。 A gas-liquid separator 50 is connected to the bridge circuit 111. The refrigerant from the bottom connection return pipe 132 flows into the gas-liquid port 51 of the gas-liquid separator 50 through the expansion means 40, and the liquid port 53 is connected to the connection end 154 through the liquid outflow pipe 121. It is connected to the.

[底部熱交換器]
底部熱交換器72は、第一口75がブリッジ回路111の接続端153に底部接続往路管131を介して接続され、第二口76が膨張手段40に底部接続復路管132を介して接続されている。底部熱交換器72は、暖房運転時、室内熱交換器30で凝縮し液化された高温高圧の液冷媒が流れ込むため、室外熱交換器70の除霜水の結氷を防ぎ、氷の成長を抑制することができる。
[Bottom heat exchanger]
The bottom heat exchanger 72 has a first port 75 connected to the connection end 153 of the bridge circuit 111 via the bottom connection forward tube 131 and a second port 76 connected to the expansion means 40 via the bottom connection return tube 132. ing. The bottom heat exchanger 72 prevents freezing of defrost water in the outdoor heat exchanger 70 and suppresses ice growth because high-temperature and high-pressure liquid refrigerant condensed and liquefied in the indoor heat exchanger 30 flows during heating operation. can do.

また、冷房運転時、底部熱交換器72には上部熱交換器71で凝縮された冷媒が流れ込む。したがって、冷房運転時、底部熱交換器72は過冷却器として機能する。   Further, during the cooling operation, the refrigerant condensed in the upper heat exchanger 71 flows into the bottom heat exchanger 72. Therefore, during the cooling operation, the bottom heat exchanger 72 functions as a supercooler.

[気液分離器]
気液分離器は、気液口51、液体口53および気体口52を有しており、気液口51は膨張手段40と接続されており、液体口53は、接続端154と液流出管121を介して接続されている。気体口52は冷媒配管105にガスインジェクション管140および調節弁90を介して接続されている。
[Gas-liquid separator]
The gas-liquid separator has a gas-liquid port 51, a liquid port 53, and a gas port 52. The gas-liquid port 51 is connected to the expansion means 40, and the liquid port 53 has a connection end 154 and a liquid outflow pipe. 121 is connected. The gas port 52 is connected to the refrigerant pipe 105 via a gas injection pipe 140 and a control valve 90.

以上説明したように、本実施例の冷凍サイクル装置では、気液分離器を用いた冷凍サイクルにおいて、暖房運転時、室外熱交換器70の底部熱交換器72は高圧高温の液冷媒が流れるため、室外熱交換器70の除霜水の結氷を防ぎ、氷の成長を抑制することができる。   As described above, in the refrigeration cycle apparatus of the present embodiment, in the refrigeration cycle using the gas-liquid separator, the high temperature and high temperature liquid refrigerant flows in the bottom heat exchanger 72 of the outdoor heat exchanger 70 during the heating operation. In addition, it is possible to prevent the defrosted water in the outdoor heat exchanger 70 from icing and suppress the growth of ice.

また、冷房運転時、室外熱交換器70の底部熱交換器72は上部熱交換器71から流出した直後の冷媒が流れるため、過冷却器として機能させることができる。   Further, during the cooling operation, the bottom heat exchanger 72 of the outdoor heat exchanger 70 can function as a supercooler because the refrigerant immediately after flowing out of the upper heat exchanger 71 flows.

10 圧縮機
20 四方弁
30 室内熱交換器
40 膨張手段
50 気液分離器
60 分岐管
70 室外熱交換器
71 上部熱交換器
72 底部熱交換器
80 整流用四方弁
81 第一逆止弁
82 第二逆止弁
83 第三逆止弁
84 第四逆止弁
90 調節弁
101 102 103 104 105 冷媒配管
110 四方弁整流回路
111 ブリッジ回路
120 連絡配管部
121 液流出管
130 底部接続管
131 底部接続往路管
132 底部接続復路管
140 ガスインジェクション管
10 compressor 20 four-way valve 30 indoor heat exchanger 40 expansion means 50 gas-liquid separator 60 branch pipe 70 outdoor heat exchanger 71 upper heat exchanger 72 bottom heat exchanger 80 rectifying four-way valve 81 first check valve 82 first Two check valves 83 Third check valve 84 Fourth check valve 90 Control valve 101 102 103 104 105 Refrigerant piping 110 Four-way valve rectifier circuit 111 Bridge circuit 120 Connecting pipe 121 Liquid outflow pipe 130 Bottom connection pipe 131 Bottom connection outgoing path Pipe 132 Bottom connection return pipe 140 Gas injection pipe

Claims (3)

圧縮機と、
流入口と流出口とを有する底部熱交換器と、
前記底部熱交換器の流出口に接続される減圧器と、
前記減圧器に接続される気液口、および、気液分離後の液体を吐き出す液体口を有する気液分離器と、
前記圧縮機の吸込口および吐出口のうちいずれかに切り替え可能に接続される第一口、および、前記気液分離器の液体口および前記底部熱交換器の流入口のうちいずれかに切り替え可能に接続される第二口を有する室外熱交換器と、
前記気液分離器の前記液体口および前記底部熱交換器の流入口のうちいずれかに切り替え可能に接続される第一口、および、前記圧縮機の吸込口および前記圧縮機の吐出口のうちいずれかに切り替え可能に接続される第二口を有する室内熱交換器と、
を備え、
前記底部熱交換器は前記室外熱交換器の下部に設けられてなることを特徴とする冷凍サイクル装置。
A compressor,
A bottom heat exchanger having an inlet and an outlet;
A decompressor connected to the outlet of the bottom heat exchanger;
A gas-liquid separator connected to the decompressor, and a gas-liquid separator having a liquid port for discharging the liquid after gas-liquid separation;
Switchable to either the first port that is switchably connected to either the suction port or the discharge port of the compressor, and the liquid port of the gas-liquid separator and the inlet port of the bottom heat exchanger An outdoor heat exchanger having a second port connected to the
A first port that is switchably connected to one of the liquid port of the gas-liquid separator and the inflow port of the bottom heat exchanger, and the suction port of the compressor and the discharge port of the compressor An indoor heat exchanger having a second port that is switchably connected to either
With
The refrigeration cycle apparatus, wherein the bottom heat exchanger is provided at a lower portion of the outdoor heat exchanger.
圧縮機と、
流入口と流出口とを有する底部熱交換器と、
前記底部熱交換器の流出口に接続される減圧器と、
前記減圧器に接続される気液口、および、気液分離後の液体を吐き出す液体口を有する気液分離器と、
前記圧縮機の吸込口および吐出口のうちいずれかに切り替え可能に接続される第一口、および、前記底部熱交換器の流入口に前記底部熱交換器からの流れを規制する第一逆止弁を介して接続される第二口を有する室外熱交換器と、
前記底部熱交換器の流入口に前記底部熱交換器からの流れを規制する第二逆止弁を介して接続される第一口、および、前記圧縮機の吸込口および前記圧縮機の吐出口のうちいずれかに切り替え可能に接続される第二口を有する室内熱交換器と、
前記気液分離器の液体口と、前記第二逆止弁と前記室内熱交換器の第一口の間とを接続する経路に設けられた前記室内熱交換器からの流れを規制する第三逆止弁と、
前記気液分離器の液体口と、前記第一逆止弁と前記室外熱交換器の第二口の間とを接続する経路に設けられた前記室外熱交換器からの流れを規制する第四逆止弁と、
を備え、
前記底部熱交換器は前記室外熱交換器の下部に設けられてなることを特徴とする冷凍サイクル装置。
A compressor,
A bottom heat exchanger having an inlet and an outlet;
A decompressor connected to the outlet of the bottom heat exchanger;
A gas-liquid separator connected to the decompressor, and a gas-liquid separator having a liquid port for discharging the liquid after gas-liquid separation;
A first port that is switchably connected to either the suction port or the discharge port of the compressor, and a first check that restricts the flow from the bottom heat exchanger to the inlet of the bottom heat exchanger An outdoor heat exchanger having a second port connected through a valve;
A first port connected to an inlet of the bottom heat exchanger via a second check valve for regulating a flow from the bottom heat exchanger, and a suction port of the compressor and a discharge port of the compressor An indoor heat exchanger having a second port that is switchably connected to any one of
A third for restricting a flow from the indoor heat exchanger provided in a path connecting the liquid port of the gas-liquid separator and the second check valve and the first port of the indoor heat exchanger. A check valve;
Fourth regulating the flow from the outdoor heat exchanger provided in the path connecting the liquid port of the gas-liquid separator and the first check valve and the second port of the outdoor heat exchanger. A check valve;
With
The refrigeration cycle apparatus, wherein the bottom heat exchanger is provided at a lower portion of the outdoor heat exchanger.
前記気液分離器は気液分離後の気体を吐き出す気体口を有しており、前記気体口は前記圧縮機の低圧側に接続されていることを特徴とする請求項1または2に記載の冷凍サイクル装置。
The gas-liquid separator has a gas port for discharging the gas after gas-liquid separation, and the gas port is connected to a low-pressure side of the compressor. Refrigeration cycle equipment.
JP2012075522A 2012-03-29 2012-03-29 Refrigeration cycle device Pending JP2013204952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012075522A JP2013204952A (en) 2012-03-29 2012-03-29 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012075522A JP2013204952A (en) 2012-03-29 2012-03-29 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2013204952A true JP2013204952A (en) 2013-10-07

Family

ID=49524226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012075522A Pending JP2013204952A (en) 2012-03-29 2012-03-29 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2013204952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105823258A (en) * 2016-05-12 2016-08-03 重庆冰源鸿节能技术开发有限责任公司 Low-temperature ice source heat pump unit
JP2021508025A (en) * 2017-12-29 2021-02-25 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. Air conditioner system
WO2023177048A1 (en) * 2022-03-17 2023-09-21 삼성전자주식회사 Air conditioner and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105823258A (en) * 2016-05-12 2016-08-03 重庆冰源鸿节能技术开发有限责任公司 Low-temperature ice source heat pump unit
CN105823258B (en) * 2016-05-12 2018-06-19 重庆冰源鸿节能技术开发有限责任公司 Low-temperature Ice source heat pump unit
JP2021508025A (en) * 2017-12-29 2021-02-25 青島海尓空調器有限総公司Qingdao Haier Air Conditioner General Corp.,Ltd. Air conditioner system
WO2023177048A1 (en) * 2022-03-17 2023-09-21 삼성전자주식회사 Air conditioner and control method thereof

Similar Documents

Publication Publication Date Title
CN102272534B (en) Air conditioning apparatus
CN109328287B (en) Refrigeration cycle device
EP2933588B1 (en) Air conditioning hot water supply composite system
US8424333B2 (en) Air conditioner
KR100885583B1 (en) Refrigerator
EP2211127A1 (en) Heat pump type air conditioner
US20180266743A1 (en) Air-conditioning apparatus
CN108362027B (en) heat pump system and control method thereof
EP3736513B1 (en) Circulation system for air conditioner and air conditioner
KR101726073B1 (en) Air conditioning system
US9677789B2 (en) Refrigeration appliance with two evaporators in different compartments
EP3499142A1 (en) Refrigeration cycle device
WO2005024313A1 (en) Freezer device
US9500395B2 (en) Refrigeration circuit, gas-liquid separator and heating and cooling system
US9816739B2 (en) Refrigeration system and refrigeration method providing heat recovery
CN113494790B (en) Refrigerating system, defrosting control method and refrigerating equipment thereof
JP6448780B2 (en) Air conditioner
KR101161381B1 (en) Refrigerant cycle apparatus
JP2013204952A (en) Refrigeration cycle device
EP3734192B1 (en) Air conditioner system
JP2007100987A (en) Refrigerating system
US20220049869A1 (en) Air-conditioning apparatus
JP2009293887A (en) Refrigerating device
KR101700043B1 (en) Air conditioning system
JP6042037B2 (en) Refrigeration cycle equipment