JP2013195747A - Optical system and optical equipment including the same - Google Patents

Optical system and optical equipment including the same Download PDF

Info

Publication number
JP2013195747A
JP2013195747A JP2012063354A JP2012063354A JP2013195747A JP 2013195747 A JP2013195747 A JP 2013195747A JP 2012063354 A JP2012063354 A JP 2012063354A JP 2012063354 A JP2012063354 A JP 2012063354A JP 2013195747 A JP2013195747 A JP 2013195747A
Authority
JP
Japan
Prior art keywords
lens
optical system
νdpa
focal length
lens group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012063354A
Other languages
Japanese (ja)
Other versions
JP2013195747A5 (en
JP5896800B2 (en
Inventor
Taku Inoue
卓 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012063354A priority Critical patent/JP5896800B2/en
Publication of JP2013195747A publication Critical patent/JP2013195747A/en
Publication of JP2013195747A5 publication Critical patent/JP2013195747A5/ja
Application granted granted Critical
Publication of JP5896800B2 publication Critical patent/JP5896800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical system which favorably compensates various aberrations including a chromatic aberration and has a high optical performance over the whole screen.SOLUTION: An optical system includes a first lens group, an aperture diaphragm, a second lens group having a positive refractive power in this order from an object side to an image side. A hight, from an optic axis, of a ray on a paraxial axis passing through a lens surface of the foremost lens is lower than the highest hight, from the optic axis, of the ray on the paraxial axis passing through the lens surface behind an intersection between the optic axis and a pupil paraxial ray. The second lens group includes two or more positive lenses, one of which is referred to as a lens A and another of which is referred to as a lens B. The Abbe number and a partial dispersion ratio νdpA, θgFpA of a material of the lens A and the Abbe number and a partial dispersion ratio νdpB, θgFpB of a material of the lens B are each appropriately set.

Description

本発明は、光学系及びそれを有する光学機器に関し、例えば、銀塩フィルム用カメラ、デジタルスチルカメラ、ビデオカメラ、監視用カメラ、TVカメラ、プロジェクター等に好適なものである。   The present invention relates to an optical system and an optical apparatus having the optical system, and is suitable for, for example, a silver salt film camera, a digital still camera, a video camera, a surveillance camera, a TV camera, a projector, and the like.

近年、デジタルカメラをはじめとする撮像光学系や液晶プロジェクター等の投射光学系においては、広範囲の撮像や投射ができるよう広画角の光学系であることが要望されている。従来より広角化(広画角化)に有利な光学系として、レトロフォーカス型(ネガティブリード型)の光学系が知られている。このレトロフォーカス型の光学系では、光学系の物体側に全体として負の屈折力のレンズ群を配置し、像側に正の屈折力のレンズ群を配置することで焦点距離を短くしつつ(広画角化を図りつつ)、バックフォーカスが長くなるようにしている。   In recent years, an imaging optical system such as a digital camera and a projection optical system such as a liquid crystal projector have been demanded to be an optical system having a wide angle of view so that a wide range of imaging and projection can be performed. 2. Description of the Related Art Conventionally, a retrofocus type (negative lead type) optical system is known as an optical system advantageous for widening the angle (widening the angle of view). In this retrofocus type optical system, a lens group having a negative refractive power as a whole is arranged on the object side of the optical system, and a lens group having a positive refractive power is arranged on the image side, thereby shortening the focal length ( While widening the angle of view), the back focus is made longer.

レトロフォーカス型の光学系は、負の屈折力のレンズ群が先行する光学系全体が非対称な屈折力配置よりなっている。このため、諸収差の発生が多くなり、特に負の歪曲収差(樽型の歪曲収差)が多く発生してくる。広画角化を図ったときの負の歪曲収差を軽減するには、負の屈折力のレンズ群内の負の屈折力のレンズ(負レンズ)の材料に高屈折率材料を用いるのが良い。しかしながら、一般的に高屈折率材料は高分散であるため、負の倍率色収差等の色収差が多く発生してくる。   In the retrofocus type optical system, the entire optical system preceded by a lens unit having a negative refractive power has an asymmetric refractive power arrangement. For this reason, various aberrations are generated, and particularly negative distortion (barrel-shaped distortion) is often generated. In order to reduce the negative distortion when widening the angle of view, it is better to use a high refractive index material for the negative refractive power lens (negative lens) in the negative refractive power lens group. . However, since a high refractive index material generally has high dispersion, a large amount of chromatic aberration such as negative lateral chromatic aberration occurs.

従来より歪曲収差を補正しつつ、全画面で倍率色収差をバランス良く補正するために、倍率色収差を画面の中間像高で負の方向に、最大像高で正の方向となるように補正した広画角のレトロフォーカス型の光学系が知られている(特許文献1)。   In order to correct lateral chromatic aberration in a well-balanced manner while correcting distortion aberration, the wide chromatic aberration has been corrected so that the lateral chromatic aberration is negative at the intermediate image height and positive at the maximum image height. An angle-of-view retrofocus optical system is known (Patent Document 1).

また一般に歪曲収差を補正すると、負の倍率色収差が多く発生する。このとき、瞳近軸光線のレンズ面への入射高(光軸からの距離)hが比較的高くなる、開口絞りよりも後方のレンズ群に、蛍石等の異常部分分散を持った低分散材料で構成した正の屈折力のレンズ(正レンズ)を用いて倍率色収差を補正している。このようにして色収差を補正した広画角のレトロフォーカス型の光学系が知られている(特許文献2)。   In general, when distortion is corrected, a large amount of negative lateral chromatic aberration occurs. At this time, the entrance height (distance from the optical axis) h of the paraxial ray of the pupil is relatively high, and the low dispersion with an abnormal partial dispersion such as fluorite in the lens group behind the aperture stop A chromatic aberration of magnification is corrected using a lens (positive lens) having a positive refractive power made of a material. A wide-angle retrofocus optical system that corrects chromatic aberration in this way is known (Patent Document 2).

この他、比較的色収差を良好に補正したレンズ全長(第1レンズ面から像面までの距離)の長いレトロフォーカス型の光学系が知られている(特許文献3)。この他、開口絞よりも物体側の負の屈折力の前方レンズ群に高分散かつ異常分散性の強い材料よりなるレンズを用いて色収差を補正したレトロフォーカス型の光学系が知られている(特許文献4)。また前方レンズ群に高分散かつ異常分散性の材料よりなるレンズを用いるとともに、低分散性の材料よりなるレンズを用いて色収差を補正したレトロフォーカス型光学系が知られている(特許文献5)。   In addition, a retrofocus type optical system having a long total lens length (distance from the first lens surface to the image plane) in which chromatic aberration is corrected relatively well is known (Patent Document 3). In addition, there is known a retrofocus optical system in which chromatic aberration is corrected by using a lens made of a material having high dispersion and strong anomalous dispersion in the front lens group having a negative refractive power closer to the object side than the aperture stop ( Patent Document 4). Also, a retrofocus optical system is known in which a lens made of a highly dispersive and anomalous dispersive material is used for the front lens group, and chromatic aberration is corrected using a lens made of a low dispersive material (Patent Document 5). .

特開平09−033801号公報JP 09-033801 A 特開平06−082689号公報Japanese Patent Application Laid-Open No. 06-082689 特開2003−307672号公報JP 2003-307672-A 特開2008−158159号公報JP 2008-158159 A 特開2004−020765号公報JP 2004-020765 A

レトロフォーカス型の光学系では、開口絞りの前方に負の屈折力のレンズ群が配置され、開口絞りの後方に正の屈折力のレンズ群が配置されており、長いバックフォーカスを確保しつつ広画角化を図るのが容易である。   In a retrofocus optical system, a lens group with negative refractive power is arranged in front of the aperture stop, and a lens group with positive refractive power is arranged behind the aperture stop, ensuring a long back focus and wide range. It is easy to achieve angle of view.

一般に、レトロフォーカス型の光学系では、レンズ全長を長めに設定した場合は、色収差を比較的良好に補正することが容易となる。しかしながらレンズ全長を短縮しようとすると色収差が多く発生してくる。レンズ全長を短縮しようとするときに生ずる色収差を補正するためには、蛍石のようなアッベ数の大きい低分散の材料を用いるのが有効である。またこのとき色収差を効果的に補正するには、レンズ面の屈折力を大きく変化させる必要がある。しかしながらレンズ面の屈折力を大きくすると、球面収差、コマ収差、非点収差等の諸収差が多く発生してくる。   Generally, in a retrofocus type optical system, it is easy to correct chromatic aberration relatively well when the overall lens length is set to be long. However, many chromatic aberrations occur when trying to shorten the overall lens length. In order to correct chromatic aberration that occurs when trying to shorten the overall lens length, it is effective to use a low-dispersion material having a large Abbe number, such as fluorite. At this time, in order to effectively correct the chromatic aberration, it is necessary to greatly change the refractive power of the lens surface. However, when the refracting power of the lens surface is increased, various aberrations such as spherical aberration, coma aberration, astigmatism and the like are generated.

このためレトロフォーカス型の光学系では、広画角化を図りつつ、色収差と、球面収差、コマ収差、非点収差などの諸収差をバランス良く補正することが困難である。レトロフォーカス型の光学系において、色収差と球面収差、コマ収差、非点収差等の諸収差とをバランス良く補正するには、特に開口絞よりも像側の正の屈折力の後方レンズ群のレンズ構成を適切に設定することが重要となってくる。   Therefore, it is difficult for a retrofocus optical system to correct chromatic aberration and various aberrations such as spherical aberration, coma aberration, and astigmatism in a well-balanced manner while achieving a wide angle of view. To correct chromatic aberration and various aberrations such as spherical aberration, coma, and astigmatism in a balanced manner in a retrofocus optical system, the lens in the rear lens group that has a positive refractive power on the image side of the aperture stop. It is important to set the configuration appropriately.

この他、開口絞りよりも物体側の負の屈折力の前方レンズ群のレンズ構成も適切に設定することが重要になってくる。これらの構成が不適切であると、広画角化を図りつつ色収差と諸収差とをバランス良く補正して画面全体で高い光学性能を得るのが困難になってくる。   In addition, it is important to appropriately set the lens configuration of the front lens unit having a negative refractive power closer to the object side than the aperture stop. If these configurations are inappropriate, it becomes difficult to obtain a high optical performance over the entire screen by correcting the chromatic aberration and various aberrations in a balanced manner while achieving a wide angle of view.

本発明は、色収差を始めとする諸収差を良好に補正し、画面全体にわたり高い光学性能を有する光学系の提供を目的とする。   An object of the present invention is to provide an optical system that satisfactorily corrects various aberrations including chromatic aberration and has high optical performance over the entire screen.

本発明の光学系は、物体側より像側へ順に、第1レンズ群、開口絞り、正の屈折力の第2レンズ群からなり、最も前方のレンズ面を通過する近軸軸上光線の光軸からの高さが、光軸と瞳近軸光線との交点より後方で近軸軸上光線がレンズ面を通過する光軸からの高さの最大値よりも小さい光学系において、前記第2レンズ群は2つ以上の正レンズを有し、前記2つ以上の正レンズのうちの1つの正レンズをレンズA、他の1つの正レンズをレンズBとし、前記レンズAの材料のアッベ数と、部分分散比を各々νdpA、θgFpA、前記レンズBの材料のアッベ数と、部分分散比を各々νdpB、θgFpBとするとき、
17<νdpA<25
0.02<θgFpA−0.6438+0.001682×νdpA<0.05
60<νdpB<100
0.001<θgFpB−0.6438+0.001682×νdpB<0.060
なる条件式を満足することを特徴としている。
The optical system of the present invention includes, in order from the object side to the image side, a first lens group, an aperture stop, and a second lens group having a positive refractive power, and light of a paraxial axial ray that passes through the foremost lens surface. In the optical system, the height from the axis is smaller than the maximum value from the optical axis behind the intersection of the optical axis and the pupil paraxial ray, and the paraxial axial ray passes through the lens surface. The lens group includes two or more positive lenses, and one positive lens of the two or more positive lenses is a lens A, and the other one positive lens is a lens B. The Abbe number of the material of the lens A When the partial dispersion ratios are νdpA and θgFpA, the Abbe number of the material of the lens B, and the partial dispersion ratios are νdpB and θgFpB, respectively.
17 <νdpA <25
0.02 <θgFpA−0.6438 + 0.001682 × νdpA <0.05
60 <νdpB <100
0.001 <θgFpB−0.6438 + 0.001682 × νdpB <0.060
It satisfies the following conditional expression.

本発明によれば、色収差を始めとする諸収差を良好に補正し、画面全体にわたり高い光学性能を有する光学系が得られる。   According to the present invention, it is possible to satisfactorily correct various aberrations including chromatic aberration, and to obtain an optical system having high optical performance over the entire screen.

本発明の実施例1におけるレンズ断面図Sectional view of the lens in Example 1 of the present invention 本発明の実施例1に対応する数値実施例1の収差図Aberration diagram of Numerical Example 1 corresponding to Example 1 of the present invention 本発明の実施例2におけるレンズ断面図Lens sectional drawing in Example 2 of the present invention 本発明の実施例2に対応する数値実施例2の収差図Aberration diagram of Numerical Example 2 corresponding to Example 2 of the present invention 本発明の実施例3におけるレンズ断面図Lens sectional drawing in Example 3 of the present invention 本発明の実施例3に対応する数値実施例3の収差図Aberration diagram of Numerical Example 3 corresponding to Example 3 of the present invention 本発明の撮像装置の要部概略図Schematic diagram of main parts of an imaging apparatus of the present invention

以下に、本発明の好ましい実施の形態を、添付の図面に基づいて詳細に説明する。本発明の光学系は、物体側より像側へ順に、第1レンズ群、開口絞り、正の屈折力の第2レンズ群を有している。また、本発明の光学系は最も前方のレンズ面を通過する近軸軸上光線の光軸からの高さが、光軸と瞳近軸光線との交点Pより後方で近軸軸上光線がレンズ面を通過する光軸からの高さの最大値よりも小さいレトロフォーカス型より成っている。なお、近軸軸上光線とは、光学系全系の焦点距離を1に正規化したとき、光学系の光軸と平行に、光軸からの高さを1として入射させた近軸光線である。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The optical system of the present invention includes, in order from the object side to the image side, a first lens group, an aperture stop, and a second lens group having a positive refractive power. In the optical system of the present invention, the height from the optical axis of the paraxial light beam that passes through the foremost lens surface is higher than the intersection P between the optical axis and the pupil paraxial light beam. It consists of a retrofocus type that is smaller than the maximum height from the optical axis that passes through the lens surface. Note that the paraxial light beam is a paraxial light beam that is incident with the height from the optical axis set to 1 in parallel with the optical axis of the optical system when the focal length of the entire optical system is normalized to 1. is there.

また瞳近軸光線とは、光学系全系の焦点距離を1に正規化したとき、光軸に対して−45°で入射する光線の内、光学系の入射瞳と光軸との交点を通過する近軸光線である。光学系の入射角度は、光軸から測って時計回りを正、反時計回りを負とする。なお、物体は光学系の左側にあるものとし、物体側から光学系に入射する光線は左側から右へ進むものとする。   The pupil paraxial ray is the intersection of the entrance pupil of the optical system and the optical axis among the rays incident at −45 ° with respect to the optical axis when the focal length of the entire optical system is normalized to 1. Paraxial rays passing through. The incident angle of the optical system is measured clockwise from the optical axis, and positive in the clockwise direction and negative in the counterclockwise direction. It is assumed that the object is on the left side of the optical system, and light rays that enter the optical system from the object side travel from the left side to the right.

図1は、本発明の光学系の実施例1のレンズ断面図、図2は実施例1の光学系の無限合焦状態の収差図である。図3は、本発明の光学系の実施例2のレンズ断面図、図4は実施例2の光学系の無限合焦状態の収差図である。図5は、本発明の光学系の実施例3のレンズ断面図、図6は実施例3の光学系の無限合焦状態の収差図である。図6は本発明の撮像装置の要部概略図である。   FIG. 1 is a lens cross-sectional view of Example 1 of the optical system of the present invention, and FIG. 2 is an aberration diagram of the optical system of Example 1 in an infinitely focused state. 3 is a lens cross-sectional view of Example 2 of the optical system of the present invention, and FIG. 4 is an aberration diagram of the optical system of Example 2 in an infinitely focused state. FIG. 5 is a lens cross-sectional view of Example 3 of the optical system of the present invention, and FIG. 6 is an aberration diagram of the optical system of Example 3 in an infinitely focused state. FIG. 6 is a schematic diagram of a main part of the imaging apparatus of the present invention.

各実施例の光学系は、デジタルスチルカメラ、ビデオカメラ、銀塩フィルム用カメラ等の撮像装置(光学装置)に用いられる撮影光学系である。レンズ断面図において、左方が物体側(前方)で、右方が像側(後方)である。尚、各実施例の光学系をプロジェクターなどの投射レンズとして用いても良い。このときは左方がスクリーン、右方が被投射画像となる。   The optical system of each embodiment is a photographing optical system used for an imaging apparatus (optical apparatus) such as a digital still camera, a video camera, and a silver salt film camera. In the lens cross-sectional view, the left side is the object side (front), and the right side is the image side (rear). In addition, you may use the optical system of each Example as projection lenses, such as a projector. At this time, the left side is the screen and the right side is the projected image.

レンズ断面図において、LAは光学系である。光学系LAは開口絞りSPを挟んで物体側に負の屈折力の第1レンズ群L1と像側に正の屈折力の第2レンズ群L2を有している。LFはフォーカシングに際して移動するフォーカスレンズ群である。フォーカスレンズ群LFは第1レンズ群L1の一部のレンズ群と第2レンズ群L2より構成されている。フォーカスレンズ群LFは無限遠物体から近距離物体へのフォーカシングに際して矢印の如く物体側へ移動する。   In the lens cross-sectional view, LA is an optical system. The optical system LA has a first lens unit L1 having negative refractive power on the object side and a second lens unit L2 having positive refractive power on the image side with the aperture stop SP interposed therebetween. LF is a focus lens group that moves during focusing. The focus lens unit LF includes a part of the first lens unit L1 and the second lens unit L2. The focus lens unit LF moves to the object side as indicated by an arrow during focusing from an infinitely distant object to a close object.

図3、図5においてFPはフレアーカット絞りである。IPは像面であり、ビデオカメラやデジタルスチルカメラの撮影光学系として使用する際にはCCDセンサやCMOSセンサなどの固体撮像素子(光電変換素子)の撮像面が、銀塩フィルム用カメラのときはフィルム面に相当する。   3 and 5, FP is a flare cut stop. IP is an image plane. When the imaging optical system of a video camera or digital still camera is used, the imaging surface of a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor is a silver salt film camera. Corresponds to the film surface.

レンズ断面図においてAは第2レンズ群L2を構成する2つ以上の正レンズ(正の屈折力のレンズ)のうちの1つの正レンズAに、B1、B2は第2レンズ群L2を構成する2つ以上の正レンズのうちの他の正レンズBに相当する。C1、C2、C3は第1レンズ群L1を構成する連続した2つ以上の負レンズ(負の屈折力のレンズ)のうちの1つの負レンズCに相当している。 In the lens cross-sectional view, A denotes one positive lens A of two or more positive lenses (lens having a positive refractive power) constituting the second lens unit L2, and B 1 and B 2 denote the second lens unit L2. This corresponds to the other positive lens B of the two or more positive lenses that constitute the lens. C 1 , C 2 , and C 3 correspond to one negative lens C among two or more consecutive negative lenses (lens having a negative refractive power) constituting the first lens unit L1.

それぞれの縦収差図は、左から順に、球面収差、非点収差、歪曲、倍率色収差を表している。球面収差と倍率色収差を示す図において、実線のdはd線(587.6nm)、破線のgはg線(435.8nm)、点線のS.Cは正弦条件を表している。また、非点収差を示す図において、実線のSはd線のサジタル方向ΔS、破線のMはd線のメリディオナル方向ΔMを表している。また、歪曲を示す図は、d線における歪曲を表している。FnoはFナンバー、ωは撮影画角の半画角(度)である。   Each longitudinal aberration diagram shows spherical aberration, astigmatism, distortion, and lateral chromatic aberration in order from the left. In the diagrams showing spherical aberration and lateral chromatic aberration, the solid line d is d line (587.6 nm), the broken line g is g line (435.8 nm), and the dotted line S.D. C represents a sine condition. In the diagram showing astigmatism, the solid line S represents the sagittal direction ΔS of the d line, and the broken line M represents the meridional direction ΔM of the d line. Moreover, the figure which shows distortion represents the distortion in d line | wire. Fno is the F number, and ω is the half angle of view (degrees) of the shooting angle of view.

本発明の光学系LAは、開口絞りSPの物体側に負の屈折力の第1レンズ群L1が配置され、開口絞りSPの像側に正の屈折力の第2レンズ群L2が配置された所謂レトロフォーカスタイプ(レトロフォーカス型)よりなっている。   In the optical system LA of the present invention, the first lens unit L1 having a negative refractive power is disposed on the object side of the aperture stop SP, and the second lens unit L2 having a positive refractive power is disposed on the image side of the aperture stop SP. It is a so-called retrofocus type (retrofocus type).

レトロフォーカス型の光学系では像側主点を光学系の最終レンズ面より像側に位置させることが容易であり、全系の焦点距離は光学系の最終レンズ面から像面までの距離(バックフォーカス)より小さい。この光学系は広画角化が容易である。またこの光学系は、最終レンズの像面側にクイックリターンミラーを配置する一眼レフカメラやクイックリターンミラーのないミラーレスの一眼レフカメラなど、比較的長いバックフォーカスを確保したい撮影レンズに好適である。   In a retrofocus type optical system, it is easy to position the image side principal point on the image side from the final lens surface of the optical system, and the focal length of the entire system is the distance from the final lens surface of the optical system to the image surface (back Smaller than the focus). This optical system can easily widen the angle of view. This optical system is also suitable for photographic lenses that want to ensure a relatively long back focus, such as single-lens reflex cameras with a quick return mirror on the image plane side of the final lens and mirrorless single-lens reflex cameras without a quick return mirror. .

各実施例の光学系において、第2レンズ群L2は2つ以上の正の屈折力のレンズ(以下「正レンズ」という。)を有している。2つ以上の正レンズのうちの1つの正レンズをレンズA、他の1つの正レンズをレンズBとする。レンズAの材料のアッベ数と、部分分散比を各々νdpA、θgFpA、レンズBの材料のアッベ数と、部分分散比を各々νdpB、θgFpBとする。   In the optical system of each embodiment, the second lens unit L2 includes two or more lenses having a positive refractive power (hereinafter referred to as “positive lenses”). One positive lens of the two or more positive lenses is referred to as a lens A, and the other positive lens is referred to as a lens B. The Abbe number and partial dispersion ratio of the lens A material are νdpA and θgFpA, respectively, and the Abbe number and partial dispersion ratio of the lens B material are νdpB and θgFpB, respectively.

このとき、
17<νdpA<25 ・・・(1a)
0.02<θgFpA−0.6438+0.001682×νdpA<0.05
・・・(1b)
60<νdpB<100 ・・・(2a)
0.001<θgFpB−0.6438+0.001682×νdpB<0.060
・・・(2b)
なる条件式を満足している。
At this time,
17 <νdpA <25 (1a)
0.02 <θgFpA−0.6438 + 0.001682 × νdpA <0.05
... (1b)
60 <νdpB <100 (2a)
0.001 <θgFpB−0.6438 + 0.001682 × νdpB <0.060
... (2b)
The following conditional expression is satisfied.

但し、材料のアッベ数νdと部分分散比θgFはg線、F線、C線における屈折率をそれぞれng、nf、ncとするとき、
νd=(nf−nc)/(nd−1)
θgF=(ng−nf)/(nf−nc)
である。
However, when the Abbe number νd and the partial dispersion ratio θgF of the material are ng, nf, and nc respectively for the refractive indexes of the g-line, F-line, and C-line,
νd = (nf−nc) / (nd−1)
θgF = (ng−nf) / (nf−nc)
It is.

条件式(1a)、(1b)、(2a)、(2b)は第2レンズ群L2内のレンズAとレンズBの材料のアッベ数と異常分散を適切に設定することでレンズ系全体の色収差を良好に補正するための条件である。高分散の異常分散硝材が色収差の補正の分担をすることで、レンズの屈折力の増加を抑え色収差とその他の諸収差の補正を容易にしている。条件式(1a)、(1b)、(2a)、(2b)を同時に満足することによって光学系全体で諸収差の悪化を軽減しつつ、色収差を良好に補正している。   Conditional expressions (1a), (1b), (2a), and (2b) are chromatic aberrations of the entire lens system by appropriately setting the Abbe number and anomalous dispersion of the materials of the lenses A and B in the second lens unit L2. This is a condition for correcting the above. The high dispersion anomalous dispersion glass material shares the correction of chromatic aberration, thereby suppressing the increase of the refractive power of the lens and facilitating correction of chromatic aberration and other various aberrations. By satisfying the conditional expressions (1a), (1b), (2a), and (2b) at the same time, the chromatic aberration is corrected well while reducing the deterioration of various aberrations in the entire optical system.

各実施例では高分散、高屈折率の材料よりなるレンズAを第2レンズ群L2中の最も像側に配置することで、諸収差の発生を抑えつつ倍率色収差の2次スペクトルの曲がりの補正を効果的に行っている。また、バックフォーカスを長くすることを容易にしている。実施例1、2、3においてはレンズAが条件式(1a)、(1b)を満足する。実施例1においては2つのレンズB1、B2、実施例2においては1つのレンズB1、実施例3においては1つのレンズB1が条件式(2a)、(2b)を満足するレンズBに相当している。 In each embodiment, the lens A made of a material having a high dispersion and a high refractive index is disposed on the most image side in the second lens unit L2, thereby correcting the bending of the secondary spectrum of the lateral chromatic aberration while suppressing the occurrence of various aberrations. Is effective. In addition, it is easy to increase the back focus. In Examples 1, 2, and 3, the lens A satisfies the conditional expressions (1a) and (1b). In the first embodiment, two lenses B 1 and B 2 , in the second embodiment, one lens B 1 , and in the third embodiment, one lens B 1 satisfies the conditional expressions (2a) and (2b). It corresponds to.

また、低分散の材料よりなるレンズBを実施例1においては2つ、実施例2と実施例3においては各1つ、第2レンズ群L2中に配置することでレンズAとの分散のバランスをとり、第2レンズ群L2において色収差を良好に補正している。   Further, by disposing two lenses B made of a low dispersion material in the first embodiment, one in each of the second and third embodiments, and in the second lens unit L2, the balance of dispersion with the lens A is achieved. The chromatic aberration is corrected well in the second lens unit L2.

条件式(1a)、(2a)の下限を超えてレンズAとレンズBの材料の分散が大きくなりすぎると、色収差が過補正となりよくない。条件式(1a)、(2a)の上限を超えてレンズAとレンズBの材料の分散が小さくなりすぎると、色収差の補正効果が小さくなりよくない。もしくは同等の効果を得るために各レンズのパワーを増加させなければならなくなり諸収差の良好な補正が困難となる。より好ましくは、条件式(1a)、(1b)、(2a)、(2b)の数値範囲を次の如く設定するのがよい。
18<νdpA<24 ・・・(1aa)
0.022<θgFpA−0.6438+0.001682×νdpA<0.040
・・・(1bb)
63<νdpB<96 ・・・(2aa)
0.012<θgFpB−0.6438+0.001682×νdpB<0.052
・・・(2bb)
各実施例では以上のように構成することにより広画角でありながら色収差を良好に補正し、高い光学性能を有した光学系を得ている。各実施例において更に好ましくは次の諸条件のうち1以上を満足するのが良い。レンズAの焦点距離をfpA、レンズBの焦点距離をfpB、全系の焦点距離をfとする。
If the dispersion of the materials of the lens A and the lens B becomes too large exceeding the lower limits of the conditional expressions (1a) and (2a), the chromatic aberration is not overcorrected. If the dispersion of the materials of the lens A and the lens B becomes too small exceeding the upper limits of the conditional expressions (1a) and (2a), the correction effect of chromatic aberration is not likely to be small. Or, in order to obtain an equivalent effect, the power of each lens must be increased, and it is difficult to correct various aberrations. More preferably, the numerical ranges of the conditional expressions (1a), (1b), (2a), and (2b) are set as follows.
18 <νdpA <24 (1aa)
0.022 <θgFpA−0.6438 + 0.001682 × νdpA <0.040
... (1bb)
63 <νdpB <96 (2aa)
0.012 <θgFpB−0.6438 + 0.001682 × νdpB <0.052
... (2bb)
In each embodiment, by configuring as described above, chromatic aberration is corrected well with a wide angle of view, and an optical system having high optical performance is obtained. In each embodiment, it is more preferable to satisfy one or more of the following conditions. The focal length of the lens A is fpA, the focal length of the lens B is fpB, and the focal length of the entire system is f.

第1レンズ群L1は物体側から像側へ順に、連続して2つ以上の負レンズを有している。そして連続した2つ以上の負レンズのうち、1つの負レンズをレンズCとし、レンズCの材料のアッベ数と部分分散比を各々νdnC、θgFnCとする。レンズCの焦点距離をfnCとする。   The first lens unit L1 has two or more negative lenses successively from the object side to the image side. Of the two or more consecutive negative lenses, one negative lens is the lens C, and the Abbe number and partial dispersion ratio of the material of the lens C are νdnC and θgFnC, respectively. Let the focal length of the lens C be fnC.

このとき、次の条件式のうち1以上を満足するのが良い。
20<νdpA×fpA/f<70 ・・・(3)
1.2<(νdpB×fpB)/(νdpA×fpA)<6.0 ・・・(4)
2<|(νdnC×fnC)/(νdpA×fpA)|<14 ・・・(5a)
0.001<θgFnC−0.6438+0.001682×νdnC<0.060
・・・(5b)
次に前述した各条件式の技術的意味について説明する。条件式(3)はレンズAの材料のアッベ数と焦点距離に関し、レンズAの色消しの強さを適切に設定することで色収差を良好に補正するための条件である。条件式(3)の下限を超えるとレンズAの色消しが強くなりすぎて、色収差が過補正となりよくない。
At this time, it is preferable to satisfy one or more of the following conditional expressions.
20 <νdpA × fpA / f <70 (3)
1.2 <(νdpB × fpB) / (νdpA × fpA) <6.0 (4)
2 <| (νdnC × fnC) / (νdpA × fpA) | <14 (5a)
0.001 <θgFnC−0.6438 + 0.001682 × νdnC <0.060
... (5b)
Next, the technical meaning of each conditional expression described above will be described. Conditional expression (3) relates to the Abbe number and focal length of the material of the lens A, and is a condition for satisfactorily correcting chromatic aberration by appropriately setting the achromatic strength of the lens A. When the lower limit of conditional expression (3) is exceeded, the achromaticity of the lens A becomes too strong, and chromatic aberration is not overcorrected.

もしくは正の屈折力の第2レンズ群L2全体の過補正を防ぐために第2レンズ群L2中の負レンズにレンズAと同程度以上の高分散な材料を用いる必要がある。一般的に高分散材料は部分分散比θgFも大きくなるため、レンズAの色消し効果を打ち消してしまいよくない。   Alternatively, in order to prevent overcorrection of the entire second lens unit L2 having a positive refractive power, it is necessary to use a material having a high dispersion equal to or higher than that of the lens A for the negative lens in the second lens unit L2. In general, a high dispersion material has a large partial dispersion ratio θgF, which is not good for canceling the achromatic effect of the lens A.

条件式(3)の上限を超えるとレンズAの色消しが弱くなりすぎて、良好な色収差の補正が困難となるためよくない。より好ましくは条件式(3)の数値範囲を次の如く設定するのがよい。
25<νdpA×fpA/f<60 ・・・(3a)
If the upper limit of the conditional expression (3) is exceeded, the achromaticity of the lens A becomes too weak, and it is difficult to correct chromatic aberration, which is not good. More preferably, the numerical range of conditional expression (3) is set as follows.
25 <νdpA × fpA / f <60 (3a)

条件式(4)はレンズAとレンズBの色消しの強さの比に関し、色消しの強さのバランスを適切に設定することで色収差を良好に補正するための条件である。条件式(4)の下限を超えるとレンズAの色消しが強くなりすぎて、2次スペクトルの曲がりに対する補正効果は大きくなるが、1次の色収差が過補正となりよくない。条件式(4)の上限を超えるとレンズBの色消しが強くなりすぎて、低分散な硝材で強い色消しをすることになるためにレンズの屈折力を増加しなければならず、色以外の諸収差が悪化するためよくない。   Conditional expression (4) relates to the ratio of the achromatic intensity of the lens A and the lens B, and is a condition for satisfactorily correcting the chromatic aberration by appropriately setting the achromatic intensity balance. If the lower limit of the conditional expression (4) is exceeded, the achromaticity of the lens A becomes too strong and the correction effect for the bending of the secondary spectrum becomes large, but the primary chromatic aberration is not overcorrected. If the upper limit of conditional expression (4) is exceeded, the achromaticity of the lens B becomes too strong, and the achromaticity of the lens B must be increased so that the refractive power of the lens must be increased. This is not good because the various aberrations deteriorate.

より好ましくは、条件式(4)の数値範囲を次の如く設定するのがよい。
1.5<(νdpB×fpB)/(νdpA×fpA)<5.0
・・・(4a)
条件式(5a)はレンズAとレンズCの色消しの強さの比に関し、色消しの強さのバランスを適切に設定することで倍率色収差を良好に補正するための条件である。条件式(5a)の下限を超えるとレンズCの色消しが強くなりすぎて、特に1次の倍率色収差が過補正となりよくない。条件式(5a)の上限を超えるとレンズCの色消しが弱くなりすぎて、物体側のレンズの屈折力を下げなければならず、物体側のレンズの有効径(前玉有効径)が大型化するためよくない。
More preferably, the numerical range of conditional expression (4) is set as follows.
1.5 <(νdpB × fpB) / (νdpA × fpA) <5.0
... (4a)
Conditional expression (5a) relates to the ratio of the achromatic intensity of the lens A and the lens C, and is a condition for satisfactorily correcting the lateral chromatic aberration by appropriately setting the achromatic intensity balance. If the lower limit of the conditional expression (5a) is exceeded, the achromaticity of the lens C becomes too strong, and the primary lateral chromatic aberration is not particularly overcorrected. If the upper limit of conditional expression (5a) is exceeded, the achromaticity of the lens C becomes too weak, and the refractive power of the lens on the object side must be lowered, and the effective diameter of the lens on the object side (front lens effective diameter) is large. Not good for

より好ましくは条件式(5a)の数値範囲を次の如く設定するのがよい。
3<|(νdpC×fpC)/(νdpA×fpA)|<13・・・(5aa)
条件式(5b)はレンズCの材料の部分分散比に関し、倍率色収差の2次スペクトルの曲がりを良好に補正するための条件である。また、実施例1においては3つのレンズC1、C2、C3、実施例2においては1つのレンズC1、実施例3においては2つのレンズC1、C2が条件式(5a)、(5b)を満たすレンズCに相当する。これらの負レンズを配置することで効果的に倍率色収差の補正を行っている。
More preferably, the numerical range of conditional expression (5a) should be set as follows.
3 <| (νdpC × fpC) / (νdpA × fpA) | <13 (5aa)
Conditional expression (5b) relates to the partial dispersion ratio of the material of the lens C and is a condition for satisfactorily correcting the bending of the secondary spectrum of lateral chromatic aberration. In Example 1, three lenses C 1 , C 2 , C 3 , in Example 2, one lens C 1 , and in Example 3, two lenses C 1 , C 2 are conditional expressions (5a), This corresponds to the lens C satisfying (5b). By arranging these negative lenses, the lateral chromatic aberration is effectively corrected.

より好ましくは条件式(5b)の数値範囲を次の如く設定するのが良い。
0.012<θgFnC−0.6438+0.001682×νdnC<0.052
・・・(5bb)
以上、本発明の好ましい実施形態について説明したが、本発明はこれらの実施形態に限定されず、その要旨の範囲内で種々の変形及び変更が可能である。
More preferably, the numerical range of the conditional expression (5b) is set as follows.
0.012 <θgFnC−0.6438 + 0.001682 × νdnC <0.052
... (5bb)
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to these embodiment, A various deformation | transformation and change are possible within the range of the summary.

図7は各実施例の光学系を用いたデジタルスチルカメラの要部概略図である。図7において20はカメラ本体、21は各実施例で説明したいずれかの光学系によって構成された撮影光学系である。22はカメラ本体20に内蔵され、撮影光学系21によって形成された被写体像を受光するCCDセンサやCMOSセンサ等の固体撮像素子(光電変換素子)である。   FIG. 7 is a schematic diagram of a main part of a digital still camera using the optical system of each embodiment. In FIG. 7, reference numeral 20 denotes a camera body, and 21 denotes a photographing optical system constituted by any one of the optical systems described in each embodiment. Reference numeral 22 denotes a solid-state imaging device (photoelectric conversion device) such as a CCD sensor or a CMOS sensor that receives a subject image formed by the photographing optical system 21 and is built in the camera body 20.

本実施例ではクイックリターンミラーのある一眼レフカメラやクイックリターンミラーのないミラーレスの一眼レフカメラ、そしてレンズシャッターカメラ等の撮像装置等に適用できる。この他、プロジェクター等の光学機器にも同様に適用することができる。   The present embodiment can be applied to a single-lens reflex camera with a quick return mirror, a mirrorless single-lens reflex camera without a quick return mirror, and an imaging apparatus such as a lens shutter camera. In addition, the present invention can be similarly applied to an optical apparatus such as a projector.

以下に、実施例1〜3に各々対応する数値実施例1〜3を示す。各数値実施例において、iは物体側からの順番を示し、riは各面の曲率半径、diは第i面と第i+1面との間の部材肉厚又は空気間隔、ndiとνdiはそれぞれd線に対する屈折率、アッベ数を示す。   The numerical examples 1 to 3 corresponding to the examples 1 to 3 are shown below. In each numerical example, i indicates the order from the object side, ri is the radius of curvature of each surface, di is the member thickness or air spacing between the i-th surface and the i + 1-th surface, and ndi and νdi are d Indicates the refractive index and Abbe number for the line.

非球面形状は光軸からの高さhの位置での光軸方向の変位を面頂点を基準にしてxとするとき、
X=(h2 /R)/[1+{1−(1+k)(h/R)2}](1/2)+A4h4+A6h6+A8h8+A10h10
で表される。
When the aspherical shape is x with the displacement in the optical axis direction at the position of the height h from the optical axis as x based on the surface vertex,
X = (h 2 / R) / [1+ {1- (1 + k) (h / R) 2 }] (1/2) + A4h 4 + A6h 6 + A8h 8 + A10h 10
It is represented by

但し、kは円錐定数、A4、A6、A8、A10は4次、6次、8次、10次の非球面係数、Rは近軸曲率半径である。*は非球面形状を有する面を意味している。又、「E−0X」は「×10−x」を意味している。又、前述の各条件式と各数値実施例との関係を表1に示す。 Where k is a conic constant, A4, A6, A8, and A10 are fourth-order, sixth-order, eighth-order, and tenth-order aspheric coefficients, and R is a paraxial radius of curvature. * Means a surface having an aspherical shape. “E-0X” means “× 10 −x ”. Table 1 shows the relationship between the above-described conditional expressions and numerical examples.


[数値実施例1]

単位 mm

面データ
面番号 r d nd νd 有効径
1 58.478 3.50 1.59282 68.6 69.96
2 27.177 6.15 50.18
3 34.281 3.00 1.59282 68.6 49.90
4 22.030 4.67 40.43
5 27.429 3.00 1.55332 71.7 40.27
6* 11.482 22.63 32.65
7 92.434 2.50 1.83481 42.7 24.73
8 18.345 0.27 22.08
9 18.791 6.11 1.72047 34.7 22.14
10 -230.699 0.15 21.20
11 24.300 1.15 1.80809 22.8 19.44
12 14.939 4.49 1.73800 32.3 17.88
13 178.273 2.82 16.66
14 -378.045 1.25 1.88300 40.8 14.42
15 10.460 8.46 1.68893 31.1 12.65
16 -29.306 1.00 12.45
17(絞り) ∞ 1.44 12.22
18 -41.673 1.50 1.90366 31.3 12.11
19 38.407 0.15 12.47
20 25.055 9.44 1.56907 71.3 13.04
21 -12.860 0.15 15.82
22 -13.809 0.90 1.84666 23.8 15.84
23 51.428 3.67 1.55332 71.7 18.83
24* -29.383 0.15 20.21
25 -1139.646 4.73 1.80809 22.8 22.72
26 -23.268 40.23 23.84
像面 ∞

[Numerical Example 1]

Unit mm

Surface data surface number rd nd νd Effective diameter
1 58.478 3.50 1.59282 68.6 69.96
2 27.177 6.15 50.18
3 34.281 3.00 1.59282 68.6 49.90
4 22.030 4.67 40.43
5 27.429 3.00 1.55332 71.7 40.27
6 * 11.482 22.63 32.65
7 92.434 2.50 1.83481 42.7 24.73
8 18.345 0.27 22.08
9 18.791 6.11 1.72047 34.7 22.14
10 -230.699 0.15 21.20
11 24.300 1.15 1.80809 22.8 19.44
12 14.939 4.49 1.73800 32.3 17.88
13 178.273 2.82 16.66
14 -378.045 1.25 1.88300 40.8 14.42
15 10.460 8.46 1.68893 31.1 12.65
16 -29.306 1.00 12.45
17 (Aperture) ∞ 1.44 12.22
18 -41.673 1.50 1.90366 31.3 12.11
19 38.407 0.15 12.47
20 25.055 9.44 1.56907 71.3 13.04
21 -12.860 0.15 15.82
22 -13.809 0.90 1.84666 23.8 15.84
23 51.428 3.67 1.55332 71.7 18.83
24 * -29.383 0.15 20.21
25 -1139.646 4.73 1.80809 22.8 22.72
26 -23.268 40.23 23.84
Image plane ∞

非球面データ
第6面
K =-6.99514e-001 A 4=-6.50850e-006 A 6=-7.74960e-008
A 8= 1.77123e-010 A10=-9.26708e-013

第24面
K = 0.00000e+000 A 4= 2.17829e-005 A 6= 2.22245e-008
A 8= 4.47153e-010 A10=-8.08259e-014

各種データ

焦点距離 14.17
Fナンバー 2.89
画角 56.78
像高 21.64
レンズ全長 133.50
BF 40.23

入射瞳位置 27.21
射出瞳位置 -30.43
前側主点位置 38.54
後側主点位置 26.06


単レンズデータ
レンズ 始面 焦点距離
1 1 -89.37
2 3 -114.41
3 5 -38.26
4 7 -27.84
5 9 24.37
6 11 -50.78
7 12 21.84
8 14 -11.51
9 15 12.25
10 18 -21.92
11 20 16.42
12 22 -12.78
13 23 34.35
14 25 29.34
Aspheric data 6th surface
K = -6.99514e-001 A 4 = -6.50850e-006 A 6 = -7.74960e-008
A 8 = 1.77123e-010 A10 = -9.26708e-013

24th page
K = 0.00000e + 000 A 4 = 2.17829e-005 A 6 = 2.22245e-008
A 8 = 4.47153e-010 A10 = -8.08259e-014

Various data

Focal length 14.17
F number 2.89
Angle of view 56.78
Statue height 21.64
Total lens length 133.50
BF 40.23

Entrance pupil position 27.21
Exit pupil position -30.43
Front principal point position 38.54
Rear principal point position 26.06


Single lens Data lens Start surface Focal length
1 1 -89.37
2 3 -114.41
3 5 -38.26
4 7 -27.84
5 9 24.37
6 11 -50.78
7 12 21.84
8 14 -11.51
9 15 12.25
10 18 -21.92
11 20 16.42
12 22 -12.78
13 23 34.35
14 25 29.34

[数値実施例2]

単位 mm

面データ
面番号 r d nd νd 有効径
1 56.797 1.30 1.59282 68.6 34.58
2 18.842 4.04 27.72
3 41.676 1.30 1.75501 51.2 27.47
4* 16.554 8.53 24.73
5 35.306 2.97 1.88300 40.8 23.91
6 318.019 6.23 23.48
7 25.721 1.98 1.80610 33.3 18.72
8 50.677 9.95 18.23
9(絞り) ∞ 0.50 13.51
10 372.765 1.70 1.59270 35.3 13.77
11 -34.835 3.13 13.70
12 -20.914 3.17 1.78590 44.2 12.76
13 -9.568 0.90 1.93967 23.1 13.17
14 -6883.179 1.15 14.86
15 112.973 2.32 1.55332 75.2 16.86
16* -29.515 1.15 17.60
17 -35.370 3.17 1.80809 22.8 18.58
18 -16.449 0.50 19.51
19 ∞ 38.07 21.57(フレアーカット絞り)
像面 ∞
[Numerical Example 2]

Unit mm

Surface data surface number rd nd νd Effective diameter
1 56.797 1.30 1.59282 68.6 34.58
2 18.842 4.04 27.72
3 41.676 1.30 1.75501 51.2 27.47
4 * 16.554 8.53 24.73
5 35.306 2.97 1.88300 40.8 23.91
6 318.019 6.23 23.48
7 25.721 1.98 1.80610 33.3 18.72
8 50.677 9.95 18.23
9 (Aperture) ∞ 0.50 13.51
10 372.765 1.70 1.59270 35.3 13.77
11 -34.835 3.13 13.70
12 -20.914 3.17 1.78590 44.2 12.76
13 -9.568 0.90 1.93967 23.1 13.17
14 -6883.179 1.15 14.86
15 112.973 2.32 1.55332 75.2 16.86
16 * -29.515 1.15 17.60
17 -35.370 3.17 1.80809 22.8 18.58
18 -16.449 0.50 19.51
19 ∞ 38.07 21.57 (Flare cut diaphragm)
Image plane ∞

非球面データ
第4面
K = 0.00000e+000 A 4=-2.16154e-005 A 6=-1.03154e-007
A 8= 2.38853e-010 A10=-1.71375e-012

第16面
K = 0.00000e+000 A 4= 4.80580e-005 A 6=-6.03259e-009
A 8= 3.22276e-010 A10=-2.41917e-012

焦点距離 24.50
Fナンバー 2.80
画角 41.45
像高 21.64
レンズ全長 92.07
BF 38.07

入射瞳位置 18.27
射出瞳位置 -23.78
前側主点位置 33.06
後側主点位置 13.57

単レンズデータ
レンズ 始面 焦点距離
1 1 -48.18
2 3 -37.20
3 5 44.76
4 7 62.57
5 10 53.83
6 12 19.98
7 13 -10.20
8 15 42.54
9 17 35.40
Aspheric data 4th surface
K = 0.00000e + 000 A 4 = -2.16154e-005 A 6 = -1.03154e-007
A 8 = 2.38853e-010 A10 = -1.71375e-012

16th page
K = 0.00000e + 000 A 4 = 4.80580e-005 A 6 = -6.03259e-009
A 8 = 3.22276e-010 A10 = -2.41917e-012

Focal length 24.50
F number 2.80
Angle of View 41.45
Statue height 21.64
Total lens length 92.07
BF 38.07

Entrance pupil position 18.27
Exit pupil position -23.78
Front principal point position 33.06
Rear principal point position 13.57

Single lens Data lens Start surface Focal length
1 1 -48.18
2 3 -37.20
3 5 44.76
4 7 62.57
5 10 53.83
6 12 19.98
7 13 -10.20
8 15 42.54
9 17 35.40

[数値実施例3]

単位 mm

面データ
面番号 r d nd νd 有効径
1 63.651 2.17 1.59282 68.6 49.79
2 30.155 9.65 42.81
3 -424.449 1.84 1.56907 71.3 42.69
4 44.847 13.35 40.21
5 77.906 3.66 1.88300 40.8 40.47
6 10861.732 8.84 40.44
7 58.669 6.77 1.73400 51.5 40.64
8 -119.137 0.50 40.40
9 1012.840 1.43 1.60342 38.0 39.01
10 132.452 14.26 38.06
11(絞り) ∞ 1.69 32.76
12 51.191 6.00 1.88300 40.8 31.06
13 -58.498 1.34 1.84666 23.8 30.24
14 48.134 6.80 27.37
15 -25.735 6.00 1.88300 40.8 26.86
16 -18.662 1.39 1.78472 25.7 27.99
17 ∞ 0.50 29.77
18* 247.430 5.45 1.55332 71.7 30.01
19 -34.545 0.15 30.79
20 193.265 4.36 1.80809 22.8 32.39
21 -55.204 0.30 32.79
22 ∞ 38.56 33.47(フレアーカット絞り)
像面 ∞
[Numerical Example 3]

Unit mm

Surface data surface number rd nd νd Effective diameter
1 63.651 2.17 1.59282 68.6 49.79
2 30.155 9.65 42.81
3 -424.449 1.84 1.56907 71.3 42.69
4 44.847 13.35 40.21
5 77.906 3.66 1.88300 40.8 40.47
6 10861.732 8.84 40.44
7 58.669 6.77 1.73400 51.5 40.64
8 -119.137 0.50 40.40
9 1012.840 1.43 1.60342 38.0 39.01
10 132.452 14.26 38.06
11 (Aperture) ∞ 1.69 32.76
12 51.191 6.00 1.88300 40.8 31.06
13 -58.498 1.34 1.84666 23.8 30.24
14 48.134 6.80 27.37
15 -25.735 6.00 1.88300 40.8 26.86
16 -18.662 1.39 1.78472 25.7 27.99
17 ∞ 0.50 29.77
18 * 247.430 5.45 1.55332 71.7 30.01
19 -34.545 0.15 30.79
20 193.265 4.36 1.80809 22.8 32.39
21 -55.204 0.30 32.79
22 ∞ 38.56 33.47 (Flare cut aperture)
Image plane ∞

非球面データ
第18面
K = 0.00000e+000 A 4=-9.13443e-006 A 6= 8.35145e-009
A 8=-2.14593e-011 A10= 3.45705e-014


各種データ

焦点距離 35.50
Fナンバー 1.45
画角 31.36
像高 21.64
レンズ全長 135.01
BF 38.56

入射瞳位置 34.58
射出瞳位置 -53.86
前側主点位置 56.44
後側主点位置 3.06

単レンズデータ
レンズ 始面 焦点距離
1 1 -99.05
2 3 -71.18
3 5 88.85
4 7 54.43
5 9 -252.68
6 12 31.73
7 13 -31.01
8 15 55.01
9 16 -23.78
10 18 55.16
11 20 53.56
Aspheric data 18th surface
K = 0.00000e + 000 A 4 = -9.13443e-006 A 6 = 8.35145e-009
A 8 = -2.14593e-011 A10 = 3.45705e-014


Various data

Focal length 35.50
F number 1.45
Angle of View 31.36
Statue height 21.64
Total lens length 135.01
BF 38.56

Entrance pupil position 34.58
Exit pupil position -53.86
Front principal point position 56.44
Rear principal point position 3.06

Single lens Data lens Start surface Focal length
1 1 -99.05
2 3 -71.18
3 5 88.85
4 7 54.43
5 9 -252.68
6 12 31.73
7 13 -31.01
8 15 55.01
9 16 -23.78
10 18 55.16
11 20 53.56

LA 光学系 L1 第1レンズ群 L2 第2レンズ群 SP 絞り LA optical system L1 1st lens group L2 2nd lens group SP Aperture

Claims (8)

物体側より像側へ順に、第1レンズ群、開口絞り、正の屈折力の第2レンズ群からなり、
最も前方のレンズ面を通過する近軸軸上光線の光軸からの高さが、光軸と瞳近軸光線との交点より後方で近軸軸上光線がレンズ面を通過する光軸からの高さの最大値よりも小さい光学系において、
前記第2レンズ群は2つ以上の正レンズを有し、前記2つ以上の正レンズのうちの1つの正レンズをレンズA、他の1つの正レンズをレンズBとし、前記レンズAの材料のアッベ数と、部分分散比を各々νdpA、θgFpA、前記レンズBの材料のアッベ数と、部分分散比を各々νdpB、θgFpBとするとき、
17<νdpA<25
0.02<θgFpA−0.6438+0.001682×νdpA<0.05
60<νdpB<100
0.001<θgFpB−0.6438+0.001682×νdpB<0.060
なる条件式を満足することを特徴とする光学系。
In order from the object side to the image side, the first lens unit, an aperture stop, and a second lens unit having a positive refractive power,
The height from the optical axis of the paraxial light beam that passes through the foremost lens surface is from the optical axis through which the paraxial light beam passes through the lens surface behind the intersection of the optical axis and pupil paraxial light beam. In an optical system smaller than the maximum height,
The second lens group includes two or more positive lenses, one positive lens among the two or more positive lenses is a lens A, and the other one positive lens is a lens B, and the material of the lens A When the Abbe number and the partial dispersion ratio are νdpA and θgFpA, respectively, and the Abbe number of the material of the lens B and the partial dispersion ratio are νdpB and θgFpB, respectively.
17 <νdpA <25
0.02 <θgFpA−0.6438 + 0.001682 × νdpA <0.05
60 <νdpB <100
0.001 <θgFpB−0.6438 + 0.001682 × νdpB <0.060
An optical system that satisfies the following conditional expression:
前記レンズAの焦点距離をfpA、全系の焦点距離をfとするとき、
20<νdpA×fpA/f<70
なる条件式を満足することを特徴とする請求項1に記載の光学系。
When the focal length of the lens A is fpA and the focal length of the entire system is f,
20 <νdpA × fpA / f <70
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズAは前記第2レンズ群の最も像側に配置されていることを特徴とする請求項1又は2に記載の光学系。   The optical system according to claim 1, wherein the lens A is disposed on the most image side of the second lens group. 前記レンズAの焦点距離をfpA、前記レンズBの焦点距離をfpB、とするとき、
1.2<(νdpB×fpB)/(νdpA×fpA)<6.0
なる条件式を満足することを特徴とする請求項1乃至3のいずれか1項に記載の光学系。
When the focal length of the lens A is fpA and the focal length of the lens B is fpB,
1.2 <(νdpB × fpB) / (νdpA × fpA) <6.0
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記第1レンズ群は、物体側から像側へ順に、連続して2つ以上の負レンズを有し、前記連続した2つ以上の負レンズのうち、1つの負レンズをレンズCとし、該レンズCの材料のアッベ数をνdnC、前記レンズCの焦点距離をfnC、前記レンズAの焦点距離をfpAとするとき、
2<|(νdnC×fnC)/(νdpA×fpA)|<14
なる条件式を満足することを特徴とする請求項1乃至4のいずれか1項に記載の光学系。
The first lens group has two or more negative lenses in order from the object side to the image side, and one negative lens among the two or more negative lenses is a lens C. When the Abbe number of the material of the lens C is νdnC, the focal length of the lens C is fnC, and the focal length of the lens A is fpA,
2 <| (νdnC × fnC) / (νdpA × fpA) | <14
5. The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記レンズCの材料の部分分散比をθgFnCとするとき、
0.001<θgFnC−0.6438+0.001682×νdnC<0.060
なる条件式を満足することを特徴とする請求項5に記載の光学系。
When the partial dispersion ratio of the material of the lens C is θgFnC,
0.001 <θgFnC−0.6438 + 0.001682 × νdnC <0.060
The optical system according to claim 5, wherein the following conditional expression is satisfied.
前記第1レンズ群の前記開口絞り側の一部のレンズ群と前記第2レンズ群はフォーカシングに際して移動することを特徴とする請求項1乃至6のいずれか1項の光学系。   7. The optical system according to claim 1, wherein a part of the lens group on the aperture stop side of the first lens group and the second lens group move during focusing. 8. 請求項1乃至7のいずれか1項に記載の光学系を有することを特徴とする光学機器。   An optical apparatus comprising the optical system according to claim 1.
JP2012063354A 2012-03-21 2012-03-21 Optical system and optical apparatus having the same Active JP5896800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012063354A JP5896800B2 (en) 2012-03-21 2012-03-21 Optical system and optical apparatus having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012063354A JP5896800B2 (en) 2012-03-21 2012-03-21 Optical system and optical apparatus having the same

Publications (3)

Publication Number Publication Date
JP2013195747A true JP2013195747A (en) 2013-09-30
JP2013195747A5 JP2013195747A5 (en) 2015-04-23
JP5896800B2 JP5896800B2 (en) 2016-03-30

Family

ID=49394760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012063354A Active JP5896800B2 (en) 2012-03-21 2012-03-21 Optical system and optical apparatus having the same

Country Status (1)

Country Link
JP (1) JP5896800B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138122A (en) * 2014-01-22 2015-07-30 キヤノン株式会社 Optical system and imaging device having the same
JP2017083771A (en) * 2015-10-30 2017-05-18 株式会社リコー Imaging lens system, image capturing device, and inspection device
JP2017083770A (en) * 2015-10-30 2017-05-18 株式会社リコー Imaging lens system, image capturing device, and inspection device
JP2019060970A (en) * 2017-09-25 2019-04-18 富士フイルム株式会社 Image formation lens, projection type display device, and imaging device
JP2021071624A (en) * 2019-10-31 2021-05-06 キヤノン株式会社 Optical system and image capturing device having the same
US11092788B2 (en) 2018-09-28 2021-08-17 Fujifilm Corporation Imaging lens and imaging apparatus
JP7395658B1 (en) 2022-06-15 2023-12-11 キヤノン株式会社 Optical system and imaging device equipped with the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307672A (en) * 2002-04-08 2003-10-31 Carl Zeiss:Fa Lens device
JP2006301416A (en) * 2005-04-22 2006-11-02 Canon Inc Optical system
JP2008292732A (en) * 2007-05-24 2008-12-04 Canon Inc Optical system and optical apparatus including optical system
JP2010156762A (en) * 2008-12-26 2010-07-15 Canon Inc Optical system
JP2012501004A (en) * 2008-08-25 2012-01-12 アーツェーエム・プロジェクテンツヴィックルング・ゲーエムベーハー Objective lens system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003307672A (en) * 2002-04-08 2003-10-31 Carl Zeiss:Fa Lens device
JP2006301416A (en) * 2005-04-22 2006-11-02 Canon Inc Optical system
JP2008292732A (en) * 2007-05-24 2008-12-04 Canon Inc Optical system and optical apparatus including optical system
JP2012501004A (en) * 2008-08-25 2012-01-12 アーツェーエム・プロジェクテンツヴィックルング・ゲーエムベーハー Objective lens system
JP2010156762A (en) * 2008-12-26 2010-07-15 Canon Inc Optical system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015138122A (en) * 2014-01-22 2015-07-30 キヤノン株式会社 Optical system and imaging device having the same
JP2017083771A (en) * 2015-10-30 2017-05-18 株式会社リコー Imaging lens system, image capturing device, and inspection device
JP2017083770A (en) * 2015-10-30 2017-05-18 株式会社リコー Imaging lens system, image capturing device, and inspection device
JP2019060970A (en) * 2017-09-25 2019-04-18 富士フイルム株式会社 Image formation lens, projection type display device, and imaging device
US10788645B2 (en) 2017-09-25 2020-09-29 Fujifilm Corporation Imaging lens, projection-type display apparatus, and imaging apparatus
US11092788B2 (en) 2018-09-28 2021-08-17 Fujifilm Corporation Imaging lens and imaging apparatus
JP2021071624A (en) * 2019-10-31 2021-05-06 キヤノン株式会社 Optical system and image capturing device having the same
JP7379092B2 (en) 2019-10-31 2023-11-14 キヤノン株式会社 Optical system and imaging device having the same
JP7395658B1 (en) 2022-06-15 2023-12-11 キヤノン株式会社 Optical system and imaging device equipped with the same

Also Published As

Publication number Publication date
JP5896800B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
US10215972B2 (en) Optical system and image pickup apparatus including the same
JP6646262B2 (en) Optical system and imaging apparatus having the same
JP6537331B2 (en) Optical system and imaging apparatus having the same
JP5455572B2 (en) Zoom lens and imaging apparatus having the same
US9219864B2 (en) Zoom lens and image pickup apparatus including the same
JP4989079B2 (en) Zoom lens and image projection apparatus having the same
US10025075B2 (en) Zoom lens and image pickup apparatus including the same
JP5896800B2 (en) Optical system and optical apparatus having the same
JP5582706B2 (en) Optical system and imaging apparatus having the same
US11966099B2 (en) Converter lens, interchangeable lens, and image pickup apparatus
US11131829B2 (en) Zoom lens and image pickup apparatus
JP5774055B2 (en) Zoom lens and imaging apparatus having the same
US10663703B2 (en) Zoom lens and image pickup apparatus
US8670193B2 (en) Optical system and optical apparatus using the same
JP2018004726A (en) Optical system and image capturing device having the same
JP2019015956A (en) Zoom lens and imaging apparatus having the same
JP5448351B2 (en) Zoom lens and imaging apparatus having the same
US9946065B2 (en) Zoom lens and image pickup apparatus including the same
US9874733B2 (en) Zoom lens and image pickup apparatus including the same
JP2018072367A (en) Zoom lens and imaging apparatus having the same
WO2017168603A1 (en) Single focus optical system and optical device equipped with same
JP7171224B2 (en) Optical system and imaging device having the same
JP6742977B2 (en) Zoom lens and imaging device having the same
US20230139677A1 (en) Zoom lens and image capture apparatus having the same
US20230236394A1 (en) Optical system and imaging apparatus including the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R151 Written notification of patent or utility model registration

Ref document number: 5896800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03