JP2013195381A - Current detection device - Google Patents

Current detection device Download PDF

Info

Publication number
JP2013195381A
JP2013195381A JP2012066017A JP2012066017A JP2013195381A JP 2013195381 A JP2013195381 A JP 2013195381A JP 2012066017 A JP2012066017 A JP 2012066017A JP 2012066017 A JP2012066017 A JP 2012066017A JP 2013195381 A JP2013195381 A JP 2013195381A
Authority
JP
Japan
Prior art keywords
current detection
detection device
current
shield body
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012066017A
Other languages
Japanese (ja)
Other versions
JP5985847B2 (en
Inventor
Kei Tsujimoto
慧 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP2012066017A priority Critical patent/JP5985847B2/en
Publication of JP2013195381A publication Critical patent/JP2013195381A/en
Application granted granted Critical
Publication of JP5985847B2 publication Critical patent/JP5985847B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To increase a maximum detectable current of a current detection device while utilizing the magnetic flux converging property of a magnetic shield body.SOLUTION: A current detection device 1 includes a bottom wall section 10 and side wall sections 11 which rise from both sides of the bottom wall section 10, and accommodates a bus bar 8 under current measurement in a space surrounded thereby. A hall element 4 is located on magnetic flux lines that extend between the tips of the two side wall sections 11 and detects a value of current flowing through the bus bar 8 from a magnetic flux sensed thereby. The bottom wall section 10 has a gap 12 formed therein that splits a magnetic path into front and rear in the extending direction thereof.

Description

本発明は、導体に流れる電流の値を磁束に基づいて検出する電流検出装置に関する。   The present invention relates to a current detection device that detects a value of a current flowing through a conductor based on a magnetic flux.

導体の電流値を磁束から検出する一般的な電流検出装置では、環状の磁気コアが、電流測定対象の導体を外側から包囲し、ホール素子等の磁束検出型電流センサが、該磁気コアの周方向の1箇所に形成された間隙に配置され、該間隙における磁束から電流を検出するようになっている。   In a general current detection device that detects a current value of a conductor from a magnetic flux, an annular magnetic core surrounds the conductor to be measured from the outside, and a magnetic flux detection type current sensor such as a Hall element is arranged around the magnetic core. It arrange | positions in the gap | interval formed in one place of the direction, and detects an electric current from the magnetic flux in this gap | interval.

磁気コアの存在は、電流検出装置を小型化する場合の障害となるので、コアレス型電流検出装置が存在する。該コアレス型電流検出装置では、ホール素子等の電流センサが導体からの磁束以外の外部からの磁束の影響を受け易いので、電流センサは導体と共に磁気シールド体の内部に配備される(例:特許文献1〜3)。   Since the presence of the magnetic core is an obstacle to downsizing the current detection device, there is a coreless current detection device. In the coreless type current detection device, since a current sensor such as a Hall element is easily affected by an external magnetic flux other than the magnetic flux from the conductor, the current sensor is disposed inside the magnetic shield body together with the conductor (eg, patent). Literatures 1-3).

特許文献1〜3の電流検出装置では、ホール素子の出力の線形性を改善するために、導体の矩形状横断面の一方の短辺側において導体にほぼ対峙する位置に間隙が形成されている。   In the current detection devices disclosed in Patent Literatures 1 to 3, a gap is formed at a position substantially opposite to the conductor on one short side of the rectangular cross section of the conductor in order to improve the linearity of the output of the Hall element. .

特開2010−2277号公報JP 2010-2277 A 特開2010−8050号公報JP 2010-8050 A 特開2010−14477号公報JP 2010-14477 A

電流検出装置を小型化する場合、磁気シールド体の横断面寸法を小さくする必要があるが、それに伴い、磁気シールド体の飽和磁束が低下する。磁気シールド体は、磁気コアと同様に、収磁機能も有するので、ホール素子が、磁気シールド体の収磁機能を利用して磁束を検出する場合、磁気シールド体の飽和磁束の低下は、検出可能な最大電流の低下につながる。   When the current detection device is downsized, it is necessary to reduce the cross-sectional dimension of the magnetic shield body, and accordingly, the saturation magnetic flux of the magnetic shield body decreases. Like the magnetic core, the magnetic shield body also has a magnetism collecting function. Therefore, when the Hall element detects the magnetic flux using the magnetism collecting function of the magnetic shield body, a decrease in the saturation flux of the magnetic shield body is detected. This leads to a reduction in the maximum current possible.

一方、上記特許文献1〜3の電流検出装置においてホール素子は絶縁層を介して導体に取付けられており、磁気シールド体の収磁機能はホール素子による磁束の検出には利用しない構造になっている。したがって、特許文献1〜3の電流検出装置は、シールド効果は期待できるものの、電流の検出感度は低下する。   On the other hand, in the current detection devices of Patent Documents 1 to 3, the Hall element is attached to the conductor via an insulating layer, and the magnetic flux collecting function of the magnetic shield body is not used for detecting the magnetic flux by the Hall element. Yes. Therefore, the current detection devices of Patent Documents 1 to 3 can be expected to have a shielding effect, but the current detection sensitivity decreases.

本発明の目的は、磁気シールド体の収磁機能を利用しつつ、検出可能な最大電流を増大させることができる電流検出装置を提供することである。   An object of the present invention is to provide a current detection device capable of increasing the maximum detectable current while utilizing the magnetic collecting function of a magnetic shield body.

第1発明の電流検出装置は、矩形状横断面の導体に対して該矩形状横断面の各短辺側に配設される2つの短辺側壁部、及び該矩形状横断面の一方の長辺側に配設される1つの長辺側壁部を有する磁気シールド体と、前記導体の矩形状横断面の他方の長辺側における前記2つの短辺側壁部の端間に延在する磁束線上に配置されて、その配置場所の磁束から前記導体を流れる電流の値を検出する電流センサとを備え、前記磁気シールド体の前記長辺側壁部は間隙又は断面縮小部を有することを特徴とする。   The current detection device according to the first aspect of the present invention includes two short side wall portions disposed on each short side of the rectangular cross section with respect to the conductor of the rectangular cross section, and one length of the rectangular cross section. A magnetic shield body having one long side wall portion disposed on the side and a magnetic flux line extending between the ends of the two short side wall portions on the other long side of the rectangular cross section of the conductor And a current sensor for detecting a value of a current flowing through the conductor from a magnetic flux at the arrangement location, and the long side wall portion of the magnetic shield body has a gap or a cross-sectional reduced portion. .

第1発明によれば、電流センサは、導体に対して磁気シールド体の長辺側壁部とは反対側の2つの短辺側壁部の端間に延在する磁束線上に配置されるので、磁気シールド体の収磁機能により磁束密度が周囲より高められた場所の磁束に基づいて、導体を流れる電流の値を検出することになる。この結果、検出感度を高めることができる。   According to the first invention, the current sensor is disposed on the magnetic flux line extending between the ends of the two short side wall portions opposite to the long side wall portion of the magnetic shield body with respect to the conductor. The value of the current flowing through the conductor is detected based on the magnetic flux in a place where the magnetic flux density is increased from the surroundings by the magnetic collecting function of the shield body. As a result, the detection sensitivity can be increased.

また、導体の電流に因る磁束が磁気シールド体の長辺側壁部における間隙又は断面縮小部を介して磁気シールド体の外面側へ漏れ出るので、その分、磁気シールド体の磁路を通る磁束が減少し、磁気シールド体が飽和磁束に達する時の導体の電流値が増大する。この結果、電流検出装置が検出可能な導体の最大電流値を上げることができる。   In addition, the magnetic flux due to the current of the conductor leaks to the outer surface side of the magnetic shield body through the gap in the long side wall portion of the magnetic shield body or the cross-sectional reduced portion, and accordingly, the magnetic flux passing through the magnetic path of the magnetic shield body. Decreases, and the current value of the conductor increases when the magnetic shield body reaches the saturation magnetic flux. As a result, the maximum current value of the conductor that can be detected by the current detection device can be increased.

第2発明の電流検出装置は、第1発明において、前記電流センサが、前記導体の矩形状横断面の他方の長辺側における前記2つの短辺側壁部の端に結合して該端の間を覆う基板の内面側に取り付けられ、前記磁気シールド体と前記基板とが内面側に画成する内面側空間内において、前記導体は前記内面側空間の中心に対して前記長辺側壁部に偏倚した配置となっていることを特徴とする。   According to a second aspect of the present invention, there is provided the current detecting device according to the first aspect, wherein the current sensor is coupled to the ends of the two short side walls on the other long side of the rectangular cross section of the conductor. In the inner surface side space that is attached to the inner surface side of the substrate that covers the magnetic shield body and the substrate, the conductor is biased to the long side wall portion with respect to the center of the inner surface side space. It is characterized by the arrangement.

第2発明によれば、導体は長辺側壁部に十分に接近するので、間隙又は断面縮小部の寸法は比較的小さいにもかかわらず、間隙又は断面縮小部を介して十分な量の磁束を磁気シールド体の外部へ漏れ出させて、その分、磁気シールド体の磁路を通る磁束を減少させることができる。この結果、磁気シールド体の大型化を回避しつつ、磁気シールド体の飽和磁束を十分に高い値にすることができる。   According to the second invention, since the conductor is sufficiently close to the long side wall portion, a sufficient amount of magnetic flux is applied through the gap or the cross-sectional reduced portion even though the size of the gap or the cross-sectional reduced portion is relatively small. By leaking out of the magnetic shield body, the magnetic flux passing through the magnetic path of the magnetic shield body can be reduced accordingly. As a result, the saturation magnetic flux of the magnetic shield body can be set to a sufficiently high value while avoiding an increase in size of the magnetic shield body.

第3発明の電流検出装置は、第2発明において、複数の前記磁気シールド体が、内面側において対応の前記導体により貫通されつつ、前記導体の矩形状横断面の長辺に対して平行な方向に沿って一列に配列され、前記電流センサが内面側に取り付けられている前記基板が、前記磁気シールド体の全ての短辺側壁部の端に結合する1つの共通基板から構成されていることを特徴とする。   A current detection device according to a third invention is the current detection device according to the second invention, wherein the plurality of magnetic shield bodies are penetrated by the corresponding conductor on the inner surface side, and are parallel to the long side of the rectangular cross section of the conductor The substrate on which the current sensor is attached to the inner surface side is arranged from one common substrate that is coupled to the ends of all the short side walls of the magnetic shield body. Features.

第3発明によれば、各磁気シールド体の長辺側壁部における間隙又は断面縮小部から磁気シールド体の外面側への漏れ磁束は、隣りの磁気シールド体とは別の方向へ漏れ出て、隣りの磁気シールド体への侵入を抑制される。これにより、磁気シールド体が飽和磁束に達する時の被電流検出導体の電流値としての最大検出電流値の低下を回避することができる。   According to the third aspect of the invention, the leakage magnetic flux from the gap or cross-sectional reduced portion in the long side wall portion of each magnetic shield body to the outer surface side of the magnetic shield body leaks in a direction different from the adjacent magnetic shield body, Intrusion to the adjacent magnetic shield body is suppressed. As a result, it is possible to avoid a decrease in the maximum detected current value as the current value of the current detection conductor when the magnetic shield body reaches the saturation magnetic flux.

電流検出装置の斜視図。The perspective view of an electric current detection apparatus. バスバーの延在方向から見た電流検出装置の構造図。The structure figure of the electric current detection apparatus seen from the extension direction of a bus-bar. 電流検出装置を長辺側壁部の側から見た構造図。The structural view which looked at the electric current detection apparatus from the long side wall part side. 電流検出装置のその他の構造例の斜視図。The perspective view of the other structural example of an electric current detection apparatus. 3相交流用の3相電流検出装置の斜視図。The perspective view of the three-phase electric current detection apparatus for three-phase alternating current. 図5の3相電流検出装置を磁気シールド体の基板側から見た構造図。FIG. 6 is a structural view of the three-phase current detection device of FIG. 5 as viewed from the substrate side of the magnetic shield body. 図5の3相電流検出装置について短辺側壁部の側から見た内部構造図。The internal structure figure seen from the short side wall part side about the three-phase electric current detection apparatus of FIG. シミュレーションによる計算結果に基づく電流検出装置の検出出力の特性図。The characteristic figure of the detection output of the electric current detection apparatus based on the calculation result by simulation. 隣接する構造単位間における漏れ磁束に因る影響についてのシミュレーションによる計算結果に基づく電流検出装置の検出出力の特性図。The characteristic view of the detection output of the electric current detection apparatus based on the calculation result by the simulation about the influence resulting from the leakage magnetic flux between adjacent structural units.

図1〜図3において、電流検出装置1は、例えば電気自動車やハイブリッド自動車に搭載される3相モータの相電流の検出に用いられる。電流検出装置1は、矩形枠を形成するように結合された磁気シールド体2及び基板3と、基板3の内面側に取り付けられたホール素子4とを備える。   1 to 3, the current detection device 1 is used to detect a phase current of a three-phase motor mounted on, for example, an electric vehicle or a hybrid vehicle. The current detection device 1 includes a magnetic shield body 2 and a substrate 3 coupled so as to form a rectangular frame, and a Hall element 4 attached to the inner surface side of the substrate 3.

説明の便宜上、電流検出装置1の上下方向について、基板3側(図1の上側に相当)を上、基板3とは反対側(図1の下側に相当)を下とする。しかし、この上下方向は、あくまで、説明の便宜上のものであり、電流検出装置1の実際の使用における上下方向を限定するものではない。   For convenience of explanation, in the vertical direction of the current detection device 1, the substrate 3 side (corresponding to the upper side in FIG. 1) is up and the side opposite to the substrate 3 (corresponding to the lower side in FIG. 1) is down. However, this vertical direction is merely for convenience of description, and does not limit the vertical direction in actual use of the current detection device 1.

バスバー8は、上下に短く左右に長い矩形状横断面を有し、磁気シールド体2と基板3とにより構成された矩形枠の内面側に画成される内面側空間を貫通している。電流はバスバー8においてバスバー8の長手方向へ流れる。磁気シールド体2は高透磁率材料から成る。磁気シールド体2は、バスバー8の下側に配設され左右方向へ延在する底壁部10と、バスバー8の左右両端から上方に起立する左右の側壁部11とを備える。   The bus bar 8 has a rectangular cross section that is short in the vertical direction and long in the horizontal direction, and penetrates the inner surface side space defined on the inner surface side of the rectangular frame constituted by the magnetic shield body 2 and the substrate 3. Current flows in the bus bar 8 in the longitudinal direction of the bus bar 8. The magnetic shield body 2 is made of a high magnetic permeability material. The magnetic shield body 2 includes a bottom wall portion 10 disposed below the bus bar 8 and extending in the left-right direction, and left and right side wall portions 11 rising upward from both left and right ends of the bus bar 8.

基板3は絶縁材料から成る。ホール素子4は、左右方向にバスバー8の左右方向中心点と同一位置で基板3の内面側に固定されている。ホール素子4の感磁面は、左右方向へ向けられている。左右の側壁部11の上端間に延在する磁束線の主要部はほぼ基板3に沿って延在しており、ホール素子4は磁束線のこれらの主要部が通過することになる。この結果、ホール素子4は、磁気シールド体2の収磁機能を利用して、磁束を検出することができ、磁気検出感度が高まる。ホール素子4は、両端に所定電圧を印加されることにより、磁束密度にほぼ比例する電流を出力する。   The substrate 3 is made of an insulating material. The hall element 4 is fixed to the inner surface side of the substrate 3 at the same position as the center point of the bus bar 8 in the left-right direction. The magnetic sensitive surface of the Hall element 4 is directed in the left-right direction. The main part of the magnetic flux line extending between the upper ends of the left and right side wall parts 11 extends substantially along the substrate 3, and the Hall element 4 passes through these main parts of the magnetic flux line. As a result, the Hall element 4 can detect the magnetic flux by utilizing the magnetic collecting function of the magnetic shield body 2, and the magnetic detection sensitivity is increased. The Hall element 4 outputs a current substantially proportional to the magnetic flux density when a predetermined voltage is applied to both ends.

底壁部10は、左右方向へ両端と中心との計3箇所において間隙12を有する。間隙12により、底壁部10に形成される磁路を、その延在方向に前後に分断して、磁気シールド体2の飽和磁束を適当に低下させる機能がある。電流検出装置1は、バスバー8が内面側空間の中心に対して下側、すなわち底壁部10の方へ偏倚して、該内面側空間を貫通している。図2では、上下方向へバスバー8と底壁部10との間が空隙となっているが、電流検出装置1は、絶縁体を介してバスバー8の下面に底壁部10を固定させることにより、バスバー8に取付けることもできる。   The bottom wall portion 10 has gaps 12 at a total of three locations, that is, both ends and the center in the left-right direction. The gap 12 has a function of appropriately reducing the saturation magnetic flux of the magnetic shield body 2 by dividing the magnetic path formed in the bottom wall portion 10 back and forth in the extending direction. In the current detection device 1, the bus bar 8 is biased downward with respect to the center of the inner surface side space, that is, toward the bottom wall portion 10, and penetrates the inner surface side space. In FIG. 2, there is a gap between the bus bar 8 and the bottom wall portion 10 in the vertical direction. However, the current detection device 1 is configured by fixing the bottom wall portion 10 to the lower surface of the bus bar 8 via an insulator. It can also be attached to the bus bar 8.

上記電流検出装置1の作用を説明する。電流がバスバー8をその長手方向へ流れることに伴い、バスバー8の周囲に磁束が生成される。磁気シールド体2は、バスバー8の近傍に配置されていて、収磁機能により、バスバー8の電流に起因する磁束線の主要磁路となる。   The operation of the current detection device 1 will be described. A magnetic flux is generated around the bus bar 8 as the current flows through the bus bar 8 in the longitudinal direction. The magnetic shield body 2 is disposed in the vicinity of the bus bar 8 and becomes a main magnetic path of magnetic flux lines caused by the current of the bus bar 8 due to the magnetism collecting function.

磁気シールド体2は上側壁部を省略されているので、磁気シールド体2内の磁束線の主要部は、側壁部11の上端間においてほぼ基板3に沿って延在し、ホール素子4を貫通する。この結果、ホール素子4は、バスバー8の電流にほぼ比例する磁束を高感知度で感知して、該磁束にほぼ比例する電流を出力する。この結果、バスバー8の出力電流はバスバー8の電流にほぼ比例する(後述の図8で詳述する。)。   Since the magnetic shield body 2 is omitted from the upper side wall portion, the main part of the magnetic flux lines in the magnetic shield body 2 extends substantially along the substrate 3 between the upper ends of the side wall portions 11 and penetrates the Hall element 4. To do. As a result, the Hall element 4 senses a magnetic flux that is substantially proportional to the current of the bus bar 8 with high sensitivity, and outputs a current that is substantially proportional to the magnetic flux. As a result, the output current of the bus bar 8 is substantially proportional to the current of the bus bar 8 (detailed in FIG. 8 described later).

磁気シールド体2の磁束の値は、磁気シールド体2の磁束が飽和磁束以下であるときは、バスバー8の電流の値にほぼ比例する。一方、バスバー8の電流の値の増大に伴い、磁気シールド体2の磁束が飽和磁束に到達した後は、磁気シールド体2の磁束値とバスバー8の電流の値との1:1の対応関係が失われるので、ホール素子4がバスバー8の電流の値を検出することは不可能になる。したがって、バスバー8の電流の値に関して電流検出装置1が検出可能な上限は磁気シールド体2の飽和磁束により決まる。以下、バスバー8の電流の値について、磁気シールド体2の飽和磁束により決まる検出可能な最大電流値を「計測可能上限電流値」という。   The value of the magnetic flux of the magnetic shield body 2 is substantially proportional to the value of the current of the bus bar 8 when the magnetic flux of the magnetic shield body 2 is equal to or less than the saturation magnetic flux. On the other hand, as the current value of the bus bar 8 increases, the 1: 1 correspondence between the magnetic flux value of the magnetic shield body 2 and the current value of the bus bar 8 after the magnetic flux of the magnetic shield body 2 reaches the saturation magnetic flux. Is lost, it becomes impossible for the Hall element 4 to detect the value of the current of the bus bar 8. Therefore, the upper limit that the current detection device 1 can detect with respect to the current value of the bus bar 8 is determined by the saturation magnetic flux of the magnetic shield body 2. Hereinafter, the maximum detectable current value determined by the saturation magnetic flux of the magnetic shield body 2 for the current value of the bus bar 8 is referred to as “measurable upper limit current value”.

電流検出装置1では、間隙12が底壁部10に形成される結果、磁気シールド体2の磁気抵抗が増大し、この増大分に相当する分だけ、計測可能上限電流値を増大することができる(後述の図8で詳述する。)。   In the current detection device 1, as a result of the gap 12 being formed in the bottom wall portion 10, the magnetic resistance of the magnetic shield body 2 increases, and the measurable upper limit current value can be increased by an amount corresponding to this increase. (This will be described in detail later with reference to FIG. 8).

電流検出装置1は、バスバー8との相対位置関係を、バスバー8が底壁部10に十分に接近するように、規定されている。この結果、底壁部10に形成された間隙12は、小さい寸法にもかかわらず、バスバー8の電流に起因する磁束のうち、磁気シールド体2の外面側へ漏れ出る分を十分に増大させて、磁気シールド体2を通す磁束を減少させる。この結果、磁気シールド体2の磁路断面積を所望の大きさに保持しつつ、すなわち磁気シールド体2の飽和磁束の減少を抑制しつつ、バスバー8の計測可能上限電流値の増大を図ることができる。   The current detection device 1 is defined with respect to the relative positional relationship with the bus bar 8 so that the bus bar 8 sufficiently approaches the bottom wall portion 10. As a result, the gap 12 formed in the bottom wall portion 10 sufficiently increases the amount of the magnetic flux due to the current of the bus bar 8 that leaks to the outer surface side of the magnetic shield body 2 despite the small size. The magnetic flux passing through the magnetic shield body 2 is reduced. As a result, the measurable upper limit current value of the bus bar 8 can be increased while maintaining the magnetic path cross-sectional area of the magnetic shield body 2 at a desired size, that is, while suppressing the decrease of the saturation magnetic flux of the magnetic shield body 2. Can do.

図4(a)〜(c)は電流検出装置1の各種変形例を示している。図4の電流検出装置15〜17において、図1の電流検出装置1の構造部と同一の構造部については、電流検出装置1の該構造部に付けた符号と同一の符号を付けて、説明は省略し、相違点についてのみ説明する。   4A to 4C show various modifications of the current detection device 1. In the current detection devices 15 to 17 in FIG. 4, the same structural portions as the structural portions of the current detection device 1 in FIG. 1 are denoted by the same reference numerals as the structural portions of the current detection device 1. Is omitted, and only the differences will be described.

電流検出装置15〜17は、底壁部10の間隙12に代替する構造部として切れ込み20、貫通孔24及びザグリ部25を底壁部10にそれぞれ有している。切れ込み20、貫通孔24及びザグリ部25は、電流検出装置1の間隙12と同様に、磁気シールド体2の磁気抵抗を増大させて、この増大分に相当する分だけ、磁気シールド体2の計測可能上限電流値を増大させている。   The current detection devices 15 to 17 each have a notch 20, a through hole 24, and a counterbore portion 25 in the bottom wall portion 10 as a structure portion that replaces the gap 12 of the bottom wall portion 10. The notch 20, the through hole 24, and the counterbore part 25 increase the magnetic resistance of the magnetic shield body 2 in the same manner as the gap 12 of the current detection device 1, and measure the magnetic shield body 2 by an amount corresponding to this increase. The possible upper limit current value is increased.

図4(a)の電流検出装置15では、切れ込み20が底壁部10において左右方向へ図1の間隙12と同一箇所に形成されている。電流検出装置15の底壁部10は、電流検出装置1の底壁部10のように左右方向に分断されることなく、側壁部11と共に一品化されるので、部品管理上有利である。   In the current detection device 15 of FIG. 4A, the cut 20 is formed in the same position as the gap 12 of FIG. The bottom wall portion 10 of the current detection device 15 is separated from the left and right direction like the bottom wall portion 10 of the current detection device 1 and is separated into one product with the side wall portion 11, which is advantageous in terms of component management.

図4(b)の電流検出装置16では、貫通孔24が底壁部10において左右方向へ図1の間隙12と同一箇所に形成されている。電流検出装置16の底壁部10は、電流検出装置1の底壁部10のように左右方向に分断されることなく、側壁部11と共に一品化されるので、部品管理上有利である。   In the current detection device 16 of FIG. 4B, the through hole 24 is formed in the same position as the gap 12 of FIG. The bottom wall portion 10 of the current detection device 16 is separated from the left and right direction like the bottom wall portion 10 of the current detection device 1 and is separated into one product together with the side wall portion 11, which is advantageous in terms of component management.

図4(c)の電流検出装置17では、計3つのザグリ部25が底壁部10において左右方向へ等間隔で形成される。電流検出装置17の底壁部10は、電流検出装置1の底壁部10のように左右方向に分断されることなく、側壁部11と共に一品化されるので、部品管理上有利である。   In the current detection device 17 of FIG. 4C, a total of three counterbore portions 25 are formed in the bottom wall portion 10 at equal intervals in the left-right direction. The bottom wall portion 10 of the current detection device 17 is separated from the left and right direction like the bottom wall portion 10 of the current detection device 1 and is separated into one product together with the side wall portion 11, which is advantageous in terms of component management.

図5、図6及び図7は、3相電流検出装置30の斜視図、上方から見た図、左右側方視の内部構造図である。3相電流検出装置30は、電流検出装置1の構造とほぼ等しい構造の構造単位31を左右方向へ3つ並べた構造となっている。構造単位31において、図1の電流検出装置1の構造部と同一の構造部については、電流検出装置1の該構造部に付けた符号と同一の符号を付けて、説明は省略し、相違点についてのみ説明する。   5, 6, and 7 are a perspective view of the three-phase current detection device 30, a diagram viewed from above, and an internal structure diagram viewed from the left and right sides. The three-phase current detection device 30 has a structure in which three structural units 31 having substantially the same structure as that of the current detection device 1 are arranged in the left-right direction. In the structural unit 31, the same structural parts as the structural parts of the current detecting device 1 in FIG. 1 are denoted by the same reference numerals as the structural parts of the current detecting device 1, and the description thereof is omitted. Only will be described.

3相電流検出装置30は、例えば電気自動車やハイブリッド自動車の3相交流電動機のU,V,W相の各相の電流を個別に検出するものであり、各バスバー8はU,V,W相の電流が長手方向へ流れる。基板32は、左右方向へ延在して、3つの構造単位31に共通する基板となっている。バスバー8の長手方向両端部には、厚さ方向へ貫通するボルト孔34,35(図6)が穿設され、取付けボルトが、ボルト孔34,35に挿通されて、バスバー8を各相電流の入力部に接続するようになっている。   The three-phase current detection device 30 is for individually detecting the currents of the U, V, and W phases of, for example, a three-phase AC motor of an electric vehicle or a hybrid vehicle, and each bus bar 8 has a U, V, and W phase. Current flows in the longitudinal direction. The substrate 32 extends in the left-right direction and is a substrate common to the three structural units 31. Bolt holes 34 and 35 (FIG. 6) penetrating in the thickness direction are formed at both ends in the longitudinal direction of the bus bar 8, and mounting bolts are inserted into the bolt holes 34 and 35. It is designed to be connected to the input section.

3相電流検出装置30における間隙12の存在は、電流検出装置1における間隙12の存在の場合と同様に、各相のバスバー8の計測可能上限電流値の増大に寄与する。   The presence of the gap 12 in the three-phase current detection device 30 contributes to an increase in the measurable upper limit current value of the bus bar 8 of each phase, as in the case of the presence of the gap 12 in the current detection device 1.

間隙12は、側壁部11ではなく、底壁部10に形成されている。したがって、各構造単位31の内面側空間内のバスバー8の電流が生成して間隙12から磁気シールド体2の外面側へ漏れる磁束の磁束線は、隣りの構造単位31の磁気シールド体2に侵入することを抑制される(後述の図9で再説明)。この結果、各構造単位31のホール素子4は、各構造単位31のバスバー8の電流に起因する磁束のみを検出して、検出精度の低下を回避することができる。   The gap 12 is formed not in the side wall part 11 but in the bottom wall part 10. Accordingly, the magnetic flux lines of the magnetic flux that leak from the gap 12 to the outer surface side of the magnetic shield body 2 due to the current generated in the bus bar 8 in the space on the inner surface side of each structural unit 31 enter the magnetic shield body 2 of the adjacent structural unit 31. This is suppressed (re-explained in FIG. 9 described later). As a result, the Hall element 4 of each structural unit 31 can detect only the magnetic flux caused by the current of the bus bar 8 of each structural unit 31 and can avoid a decrease in detection accuracy.

また、各構造単位31の磁気シールド体2は、隣りの構造単位31におけるバスバー8の電流に起因する磁束の収磁は抑制されるので、各構造単位31の磁気シールド体2の飽和磁束は、該構造単位31内のバスバー8の電流のみに起因する磁束となる。これにより、計測可能上限電流値の低下を回避することができる。   Moreover, since the magnetic shield body 2 of each structural unit 31 suppresses magnetic flux collection due to the current of the bus bar 8 in the adjacent structural unit 31, the saturation magnetic flux of the magnetic shield body 2 of each structural unit 31 is The magnetic flux is caused only by the current of the bus bar 8 in the structural unit 31. Thereby, the fall of a measurable upper limit electric current value can be avoided.

図8は、電流検出装置1におけるバスバー8の電流及びホール素子4の出力値をそれぞれ被測定電流及び検出出力として、各種条件における被測定電流と検出出力との関係をシミュレーションにより計算したものである。   FIG. 8 shows a simulation calculation of the relationship between the measured current and the detected output under various conditions, with the current of the bus bar 8 and the output value of the Hall element 4 in the current detecting device 1 as the measured current and the detected output, respectively. .

図8(a)及び(b)はそれぞれ電流検出装置1において間隙12が無いとき及び有るときのシミュレーション結果である。電流検出装置1には間隙12が存在するので、電流検出装置1は、図8(b)のシミュレーション結果に従うものとなる。   FIGS. 8A and 8B show simulation results when the current detection device 1 has and does not have the gap 12, respectively. Since the gap 12 exists in the current detection device 1, the current detection device 1 follows the simulation result of FIG.

図8(a)及び(b)の対比から分かるように、磁気シールド体2の底壁部10に間隙12が形成されたことにより、間隙12を介して磁束が磁気シールド体2の外面側へ漏れ出て、この分、磁気シールド体2を通る磁束線が低下する。この結果、磁気シールド体2の飽和磁束に対応するバスバー8の電流の値が低下し、飽和磁束の値は、底壁部10の無し及び有りに関係しないものの、計測可能上限電流値は増大する。   As can be seen from the comparison between FIGS. 8A and 8B, the gap 12 is formed in the bottom wall portion 10 of the magnetic shield body 2, so that the magnetic flux passes through the gap 12 to the outer surface side of the magnetic shield body 2. Leakage occurs, and accordingly, the magnetic flux lines passing through the magnetic shield body 2 are lowered. As a result, the value of the current of the bus bar 8 corresponding to the saturation magnetic flux of the magnetic shield body 2 decreases, and the value of the saturation magnetic flux is not related to the presence or absence of the bottom wall portion 10, but the measurable upper limit current value increases. .

図9は、図5の3相電流検出装置30のように構造単位31を左右方向に複数並べた3相電流検出装置30において、隣接する2つの構造単位31のうちの一方の構造単位31では、バスバー8に電流を流さず、他方の構造単位31では被測定電流を流したときに、該被測定電流と、一方の構造単位31におけるホール素子4の検出出力との関係を、シミュレーションにより計算したものである。   9 shows a three-phase current detection device 30 in which a plurality of structural units 31 are arranged in the left-right direction as in the three-phase current detection device 30 of FIG. When no current is passed through the bus bar 8 and a current to be measured is passed through the other structural unit 31, the relationship between the current to be measured and the detection output of the Hall element 4 in the one structural unit 31 is calculated by simulation. It is what.

図9において、本品とは3相電流検出装置30を意味し、従来品とは例えば特許文献1の図1の3相電流検出装置のように、磁気シールド体の間隙を長辺側壁部の部位に代えて、左右の短辺側壁部におけるバスバー対応高さに形成したものを意味する。   In FIG. 9, this product means a three-phase current detection device 30, and the conventional product, for example, as in the three-phase current detection device of FIG. It means what was formed in the height corresponding to the bus bar in the left and right short side wall portions instead of the portion.

図9の本品と従来品との対比から分かるように、本品としての3相電流検出装置30は、検出出力が、隣りの構造単位31からの漏れ磁束からの影響を受けるのを大幅に低下させることができる。   As can be seen from the comparison between this product and the conventional product in FIG. 9, the three-phase current detection device 30 as this product greatly detects that the detection output is affected by the leakage magnetic flux from the adjacent structural unit 31. Can be reduced.

以上、本発明を発明の実施形態について説明したが、本発明は、発明の実施形態に限定されることなく、要旨の範囲内で種々に限定して実施することができる。   As mentioned above, although this invention was demonstrated about embodiment of this invention, this invention is not limited to embodiment of this invention, It can implement in various limits within the range of a summary.

例えば、発明の実施形態では、間隙12、切れ込み20、貫通孔24及びザグリ部25はどれも3つずつ形成されているが、その他の個数にすることもできる。また、間隙12同士、切れ込み20同士、貫通孔24同士、又はザグリ部25同士で等形状及び等寸法となっているが、異なる形状又は異なる寸法にすることができる。さらに、間隙12だけ、切れ込み20だけ、貫通孔24だけ、又はザグリ部25だけとするのではなく、底壁部10に1つの切れ込み20と2つのザグリ部25との組み合わせ等、組み合わせて形成することもできる。   For example, in the embodiment of the invention, the gap 12, the notch 20, the through hole 24, and the counterbore portion 25 are all formed in three pieces, but other numbers may be used. In addition, the gaps 12, the notches 20, the through holes 24, or the counterbore portions 25 have the same shape and the same size, but can have different shapes or different sizes. Furthermore, not only the gap 12, only the notch 20, only the through hole 24, or only the counterbore portion 25, but a combination of one notch 20 and two counterbore portions 25 is formed in the bottom wall portion 10. You can also

発明の実施形態では、間隙12、切れ込み20、貫通孔24及びザグリ部25は、いずれも底壁部10における磁路をその延在方向に前後に分断しているが、すなわち底壁部10における磁路の延在方向に対して直角方向に長くなっているが、該磁路の延在方向に対して平行に延在していても、電流検出装置の計測可能上限電流値を増大させることができる。   In the embodiment of the invention, the gap 12, the notch 20, the through hole 24, and the counterbore part 25 all divide the magnetic path in the bottom wall part 10 back and forth in the extending direction, that is, in the bottom wall part 10. Although it is long in the direction perpendicular to the extending direction of the magnetic path, it can increase the measurable upper limit current value of the current detection device even if it extends parallel to the extending direction of the magnetic path. Can do.

例えば、図5〜図7の3相電流検出装置30では、基板32は複数の構造単位31の共通の基板となっているが、図1の基板3のように、個々の構造単位31ごとに基板を設けることもできる。   For example, in the three-phase current detection device 30 in FIGS. 5 to 7, the substrate 32 is a common substrate for the plurality of structural units 31, but for each individual structural unit 31 as in the substrate 3 in FIG. 1. A substrate can also be provided.

1・・・電流検出装置、2・・・磁気シールド体、3・・・基板、4・・・ホール素子(電流センサ)、8・・・バスバー(導体)、10・・・底壁部、11・・・側壁部、12・・・間隙、15,16,17・・・電流検出装置、20・・・切れ込み(断面縮小部)、24・・・貫通孔(断面縮小部)、25・・・ザグリ部(断面縮小部)、30・・・3相電流検出装置、31・・・構造単位、32・・・基板。 DESCRIPTION OF SYMBOLS 1 ... Current detection apparatus, 2 ... Magnetic shield body, 3 ... Board | substrate, 4 ... Hall element (current sensor), 8 ... Bus-bar (conductor), 10 ... Bottom wall part, DESCRIPTION OF SYMBOLS 11 ... Side wall part, 12 ... Gap, 15, 16, 17 ... Current detection device, 20 ... Notch (section reduction part), 24 ... Through-hole (section reduction part), 25. .... Counterbore part (cross-sectional reduction part), 30 ... three-phase current detection device, 31 ... structural unit, 32 ... substrate.

Claims (3)

矩形状横断面の導体に対して該矩形状横断面の各短辺側に配設される2つの短辺側壁部、及び該矩形状横断面の一方の長辺側に配設される1つの長辺側壁部を有する磁気シールド体と、
前記導体の矩形状横断面の他方の長辺側における前記2つの短辺側壁部の端間に延在する磁束線上に配置されて、その配置場所の磁束から前記導体を流れる電流の値を検出する電流センサとを備え、
前記磁気シールド体の前記長辺側壁部は間隙又は断面縮小部を有することを特徴とする電流検出装置。
Two short side wall portions disposed on each short side of the rectangular cross section with respect to the conductor of the rectangular cross section, and one disposed on one long side of the rectangular cross section A magnetic shield body having a long side wall portion;
It is arranged on the magnetic flux line extending between the ends of the two short side walls on the other long side of the rectangular cross section of the conductor, and the value of the current flowing through the conductor is detected from the magnetic flux at the arrangement location. And a current sensor
The current detection device according to claim 1, wherein the long side wall portion of the magnetic shield body has a gap or a reduced cross section.
請求項1の電流検出装置において、
前記電流センサは、前記導体の矩形状横断面の他方の長辺側における前記2つの短辺側壁部の端に結合して該端の間を覆う基板の内面側に取り付けられ、
前記磁気シールド体と前記基板とが内面側に画成する内面側空間内において、前記導体は前記内面側空間の中心に対して前記長辺側壁部に偏倚した配置となっていることを特徴とする電流検出装置。
The current detection device according to claim 1,
The current sensor is attached to the inner surface side of the substrate that is coupled to the end of the two short side wall portions on the other long side of the rectangular cross section of the conductor and covers between the ends,
In the inner surface side space defined by the inner surface side of the magnetic shield body and the substrate, the conductor is arranged to be biased to the long side wall portion with respect to the center of the inner surface side space. Current detector.
請求項2の電流検出装置において、
複数の前記磁気シールド体が、内面側において対応の前記導体により貫通されつつ、前記導体の矩形状横断面の長辺に対して平行な方向に沿って一列に配列され、
前記電流センサが内面側に取り付けられている前記基板は、前記磁気シールド体の全ての短辺側壁部の端に結合する1つの共通基板から構成されていることを特徴とする電流検出装置。
The current detection device according to claim 2,
A plurality of the magnetic shield bodies are arranged in a line along a direction parallel to the long side of the rectangular cross section of the conductor while being penetrated by the corresponding conductor on the inner surface side,
The current detection device according to claim 1, wherein the substrate to which the current sensor is attached on the inner surface side is constituted by one common substrate coupled to the ends of all the short side walls of the magnetic shield body.
JP2012066017A 2012-03-22 2012-03-22 Current detector Active JP5985847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012066017A JP5985847B2 (en) 2012-03-22 2012-03-22 Current detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012066017A JP5985847B2 (en) 2012-03-22 2012-03-22 Current detector

Publications (2)

Publication Number Publication Date
JP2013195381A true JP2013195381A (en) 2013-09-30
JP5985847B2 JP5985847B2 (en) 2016-09-06

Family

ID=49394488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012066017A Active JP5985847B2 (en) 2012-03-22 2012-03-22 Current detector

Country Status (1)

Country Link
JP (1) JP5985847B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072124A (en) * 2013-10-01 2015-04-16 アルプス・グリーンデバイス株式会社 Curent sensor
JP2015090316A (en) * 2013-11-06 2015-05-11 アルプス・グリーンデバイス株式会社 Current sensor
JP2017072467A (en) * 2015-10-07 2017-04-13 株式会社デンソー Current sensor
JPWO2015194370A1 (en) * 2014-06-20 2017-04-20 日立オートモティブシステムズ株式会社 Current detector
WO2017082011A1 (en) * 2015-11-09 2017-05-18 Tdk株式会社 Magnetic sensor
JP2017199474A (en) * 2016-04-25 2017-11-02 株式会社オサダ Terminal board with current sensor
WO2018159229A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Current detector
WO2018212131A1 (en) * 2017-05-16 2018-11-22 Tdk株式会社 Magnetic sensor
CN109001503A (en) * 2017-06-07 2018-12-14 日置电机株式会社 Shield and sensor
CN109855658A (en) * 2019-05-06 2019-06-07 微传智能科技(常州)有限公司 Motor, encoder, magnetic degree sensor and preparation method thereof
JP7367224B2 (en) 2020-07-28 2023-10-23 アルプスアルパイン株式会社 current sensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285931A (en) * 1995-04-20 1996-11-01 Meidensha Corp Abnormality diagnostic tool of hall element-type current detector
JP2011209158A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Current sensor assembly and method for assembling the same
JP2012002690A (en) * 2010-06-17 2012-01-05 Aisin Seiki Co Ltd Current sensor and current sensor array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285931A (en) * 1995-04-20 1996-11-01 Meidensha Corp Abnormality diagnostic tool of hall element-type current detector
JP2011209158A (en) * 2010-03-30 2011-10-20 Toyota Motor Corp Current sensor assembly and method for assembling the same
JP2012002690A (en) * 2010-06-17 2012-01-05 Aisin Seiki Co Ltd Current sensor and current sensor array

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072124A (en) * 2013-10-01 2015-04-16 アルプス・グリーンデバイス株式会社 Curent sensor
JP2015090316A (en) * 2013-11-06 2015-05-11 アルプス・グリーンデバイス株式会社 Current sensor
US10048294B2 (en) 2014-06-20 2018-08-14 Hitachi Automotive Systems, Ltd. Current detection device
JPWO2015194370A1 (en) * 2014-06-20 2017-04-20 日立オートモティブシステムズ株式会社 Current detector
JP2017072467A (en) * 2015-10-07 2017-04-13 株式会社デンソー Current sensor
WO2017082011A1 (en) * 2015-11-09 2017-05-18 Tdk株式会社 Magnetic sensor
CN108351389A (en) * 2015-11-09 2018-07-31 Tdk株式会社 Magnetic sensor
JP2017090192A (en) * 2015-11-09 2017-05-25 Tdk株式会社 Magnetic sensor
EP3376244A4 (en) * 2015-11-09 2019-07-10 TDK Corporation Magnetic sensor
CN108351389B (en) * 2015-11-09 2020-08-04 Tdk株式会社 Magnetic sensor
US10788544B2 (en) 2015-11-09 2020-09-29 Tdk Corporation Magnetic sensor
JP2017199474A (en) * 2016-04-25 2017-11-02 株式会社オサダ Terminal board with current sensor
WO2018159229A1 (en) * 2017-02-28 2018-09-07 パナソニックIpマネジメント株式会社 Current detector
WO2018212131A1 (en) * 2017-05-16 2018-11-22 Tdk株式会社 Magnetic sensor
JP2018194393A (en) * 2017-05-16 2018-12-06 Tdk株式会社 Magnetic sensor
CN109001503A (en) * 2017-06-07 2018-12-14 日置电机株式会社 Shield and sensor
CN109855658A (en) * 2019-05-06 2019-06-07 微传智能科技(常州)有限公司 Motor, encoder, magnetic degree sensor and preparation method thereof
JP7367224B2 (en) 2020-07-28 2023-10-23 アルプスアルパイン株式会社 current sensor

Also Published As

Publication number Publication date
JP5985847B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5985847B2 (en) Current detector
JP6149885B2 (en) Current sensor
US9372240B2 (en) Current sensor
JP6362691B2 (en) Current detector
KR102528062B1 (en) Offset Current Sensor Structure
JP6651956B2 (en) Current sensor
US10060953B2 (en) Current sensor
JP5500956B2 (en) Current detector
EP2770333B1 (en) Current sensor
JP6524877B2 (en) Current sensor
US9513317B2 (en) Current detection structure
JP2011080970A (en) Detection device of multiphase current
KR101704956B1 (en) Measurement device and mounting unit
JP2007078418A (en) Current sensor and current sensing method
JP2019138815A (en) Current sensor
JP2013234990A5 (en)
JP2005283451A (en) Current measuring device and current measuring method
JP2013142623A (en) Current sensor
JP2013113630A (en) Current detector
JP2012026966A (en) Current sensor
JP2017003283A (en) Current sensor
JP6008756B2 (en) Current sensor and three-phase AC current sensor device
JP2016200438A (en) Current sensor
JP2014006181A (en) Current sensor
JP2015132516A (en) Electric current detection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5985847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250