JP2013199517A - METHOD OF PRODUCING HYDROGENATED α-OLEFIN POLYMER - Google Patents

METHOD OF PRODUCING HYDROGENATED α-OLEFIN POLYMER Download PDF

Info

Publication number
JP2013199517A
JP2013199517A JP2012067105A JP2012067105A JP2013199517A JP 2013199517 A JP2013199517 A JP 2013199517A JP 2012067105 A JP2012067105 A JP 2012067105A JP 2012067105 A JP2012067105 A JP 2012067105A JP 2013199517 A JP2013199517 A JP 2013199517A
Authority
JP
Japan
Prior art keywords
hydrogenated
olefin polymer
olefin
polymerization
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012067105A
Other languages
Japanese (ja)
Inventor
Kimihito Hirose
公人 廣瀬
Tatsuyoshi Yokota
龍力 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2012067105A priority Critical patent/JP2013199517A/en
Publication of JP2013199517A publication Critical patent/JP2013199517A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of producing a hydrogenated α-olefin polymer having good quality and high viscosity, and to provide the hydrogenated α-olefin polymer obtained through the production method.SOLUTION: A method of producing a hydrogenated α-olefin polymer includes: a step (a) of polymerizing an α-olefin to produce a polymerization solution containing an α-olefin polymer having a different polymerization degree; a step (b) of distilling the polymerization solution obtained in the step (a) to obtain an α-olefin polymer whose 100°C kinematic viscosity is 40-300 mm/s inclusive; and a step (c) of hydrogenizing the α-olefin polymer obtained in the step (b) to obtain the hydrogenated α-olefin polymer.

Description

本発明は、潤滑油基材として有用な水素化α−オレフィン重合体を製造する技術に関する。   The present invention relates to a technique for producing a hydrogenated α-olefin polymer useful as a lubricating oil base material.

炭素数が6〜20のα−オレフィンのオリゴマーは、主にエンジンオイル等の合成潤滑油の原料油として製造されている。このα−オレフィンオリゴマーの中でも、特に1−デセンのオリゴマー、及び1−オクテンと1−ドデセンのオリゴマーを主成分とする合成潤滑油は、高性能エンジンオイルの原料油として極めて有用であるため、その需要量が増加している。潤滑油の基材として重要な特性は動粘度であり、動粘度により用途が異なるため、動粘度毎に分離する必要がある。   The α-olefin oligomer having 6 to 20 carbon atoms is mainly produced as a raw material for synthetic lubricating oil such as engine oil. Among these α-olefin oligomers, a synthetic lubricating oil mainly composed of an oligomer of 1-decene and an oligomer of 1-octene and 1-dodecene is extremely useful as a raw material oil for high-performance engine oils. Demand is increasing. An important characteristic as a base material for lubricating oil is kinematic viscosity, and the use differs depending on kinematic viscosity.

自動車や工業用機械用の潤滑油には、比較的高粘度であることが求められている。近年の自動車や工業用機械の性能向上に伴い、潤滑油のさらなる高性能化が求められている。   Lubricating oils for automobiles and industrial machines are required to have a relatively high viscosity. With the recent improvement in performance of automobiles and industrial machines, further improvement in the performance of lubricating oil is required.

潤滑油基材の製造方法として、特許文献1には、メタロセン触媒を用いてα−オレフィンを重合することが記載されている。α−オレフィンを重合して得られる重合液には、重合度の異なる重合体が含まれている。この重合液から、所望の粘度の重合体を、蒸留を繰り返すことにより得ている。また、重合後のα−オレフィン重合体は、末端に二重結合が残っている。末端の二重結合は製品を不安定化するので、水素化して潤滑油基材の製品とする。従って、蒸留による分別の前に水素化して、重合液に含まれる重合体の末端二重結合を水素化している。   As a method for producing a lubricating oil base material, Patent Document 1 describes that an α-olefin is polymerized using a metallocene catalyst. Polymers obtained by polymerizing α-olefin contain polymers having different degrees of polymerization. From this polymerization solution, a polymer having a desired viscosity is obtained by repeating distillation. Moreover, the double bond remains at the terminal of the α-olefin polymer after polymerization. Since the double bond at the end destabilizes the product, it is hydrogenated into a lubricant-based product. Therefore, the terminal double bond of the polymer contained in the polymerization solution is hydrogenated by hydrogenation before fractionation by distillation.

特開2009−149911号公報JP 2009-149911 A

しかし、従来の製法で得られる高粘度の水素化α−オレフィン重合体は、副生成物が多く製品品質が十分でないという問題があった。
従って、本発明は、品質の良い高粘度の水素化α−オレフィン重合体が製造できる方法とその製法により得られる水素化α−オレフィン重合体を提供することを目的とする。
However, the high-viscosity hydrogenated α-olefin polymer obtained by the conventional production method has a problem that there are many by-products and the product quality is not sufficient.
Accordingly, an object of the present invention is to provide a method capable of producing a high-quality, high-viscosity hydrogenated α-olefin polymer and a hydrogenated α-olefin polymer obtained by the method.

本発明者らは、鋭意研究の結果、高粘度の水素化α−オレフィン重合体の品質が劣化するのは、重合液の蒸留を繰り返す際に、重合液に含まれる高粘度の水素化α−オレフィン重合体が高温に晒され分解するためであることを見出し、これに基づき本発明を完成させた。
本発明によれば、以下の水素化α−オレフィン重合体の製造方法等が提供される。
1.α−オレフィンを重合して重合度の異なるα−オレフィン重合体を含む重合液を製造する工程(a)と、
前記工程(a)で得られた重合液を蒸留して100℃動粘度が40mm/s以上300mm/s以下のα−オレフィン重合体を得る工程(b)と、
前記工程(b)で得られたα−オレフィン重合体を水素化して水素化α−オレフィン重合体を得る工程(c)とを含む、水素化α−オレフィン重合体の製造方法。
2.100℃動粘度が40mm/s以上300mm/s以下の水素化α−オレフィン重合体を製造する工程と、
100℃動粘度が2mm/s以上40mm/s未満の水素化α−オレフィン重合体を製造する工程を含み、
前記100℃動粘度が40mm/s以上300mm/s以下の水素化α−オレフィン重合体の製造工程が、
第1のα−オレフィンを重合して、重合度の異なる重合体を含む第1の重合液を製造する工程(1a)と、
前記工程(1a)で得られた第1の重合液を蒸留して、100℃動粘度が40mm/s以上300mm/s以下のα−オレフィン重合体を得る工程(1b)と、
前記工程(1b)で得られたα−オレフィン重合体を水素化して水素化α−オレフィン重合体を得る工程(1c)を含み、
前記100℃動粘度が2mm/s以上40mm/s未満の水素化α−オレフィン重合体の製造工程が、
第2のα−オレフィンを重合して、重合度の異なる重合体を含む第2の重合液を製造する工程(2a)と、
前記工程(2a)で得られた第2の重合液を水素化して、水素化重合液を得る工程(2b)と、
前記工程(2b)で得られた水素化重合液を蒸留して、100℃動粘度が2mm/s以上40mm/s未満の水素化α−オレフィン重合体を得る工程(2c)を含む、
異なる粘度の水素化α−オレフィン重合体の製造方法。
3.前記工程(b)又は前記工程(1b)の蒸留の温度が160〜260℃である1又は2の製造方法。
4.前記工程(2c)の蒸留の温度が160〜240℃である2記載の製造方法。
5.前記第1のα−オレフィンが、炭素数8〜12のα−オレフィンであり、前記第2のα−オレフィンが、炭素数10のα−オレフィンである2記載の製造方法。
6.1〜5のいずれか記載の製造方法により得られる水素化α−オレフィン重合体。
As a result of diligent research, the inventors of the present invention have deteriorated the quality of the highly viscous hydrogenated α-olefin polymer when the distillation of the polymerization solution is repeated. The inventors discovered that the olefin polymer was decomposed when exposed to high temperature, and based on this, the present invention was completed.
According to the present invention, the following method for producing a hydrogenated α-olefin polymer is provided.
1. a step (a) for producing a polymerization liquid containing α-olefin polymers having different degrees of polymerization by polymerizing α-olefin;
A step (b) of distilling the polymerization liquid obtained in the step (a) to obtain an α-olefin polymer having a 100 ° C. kinematic viscosity of 40 mm 2 / s to 300 mm 2 / s;
A process for producing a hydrogenated α-olefin polymer, comprising: hydrogenating the α-olefin polymer obtained in the step (b) to obtain a hydrogenated α-olefin polymer.
2. a step of producing a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 40 mm 2 / s to 300 mm 2 / s;
Including a step of producing a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s,
The process for producing a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 40 mm 2 / s to 300 mm 2 / s,
A step (1a) of polymerizing the first α-olefin to produce a first polymerization solution containing polymers having different degrees of polymerization;
A step (1b) of distilling the first polymerization liquid obtained in the step (1a) to obtain an α-olefin polymer having a kinematic viscosity at 100 ° C. of 40 mm 2 / s to 300 mm 2 / s;
Including a step (1c) of hydrogenating the α-olefin polymer obtained in the step (1b) to obtain a hydrogenated α-olefin polymer,
The process for producing a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s,
A step (2a) of polymerizing the second α-olefin to produce a second polymerization solution containing polymers having different degrees of polymerization;
Hydrogenating the second polymerization solution obtained in the step (2a) to obtain a hydrogenated polymerization solution (2b);
Including a step (2c) of distilling the hydrogenated polymerization liquid obtained in the step (2b) to obtain a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s,
A method for producing hydrogenated α-olefin polymers having different viscosities.
3. The manufacturing method of 1 or 2 whose temperature of the distillation of the said process (b) or the said process (1b) is 160-260 degreeC.
4). The production method according to 2, wherein the distillation temperature in the step (2c) is 160 to 240 ° C.
5. 3. The production method according to 2, wherein the first α-olefin is an α-olefin having 8 to 12 carbon atoms, and the second α-olefin is an α-olefin having 10 carbon atoms.
The hydrogenated alpha-olefin polymer obtained by the manufacturing method in any one of 6.1-5.

本発明によれば、品質の良い高粘度の水素化α−オレフィン重合体が製造できる方法とその製法により得られる水素化α−オレフィン重合体が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrogenated alpha-olefin polymer obtained by the method which can manufacture a high-viscosity high-viscosity hydrogenated alpha-olefin polymer and its manufacturing method can be provided.

図1は、本発明の一実施形態による高粘度の水素化α−オレフィン重合体の製造方法を説明するための図である。FIG. 1 is a diagram for explaining a method for producing a high-viscosity hydrogenated α-olefin polymer according to an embodiment of the present invention. 図2は、本発明の一実施形態による低粘度の水素化α−オレフィン重合体の製造方法を説明するための図である。FIG. 2 is a diagram for explaining a method for producing a low-viscosity hydrogenated α-olefin polymer according to an embodiment of the present invention. 図3は、実験例1の水素化品のゲル浸透クロマトグラフィーの結果を示す図である。FIG. 3 is a diagram showing the results of gel permeation chromatography of the hydrogenated product of Experimental Example 1. 図4は、実験例1の未水素化品のゲル浸透クロマトグラフィーの結果を示す図である。FIG. 4 is a diagram showing the results of gel permeation chromatography of the unhydrogenated product of Experimental Example 1. 図5は、実験例1の水素化品の臭素価を示す図である。FIG. 5 is a graph showing the bromine number of the hydrogenated product of Experimental Example 1. 図6は、実験例1の未水素化品の臭素価を示す図である。6 is a graph showing the bromine number of the unhydrogenated product of Experimental Example 1. FIG.

本発明の第一の製法は、以下の工程を、(a),(b),(c)の順で実施する水素化α−オレフィン重合体の製造方法である。
(a)α−オレフィンを重合して重合度の異なるα−オレフィン重合体を含む重合液を製造する
(b)前記重合液を蒸留して100℃動粘度が40mm/s以上300mm/s以下のα−オレフィン重合体を得る
(c)前記α−オレフィン重合体を水素化して水素化α−オレフィン重合体を得る
The 1st manufacturing method of this invention is a manufacturing method of the hydrogenated alpha olefin polymer which implements the following processes in order of (a), (b), (c).
(A) Polymerizing α-olefin to produce a polymerization solution containing α-olefin polymers having different degrees of polymerization (b) Distilling the polymerization solution to give a 100 ° C. kinematic viscosity of 40 mm 2 / s to 300 mm 2 / s The following α-olefin polymer is obtained. (C) The α-olefin polymer is hydrogenated to obtain a hydrogenated α-olefin polymer.

図1を用いて、本発明の一実施形態にかかる製造方法を説明する。
この実施形態では、重合した重合液を、失活・脱灰した後、未反応α−オレフィンを除去するために予め蒸留塔(図示せず)で蒸留し、得られた残分R0を、薄膜蒸留塔10,12,14で処理する。各蒸留塔10,12,14では、それぞれ軽質分(低粘度成分)D1,D2,D3を塔頂から取り出し、重質分(高粘度成分)R1,R2,R3を塔底から取り出す。蒸留塔10,12から取り出した残分R1,R2は、それぞれ次の蒸留塔12,14へ移送する。最後の蒸留塔14から取り出した残分R3は、最も粘度の高い成分となる。この粘度の高い成分R3を水素化装置20で水素化する。
A manufacturing method according to an embodiment of the present invention will be described with reference to FIG.
In this embodiment, the polymerized polymerization solution is deactivated and deashed, and then distilled in advance in a distillation column (not shown) to remove unreacted α-olefin, and the resulting residue R0 is converted into a thin film. Process in distillation towers 10, 12, and 14. In each of the distillation columns 10, 12, and 14, the light components (low viscosity components) D1, D2, and D3 are taken out from the column top, and the heavy components (high viscosity components) R1, R2, and R3 are taken out from the column bottom. The residues R1 and R2 taken out from the distillation columns 10 and 12 are transferred to the next distillation columns 12 and 14, respectively. The residue R3 taken out from the last distillation column 14 is the highest viscosity component. The highly viscous component R3 is hydrogenated by the hydrogenation apparatus 20.

高粘度の潤滑油としての製品品質を満足させるために、軽質分を蒸留で除去するが、軽質分を除去するためには通常減圧条件下で160〜260℃にする。後述する実験例1に示すように、100℃動粘度が40mm/s以上300mm/s以下の高い粘度のα−オレフィン重合体は、水素化してから、蒸留(熱処理)をすると、分解して品質が劣化する。従って、100℃動粘度が40mm/s以上300mm/s以下のα−オレフィン重合体については、上記のように、水素化しないで軽質分を除去しその後に水素化すると、熱分解することなく品質は劣化しない。 In order to satisfy the product quality as a high-viscosity lubricating oil, the light component is removed by distillation, but in order to remove the light component, the temperature is usually 160 to 260 ° C. under reduced pressure. As shown in Experimental Example 1 to be described later, a high viscosity α-olefin polymer having a kinematic viscosity at 100 ° C. of 40 mm 2 / s to 300 mm 2 / s decomposes when hydrogenated and distilled (heat treatment). Quality deteriorates. Therefore, as described above, the α-olefin polymer having a kinematic viscosity at 100 ° C. of 40 mm 2 / s or more and 300 mm 2 / s or less is thermally decomposed when the light component is removed without hydrogenation and then hydrogenated. The quality will not deteriorate.

第一の製法で得られる水素化α−オレフィン重合体は、100℃動粘度が40mm/s以上300mm/s以下であり、例えば、40〜200mm/s、40〜100mm/s、40〜80mm/s、42〜51mm/s、又は126〜167mm/sの製品を製造できる。蒸留の条件を適宜変更することで、所望の100℃動粘度を有するα−オレフィン重合体を得ることができる。なお、本発明において、100℃動粘度は、JIS K 2283の動粘度試験方法に準じて測定した値とする。 First obtained by process hydrogenated α- olefin polymer is a 100 ° C. kinematic viscosity of less 40 mm 2 / s or more 300 mm 2 / s, for example, 40~200mm 2 / s, 40~100mm 2 / s, 40~80mm 2 / s, 42~51mm 2 / s, or can be prepared products 126~167mm 2 / s. An α-olefin polymer having a desired kinematic viscosity at 100 ° C. can be obtained by appropriately changing the distillation conditions. In the present invention, the 100 ° C. kinematic viscosity is a value measured according to the kinematic viscosity test method of JIS K 2283.

本発明の第二の製法は、高粘度水素化α−オレフィン重合体と低粘度水素化α−オレフィン重合体の製造方法である。
高粘度水素化α−オレフィン重合体の製造工程(1)は以下の工程を、(1a),(1b),(1c)の順で実施する。
(1a)第1のα−オレフィンを重合して、重合度の異なる重合体を含む第1の重合液を製造する
(1b)前記第1の重合液を蒸留して、100℃動粘度が40mm/s以上300mm/s以下のα−オレフィン重合体を得る
(1c)前記α−オレフィン重合体を水素化して水素化α−オレフィン重合体を得る
The second production method of the present invention is a method for producing a high viscosity hydrogenated α-olefin polymer and a low viscosity hydrogenated α-olefin polymer.
In the production step (1) of the high-viscosity hydrogenated α-olefin polymer, the following steps are carried out in the order of (1a), (1b) and (1c).
(1a) Polymerizing the first α-olefin to produce a first polymerization solution containing polymers having different degrees of polymerization (1b) Distilling the first polymerization solution to give a 100 ° C. kinematic viscosity of 40 mm An α-olefin polymer of 2 / s or more and 300 mm 2 / s or less is obtained. (1c) The α-olefin polymer is hydrogenated to obtain a hydrogenated α-olefin polymer.

低粘度水素化α−オレフィン重合体の製造工程(2)は以下の工程を、(2a),(2b),(2c)の順で実施する。
(2a)第2のα−オレフィンを重合して、重合度の異なる重合体を含む第2の重合液を製造する
(2b)前記第2の重合液を水素化して、水素化重合液を得る
(2c)前記水素化重合液を蒸留して、100℃動粘度が2mm/s以上40mm/s未満の水素化α−オレフィン重合体を得る
In the production step (2) of the low-viscosity hydrogenated α-olefin polymer, the following steps are carried out in the order of (2a), (2b) and (2c).
(2a) Polymerizing the second α-olefin to produce a second polymerization solution containing polymers having different degrees of polymerization (2b) Hydrogenating the second polymerization solution to obtain a hydrogenated polymerization solution (2c) The hydrogenated polymerization liquid is distilled to obtain a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s.

上記の工程において、第1のα−オレフィンと第2のα−オレフィンは同じでも異なってもよい。また、第1の重合液と第2の重合液は別々に製造してもよいし、一緒に製造してもよい。   In the above step, the first α-olefin and the second α-olefin may be the same or different. Further, the first polymerization solution and the second polymerization solution may be manufactured separately or may be manufactured together.

低粘度水素化α−オレフィン重合体は、100℃動粘度が2mm/s以上40mm/s未満であり、例えば、2〜30mm/s、又は3〜20mm/sの製品を製造できる。蒸留の条件を適宜変更することで、所望の100℃動粘度を有するα−オレフィン重合体を得ることができる。 Low viscosity hydrogenated α- olefin polymer, 100 ° C. kinematic viscosity of less than 2 mm 2 / s or more 40 mm 2 / s, for example, can produce products of 2 to 30 mm 2 / s, or 3 to 20 mm 2 / s . An α-olefin polymer having a desired kinematic viscosity at 100 ° C. can be obtained by appropriately changing the distillation conditions.

高粘度水素化α−オレフィン重合体を製造するための工程(1a)〜(1c)は第一の製法と同じであるため説明を省略する。   Since the steps (1a) to (1c) for producing the high-viscosity hydrogenated α-olefin polymer are the same as those in the first production method, description thereof is omitted.

図2を用いて、低粘度水素化α−オレフィン重合体の製造方法の一実施形態を説明する。
この実施形態では、重合した重合液を、失活・脱灰した後、未反応α−オレフィンを除去するために予め蒸留塔(図示せず)で蒸留し、得られた残分R0を、水素化装置20で水素化する。水素化した重合液を、薄膜蒸留塔10,12,14で処理する。図1と同様に、各蒸留塔10,12,14では、軽質分(低粘度成分)D1,D2,D3を塔頂から取り出し、重質分(高粘度成分)R1,R2,R3を塔底から取り出す。軽質分D1,D2,D3を、低粘度水素化α−オレフィン重合体の製品とする。
An embodiment of a method for producing a low-viscosity hydrogenated α-olefin polymer will be described with reference to FIG.
In this embodiment, after depolymerizing and deashing the polymerized polymerization solution, in order to remove unreacted α-olefin, it is distilled in advance in a distillation column (not shown), and the resulting residue R0 is converted into hydrogen. Hydrogenation is carried out using the hydrogenation device 20. The hydrogenated polymerization liquid is processed in the thin film distillation towers 10, 12, and 14. As in FIG. 1, in each of the distillation columns 10, 12, and 14, the light components (low viscosity components) D1, D2, and D3 are taken out from the column top, and the heavy components (high viscosity components) R1, R2, and R3 are removed from the column bottom. Take out from. The light components D1, D2, and D3 are used as products of a low-viscosity hydrogenated α-olefin polymer.

高粘度品は蒸留で分離した塔底成分が製品となるが、100℃動粘度が2mm/s以上40mm/s未満の低粘度品は塔底成分のみならず塔頂成分も製品となる。そのため低粘度品を、高粘度製品と同じように、蒸留工程→水素化工程の順序で製造しようとすると蒸留工程で分離した製品毎に水素化する必要が発生し、非効率な製造となる。よって低粘度品製造時は、最終工程を水素化反応工程にしない。 The high-viscosity product is the product of the bottom component separated by distillation, but the low-viscosity product having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s is not only the bottom component but also the top component. . For this reason, as in the case of high-viscosity products, low-viscosity products are produced in the order of distillation step → hydrogenation step, so that it is necessary to hydrogenate each product separated in the distillation step, resulting in inefficient production. Therefore, when manufacturing low viscosity products, the final process is not a hydrogenation reaction process.

第二の製法では、高粘度水素化α−オレフィン重合体の製造と低粘度水素化α−オレフィン重合体の製造を任意に組み合わせることができる。例えば、並行して製造してもよいし、連続して製造してもよい。先に高粘度品を製造してもよいし、先に低粘度品を製造してもよい。製造装置も別々に設けてもよいし、同一の装置を用いてもよい。尚、図1,2では薄膜蒸留塔の数は3であるがこれに限定されない。通常 2〜5個の薄膜蒸留塔を用いる。   In the second production method, the production of the high-viscosity hydrogenated α-olefin polymer and the production of the low-viscosity hydrogenated α-olefin polymer can be arbitrarily combined. For example, you may manufacture in parallel and may manufacture continuously. A high-viscosity product may be manufactured first, or a low-viscosity product may be manufactured first. Manufacturing apparatuses may be provided separately, or the same apparatus may be used. In FIGS. 1 and 2, the number of thin-film distillation columns is 3, but the present invention is not limited thereto. Usually 2 to 5 thin-film distillation columns are used.

以下、各工程について説明する。
1.重合
原料となるα−オレフィンとして、炭素数6〜20、好ましくは6〜18のα−オレフィンを用いることができる。高粘度重合体を製造するときは、好ましくは炭素数8〜12、より好ましくは炭素数8と炭素数12のα−オレフィンであり、低粘度重合体を製造するときは、好ましくは炭素数10のα−オレフィンである。
Hereinafter, each step will be described.
1. As the α-olefin used as the polymerization raw material, an α-olefin having 6 to 20 carbon atoms, preferably 6 to 18 carbon atoms can be used. When producing a high viscosity polymer, it is preferably an α-olefin having 8 to 12 carbon atoms, more preferably 8 and 12 carbon atoms, and when producing a low viscosity polymer, preferably 10 carbon atoms. Of the α-olefin.

使用できる重合触媒は特に限定されず、メタロセン触媒やチーグラーナッタ触媒等を用いることができるが、好ましくはメタロセン触媒である。例えば、遷移金属化合物であるメタロセン触媒と、該遷移金属化合物又はその派生物と反応してイオン性の錯体を形成し得る化合物やアルミノキサンから選択される少なくとも一種を含有する触媒が挙げられる。助触媒成分としては、有機アルミニウム化合物を使用できる。   The polymerization catalyst that can be used is not particularly limited, and a metallocene catalyst, a Ziegler-Natta catalyst, or the like can be used, and a metallocene catalyst is preferable. For example, a metallocene catalyst that is a transition metal compound and a catalyst that contains at least one selected from a compound that can react with the transition metal compound or a derivative thereof to form an ionic complex or an aluminoxane can be given. An organoaluminum compound can be used as the promoter component.

メタロセン系の触媒を使用すると、得られる共重合体の構造が均一である。構造上の特徴からの性能として、粘度指数、酸化安定性が高く、流動点、泡たち性が低く、風力発電用潤滑油として従来のポリα−オレフィンに比べて性能が優れている。   When a metallocene-based catalyst is used, the resulting copolymer has a uniform structure. As the performance from the structural characteristics, the viscosity index and oxidation stability are high, the pour point and foamability are low, and the performance is superior to the conventional poly α-olefin as a lubricating oil for wind power generation.

メタロセン触媒としては、例えば、下記式(I)で表される遷移金属化合物が挙げられる。   Examples of the metallocene catalyst include transition metal compounds represented by the following formula (I).

Figure 2013199517
Figure 2013199517

(式中、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、E1及びE2はそれぞれ置換シクロペンタジエニル基、インデニル基、置換インデニル基、ヘテロシクロペンタジエニル基、置換ヘテロシクロペンタジエニル基、アミド基、ホスフィド基、炭化水素基及びケイ素含有基の中から選ばれた配位子であって、A1及びA2を介して架橋構造を形成しており、又それらは互いに同一でも異なっていてもよく、Xはσ結合性の配位子を示し、Xが複数ある場合、複数のXは同じでも異なっていてもよく、他のX、E1、E2又はYと架橋していてもよい。
Yはルイス塩基を示し、Yが複数ある場合、複数のYは同じでも異なっていてもよく、他のY、E1、E2又はXと架橋していてもよく、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子、炭素数1〜20の炭化水素基又は炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。qは1〜5の整数で〔(Mの原子価)−2〕を示し、rは0〜3の整数を示す。)
(In the formula, M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and E 1 and E 2 represent a substituted cyclopentadienyl group, an indenyl group, a substituted indenyl group, and a heterocyclopentadienyl group, respectively. , A ligand selected from a substituted heterocyclopentadienyl group, an amide group, a phosphide group, a hydrocarbon group and a silicon-containing group, which forms a crosslinked structure via A 1 and A 2 They may be the same or different from each other, X represents a sigma-binding ligand, and when there are a plurality of X, the plurality of X may be the same or different, and other X, E 1 , It may be cross-linked with E 2 or Y.
Y represents a Lewis base, and when there are a plurality of Y, the plurality of Y may be the same or different, may be cross-linked with other Y, E 1 , E 2 or X, and A 1 and A 2 are A divalent bridging group that binds two ligands, a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, a silicon-containing group, a germanium-containing group, a tin-containing group , -O -, - CO -, - S -, - SO 2 -, - Se -, - NR 1 -, - PR 1 -, - P (O) R 1 -, - BR 1 - or -AlR 1 - R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, which may be the same as or different from each other. q represents an integer of 1 to 5 and represents [(M valence) -2], and r represents an integer of 0 to 3. )

上記式(I)において、Mは周期律表第3〜10族又はランタノイド系列の金属元素を示し、具体例としてはチタン、ジルコニウム、ハフニウム、イットリウム、バナジウム、クロム、マンガン、ニッケル、コバルト、パラジウム及びランタノイド系金属等が挙げられるが、これらの中ではオレフィン共重合活性等の点からチタン、ジルコニウム及びハフニウムが好適である。
1及びE2としては、置換シクロペンタジエニル基、置換又は無置換のインデニル基が好ましい。
In the above formula (I), M represents a metal element of Groups 3 to 10 of the periodic table or a lanthanoid series, and specific examples include titanium, zirconium, hafnium, yttrium, vanadium, chromium, manganese, nickel, cobalt, palladium and Examples of these include lanthanoid metals, among which titanium, zirconium and hafnium are preferred from the viewpoint of olefin copolymerization activity.
E 1 and E 2 are preferably a substituted cyclopentadienyl group or a substituted or unsubstituted indenyl group.

Xの具体例としては、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20のアルコキシ基、炭素数6〜20のアリールオキシ基、炭素数1〜20のアミド基、炭素数1〜20の珪素含有基、炭素数1〜20のホスフィド基、炭素数1〜20のスルフィド基、炭素数1〜20のアシル基等が挙げられる。
Yのルイス塩基の具体例としては、アミン類、エーテル類、ホスフィン類、チオエーテル類等を挙げることができる。
Specific examples of X include a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an amide group having 1 to 20 carbon atoms, and a carbon number. Examples thereof include a silicon-containing group having 1 to 20, a phosphide group having 1 to 20 carbon atoms, a sulfide group having 1 to 20 carbon atoms, and an acyl group having 1 to 20 carbon atoms.
Specific examples of the Lewis base of Y include amines, ethers, phosphines, thioethers and the like.

次に、A1及びA2は二つの配位子を結合する二価の架橋基であって、炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基、珪素含有基、ゲルマニウム含有基、スズ含有基、−O−、−CO−、−S−、−SO2−、−Se−、−NR1−、−PR1−、−P(O)R1−、−BR1−又は−AlR1−を示し、R1は水素原子、ハロゲン原子又は炭素数1〜20の炭化水素基、炭素数1〜20のハロゲン含有炭化水素基を示し、それらは互いに同一でも異なっていてもよい。 Next, A 1 and A 2 are divalent bridging groups for bonding two ligands, which are a hydrocarbon group having 1 to 20 carbon atoms, a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and a silicon-containing group. Group, germanium-containing group, tin-containing group, —O—, —CO—, —S—, —SO 2 —, —Se—, —NR 1 —, —PR 1 —, —P (O) R 1 —, —BR 1 — or —AlR 1 —, wherein R 1 represents a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, May be different.

またメタロセン触媒としては、下記式(II)で表される遷移金属化合物が挙げられる。
1’2’MX (II)
(式中、M、X、q、Y、rは式(I)と同じである。E1’、E2’は、式(I)のE、Eであって架橋していないものである。)
Examples of the metallocene catalyst include transition metal compounds represented by the following formula (II).
E 1 ′ E 2 ′ MX q Y r (II)
(In the formula, M, X, q, Y and r are the same as those in the formula (I). E 1 ′ and E 2 ′ are E 1 and E 2 in the formula (I) and are not crosslinked. .)

重合方法は特に制限されず、スラリー重合法、気相重合法、塊状重合法、溶液重合法、懸濁重合法等のいずれの方法を用いてもよい。   The polymerization method is not particularly limited, and any method such as a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, and a suspension polymerization method may be used.

例えば、特開2001−335607,WO2010/074233等に記載の方法で重合体を製造できる。   For example, a polymer can be produced by the method described in JP-A-2001-335607, WO2010 / 074233 and the like.

2.失活・脱灰
失活・脱灰処理は公知の方法で実施することができる。失活剤としては、例えばアルコール、水、及び酸、アルカリ、含酸素化合物等の水溶液が挙げられ、具体的には、水酸化ナトリウム水溶液、エタノール、イソプロピルアルコール、塩酸及びアセトン等が挙げられる。
2. Deactivation / Decalcification Deactivation / decalcification can be carried out by a known method. Examples of the quenching agent include alcohols, water, and aqueous solutions of acids, alkalis, oxygenated compounds, and the like, and specific examples include aqueous sodium hydroxide, ethanol, isopropyl alcohol, hydrochloric acid, and acetone.

3.未反応α−オレフィンを除去するための蒸留
また、重合液は、未反応α−オレフィン等を除去するために、蒸留を行うことが好ましい。蒸留の圧力は、通常、0.1〜200kPaAであり、蒸留の温度は、180〜260℃である。
高粘度重合体を製造するときは、未反応α−オレフィン及び炭素数36以下の成分もあわせて除くことが望ましい。
3. Distillation to remove unreacted α-olefin Further, the polymerization solution is preferably distilled to remove unreacted α-olefin and the like. The distillation pressure is usually 0.1 to 200 kPaA, and the distillation temperature is 180 to 260 ° C.
When producing a high viscosity polymer, it is desirable to remove unreacted α-olefin and components having 36 or less carbon atoms.

4.粘度別製品を得るための蒸留
100℃動粘度が40mm/s以上300mm/s以下のα−オレフィン重合体を得るための、蒸留の温度は、圧力にもよるが通常140〜270℃であり、160〜260℃であることが好ましい。温度が270℃を超えると、重合体の熱分解が発生し始めることから好ましくない。また、蒸留の圧力は、減圧条件下であることが好ましく、例えば0.001〜0.3kPaAであり、0.001〜0.1kPaAであることが好ましい。温度と圧力の条件を適宜組み合わせることにより、重合液中に含まれる軽質成分(例えば炭素数36以下)を所望の程度まで除去することができる。
4). Distillation for obtaining products according to viscosity The temperature of distillation for obtaining an α-olefin polymer having a kinematic viscosity of 100 ° C. to 40 mm 2 / s to 300 mm 2 / s is usually 140 to 270 ° C., although it depends on the pressure. Yes, it is preferable that it is 160-260 degreeC. A temperature exceeding 270 ° C. is not preferable because thermal decomposition of the polymer starts to occur. Moreover, it is preferable that the pressure of distillation is under pressure reduction conditions, for example, it is 0.001-0.3 kPaA, and it is preferable that it is 0.001-0.1 kPaA. By appropriately combining the conditions of temperature and pressure, light components (for example, having 36 or less carbon atoms) contained in the polymerization liquid can be removed to a desired extent.

100℃動粘度が2mm/s以上40mm/s未満のα−オレフィン重合体を得るための、蒸留の温度は、圧力にもよるが通常150〜260℃であり、160〜240℃であることが好ましい。また、蒸留の圧力は、減圧条件下であることが好ましく、例えば0.001〜0.2kPaAであり、0.001〜0.15kPaAであることが好ましい。温度と圧力の条件を適宜組み合わせて、所望の粘度の製品を得ることができる。 The temperature of distillation for obtaining an α-olefin polymer having a kinematic viscosity of 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s is usually 150 to 260 ° C. and 160 to 240 ° C., although it depends on the pressure. It is preferable. Moreover, it is preferable that the pressure of distillation is under pressure reduction conditions, for example, it is 0.001-0.2 kPaA, and it is preferable that it is 0.001-0.15 kPaA. A product having a desired viscosity can be obtained by appropriately combining conditions of temperature and pressure.

炭素数8と炭素数12のα−オレフィン用いて高粘度水素化α−オレフィン重合体を製造する場合は、α−オレフィン重合体中に含まれる炭素数36以下の軽質成分は、好ましくは、1.5重量%以下であり、より好ましくは、1.0重量%以下である。   When a highly viscous hydrogenated α-olefin polymer is produced using an α-olefin having 8 and 12 carbon atoms, the light component having 36 or less carbon atoms contained in the α-olefin polymer is preferably 1 .5% by weight or less, and more preferably 1.0% by weight or less.

粘度の異なる成分を分離するための蒸留は、薄膜蒸留が好ましい。薄膜蒸留は、薄膜を形成することにより、伝熱性能を向上し、熱安定性が低い物質等を短時間で分離できるようにした蒸留装置である。   The distillation for separating components having different viscosities is preferably thin film distillation. Thin film distillation is a distillation apparatus that improves heat transfer performance by forming a thin film, and can separate substances with low thermal stability in a short time.

5.水素化
水素化方法は、二重結合が水素化できる限り特に限定されない。公知の方法で実施することができるが、例えば、珪藻土触媒を使用して行うことができる。
水素化反応後の触媒成分は適宜除去して、水素化α−オレフィン重合体を得る。得られる水素化α−オレフィン重合体の臭素価は、高粘度重合体の場合、好ましくは0.3g/100g以下であり、より好ましくは0.1g/100g以下である。低粘度重合体の場合、好ましくは1.0g/100g以下であり、より好ましくは0.5g/100g以下であり、特に好ましくは0.1g/100g以下である。
5. Hydrogenation The hydrogenation method is not particularly limited as long as the double bond can be hydrogenated. Although it can implement by a well-known method, for example, it can carry out using a diatomaceous earth catalyst.
The catalyst component after the hydrogenation reaction is appropriately removed to obtain a hydrogenated α-olefin polymer. The brominated value of the obtained hydrogenated α-olefin polymer is preferably 0.3 g / 100 g or less, more preferably 0.1 g / 100 g or less in the case of a high viscosity polymer. In the case of a low viscosity polymer, it is preferably 1.0 g / 100 g or less, more preferably 0.5 g / 100 g or less, and particularly preferably 0.1 g / 100 g or less.

実験例1
(1)水素化品と未水素化品の製造
1−オクテンと1−デセンを重合し、失活・脱灰して、100℃動粘度が1〜10mm/sの重合液を得た。この重合液を用いて、水素化の有無の、熱処理による分解に及ぼす影響について検討した。
まず、重合液を蒸留して未反応モノマーを除き、次いで薄膜蒸留処理をした後、さらに水素化反応処理をした。得られた液を、以下、「水素化品」と呼ぶ。
次に、重合液を蒸留して未反応モノマーを除き、次いで薄膜蒸留処理をしたが、水素化反応処理はしないで、液を得た。この液を、以下、「未水素化品」と呼ぶ。
水素化品と未水素化品について熱処理後の分子量と臭素価を測定し、安定性を評価した。
Experimental example 1
(1) Production of hydrogenated product and unhydrogenated product 1-octene and 1-decene were polymerized, deactivated and deashed to obtain a polymerization solution having a kinematic viscosity at 100 ° C. of 1 to 10 mm 2 / s. Using this polymerization solution, the effect of the presence or absence of hydrogenation on the decomposition by heat treatment was examined.
First, the polymerization solution was distilled to remove unreacted monomers, followed by thin film distillation treatment, and further hydrogenation reaction treatment. The liquid obtained is hereinafter referred to as “hydrogenated product”.
Next, the polymerization liquid was distilled to remove unreacted monomers, and then a thin film distillation process was performed, but a hydrogenation reaction process was not performed to obtain a liquid. Hereinafter, this liquid is referred to as “unhydrogenated product”.
For hydrogenated and unhydrogenated products, the molecular weight and bromine number after heat treatment were measured to evaluate the stability.

(2)ゲル浸透クロマトグラフィーによる分子量測定
上記(1)の方法で70mm/sの水素化品と未水素化品を得た。
この水素化品と未水素化品を別々のフラスコに5ml入れ、N雰囲気下、オイルバス設定温度を200℃〜240℃でそれぞれ加熱還流し、2時間後にサンプリングし、ゲル浸透クロマトグラフィー(GPC)にて分子量を測定した。水素化品の測定結果を図3及び表1に、未水素化品の測定結果を図4及び表2に示す。
(2) Molecular weight measurement by gel permeation chromatography A hydrogenated product and an unhydrogenated product of 70 mm 2 / s were obtained by the method of (1) above.
5 ml of this hydrogenated product and non-hydrogenated product are put into separate flasks, heated and refluxed at an oil bath set temperature of 200 ° C. to 240 ° C. under N 2 atmosphere, sampled after 2 hours, and subjected to gel permeation chromatography (GPC). ) To measure the molecular weight. The measurement results of the hydrogenated product are shown in FIG. 3 and Table 1, and the measurement results of the unhydrogenated product are shown in FIG. 4 and Table 2.

図の横軸は分子量Mを対数表示で示しており、縦軸はGPCの測定値を規格化し、検量線を反映させたグラフで条件の異なるクロマトグラムでも比較を可能とした。
表中のMnは数平均分子量、Mwは重量平均分子量を示している。Mw/Mnは分子量の分布を示し、この値が小さいほど分子量の分布は狭い。
The horizontal axis of the figure indicates the molecular weight M in logarithmic form, and the vertical axis normalizes the GPC measurement value and allows comparison even with chromatograms under different conditions in a graph reflecting the calibration curve.
In the table, Mn represents the number average molecular weight, and Mw represents the weight average molecular weight. Mw / Mn indicates the molecular weight distribution, and the smaller this value, the narrower the molecular weight distribution.

Figure 2013199517
Figure 2013199517

Figure 2013199517
Figure 2013199517

図3,4及び表1,2から分かるように、水素化品では加熱還流時の温度が高いほど数平均分子量、重量平均分子量が低下し、Mw/Mnが大きく(分子量分布が広く)なった。これは重合体の分解物が増えたことを示す。一方、未水素化品では、数平均分子量、Mw/Mnは加熱しても増えずほぼ同じであった。   As can be seen from FIGS. 3 and 4 and Tables 1 and 2, in the hydrogenated product, the higher the temperature during heating and reflux, the lower the number average molecular weight and the weight average molecular weight, and the larger Mw / Mn (the molecular weight distribution is wider). . This indicates an increase in polymer degradation products. On the other hand, in the unhydrogenated product, the number average molecular weight and Mw / Mn did not increase even when heated, and were almost the same.

(3)臭素価測定
上記(1)の方法で13,40,51mm/sの水素化品と、51mm/sの未水素化品を得た。
これら水素化品と未水素化品について、260℃で0〜60分加熱処理した試料の臭素価を測定し、値の変化を比較した。水素化品の測定結果を図5に、未水素化品の測定結果を図6に示す。
加熱によりα−オレフィン重合体が分解すると、分解した箇所に二重結合ができる。臭素は二重結合の箇所に付加するため、試料100g当たりに付加した臭素の量(臭素価:g/100g)から分解により生じた二重結合の量を知ることができる。
(3) to give a hydrogenation product of 13,40,51mm 2 / s in the method of the bromine number measured above (1), of 51 mm 2 / s and unhydrogenated products.
About these hydrogenated products and unhydrogenated products, the bromine number of the sample heat-processed at 260 degreeC for 0 to 60 minutes was measured, and the change of the value was compared. The measurement result of the hydrogenated product is shown in FIG. 5, and the measurement result of the unhydrogenated product is shown in FIG.
When the α-olefin polymer is decomposed by heating, a double bond is formed at the decomposed portion. Since bromine is added to the double bond, the amount of double bond generated by decomposition can be known from the amount of bromine added per 100 g of sample (bromine number: g / 100 g).

図5に示す水素化品では加熱時間の経過と共に臭素価が増加した。これは加熱により分解が進んだことを示している。製品として望まれる臭素価の値としては0.1g/100g未満であるが(図45に太線で表示)、処理時間20分程度で臭素価が0.1g/100gに達し、製品品質を満足することが困難であった。
一方、図6に示す未水素化品では、もともと水素化していないため二重結合を含み、加熱しないものでも臭素価は、水素化品より多いが、臭素価は加熱と共に増加傾向はみられなかった。即ち、加熱による分解は生じなかったことが分かる。
In the hydrogenated product shown in FIG. 5, the bromine number increased with the lapse of heating time. This indicates that decomposition has progressed by heating. The bromine value desired as a product is less than 0.1 g / 100 g (indicated by a thick line in FIG. 45), but the bromine value reaches 0.1 g / 100 g after about 20 minutes of processing time, satisfying the product quality. It was difficult.
On the other hand, in the unhydrogenated product shown in FIG. 6, since it was not originally hydrogenated and contained a double bond, even if it was not heated, the bromine value was higher than that of the hydrogenated product, but the bromine value did not increase with heating. It was. That is, it can be seen that the decomposition by heating did not occur.

実施例1
以下の方法で、高粘度重合体(高粘度品)と低粘度重合体(低粘度品)を製造した。
1.高粘度重合体の製造
(1)重合、希釈
内容積が15mであり、撹拌装置としてタービン翼を備えたステンレス製撹拌槽に、原料α−モノマー(1−オクテン4450kg、1−ドデセン6660kg)と、トリイソブチルアルミニウム1.484kgを入れた。槽内の雰囲気を窒素で置換してから、108℃に昇温し、水素を0.02MPaG導入した。別途準備した触媒混合液2.6リットルを、30分に1回投入しながら、撹拌し重合反応を行った。触媒混合液を30回投入後、さらに1時間撹拌した。この重合反応液のモノマー転化率は92%、液粘度は53.5mPa・s(40℃)であった。
Example 1
A high viscosity polymer (high viscosity product) and a low viscosity polymer (low viscosity product) were produced by the following method.
1. Production of high-viscosity polymer (1) Polymerization and dilution In a stainless steel stirring vessel having an internal volume of 15 m 3 and equipped with a turbine blade as a stirring device, raw material α-monomer (1-octene 4450 kg, 1-dodecene 6660 kg) and 1.484 kg of triisobutylaluminum was added. After replacing the atmosphere in the tank with nitrogen, the temperature was raised to 108 ° C., and hydrogen was introduced at 0.02 MPaG. While adding 2.6 liters of separately prepared catalyst mixed solution once every 30 minutes, the polymerization reaction was carried out by stirring. After adding the catalyst mixture 30 times, the mixture was further stirred for 1 hour. The monomer conversion rate of this polymerization reaction liquid was 92%, and the liquid viscosity was 53.5 mPa · s (40 ° C.).

尚、上記触媒混合液は、ステンレス製撹拌槽に窒素雰囲気下でトルエン1リットルあたり、トリイソブチルアルミニウムを500ミリモル、(1,1’−ジメチルシリレン)(2,2’−ジメチルシリレン)−ビス(シクロペンタジエニル)ジルコニウムジクロリドを10ミリモル、及び粉末状のN,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートを20ミリモル溶解させ、1−オクテン0.1リットルを加えて、室温で1時間均一に撹拌した混合液である。   In addition, the catalyst mixed solution was 500 mmol of triisobutylaluminum, (1,1′-dimethylsilylene) (2,2′-dimethylsilylene) -bis (liter) per liter of toluene in a stainless steel stirring tank under a nitrogen atmosphere. 10 mmol of cyclopentadienyl) zirconium dichloride and 20 mmol of powdered N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate are dissolved, 0.1 liter of 1-octene is added, and 1 hour at room temperature is added. It is a mixed solution with uniform stirring.

(2)失活・脱灰
重合反応終了後の撹拌槽に、1重量%水酸化ナトリウム水溶液を油水比(水相/油相)で30体積%加えて、80℃を保持したまま1時間撹拌混合した後、1時間静置して油水を相分離させた。この撹拌槽から水相を抜き出した。
次いで、油水比で30体積%となるよう撹拌槽に純水を加えて、一時間90rpmで撹拌した。次いで1時間静置して油水を相分離させた。この撹拌槽から水相を抜き出した。
純水による水洗操作を水相のPHが7になるまで繰り返して、失活・脱灰させた重合液(失活脱灰液)を得た。
(2) Deactivation / Deashing To the stirring tank after completion of the polymerization reaction, 1% by weight aqueous sodium hydroxide solution was added in an amount of 30% by volume (water phase / oil phase), and the mixture was stirred for 1 hour while maintaining 80 ° C. After mixing, the mixture was allowed to stand for 1 hour to separate the oil and water. The aqueous phase was extracted from this stirring tank.
Subsequently, pure water was added to the stirring tank so that the oil / water ratio was 30% by volume, and the mixture was stirred at 90 rpm for one hour. Subsequently, it was left still for 1 hour to separate the oil and water. The aqueous phase was extracted from this stirring tank.
The washing operation with pure water was repeated until the pH of the aqueous phase became 7, to obtain a deactivated and deashed polymerization liquid (deactivated deashing liquid).

(3)蒸留
失活脱灰液中の未反応α−オレフィンを除去するために、ステンレス製の槽にて温度250℃、圧力0.132〜0.165kPaAの条件で蒸留を行った。重合液に含まれる未反応α−オレフィンがガスクロマトグラフィーで検出されないことを確認した。
(3) Distillation In order to remove the unreacted α-olefin in the deactivation decalcification liquid, distillation was performed in a stainless steel tank at a temperature of 250 ° C. and a pressure of 0.132 to 0.165 kPaA. It was confirmed that unreacted α-olefin contained in the polymerization solution was not detected by gas chromatography.

(4)薄膜蒸留
蒸留液を、薄膜蒸留塔にて160〜260℃、0.001〜0.10kPaAの圧力下で処理し、炭素数36以下の成分が1.5重量%以下となるまで除去した。重合体の熱分解が発生し始めることから蒸留温度が260℃を超えないように注意した。得られたα−オレフィン重合体液の100℃動粘度130mm/sであった。
(4) Thin-film distillation The distillate is treated in a thin-film distillation column under a pressure of 160 to 260 ° C. and 0.001 to 0.10 kPaA, and a component having 36 or less carbon atoms is removed until it becomes 1.5% by weight or less. did. Care was taken that the distillation temperature did not exceed 260 ° C. since thermal decomposition of the polymer began to occur. The obtained α-olefin polymer liquid had a 100 ° C. kinematic viscosity of 130 mm 2 / s.

(5)水素化反応
α−オレフィン重合体中の二重結合部位を水素化するため、ニッケル珪藻土触媒を重合液比で0.5重量%加え、水素分圧0.19MPaG、温度120℃で10時間水素化を実施し、臭素価が0.1g/100g以下になったことを確認した。水素化反応後、触媒成分は濾過により除去した。得られた水素化α−オレフィン重合体は分解物が少なく品質が良かった。
(5) Hydrogenation reaction In order to hydrogenate the double bond site in the α-olefin polymer, a nickel diatomaceous earth catalyst is added in an amount of 0.5% by weight in a polymerization solution ratio, a hydrogen partial pressure of 0.19 MPaG, and a temperature of 120 ° C. Hydrogenation was performed for a period of time, and it was confirmed that the bromine number was 0.1 g / 100 g or less. After the hydrogenation reaction, the catalyst component was removed by filtration. The obtained hydrogenated α-olefin polymer had good quality with few decomposition products.

2.低粘度重合体の製造
(1)重合、希釈
内容積が25mであり、撹拌装置としてタービン翼を備えたステンレス製反応槽を使用した。この反応槽に原料α−オレフィンである1−デセンを15m供給し、窒素でバブリングしながら30分間撹拌した。
次に、窒素で反応槽内を12kPaGに昇圧し、その後、さらに水素にて2kPaG昇圧した。反応槽の周囲に設けた加熱ジャケットに熱媒油を循環させて反応槽内の1−デセンを40℃に昇温し、一定とした。
2. Production of low-viscosity polymer (1) Polymerization and dilution An internal volume of 25 m 3 was used, and a stainless steel reaction vessel equipped with a turbine blade was used as a stirring device. 15 m 3 of 1-decene, which is a raw material α-olefin, was supplied to the reaction vessel and stirred for 30 minutes while bubbling with nitrogen.
Next, the pressure inside the reaction vessel was increased to 12 kPaG with nitrogen, and then further increased to 2 kPaG with hydrogen. Heat medium oil was circulated through a heating jacket provided around the reaction vessel, and 1-decene in the reaction vessel was heated to 40 ° C. and kept constant.

反応槽に助触媒であるメチルアルミノキサン(MAO)及び主触媒であるビス−t−ブチルシクロペンタジエニルジルコニウムジクロリド(t−BuCp)ZrCl(以下、「T2」という)を添加した。添加量は、MAOを4000μmol(1−デセン1L当たり)、T2を40μmol(1−デセン1L当たり)とした。反応温度を40℃、撹拌速度を106rpm(0.30kW/m)、水素流量0.20NL/hr(1−デセン1L当たり)とした。反応時間は7.0時間とした。
得られた重合反応液のモノマー転化率は95%、液粘度は3mPa・s(40℃)であった。
Methylaluminoxane (MAO) as a co-catalyst and bis-t-butylcyclopentadienylzirconium dichloride (t-BuCp) 2 ZrCl 2 (hereinafter referred to as “T2”) as a main catalyst were added to the reaction vessel. The addition amount was set to 4000 μmol of MAO (per 1 L of 1-decene) and T2 of 40 μmol (per 1 L of 1-decene). The reaction temperature was 40 ° C., the stirring speed was 106 rpm (0.30 kW / m 3 ), and the hydrogen flow rate was 0.20 NL / hr (per 1 L of 1-decene). The reaction time was 7.0 hours.
The polymerization rate of the obtained polymerization reaction liquid was 95%, and the liquid viscosity was 3 mPa · s (40 ° C.).

(2)失活・脱灰
高粘度品の(2)失活・脱灰と同様に実施した。
(2) Deactivation / Deashing The procedure was the same as (2) Deactivation / Deashing for high viscosity products.

(3)蒸留
失活脱灰液中の炭素数20と炭素数30の成分の量が0.3重量%未満となるまで、温度220℃、圧力266PaGの条件下で24時間蒸留を行った。
(3) Distillation Distillation was performed for 24 hours under the conditions of a temperature of 220 ° C. and a pressure of 266 PaG until the amount of the carbon number 20 and carbon number 30 component in the deactivation decalcification liquid became less than 0.3% by weight.

(4)水素化反応
α−オレフィン重合体中の二重結合部位を水素化するため、ニッケル珪藻土触媒を重合液に対して1.0重量%加え、水素分圧0.19MPaG、温度130℃で10時間水素化を実施し、臭素価が0.1g/100g以下になったことを確認した。水素化反応後、触媒成分は濾過により除去した。
(4) Hydrogenation reaction In order to hydrogenate the double bond site in the α-olefin polymer, a nickel diatomaceous earth catalyst is added in an amount of 1.0% by weight to the polymerization solution, and the hydrogen partial pressure is 0.19 MPaG at a temperature of 130 ° C. Hydrogenation was carried out for 10 hours, and it was confirmed that the bromine number was 0.1 g / 100 g or less. After the hydrogenation reaction, the catalyst component was removed by filtration.

(5)薄膜蒸留
水素化反応後の液を、薄膜蒸留器にて160〜240℃、0.002〜0.133kPaAの圧力下で複数回、処理した。各薄膜蒸留の留分は100℃動粘度3〜20mm/sの製品として得た。得られた製品は分解物が少なく品質は良かった。
(5) Thin-film distillation The liquid after the hydrogenation reaction was processed several times in a thin-film distiller under a pressure of 160 to 240 ° C and 0.002 to 0.133 kPaA. Each thin-film distillation fraction was obtained as a product having a kinematic viscosity at 100 ° C of 3 to 20 mm 2 / s. The product obtained had good quality with few degradation products.

本発明の製造方法により製造される水素化α−オレフィン重合体は、熱安定性に優れており、潤滑油基材として好適に用いることができる。   The hydrogenated α-olefin polymer produced by the production method of the present invention is excellent in thermal stability and can be suitably used as a lubricating oil base material.

10,12,14 薄膜蒸留塔
20 水素化装置
D1,D2,D3 留分
R0,R1,R2,R3 残分
10, 12, 14 Thin-film distillation column 20 Hydrogenation equipment D1, D2, D3 fractions R0, R1, R2, R3 residues

Claims (6)

α−オレフィンを重合して重合度の異なるα−オレフィン重合体を含む重合液を製造する工程(a)と、
前記工程(a)で得られた重合液を蒸留して100℃動粘度が40mm/s以上300mm/s以下のα−オレフィン重合体を得る工程(b)と、
前記工程(b)で得られたα−オレフィン重合体を水素化して水素化α−オレフィン重合体を得る工程(c)とを含む、水素化α−オレフィン重合体の製造方法。
a step (a) for producing a polymerization liquid containing α-olefin polymers having different degrees of polymerization by polymerizing α-olefin;
A step (b) of distilling the polymerization liquid obtained in the step (a) to obtain an α-olefin polymer having a 100 ° C. kinematic viscosity of 40 mm 2 / s to 300 mm 2 / s;
A process for producing a hydrogenated α-olefin polymer, comprising: hydrogenating the α-olefin polymer obtained in the step (b) to obtain a hydrogenated α-olefin polymer.
100℃動粘度が40mm/s以上300mm/s以下の水素化α−オレフィン重合体を製造する工程と、
100℃動粘度が2mm/s以上40mm/s未満の水素化α−オレフィン重合体を製造する工程を含み、
前記100℃動粘度が40mm/s以上300mm/s以下の水素化α−オレフィン重合体の製造工程が、
第1のα−オレフィンを重合して、重合度の異なる重合体を含む第1の重合液を製造する工程(1a)と、
前記工程(1a)で得られた第1の重合液を蒸留して、100℃動粘度が40mm/s以上300mm/s以下のα−オレフィン重合体を得る工程(1b)と、
前記工程(1b)で得られたα−オレフィン重合体を水素化して水素化α−オレフィン重合体を得る工程(1c)を含み、
前記100℃動粘度が2mm/s以上40mm/s未満の水素化α−オレフィン重合体の製造工程が、
第2のα−オレフィンを重合して、重合度の異なる重合体を含む第2の重合液を製造する工程(2a)と、
前記工程(2a)で得られた第2の重合液を水素化して、水素化重合液を得る工程(2b)と、
前記工程(2b)で得られた水素化重合液を蒸留して、100℃動粘度が2mm/s以上40mm/s未満の水素化α−オレフィン重合体を得る工程(2c)を含む、
異なる粘度の水素化α−オレフィン重合体の製造方法。
A step of producing a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 40 mm 2 / s to 300 mm 2 / s;
Including a step of producing a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s,
The process for producing a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 40 mm 2 / s to 300 mm 2 / s,
A step (1a) of polymerizing the first α-olefin to produce a first polymerization solution containing polymers having different degrees of polymerization;
A step (1b) of distilling the first polymerization liquid obtained in the step (1a) to obtain an α-olefin polymer having a kinematic viscosity at 100 ° C. of 40 mm 2 / s to 300 mm 2 / s;
Including a step (1c) of hydrogenating the α-olefin polymer obtained in the step (1b) to obtain a hydrogenated α-olefin polymer,
The process for producing a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s,
A step (2a) of polymerizing the second α-olefin to produce a second polymerization solution containing polymers having different degrees of polymerization;
Hydrogenating the second polymerization solution obtained in the step (2a) to obtain a hydrogenated polymerization solution (2b);
Including a step (2c) of distilling the hydrogenated polymerization liquid obtained in the step (2b) to obtain a hydrogenated α-olefin polymer having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or more and less than 40 mm 2 / s,
A method for producing hydrogenated α-olefin polymers having different viscosities.
前記工程(b)又は前記工程(1b)の蒸留の温度が160〜260℃である請求項1又は2の製造方法。   The manufacturing method of Claim 1 or 2 whose temperature of the distillation of the said process (b) or the said process (1b) is 160-260 degreeC. 前記工程(2c)の蒸留の温度が160〜240℃である請求項2記載の製造方法。   The method according to claim 2, wherein the distillation temperature in the step (2c) is 160 to 240 ° C. 前記第1のα−オレフィンが、炭素数8〜12のα−オレフィンであり、前記第2のα−オレフィンが、炭素数10のα−オレフィンである請求項2記載の製造方法。   The production method according to claim 2, wherein the first α-olefin is an α-olefin having 8 to 12 carbon atoms, and the second α-olefin is an α-olefin having 10 carbon atoms. 請求項1〜5のいずれか記載の製造方法により得られる水素化α−オレフィン重合体。   A hydrogenated α-olefin polymer obtained by the production method according to claim 1.
JP2012067105A 2012-03-23 2012-03-23 METHOD OF PRODUCING HYDROGENATED α-OLEFIN POLYMER Pending JP2013199517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067105A JP2013199517A (en) 2012-03-23 2012-03-23 METHOD OF PRODUCING HYDROGENATED α-OLEFIN POLYMER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067105A JP2013199517A (en) 2012-03-23 2012-03-23 METHOD OF PRODUCING HYDROGENATED α-OLEFIN POLYMER

Publications (1)

Publication Number Publication Date
JP2013199517A true JP2013199517A (en) 2013-10-03

Family

ID=49520007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067105A Pending JP2013199517A (en) 2012-03-23 2012-03-23 METHOD OF PRODUCING HYDROGENATED α-OLEFIN POLYMER

Country Status (1)

Country Link
JP (1) JP2013199517A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10059898B2 (en) 2015-08-21 2018-08-28 Exxonmobil Chemical Patents Inc. High-viscosity metallocene polyalpha-olefins with high electrohydrodynamic performance
US10351488B2 (en) 2016-08-02 2019-07-16 Exxonmobil Chemical Patents Inc. Unsaturated polyalpha-olefin materials
US10421921B2 (en) 2005-07-19 2019-09-24 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US10611980B2 (en) 2015-10-15 2020-04-07 Exxonmobil Chemical Patents Inc. Lubricant containing high-viscosity metallocene polyalpha-olefins
US10731096B2 (en) 2015-08-21 2020-08-04 Exxonmobil Chemical Patents Inc. Lubricant base stock blends

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10421921B2 (en) 2005-07-19 2019-09-24 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
US10059898B2 (en) 2015-08-21 2018-08-28 Exxonmobil Chemical Patents Inc. High-viscosity metallocene polyalpha-olefins with high electrohydrodynamic performance
US10731096B2 (en) 2015-08-21 2020-08-04 Exxonmobil Chemical Patents Inc. Lubricant base stock blends
US10611980B2 (en) 2015-10-15 2020-04-07 Exxonmobil Chemical Patents Inc. Lubricant containing high-viscosity metallocene polyalpha-olefins
US10351488B2 (en) 2016-08-02 2019-07-16 Exxonmobil Chemical Patents Inc. Unsaturated polyalpha-olefin materials

Similar Documents

Publication Publication Date Title
JP5266335B2 (en) Improved utilization of linear alpha olefins in the production of poly-alpha olefins over metallocene catalysts
CN106132533B (en) Ethylene and alpha-olefine polymerizing device and preparation method
EP2242778B1 (en) Controlling branch level and viscosity of polyalphaolefins with propene addition
EP1795580B1 (en) Viscosity modifier for lubricating oils, additive composition for lubricating oils, and lubricating oil compositions
JP5605715B2 (en) Method for producing synthetic lubricant
KR101394943B1 (en) Copolymer of ethylene and alpha-olefin and method for producing the same
JP5599091B2 (en) High viscosity polyalphaolefin produced by using a mixture comprising 1-hexene, 1-dodecane and 1-tetradecene
EP1309633B1 (en) Process for producing liquid polyalphaolefin polymer, metallocene catalyst therefor and lubricants containing the same
CN1105124C (en) Ethylene-alpha-olefin polymers, process and uses
TWI667068B (en) Hyperbranched ethylene-based oils and greases
US9963648B2 (en) Process for the preparation of branched polyolefins for lubricant applications
EP3140266B1 (en) Use of a metallocene catalyst to produce a polyalpha-olefin
JP2011517714A (en) Production of shear stable high viscosity PAO
JP2004532328A (en) Copolymers of 1-decene and 1-dodecene as lubricants
JP2013199517A (en) METHOD OF PRODUCING HYDROGENATED α-OLEFIN POLYMER
JPWO2010053022A1 (en) Method for producing α-olefin oligomer, α-olefin oligomer, and lubricating oil composition
WO2018182984A1 (en) Metallocene compounds
JP2011521095A (en) Pour point depressants for hydrocarbon compositions
JP7153629B2 (en) Polyalphaolefin having uniform structure and method for producing the same
CN113249141B (en) Preparation method of poly alpha-olefin base oil
EP3494198B1 (en) Use of unsaturated polyalpha-olefin materials
JP2005306957A (en) Lubricant base oil comprising decene oligomer hydrogenate, lubricating oil composition, and method for producing decene oligomer hydrogenate
US20230167207A1 (en) Processes to Produce Poly Alpha-Olefins
WO2023017081A1 (en) Process for preparing polyalpha-olefins
CN116023532A (en) Preparation method of saturated metallocene poly alpha-olefin