JP2013199889A - Method for stopping power generation facility and monitoring device - Google Patents

Method for stopping power generation facility and monitoring device Download PDF

Info

Publication number
JP2013199889A
JP2013199889A JP2012068982A JP2012068982A JP2013199889A JP 2013199889 A JP2013199889 A JP 2013199889A JP 2012068982 A JP2012068982 A JP 2012068982A JP 2012068982 A JP2012068982 A JP 2012068982A JP 2013199889 A JP2013199889 A JP 2013199889A
Authority
JP
Japan
Prior art keywords
power generation
vacuum
generation facility
condenser
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012068982A
Other languages
Japanese (ja)
Other versions
JP5608698B2 (en
Inventor
哲郎 ▲廣▼實
Tetsuro Hiromi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2012068982A priority Critical patent/JP5608698B2/en
Publication of JP2013199889A publication Critical patent/JP2013199889A/en
Application granted granted Critical
Publication of JP5608698B2 publication Critical patent/JP5608698B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To stop a power generation facility without causing demand and supply unbalance in power during a vacuum pump trip.SOLUTION: In a power generation facility (1) generating power using a steam turbine (12), a method for stopping the electric power generation facility includes: a detection step of detecting an operation status of a vacuum pump (16) adjusting a vacuum degree of a condenser (15); a load decreasing step of continuing operation of the power generation facility (1) for a predetermined time while a power generation load is lowered on condition that the detection step detects that the vacuum pump (16) is not operated; and a stopping step of stopping the operation of the power generation facility (1) on condition that a predetermined time of the operation by the load decreasing step has elapsed.

Description

本発明は、復水器の真空度が低下した際の発電設備停止方法及び監視装置に関する。   The present invention relates to a power generation facility stopping method and a monitoring device when the vacuum degree of a condenser is lowered.

蒸気タービン発電設備を有する発電プラントでは、蒸気で蒸気タービンを回転させることで蒸気の持つ熱エネルギーを回転エネルギーに変換するとともに、蒸気タービンの回転エネルギーを発電機に伝達することで電気エネルギーを得ている。このような発電プラントでは、使用済みの蒸気の再利用を行うべく、使用済み蒸気を冷却し水に戻す復水器を設けることが一般的である。   In a power plant having a steam turbine power generation facility, steam energy is converted into rotational energy by rotating the steam turbine with steam, and electric energy is obtained by transmitting the rotational energy of the steam turbine to the generator. Yes. In such a power plant, it is common to provide a condenser that cools the used steam and returns it to water in order to reuse the used steam.

復水器の真空度は、蒸気タービン発電設備における発電効率に大きく影響を与えることが知られており、蒸気タービン発電設備を有する発電プラントでは、復水器の真空度を維持するための真空ポンプを設け、復水器の真空度を適切に管理する運用がなされている。例えば、特許文献1の図4には、復水器内の真空度が低下傾向にある場合に、所定の操作を行うことでその原因を解消することが記載されている。   It is known that the vacuum degree of the condenser greatly affects the power generation efficiency in the steam turbine power generation facility. In a power plant having the steam turbine power generation facility, a vacuum pump for maintaining the vacuum degree of the condenser And the operation to appropriately manage the vacuum degree of the condenser is made. For example, FIG. 4 of Patent Document 1 describes that the cause is eliminated by performing a predetermined operation when the degree of vacuum in the condenser tends to decrease.

特開2009−127873号公報JP 2009-127873 A

ここで、復水器の真空度が低下傾向にある場合、流路の何れかにおいて蒸気漏れが発生している可能性があるため、真空度が所定値を下回ると蒸気タービン発電設備は自動的に緊急停止(インターロック)を行うように設計されている。また、復水器の真空度は、蒸気を復水するたびに低下していくため、復水器の真空ポンプがトリップした場合には、所定値を下回ることによる自動的な緊急停止の前に手動で蒸気タービン発電設備を停止する運用がなされている。   Here, when the degree of vacuum of the condenser tends to decrease, steam leakage may occur in any of the flow paths. Therefore, when the degree of vacuum falls below a predetermined value, the steam turbine power generation equipment automatically Designed to make an emergency stop (interlock). In addition, since the vacuum level of the condenser decreases every time the steam is condensed, if the condenser vacuum pump trips, before the automatic emergency stop by dropping below the predetermined value The operation to stop the steam turbine power generation facility manually has been made.

しかしながら、蒸気タービン発電設備を急に停止した場合には、電力の需給バランスが崩れてしまうため、復水器の真空度が低下した場合の蒸気タービン発電設備の停止制御について更なる工夫が求められている。   However, when the steam turbine power generation facility is suddenly stopped, the supply and demand balance of power is lost. Therefore, further ingenuity is required for the stop control of the steam turbine power generation facility when the vacuum degree of the condenser is reduced. ing.

本発明は、このような要望に鑑みてなされたものであり、真空ポンプトリップ時に電力の需給バランスを崩すことなく発電設備を停止する発電設備停止方法及び監視装置に関する。   The present invention has been made in view of such a demand, and relates to a power generation facility stopping method and a monitoring device for stopping a power generation facility without breaking the power supply-demand balance when a vacuum pump trips.

(1) 蒸気により駆動される蒸気タービンと、当該蒸気タービンの回転軸に連結する発電機と、前記蒸気タービンを駆動させた蒸気を復水する復水器と、前記復水器内を真空状態にする真空ポンプと、を備えた発電設備を停止させる発電設備停止方法であって、前記真空ポンプの稼動状況を検知する検知工程と、前記検知工程で前記真空ポンプが稼動していないと検知されることを条件に、前記発電設備における発電負荷を降下した状態で前記発電設備の運転を所定時間継続する負荷降下工程と、前記負荷降下工程による前記発電設備の運転が前記所定時間経過することを条件に、前記発電設備の運転を停止する停止工程と、を含む発電設備停止方法。   (1) A steam turbine driven by steam, a generator connected to a rotating shaft of the steam turbine, a condenser for condensing steam that has driven the steam turbine, and a vacuum in the condenser A power generation equipment stopping method for stopping the power generation equipment provided with a vacuum pump, a detection step for detecting an operating state of the vacuum pump, and detecting that the vacuum pump is not operating in the detection step. On the condition that the generation load in the power generation facility is lowered, the load reduction step of continuing the operation of the power generation facility for a predetermined time, and the operation of the power generation facility by the load reduction step has passed the predetermined time A power generation facility stopping method including, as a condition, a stop step of stopping the operation of the power generation facility.

(1)の発電設備停止方法によれば、復水器の真空度を調整する真空ポンプが停止している場合には、発電設備の運転を直ちに停止することなく、負荷降下工程により低負荷運転を所定時間継続した後に、停止工程により発電設備の運転を停止する。これにより、通常運転で運転していた発電設備が直ちに停止することなく、電力の需給バランスを調整するための時間的余裕を得ることができる。このとき、通常運転(125MW)から低負荷運転(50MW)に移行するため、復水器への蒸気流入を抑えられる結果、ドラム圧力を低下させることができ、その後の停止操作を安全に行うことができる。   According to the power generation facility stopping method of (1), when the vacuum pump that adjusts the vacuum degree of the condenser is stopped, the operation of the power generation facility is not immediately stopped and the low load operation is performed by the load dropping process. Is continued for a predetermined time, and then the operation of the power generation facility is stopped by the stop process. As a result, it is possible to obtain a time margin for adjusting the power supply / demand balance without immediately stopping the power generation facility that has been operated in the normal operation. At this time, since the normal operation (125 MW) is shifted to the low load operation (50 MW), the steam flow into the condenser can be suppressed. As a result, the drum pressure can be reduced and the subsequent stop operation can be performed safely. Can do.

(2) 前記復水器内の真空度を測定する真空度測定工程を更に含み、前記検知工程で前記真空ポンプが稼動していないと検知された場合には、前記真空度測定工程で前記復水器内の真空度が所定の閾値以下であると測定されることを条件に、前記負荷降下工程による前記発電設備の運転が行われ、前記真空度測定工程で前記復水器内の真空度が所定の閾値を超えると測定されることを条件に、前記負荷降下工程を経ることなく前記停止工程による前記発電設備の停止を行う、(1)に記載の発電設備停止方法。   (2) It further includes a vacuum degree measurement step for measuring the vacuum degree in the condenser, and when it is detected in the detection step that the vacuum pump is not operating, the vacuum degree measurement step The power generation facility is operated by the load drop step on the condition that the degree of vacuum in the water container is less than or equal to a predetermined threshold, and the degree of vacuum in the condenser is measured in the degree of vacuum measurement step. The power generation equipment stop method according to (1), wherein the power generation equipment is stopped by the stop step without passing through the load drop step on the condition that is measured when the value exceeds a predetermined threshold.

(2)の発電設備停止方法によれば、真空ポンプ停止時の復水器の真空度が所定の閾値以下である場合に限り発電設備の低負荷運転を行い、真空度が所定の閾値を超える場合には低負荷運転を行うことなく発電設備を停止する。これにより、緊急停止に至ることない真空度である場合に限り低負荷運転を行うことになり、真空ポンプ停止時に発電設備を安全に制御することができる。   According to the power generation equipment stopping method of (2), the power generation equipment is operated at a low load only when the vacuum degree of the condenser when the vacuum pump is stopped is equal to or lower than a predetermined threshold, and the vacuum exceeds the predetermined threshold. In some cases, the power generation equipment is stopped without performing low-load operation. Thereby, only when the degree of vacuum does not cause an emergency stop, the low-load operation is performed, and the power generation equipment can be controlled safely when the vacuum pump is stopped.

(3) 前記停止工程では、前記負荷降下工程による前記発電設備の運転中に前記復水器内の真空度が所定の閾値を超えると測定されることを条件に、前記負荷降下工程を終了し、前記発電設備の運転を停止する、(1)又は(2)に記載の発電設備停止方法。   (3) In the stop step, the load drop step is terminated on the condition that the vacuum level in the condenser exceeds a predetermined threshold during the operation of the power generation facility in the load drop step. The method for stopping the power generation facility according to (1) or (2), wherein the operation of the power generation facility is stopped.

(3)の発電設備停止方法によれば、低負荷運転を行っている最中であっても、復水器の真空度が所定の閾値を超えた場合には、その時点から発電設備を停止する。これにより、緊急停止に至ることない真空度である場合に限り低負荷運転を行うことになり、真空ポンプ停止時に発電設備を安全に制御することができる。   According to the power generation equipment stop method of (3), even when the low load operation is being performed, if the vacuum degree of the condenser exceeds a predetermined threshold, the power generation equipment is stopped from that point. To do. Thereby, only when the degree of vacuum does not cause an emergency stop, the low-load operation is performed, and the power generation equipment can be controlled safely when the vacuum pump is stopped.

(4) 蒸気により駆動される蒸気タービンと、当該蒸気タービンの回転軸に連結する発電機と、前記蒸気タービンを駆動させた蒸気を復水する復水器と、前記復水器内を真空状態にする真空ポンプと、を備えた発電設備の運転を停止させる監視装置であって、前記真空ポンプの稼動状況を検知する検知部と、前記検知部により前記真空ポンプが稼動していないと検知されることを条件に前記発電設備における発電負荷を降下した状態で前記発電設備の運転を行い、当該運転が所定時間経過することを条件に前記発電設備の運転を停止する制御部と、を備える監視装置。   (4) A steam turbine driven by steam, a generator connected to the rotating shaft of the steam turbine, a condenser for condensing steam that has driven the steam turbine, and a vacuum in the condenser A monitoring device for stopping the operation of the power generation equipment comprising: a detection unit that detects an operation status of the vacuum pump; and the detection unit detects that the vacuum pump is not operating. A control unit that operates the power generation facility in a state where the power generation load in the power generation facility is lowered on the condition that the operation is stopped, and stops the operation of the power generation facility on the condition that the operation has elapsed for a predetermined time. apparatus.

(4)の監視装置によれば、(1)の発電設備停止方法と同様の効果を奏する。   According to the monitoring device of (4), the same effect as the power generation facility stopping method of (1) can be obtained.

本発明によれば、真空ポンプトリップ時に電力の需給バランスを崩すことなく発電設備を停止することができる。   ADVANTAGE OF THE INVENTION According to this invention, a power generation facility can be stopped, without destroying the supply-demand balance of electric power at the time of a vacuum pump trip.

コンベンショナル発電設備の構成を示す図である。It is a figure which shows the structure of conventional power generation equipment. 発電設備を停止する発電設備停止方法を示すフローチャートであるIt is a flowchart which shows the power generation equipment stop method which stops power generation equipment. 一軸型コンバインド発電設備の構成を示す図である。It is a figure which shows the structure of a uniaxial type combined power generation facility.

以下、本発明の実施形態について図面を参照して説明する。
図1を参照して、発電プラント1は、発電設備10と監視装置20とを含んで構成される。発電設備10及び監視装置20は、互いに通信可能に接続され、監視装置20は、発電設備10の稼動状況を監視するとともに、発電設備10に対して制御信号を送信することで発電設備10を制御する。
Embodiments of the present invention will be described below with reference to the drawings.
With reference to FIG. 1, the power plant 1 includes a power generation facility 10 and a monitoring device 20. The power generation facility 10 and the monitoring device 20 are communicably connected to each other, and the monitoring device 20 controls the power generation facility 10 by monitoring the operating status of the power generation facility 10 and transmitting a control signal to the power generation facility 10. To do.

発電設備10は、蒸気タービンを用いて発電を行うコンベンショナル発電設備であり、発電機11と、蒸気タービン12と、回転軸13と、ボイラ14と、復水器15と、真空ポンプ16と、を含んで構成される。   The power generation facility 10 is a conventional power generation facility that generates power using a steam turbine, and includes a generator 11, a steam turbine 12, a rotating shaft 13, a boiler 14, a condenser 15, and a vacuum pump 16. Consists of including.

発電機11は、回転軸13を介して蒸気タービン12に連結されており、蒸気タービン12の回転に伴い電力を生成する。蒸気タービン12は、ボイラ14が保有する熱によって生成された蒸気により回転駆動される。   The generator 11 is connected to the steam turbine 12 via the rotating shaft 13 and generates electric power as the steam turbine 12 rotates. The steam turbine 12 is rotationally driven by steam generated by heat held by the boiler 14.

ボイラ14は、石炭や石油を燃焼させる火炉を備え、復水器15等から供給された水を蒸発させて蒸気を生成する。復水器15は、蒸気タービン12を駆動させた蒸気を復水する。蒸気を復水してなる水は、ボイラ14に送られ、ボイラ14において保有する熱を回収し、蒸気となって蒸気タービン12に送られる。   The boiler 14 includes a furnace that burns coal and oil, and generates steam by evaporating water supplied from the condenser 15 and the like. The condenser 15 condenses the steam that has driven the steam turbine 12. The water obtained by condensing the steam is sent to the boiler 14, recovers the heat held in the boiler 14, and is sent to the steam turbine 12 as steam.

真空ポンプ16は、復水器30の内部の真空度を上げるものであり、復水器15から延びる配管を介して復水器15と接続される。この配管には、図示しない真空弁が設けられており、真空弁を開放して真空ポンプ16を駆動することにより、復水器15内の空気が外部に放出されて、復水器15の内部の真空度が上昇する。そして、復水器15の内部が所定の真空度となった時点で真空弁を閉鎖することにより、復水器15の真空状態が保たれる。   The vacuum pump 16 increases the degree of vacuum inside the condenser 30 and is connected to the condenser 15 through a pipe extending from the condenser 15. This pipe is provided with a vacuum valve (not shown). By opening the vacuum valve and driving the vacuum pump 16, the air in the condenser 15 is discharged to the outside, and the inside of the condenser 15 The degree of vacuum increases. And the vacuum state of the condenser 15 is maintained by closing a vacuum valve when the inside of the condenser 15 becomes a predetermined | prescribed vacuum degree.

監視装置20は、発電プラント1の例えば中央制御室に設けられた端末装置であり、制御部21と、記憶部22と、真空度測定部23と、検知部24と、を含んで構成される。   The monitoring device 20 is a terminal device provided in, for example, the central control room of the power plant 1, and includes a control unit 21, a storage unit 22, a vacuum degree measurement unit 23, and a detection unit 24. .

制御部21は、記憶部22に記憶されているプログラムに従い、監視装置20の全体を制御するとともに、発電設備10の運転を制御する。制御部21が実行するプログラムには、復水器15の真空度が低下傾向にある場合の発電設備の運転を制御するプログラム(図2)が含まれる。なお、制御部21が実行する本実施形態に特有の制御については、後述する。   The control unit 21 controls the entire monitoring device 20 and controls the operation of the power generation facility 10 according to the program stored in the storage unit 22. The program executed by the control unit 21 includes a program (FIG. 2) for controlling the operation of the power generation facility when the vacuum degree of the condenser 15 tends to decrease. In addition, control peculiar to this embodiment which the control part 21 performs is mentioned later.

記憶部22は、真空度測定部23が測定した復水器15の真空度や検知部24が検知した発電設備の稼動状況を一時的に記憶する記憶装置である。また、記憶部22は、監視装置20の動作に必要とする各種のプログラムを予め記憶している。   The storage unit 22 is a storage device that temporarily stores the degree of vacuum of the condenser 15 measured by the degree-of-vacuum measurement unit 23 and the operating state of the power generation facility detected by the detection unit 24. The storage unit 22 stores various programs necessary for the operation of the monitoring device 20 in advance.

真空度測定部23は、復水器15を監視し、復水器15の真空度を測定する。一例として、真空度測定部23は、復水器15の内部に設置された真空度センサからの測定値を受信することで、復水器15の真空度を測定する。   The vacuum degree measurement unit 23 monitors the condenser 15 and measures the vacuum degree of the condenser 15. As an example, the vacuum degree measuring unit 23 measures the vacuum degree of the condenser 15 by receiving a measurement value from a vacuum degree sensor installed in the condenser 15.

検知部24は、発電設備10を構成する発電機11〜真空ポンプ16を常時監視し、その稼動状況を監視する。特に、本実施形態では、検知部24は、真空ポンプ16の稼動状況を監視し、真空ポンプ16が稼動していない場合には、その旨を制御部21に通知する。   The detection unit 24 constantly monitors the generator 11 to the vacuum pump 16 constituting the power generation facility 10 and monitors the operation status thereof. In particular, in the present embodiment, the detection unit 24 monitors the operating status of the vacuum pump 16 and notifies the control unit 21 when the vacuum pump 16 is not operating.

続いて、本実施形態に特有の制御部21の制御について説明する。
検知部24による監視の結果、真空ポンプ16が稼動していない場合には、検知部24から制御部21に対して真空ポンプ16が停止(トリップ)していることが通知される。この通知を受け取ると、制御部21は、発電設備10の運転を停止する制御を行う。
Subsequently, the control of the control unit 21 unique to the present embodiment will be described.
As a result of monitoring by the detection unit 24, when the vacuum pump 16 is not operating, the detection unit 24 notifies the control unit 21 that the vacuum pump 16 is stopped (tripped). Upon receiving this notification, the control unit 21 performs control to stop the operation of the power generation facility 10.

ここで、復水器15の真空度は蒸気を復水するたびに低下していくため、真空ポンプ16が停止した場合には、復水器15の真空度が徐々に低下していく。復水器の真空度が低下傾向にある場合、発電設備10のように蒸気を用いて発電を行う発電設備では流路の何れかにおいて蒸気漏れが発生している可能性があるため、真空度が所定値を下回ると自動的に緊急停止(インターロック)を行うように設計されている。緊急停止が行われた場合には、再起動のために様々な確認や手続きが必要になり、発電設備10を早期に起動することが困難になる。そのため、真空ポンプ16が停止してしまった場合には、緊急停止が行われる前に適切な対応をとる必要があり、本実施形態の制御部21は、緊急停止前に自動的に停止するように発電設備10を制御することとしている。   Here, since the vacuum degree of the condenser 15 decreases every time the steam is condensed, the vacuum degree of the condenser 15 gradually decreases when the vacuum pump 16 is stopped. When the vacuum degree of the condenser tends to decrease, the power generation facility that generates power using steam, such as the power generation facility 10, may cause steam leakage in any of the flow paths. It is designed to perform an emergency stop (interlock) automatically when the value falls below a predetermined value. When an emergency stop is performed, various confirmations and procedures are required for restarting, and it becomes difficult to start the power generation facility 10 early. Therefore, when the vacuum pump 16 stops, it is necessary to take an appropriate response before the emergency stop is performed, and the control unit 21 of the present embodiment automatically stops before the emergency stop. The power generation equipment 10 is to be controlled.

一方、真空ポンプ16の停止に伴い直ちに発電設備10を停止してしまった場合には、発電設備10の発電量が0になってしまうため電力の需給バランスが崩れてしまう。この点、真空ポンプ16が停止した場合であっても復水器15の真空度の低下は、1時間当たり1.33kPa程度であり、急激に低下しないことが経験的に知られている。そこで、本実施形態の制御部21は、真空ポンプ16の停止時に、復水器15の真空度に応じて発電設備10の停止制御を異ならせることとしている。   On the other hand, if the power generation facility 10 is immediately stopped as the vacuum pump 16 is stopped, the power generation amount of the power generation facility 10 becomes zero, and the power supply / demand balance is lost. In this respect, even when the vacuum pump 16 is stopped, it is empirically known that the decrease in the vacuum degree of the condenser 15 is about 1.33 kPa per hour and does not rapidly decrease. Therefore, the control unit 21 of the present embodiment varies the stop control of the power generation facility 10 according to the degree of vacuum of the condenser 15 when the vacuum pump 16 is stopped.

具体的には、検知部24から真空ポンプ16の停止通知を受け取ると、制御部21は、復水器15の真空度を確認する。すなわち、制御部21は、真空度測定部23が測定し記憶部22に記憶された復水器15の真空度を取得する。この真空度が所定の閾値以下である場合には、制御部21は、発電設備10の発電負荷を降下させた運転(低負荷運転)を所定時間(例えば、10分)行った後に発電設備10の運転を停止する。他方、この真空度が所定の閾値を超える場合には、制御部21は、発電設備10の運転を直ちに停止する。
ここで、所定の閾値としては、正常運転時の復水器15の真空度と緊急停止を行う際の復水器15の真空度との関係から適宜設定することができ、本実施形態では、−92.0kPaを所定の閾値としている。そのため、所定の閾値以下とは、−92.0kPa以下であり例えば−93.0kPaが該当し、所定の閾値を超えるとは、−92.0kPaより大きい例えば−88.0kPaが該当する。このとき、真空度が高いとは、マイナスの値が大きいことを意味し、真空度が低いとは、マイナスの値が小さいことを意味する。すなわち、−92.0kPa以下であるとは、真空度が高いことを意味し、−92.0kPaを超えるとは、真空度が低いことを意味する。
また、真空度が所定の閾値以下である場合の低負荷運転時の負荷降下量についても、適宜設定することができ、本実施形態では、通常運転を125MW、低負荷運転を50MWで行うこととしている。このように、真空度に余裕がある場合に低負荷運転を継続することで、発電設備10の負荷降下分を他の発電設備で補うための時間的余裕ができるため、電力系統全体での電力の需給バランスを崩すことなく発電設備10の運転を制御することができる。また、真空度に余裕がある場合に通常運転を続けるのではなく低負荷運転を行うため、復水器15への蒸気流入を抑えることができ、需給バランスを調整している最中に復水器15の真空度が急激に低下し発電設備10が緊急停止してしまうことを防止することができる。
Specifically, when the stop notification of the vacuum pump 16 is received from the detection unit 24, the control unit 21 confirms the vacuum degree of the condenser 15. That is, the control unit 21 acquires the vacuum level of the condenser 15 measured by the vacuum level measurement unit 23 and stored in the storage unit 22. When the degree of vacuum is equal to or less than a predetermined threshold, the control unit 21 performs the operation (low load operation) in which the power generation load of the power generation facility 10 is lowered for a predetermined time (for example, 10 minutes), and then the power generation facility 10. Stop driving. On the other hand, when the degree of vacuum exceeds a predetermined threshold, the control unit 21 immediately stops the operation of the power generation facility 10.
Here, the predetermined threshold can be set as appropriate from the relationship between the degree of vacuum of the condenser 15 during normal operation and the degree of vacuum of the condenser 15 when performing an emergency stop. In this embodiment, −92.0 kPa is set as a predetermined threshold. Therefore, the predetermined threshold value or lower is −92.0 kPa or lower, for example, −93.0 kPa, and exceeding the predetermined threshold value is higher than −92.0 kPa, for example, −88.0 kPa. At this time, a high degree of vacuum means that the negative value is large, and a low degree of vacuum means that the negative value is small. That is, -92.0 kPa or less means that the degree of vacuum is high, and exceeding -92.0 kPa means that the degree of vacuum is low.
Also, the amount of load drop during low-load operation when the degree of vacuum is below a predetermined threshold can be set as appropriate. In this embodiment, normal operation is performed at 125 MW and low-load operation is performed at 50 MW. Yes. In this way, when the degree of vacuum is sufficient, by continuing the low load operation, there is a time margin for supplementing the load drop of the power generation facility 10 with another power generation facility. The operation of the power generation facility 10 can be controlled without breaking the supply and demand balance. In addition, since the normal operation is not continued when the vacuum level is sufficient, the steam flow into the condenser 15 can be suppressed, and the condensate can be adjusted while the supply-demand balance is being adjusted. It can prevent that the vacuum degree of the container 15 falls rapidly and the power generation equipment 10 stops urgently.

続いて、図2を参照して、監視装置20が復水器15の真空度に応じて発電設備10の停止制御を行う際の処理の流れについて説明する。   Next, with reference to FIG. 2, a processing flow when the monitoring device 20 performs stop control of the power generation facility 10 according to the degree of vacuum of the condenser 15 will be described.

ステップS1では、監視装置20の検知部24は、真空ポンプ16の稼動状況を監視し、真空ポンプが停止しているか否かを監視する。このとき、真空ポンプ16が停止していない場合、すなわち稼動中である場合には、処理は終了する。   In step S1, the detection unit 24 of the monitoring device 20 monitors the operating status of the vacuum pump 16, and monitors whether the vacuum pump is stopped. At this time, if the vacuum pump 16 is not stopped, that is, if it is in operation, the processing ends.

他方、ステップS1において真空ポンプ16が停止している場合には、真空ポンプ16が再起動可能であるか否かを判定する(ステップS2)。真空ポンプ16が再起動可能である場合には、再起動に伴い復水器15の真空度を維持することができるため、発電設備10を停止する必要がない。そのため、ステップS3において真空ポンプ16を再起動し、処理を終了する。
なお、真空ポンプ16が再起動可能であるか否かの判定は、任意の方法により行うことができ、例えば、真空ポンプ16の停止を検知した後に一定時間内に検知部24が真空ポンプ16の稼動を検知した場合に再起動可能と判定し、一定時間経過しても検知部24が真空ポンプ16の稼動を検知できない場合に再起動不能と判定することとしてもよく、また、現場担当者による真空ポンプ16の点検作業の結果を受け付けることで、真空ポンプ16が再起動可能であるか否かを判定することとしてもよい。
On the other hand, if the vacuum pump 16 is stopped in step S1, it is determined whether the vacuum pump 16 can be restarted (step S2). When the vacuum pump 16 can be restarted, the vacuum level of the condenser 15 can be maintained along with the restart, so that it is not necessary to stop the power generation facility 10. Therefore, the vacuum pump 16 is restarted in step S3, and the process is terminated.
The determination as to whether or not the vacuum pump 16 can be restarted can be performed by any method. For example, the detection unit 24 detects the stop of the vacuum pump 16 within a predetermined time after detecting the stop of the vacuum pump 16. When the operation is detected, it can be determined that the restart is possible, and when the detection unit 24 cannot detect the operation of the vacuum pump 16 even after a certain period of time, it can be determined that the restart is impossible. It may be determined whether or not the vacuum pump 16 can be restarted by receiving the result of the inspection work of the vacuum pump 16.

ステップS3において真空ポンプ16が再起動可能でない場合には、制御部21は、真空度測定部23が測定した復水器15の真空度が所定の閾値以下であるか否かを判定する(ステップS4)。ステップS4において真空度が所定の閾値を超えると判定された場合には、制御部21は、発電設備10を制御し、直ちに通常の停止操作を開始する(ステップS7)。復水器15の真空度は、真空ポンプ16が停止しただけでは急激に低下することがないため、真空度が所定の閾値を超える場合には真空ポンプ16の停止に加え他の要因が発生している可能性がある。また、他の要因が発生していないとしても、真空度が所定の閾値を超えている場合には、緊急停止が行われるまでの余裕が少ないことになる。そのため、真空度が所定の閾値を超えている場合に直ちに発電設備10を通常操作で停止することで、発電設備10に対して緊急停止が行われることを防止できる。   When the vacuum pump 16 is not restartable in step S3, the control unit 21 determines whether or not the vacuum level of the condenser 15 measured by the vacuum level measurement unit 23 is equal to or less than a predetermined threshold (step). S4). When it is determined in step S4 that the degree of vacuum exceeds a predetermined threshold, the control unit 21 controls the power generation facility 10 and immediately starts a normal stop operation (step S7). Since the vacuum degree of the condenser 15 does not rapidly decrease when the vacuum pump 16 is stopped, other factors occur in addition to the stop of the vacuum pump 16 when the vacuum degree exceeds a predetermined threshold. There is a possibility. Even if other factors do not occur, if the degree of vacuum exceeds a predetermined threshold, there is little room until an emergency stop is performed. Therefore, it is possible to prevent the power generation facility 10 from being urgently stopped by immediately stopping the power generation facility 10 by a normal operation when the degree of vacuum exceeds a predetermined threshold.

他方、ステップS4において真空度が所定の閾値以下である場合には、復水器15の真空度に未だ余裕があることが分かる。そこで、ステップS5では、制御部21は、発電設備10を制御し、発電負荷を降下させる。一例として、制御部21は、発電設備10の発電負荷を125MWから50MWに降下させて発電設備10の運転を継続する。   On the other hand, if the degree of vacuum is less than or equal to the predetermined threshold value in step S4, it can be seen that the degree of vacuum of the condenser 15 still has room. Therefore, in step S5, the control unit 21 controls the power generation facility 10 to lower the power generation load. As an example, the control unit 21 continues the operation of the power generation facility 10 by lowering the power generation load of the power generation facility 10 from 125 MW to 50 MW.

続いて、ステップS6では、制御部21は、発電設備10の低負荷運転を開始してから10分が経過したか否かを判定する。ステップS6において低負荷運転を開始してから10分が経過していない場合には、ステップS4に戻り、低負荷運転を開始してから10分が経過するまで低負荷運転(50MW)を継続する。すなわち、制御部21は、発電設備10を10分間低負荷運転させる。このとき、10分間の低負荷運転中に復水器15の真空度が所定の閾値を超えてしまった場合には(ステップS4でNO)、制御部21は、低負荷運転を中止し、その時点から発電設備10を通常操作で停止する(ステップS7)。   Subsequently, in step S <b> 6, the control unit 21 determines whether 10 minutes have elapsed since the low load operation of the power generation facility 10 was started. If 10 minutes have not elapsed since the start of the low load operation in step S6, the process returns to step S4 and the low load operation (50 MW) is continued until 10 minutes have elapsed since the start of the low load operation. . That is, the control unit 21 causes the power generation facility 10 to operate at a low load for 10 minutes. At this time, when the vacuum degree of the condenser 15 exceeds a predetermined threshold during the low load operation for 10 minutes (NO in step S4), the control unit 21 stops the low load operation, The power generation facility 10 is stopped by normal operation from the time point (step S7).

また、ステップS6において低負荷運転を開始してから10分が経過した場合にも、制御部21は、低負荷運転を中止し、その時点から発電設備10を通常操作で停止する(ステップS7)。   Moreover, also when 10 minutes have passed since the low load operation was started in step S6, the control unit 21 stops the low load operation and stops the power generation facility 10 by normal operation from that point (step S7). .

以上のように、本実施形態では、復水器15の真空度を維持するための真空ポンプ16が停止している場合には、制御部21は、発電設備10の運転を直ちに停止することなく、低負荷運転を所定時間継続した後に発電設備10の運転を停止する。これにより、通常運転で運転していた発電設備10が直ちに停止することなく、電力の需給バランスを調整するための時間的余裕を得ることができる。このとき、通常運転(125MW)から低負荷運転(50MW)に移行するため、復水器15への蒸気流入を抑え真空度の低下速度を緩められる結果、ドラム圧力を低下させることができ、その後の停止操作を安全に行うことができる。   As described above, in this embodiment, when the vacuum pump 16 for maintaining the vacuum degree of the condenser 15 is stopped, the control unit 21 does not immediately stop the operation of the power generation facility 10. Then, after the low load operation is continued for a predetermined time, the operation of the power generation facility 10 is stopped. Thereby, the time margin for adjusting the power supply-demand balance can be obtained, without the power generation equipment 10 which was driving | operating by normal operation stopping immediately. At this time, since the normal operation (125 MW) is shifted to the low load operation (50 MW), the steam pressure to the condenser 15 is suppressed and the rate of decrease in the vacuum degree is reduced. Can be safely stopped.

このとき、制御部21は、真空ポンプ16停止時の復水器15の真空度が所定の閾値以下である場合に限り発電設備10の低負荷運転を行い、真空度が所定の閾値を超える場合には低負荷運転を行うことなく発電設備10を停止する。
また、制御部21は、低負荷運転を行っている最中であっても、復水器15の真空度が所定の閾値を超えた場合には、その時点から発電設備10を停止する。
これにより、緊急停止に至ることない真空度である場合に限り低負荷運転を行うことになり、真空ポンプ16停止時に発電設備10を安全に制御することができる。
At this time, the control unit 21 performs the low-load operation of the power generation equipment 10 only when the vacuum level of the condenser 15 when the vacuum pump 16 is stopped is equal to or lower than a predetermined threshold value, and the vacuum level exceeds the predetermined threshold value. The power generation facility 10 is stopped without performing a low load operation.
Moreover, even if the control part 21 is performing the low load operation, when the vacuum degree of the condenser 15 exceeds a predetermined threshold value, the power generation equipment 10 is stopped from that point.
Thereby, only when the degree of vacuum does not cause an emergency stop, the low load operation is performed, and the power generation facility 10 can be safely controlled when the vacuum pump 16 is stopped.

以上、本発明の実施形態について説明したが、本発明は前述した実施形態に限るものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to embodiment mentioned above. The effects described in the embodiments of the present invention are only the most preferable effects resulting from the present invention, and the effects of the present invention are limited to those described in the embodiments of the present invention. is not.

例えば、上記実施形態では、蒸気タービンのみを用いる発電設備10を用いて本発明について説明したが、本発明は、復水器を用いる発電設備であれば適用可能である。図3を参照して、発電機11と、蒸気タービン12と、回転軸13と、復水器15と、真空ポンプ16と、に加え、ガスや軽油等の燃料を燃焼させて生成される高温ガスによって回転駆動されるガスタービン17Aと、ガスタービンからの排ガスを取り入れ排ガスが保有する熱を回収する排熱回収ボイラ14Aと、を更に含む一軸型コンバインド発電設備10Aが知られている。一軸型コンバインド発電設備10Aにおいて、発電機11は、回転軸13を介してガスタービン17A及び蒸気タービン12に連結されており、ガスタービン17A及び蒸気タービン12の回転に伴い電力を生成する。また、復水器15で復水された水は、排熱回収ボイラ14Aに供給され、熱せられた後に再び蒸気となり蒸気タービン12の回転に用いられる。このような一軸型コンバインド発電設備10Aについても、真空ポンプ16が停止した際に復水器15の真空度に応じて運転停止制御を異ならせる本発明は適用可能である。   For example, in the above-described embodiment, the present invention has been described using the power generation facility 10 that uses only a steam turbine, but the present invention is applicable to any power generation facility that uses a condenser. With reference to FIG. 3, in addition to the generator 11, the steam turbine 12, the rotating shaft 13, the condenser 15, and the vacuum pump 16, the high temperature produced | generated by burning fuels, such as gas and light oil. There is known a single-shaft combined power generation facility 10 </ b> A further including a gas turbine 17 </ b> A that is rotationally driven by gas and an exhaust heat recovery boiler 14 </ b> A that takes in exhaust gas from the gas turbine and recovers heat held in the exhaust gas. In the single-shaft combined power generation facility 10 </ b> A, the generator 11 is connected to the gas turbine 17 </ b> A and the steam turbine 12 via the rotating shaft 13, and generates electric power as the gas turbine 17 </ b> A and the steam turbine 12 rotate. Further, the water condensed in the condenser 15 is supplied to the exhaust heat recovery boiler 14 </ b> A, heated and then becomes steam again, and used for the rotation of the steam turbine 12. The present invention in which the operation stop control is changed according to the degree of vacuum of the condenser 15 when the vacuum pump 16 is stopped can also be applied to the uniaxial combined power generation facility 10A.

1 発電プラント
10 発電設備
11 発電機
12 蒸気タービン
13 回転軸
14 ボイラ
15 復水器
16 真空ポンプ16
20 監視装置
21 制御部
22 記憶部
23 真空度測定部
24 検知部
DESCRIPTION OF SYMBOLS 1 Power generation plant 10 Power generation equipment 11 Generator 12 Steam turbine 13 Rotating shaft 14 Boiler 15 Condenser 16 Vacuum pump 16
20 Monitoring Device 21 Control Unit 22 Storage Unit 23 Vacuum Level Measurement Unit 24 Detection Unit

Claims (4)

蒸気により駆動される蒸気タービンと、当該蒸気タービンの回転軸に連結する発電機と、前記蒸気タービンを駆動させた蒸気を復水する復水器と、前記復水器内を真空状態にする真空ポンプと、を備えた発電設備を停止させる発電設備停止方法であって、
前記真空ポンプの稼動状況を検知する検知工程と、
前記検知工程で前記真空ポンプが稼動していないと検知されることを条件に、前記発電設備における発電負荷を降下した状態で前記発電設備の運転を所定時間継続する負荷降下工程と、
前記負荷降下工程による前記発電設備の運転が前記所定時間経過することを条件に、前記発電設備の運転を停止する停止工程と、
を含む発電設備停止方法。
A steam turbine driven by steam, a generator connected to a rotating shaft of the steam turbine, a condenser for condensing steam that has driven the steam turbine, and a vacuum for creating a vacuum in the condenser A power generation facility stopping method for stopping a power generation facility including a pump,
A detection step of detecting the operating status of the vacuum pump;
A load dropping step for continuing the operation of the power generation facility for a predetermined time in a state where the power generation load in the power generation facility is lowered, on condition that the vacuum pump is not detected in the detection step,
A stop step of stopping the operation of the power generation facility on the condition that the operation of the power generation facility by the load drop step elapses the predetermined time;
Power generation equipment stop method including.
前記復水器内の真空度を測定する真空度測定工程を更に含み、
前記検知工程で前記真空ポンプが稼動していないと検知された場合には、前記真空度測定工程で前記復水器内の真空度が所定の閾値以下であると測定されることを条件に、前記負荷降下工程による前記発電設備の運転が行われ、前記真空度測定工程で前記復水器内の真空度が所定の閾値を超えると測定されることを条件に、前記負荷降下工程を経ることなく前記停止工程による前記発電設備の停止を行う、
請求項1に記載の発電設備停止方法。
A vacuum degree measuring step for measuring a vacuum degree in the condenser;
When it is detected that the vacuum pump is not operating in the detection step, on the condition that the vacuum degree in the condenser is measured below a predetermined threshold in the vacuum degree measurement step, The power generation facility is operated by the load drop process, and the load drop process is performed on the condition that the vacuum measurement is performed when the vacuum in the condenser exceeds a predetermined threshold in the vacuum measurement process. Without stopping the power generation equipment by the stop step,
The power generation equipment stopping method according to claim 1.
前記停止工程では、前記負荷降下工程による前記発電設備の運転中に前記復水器内の真空度が所定の閾値を超えると測定されることを条件に、前記負荷降下工程を終了し、前記発電設備の運転を停止する、
請求項1又は2に記載の発電設備停止方法。
In the stop step, the load drop step is terminated on the condition that the degree of vacuum in the condenser exceeds a predetermined threshold during operation of the power generation facility in the load drop step, and the power generation is terminated. Stop the operation of the equipment,
The power generation equipment stop method according to claim 1 or 2.
蒸気により駆動される蒸気タービンと、当該蒸気タービンの回転軸に連結する発電機と、前記蒸気タービンを駆動させた蒸気を復水する復水器と、前記復水器内を真空状態にする真空ポンプと、を備えた発電設備の運転を停止させる監視装置であって、
前記真空ポンプの稼動状況を検知する検知部と、
前記検知部により前記真空ポンプが稼動していないと検知されることを条件に前記発電設備における発電負荷を降下した状態で前記発電設備の運転を行い、当該運転が所定時間経過することを条件に前記発電設備の運転を停止する制御部と、
を備える監視装置。
A steam turbine driven by steam, a generator connected to a rotating shaft of the steam turbine, a condenser for condensing steam that has driven the steam turbine, and a vacuum for creating a vacuum in the condenser A monitoring device for stopping operation of a power generation facility including a pump,
A detection unit for detecting the operation status of the vacuum pump;
The power generation facility is operated in a state where the power generation load in the power generation facility is lowered on condition that the detection unit detects that the vacuum pump is not operating, and the operation is performed on condition that a predetermined time elapses. A control unit for stopping the operation of the power generation facility;
A monitoring device comprising:
JP2012068982A 2012-03-26 2012-03-26 Power generation facility stopping method and monitoring device Expired - Fee Related JP5608698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012068982A JP5608698B2 (en) 2012-03-26 2012-03-26 Power generation facility stopping method and monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012068982A JP5608698B2 (en) 2012-03-26 2012-03-26 Power generation facility stopping method and monitoring device

Publications (2)

Publication Number Publication Date
JP2013199889A true JP2013199889A (en) 2013-10-03
JP5608698B2 JP5608698B2 (en) 2014-10-15

Family

ID=49520311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012068982A Expired - Fee Related JP5608698B2 (en) 2012-03-26 2012-03-26 Power generation facility stopping method and monitoring device

Country Status (1)

Country Link
JP (1) JP5608698B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105888752A (en) * 2015-09-25 2016-08-24 江曼 Electric power generation system optimal control method
CN106321162A (en) * 2015-06-30 2017-01-11 新特能源股份有限公司 Sliding parameter halt method of concurrent boiler
CN109098789A (en) * 2018-09-07 2018-12-28 中国能源建设集团安徽电力建设第工程有限公司 A kind of steam turbine vacuum tightness construction method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369387A (en) * 1991-06-19 1992-12-22 Toshiba Corp Automatic adjusting apparatus for vacuum degree of condenser
JP2001090507A (en) * 1999-09-24 2001-04-03 Hitachi Ltd Electric power plant
JP2005042640A (en) * 2003-07-24 2005-02-17 Hitachi Ltd Condensate degasifing device and method for controlling the same
JP2008261317A (en) * 2007-04-13 2008-10-30 Chugoku Electric Power Co Inc:The Method for operating power generation facilities
JP2010159713A (en) * 2009-01-09 2010-07-22 Hitachi Ltd Device for controlling temperature decrease of turbine gland seal steam, and method of controlling plant for steam turbine power generation facility
JP2011032885A (en) * 2009-07-30 2011-02-17 Kawasaki Heavy Ind Ltd Device and method for adjusting vacuum of condenser, and steam turbine plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04369387A (en) * 1991-06-19 1992-12-22 Toshiba Corp Automatic adjusting apparatus for vacuum degree of condenser
JP2001090507A (en) * 1999-09-24 2001-04-03 Hitachi Ltd Electric power plant
JP2005042640A (en) * 2003-07-24 2005-02-17 Hitachi Ltd Condensate degasifing device and method for controlling the same
JP2008261317A (en) * 2007-04-13 2008-10-30 Chugoku Electric Power Co Inc:The Method for operating power generation facilities
JP2010159713A (en) * 2009-01-09 2010-07-22 Hitachi Ltd Device for controlling temperature decrease of turbine gland seal steam, and method of controlling plant for steam turbine power generation facility
JP2011032885A (en) * 2009-07-30 2011-02-17 Kawasaki Heavy Ind Ltd Device and method for adjusting vacuum of condenser, and steam turbine plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106321162A (en) * 2015-06-30 2017-01-11 新特能源股份有限公司 Sliding parameter halt method of concurrent boiler
CN105888752A (en) * 2015-09-25 2016-08-24 江曼 Electric power generation system optimal control method
CN105888752B (en) * 2015-09-25 2017-08-25 浙江秀舟热电有限公司 Power generation system optimal control method
CN109098789A (en) * 2018-09-07 2018-12-28 中国能源建设集团安徽电力建设第工程有限公司 A kind of steam turbine vacuum tightness construction method

Also Published As

Publication number Publication date
JP5608698B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
EP2372482B1 (en) Method and system for testing an overspeed protection system of a powerplant machine
US7036315B2 (en) Apparatus and method for detecting low charge of working fluid in a waste heat recovery system
JP5883568B2 (en) Method and system for testing a power plant overspeed protection system
EP2372112B1 (en) Method for determining when to perform a test of an overspeed protection system of a powerplant machine
JP5608698B2 (en) Power generation facility stopping method and monitoring device
US20150345387A1 (en) Plant control apparatus and plant starting-up method
JP6262354B2 (en) Method for inspecting an overspeed protection device of a single axis system
US9670799B2 (en) Power generation apparatus including predetermined slip-based time delay control for grid connection
JP6971704B2 (en) Systems and Methods to Improve Shutdown Purge Flow in Gas Turbine Systems
JP3214981U (en) System and method for improving shutdown purge flow in a gas turbine system
JP5194175B2 (en) Method and device for controlling a thermal power plant
JP6967912B2 (en) Systems and Methods to Improve Shutdown Purge Flow in Gas Turbine Systems
TWI758839B (en) Plant control apparatus and plant control method
JP2005282932A (en) Water feed control method for boiler and its device
JP6173171B2 (en) Gas turbine starting method and apparatus
JP2018132134A (en) Device and method for detecting abnormality of power transmission belt
JP2013083361A (en) Refrigeration cycle device
JP5461507B2 (en) How to stop power generation equipment
JP5415171B2 (en) Water wheel governor
JP5222008B2 (en) Method and apparatus for restarting single-shaft combined plant
JP2012102896A (en) Refrigerating cycle device
JP5989218B1 (en) Air circulation control device and air circulation control method in power plant
JP6347551B2 (en) Waste heat boiler
JP2003336503A (en) Gas turbine device
JP6301167B2 (en) Combustion device with purge monitoring device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5608698

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees